1 #define _VERSION "0.20"
2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
63 * - fix missed txok introduced during performance
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
67 * 20040828 0.21 - add hardware vlan accleration
68 * by Neil Horman <nhorman@redhat.com>
72 * This driver was originally written for the National Semiconductor
73 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
74 * this code will turn out to be a) clean, b) correct, and c) fast.
75 * With that in mind, I'm aiming to split the code up as much as
76 * reasonably possible. At present there are X major sections that
77 * break down into a) packet receive, b) packet transmit, c) link
78 * management, d) initialization and configuration. Where possible,
79 * these code paths are designed to run in parallel.
81 * This driver has been tested and found to work with the following
82 * cards (in no particular order):
84 * Cameo SOHO-GA2000T SOHO-GA2500T
86 * PureData PDP8023Z-TG
87 * SMC SMC9452TX SMC9462TX
90 * Special thanks to SMC for providing hardware to test this driver on.
92 * Reports of success or failure would be greatly appreciated.
94 //#define dprintk printk
95 #define dprintk(x...) do { } while (0)
97 #include <linux/config.h>
98 #include <linux/module.h>
99 #include <linux/moduleparam.h>
100 #include <linux/types.h>
101 #include <linux/pci.h>
102 #include <linux/netdevice.h>
103 #include <linux/etherdevice.h>
104 #include <linux/delay.h>
105 #include <linux/smp_lock.h>
106 #include <linux/workqueue.h>
107 #include <linux/init.h>
108 #include <linux/ip.h> /* for iph */
109 #include <linux/in.h> /* for IPPROTO_... */
110 #include <linux/eeprom.h>
111 #include <linux/compiler.h>
112 #include <linux/prefetch.h>
113 #include <linux/ethtool.h>
114 #include <linux/timer.h>
115 #include <linux/if_vlan.h>
118 #include <asm/uaccess.h>
119 #include <asm/system.h>
121 #define DRV_NAME "ns83820"
123 /* Global parameters. See module_param near the bottom. */
125 static int reset_phy
= 0;
126 static int lnksts
= 0; /* CFG_LNKSTS bit polarity */
128 /* Dprintk is used for more interesting debug events */
130 #define Dprintk dprintk
132 #if defined(CONFIG_HIGHMEM64G) || defined(__ia64__)
133 #define USE_64BIT_ADDR "+"
136 #if defined(USE_64BIT_ADDR)
137 #define VERSION _VERSION USE_64BIT_ADDR
140 #define VERSION _VERSION
145 #define RX_BUF_SIZE 1500 /* 8192 */
146 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
147 #define NS83820_VLAN_ACCEL_SUPPORT
150 /* Must not exceed ~65000. */
151 #define NR_RX_DESC 64
152 #define NR_TX_DESC 128
155 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
157 #define MIN_TX_DESC_FREE 8
159 /* register defines */
162 #define CR_TXE 0x00000001
163 #define CR_TXD 0x00000002
164 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
165 * The Receive engine skips one descriptor and moves
166 * onto the next one!! */
167 #define CR_RXE 0x00000004
168 #define CR_RXD 0x00000008
169 #define CR_TXR 0x00000010
170 #define CR_RXR 0x00000020
171 #define CR_SWI 0x00000080
172 #define CR_RST 0x00000100
174 #define PTSCR_EEBIST_FAIL 0x00000001
175 #define PTSCR_EEBIST_EN 0x00000002
176 #define PTSCR_EELOAD_EN 0x00000004
177 #define PTSCR_RBIST_FAIL 0x000001b8
178 #define PTSCR_RBIST_DONE 0x00000200
179 #define PTSCR_RBIST_EN 0x00000400
180 #define PTSCR_RBIST_RST 0x00002000
182 #define MEAR_EEDI 0x00000001
183 #define MEAR_EEDO 0x00000002
184 #define MEAR_EECLK 0x00000004
185 #define MEAR_EESEL 0x00000008
186 #define MEAR_MDIO 0x00000010
187 #define MEAR_MDDIR 0x00000020
188 #define MEAR_MDC 0x00000040
190 #define ISR_TXDESC3 0x40000000
191 #define ISR_TXDESC2 0x20000000
192 #define ISR_TXDESC1 0x10000000
193 #define ISR_TXDESC0 0x08000000
194 #define ISR_RXDESC3 0x04000000
195 #define ISR_RXDESC2 0x02000000
196 #define ISR_RXDESC1 0x01000000
197 #define ISR_RXDESC0 0x00800000
198 #define ISR_TXRCMP 0x00400000
199 #define ISR_RXRCMP 0x00200000
200 #define ISR_DPERR 0x00100000
201 #define ISR_SSERR 0x00080000
202 #define ISR_RMABT 0x00040000
203 #define ISR_RTABT 0x00020000
204 #define ISR_RXSOVR 0x00010000
205 #define ISR_HIBINT 0x00008000
206 #define ISR_PHY 0x00004000
207 #define ISR_PME 0x00002000
208 #define ISR_SWI 0x00001000
209 #define ISR_MIB 0x00000800
210 #define ISR_TXURN 0x00000400
211 #define ISR_TXIDLE 0x00000200
212 #define ISR_TXERR 0x00000100
213 #define ISR_TXDESC 0x00000080
214 #define ISR_TXOK 0x00000040
215 #define ISR_RXORN 0x00000020
216 #define ISR_RXIDLE 0x00000010
217 #define ISR_RXEARLY 0x00000008
218 #define ISR_RXERR 0x00000004
219 #define ISR_RXDESC 0x00000002
220 #define ISR_RXOK 0x00000001
222 #define TXCFG_CSI 0x80000000
223 #define TXCFG_HBI 0x40000000
224 #define TXCFG_MLB 0x20000000
225 #define TXCFG_ATP 0x10000000
226 #define TXCFG_ECRETRY 0x00800000
227 #define TXCFG_BRST_DIS 0x00080000
228 #define TXCFG_MXDMA1024 0x00000000
229 #define TXCFG_MXDMA512 0x00700000
230 #define TXCFG_MXDMA256 0x00600000
231 #define TXCFG_MXDMA128 0x00500000
232 #define TXCFG_MXDMA64 0x00400000
233 #define TXCFG_MXDMA32 0x00300000
234 #define TXCFG_MXDMA16 0x00200000
235 #define TXCFG_MXDMA8 0x00100000
237 #define CFG_LNKSTS 0x80000000
238 #define CFG_SPDSTS 0x60000000
239 #define CFG_SPDSTS1 0x40000000
240 #define CFG_SPDSTS0 0x20000000
241 #define CFG_DUPSTS 0x10000000
242 #define CFG_TBI_EN 0x01000000
243 #define CFG_MODE_1000 0x00400000
244 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
245 * Read the Phy response and then configure the MAC accordingly */
246 #define CFG_AUTO_1000 0x00200000
247 #define CFG_PINT_CTL 0x001c0000
248 #define CFG_PINT_DUPSTS 0x00100000
249 #define CFG_PINT_LNKSTS 0x00080000
250 #define CFG_PINT_SPDSTS 0x00040000
251 #define CFG_TMRTEST 0x00020000
252 #define CFG_MRM_DIS 0x00010000
253 #define CFG_MWI_DIS 0x00008000
254 #define CFG_T64ADDR 0x00004000
255 #define CFG_PCI64_DET 0x00002000
256 #define CFG_DATA64_EN 0x00001000
257 #define CFG_M64ADDR 0x00000800
258 #define CFG_PHY_RST 0x00000400
259 #define CFG_PHY_DIS 0x00000200
260 #define CFG_EXTSTS_EN 0x00000100
261 #define CFG_REQALG 0x00000080
262 #define CFG_SB 0x00000040
263 #define CFG_POW 0x00000020
264 #define CFG_EXD 0x00000010
265 #define CFG_PESEL 0x00000008
266 #define CFG_BROM_DIS 0x00000004
267 #define CFG_EXT_125 0x00000002
268 #define CFG_BEM 0x00000001
270 #define EXTSTS_UDPPKT 0x00200000
271 #define EXTSTS_TCPPKT 0x00080000
272 #define EXTSTS_IPPKT 0x00020000
273 #define EXTSTS_VPKT 0x00010000
274 #define EXTSTS_VTG_MASK 0x0000ffff
276 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
278 #define MIBC_MIBS 0x00000008
279 #define MIBC_ACLR 0x00000004
280 #define MIBC_FRZ 0x00000002
281 #define MIBC_WRN 0x00000001
283 #define PCR_PSEN (1 << 31)
284 #define PCR_PS_MCAST (1 << 30)
285 #define PCR_PS_DA (1 << 29)
286 #define PCR_STHI_8 (3 << 23)
287 #define PCR_STLO_4 (1 << 23)
288 #define PCR_FFHI_8K (3 << 21)
289 #define PCR_FFLO_4K (1 << 21)
290 #define PCR_PAUSE_CNT 0xFFFE
292 #define RXCFG_AEP 0x80000000
293 #define RXCFG_ARP 0x40000000
294 #define RXCFG_STRIPCRC 0x20000000
295 #define RXCFG_RX_FD 0x10000000
296 #define RXCFG_ALP 0x08000000
297 #define RXCFG_AIRL 0x04000000
298 #define RXCFG_MXDMA512 0x00700000
299 #define RXCFG_DRTH 0x0000003e
300 #define RXCFG_DRTH0 0x00000002
302 #define RFCR_RFEN 0x80000000
303 #define RFCR_AAB 0x40000000
304 #define RFCR_AAM 0x20000000
305 #define RFCR_AAU 0x10000000
306 #define RFCR_APM 0x08000000
307 #define RFCR_APAT 0x07800000
308 #define RFCR_APAT3 0x04000000
309 #define RFCR_APAT2 0x02000000
310 #define RFCR_APAT1 0x01000000
311 #define RFCR_APAT0 0x00800000
312 #define RFCR_AARP 0x00400000
313 #define RFCR_MHEN 0x00200000
314 #define RFCR_UHEN 0x00100000
315 #define RFCR_ULM 0x00080000
317 #define VRCR_RUDPE 0x00000080
318 #define VRCR_RTCPE 0x00000040
319 #define VRCR_RIPE 0x00000020
320 #define VRCR_IPEN 0x00000010
321 #define VRCR_DUTF 0x00000008
322 #define VRCR_DVTF 0x00000004
323 #define VRCR_VTREN 0x00000002
324 #define VRCR_VTDEN 0x00000001
326 #define VTCR_PPCHK 0x00000008
327 #define VTCR_GCHK 0x00000004
328 #define VTCR_VPPTI 0x00000002
329 #define VTCR_VGTI 0x00000001
366 #define TBICR_MR_AN_ENABLE 0x00001000
367 #define TBICR_MR_RESTART_AN 0x00000200
369 #define TBISR_MR_LINK_STATUS 0x00000020
370 #define TBISR_MR_AN_COMPLETE 0x00000004
372 #define TANAR_PS2 0x00000100
373 #define TANAR_PS1 0x00000080
374 #define TANAR_HALF_DUP 0x00000040
375 #define TANAR_FULL_DUP 0x00000020
377 #define GPIOR_GP5_OE 0x00000200
378 #define GPIOR_GP4_OE 0x00000100
379 #define GPIOR_GP3_OE 0x00000080
380 #define GPIOR_GP2_OE 0x00000040
381 #define GPIOR_GP1_OE 0x00000020
382 #define GPIOR_GP3_OUT 0x00000004
383 #define GPIOR_GP1_OUT 0x00000001
385 #define LINK_AUTONEGOTIATE 0x01
386 #define LINK_DOWN 0x02
389 #ifdef USE_64BIT_ADDR
390 #define HW_ADDR_LEN 8
391 #define desc_addr_set(desc, addr) \
393 u64 __addr = (addr); \
394 (desc)[0] = cpu_to_le32(__addr); \
395 (desc)[1] = cpu_to_le32(__addr >> 32); \
397 #define desc_addr_get(desc) \
398 (((u64)le32_to_cpu((desc)[1]) << 32) \
399 | le32_to_cpu((desc)[0]))
401 #define HW_ADDR_LEN 4
402 #define desc_addr_set(desc, addr) ((desc)[0] = cpu_to_le32(addr))
403 #define desc_addr_get(desc) (le32_to_cpu((desc)[0]))
407 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
408 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
409 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
411 #define CMDSTS_OWN 0x80000000
412 #define CMDSTS_MORE 0x40000000
413 #define CMDSTS_INTR 0x20000000
414 #define CMDSTS_ERR 0x10000000
415 #define CMDSTS_OK 0x08000000
416 #define CMDSTS_RUNT 0x00200000
417 #define CMDSTS_LEN_MASK 0x0000ffff
419 #define CMDSTS_DEST_MASK 0x01800000
420 #define CMDSTS_DEST_SELF 0x00800000
421 #define CMDSTS_DEST_MULTI 0x01000000
423 #define DESC_SIZE 8 /* Should be cache line sized */
430 struct sk_buff
*skbs
[NR_RX_DESC
];
433 u16 next_rx
, next_empty
;
436 dma_addr_t phy_descs
;
441 struct net_device_stats stats
;
444 struct pci_dev
*pci_dev
;
446 #ifdef NS83820_VLAN_ACCEL_SUPPORT
447 struct vlan_group
*vlgrp
;
450 struct rx_info rx_info
;
451 struct tasklet_struct rx_tasklet
;
454 struct work_struct tq_refill
;
456 /* protects everything below. irqsave when using. */
457 spinlock_t misc_lock
;
471 volatile u16 tx_free_idx
; /* idx of free desc chain */
475 struct sk_buff
*tx_skbs
[NR_TX_DESC
];
477 char pad
[16] __attribute__((aligned(16)));
479 dma_addr_t tx_phy_descs
;
481 struct timer_list tx_watchdog
;
484 static inline struct ns83820
*PRIV(struct net_device
*dev
)
486 return netdev_priv(dev
);
489 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
491 static inline void kick_rx(struct net_device
*ndev
)
493 struct ns83820
*dev
= PRIV(ndev
);
494 dprintk("kick_rx: maybe kicking\n");
495 if (test_and_clear_bit(0, &dev
->rx_info
.idle
)) {
496 dprintk("actually kicking\n");
497 writel(dev
->rx_info
.phy_descs
+
498 (4 * DESC_SIZE
* dev
->rx_info
.next_rx
),
500 if (dev
->rx_info
.next_rx
== dev
->rx_info
.next_empty
)
501 printk(KERN_DEBUG
"%s: uh-oh: next_rx == next_empty???\n",
507 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
508 #define start_tx_okay(dev) \
509 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
512 #ifdef NS83820_VLAN_ACCEL_SUPPORT
513 static void ns83820_vlan_rx_register(struct net_device
*ndev
, struct vlan_group
*grp
)
515 struct ns83820
*dev
= PRIV(ndev
);
517 spin_lock_irq(&dev
->misc_lock
);
518 spin_lock(&dev
->tx_lock
);
522 spin_unlock(&dev
->tx_lock
);
523 spin_unlock_irq(&dev
->misc_lock
);
526 static void ns83820_vlan_rx_kill_vid(struct net_device
*ndev
, unsigned short vid
)
528 struct ns83820
*dev
= PRIV(ndev
);
530 spin_lock_irq(&dev
->misc_lock
);
531 spin_lock(&dev
->tx_lock
);
533 dev
->vlgrp
->vlan_devices
[vid
] = NULL
;
534 spin_unlock(&dev
->tx_lock
);
535 spin_unlock_irq(&dev
->misc_lock
);
541 * The hardware supports linked lists of receive descriptors for
542 * which ownership is transfered back and forth by means of an
543 * ownership bit. While the hardware does support the use of a
544 * ring for receive descriptors, we only make use of a chain in
545 * an attempt to reduce bus traffic under heavy load scenarios.
546 * This will also make bugs a bit more obvious. The current code
547 * only makes use of a single rx chain; I hope to implement
548 * priority based rx for version 1.0. Goal: even under overload
549 * conditions, still route realtime traffic with as low jitter as
552 static inline void build_rx_desc(struct ns83820
*dev
, u32
*desc
, dma_addr_t link
, dma_addr_t buf
, u32 cmdsts
, u32 extsts
)
554 desc_addr_set(desc
+ DESC_LINK
, link
);
555 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
556 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
558 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
561 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
562 static inline int ns83820_add_rx_skb(struct ns83820
*dev
, struct sk_buff
*skb
)
569 next_empty
= dev
->rx_info
.next_empty
;
571 /* don't overrun last rx marker */
572 if (unlikely(nr_rx_empty(dev
) <= 2)) {
578 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
579 dev
->rx_info
.next_empty
,
580 dev
->rx_info
.nr_used
,
585 sg
= dev
->rx_info
.descs
+ (next_empty
* DESC_SIZE
);
586 if (unlikely(NULL
!= dev
->rx_info
.skbs
[next_empty
]))
588 dev
->rx_info
.skbs
[next_empty
] = skb
;
590 dev
->rx_info
.next_empty
= (next_empty
+ 1) % NR_RX_DESC
;
591 cmdsts
= REAL_RX_BUF_SIZE
| CMDSTS_INTR
;
592 buf
= pci_map_single(dev
->pci_dev
, skb
->tail
,
593 REAL_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
594 build_rx_desc(dev
, sg
, 0, buf
, cmdsts
, 0);
595 /* update link of previous rx */
596 if (likely(next_empty
!= dev
->rx_info
.next_rx
))
597 dev
->rx_info
.descs
[((NR_RX_DESC
+ next_empty
- 1) % NR_RX_DESC
) * DESC_SIZE
] = cpu_to_le32(dev
->rx_info
.phy_descs
+ (next_empty
* DESC_SIZE
* 4));
602 static inline int rx_refill(struct net_device
*ndev
, int gfp
)
604 struct ns83820
*dev
= PRIV(ndev
);
606 unsigned long flags
= 0;
608 if (unlikely(nr_rx_empty(dev
) <= 2))
611 dprintk("rx_refill(%p)\n", ndev
);
612 if (gfp
== GFP_ATOMIC
)
613 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
614 for (i
=0; i
<NR_RX_DESC
; i
++) {
617 /* extra 16 bytes for alignment */
618 skb
= __dev_alloc_skb(REAL_RX_BUF_SIZE
+16, gfp
);
622 res
= (long)skb
->tail
& 0xf;
625 skb_reserve(skb
, res
);
628 if (gfp
!= GFP_ATOMIC
)
629 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
630 res
= ns83820_add_rx_skb(dev
, skb
);
631 if (gfp
!= GFP_ATOMIC
)
632 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
638 if (gfp
== GFP_ATOMIC
)
639 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
641 return i
? 0 : -ENOMEM
;
644 static void FASTCALL(rx_refill_atomic(struct net_device
*ndev
));
645 static void fastcall
rx_refill_atomic(struct net_device
*ndev
)
647 rx_refill(ndev
, GFP_ATOMIC
);
651 static inline void queue_refill(void *_dev
)
653 struct net_device
*ndev
= _dev
;
654 struct ns83820
*dev
= PRIV(ndev
);
656 rx_refill(ndev
, GFP_KERNEL
);
661 static inline void clear_rx_desc(struct ns83820
*dev
, unsigned i
)
663 build_rx_desc(dev
, dev
->rx_info
.descs
+ (DESC_SIZE
* i
), 0, 0, CMDSTS_OWN
, 0);
666 static void FASTCALL(phy_intr(struct net_device
*ndev
));
667 static void fastcall
phy_intr(struct net_device
*ndev
)
669 struct ns83820
*dev
= PRIV(ndev
);
670 static char *speeds
[] = { "10", "100", "1000", "1000(?)", "1000F" };
672 u32 tbisr
, tanar
, tanlpar
;
673 int speed
, fullduplex
, newlinkstate
;
675 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
677 if (dev
->CFG_cache
& CFG_TBI_EN
) {
678 /* we have an optical transceiver */
679 tbisr
= readl(dev
->base
+ TBISR
);
680 tanar
= readl(dev
->base
+ TANAR
);
681 tanlpar
= readl(dev
->base
+ TANLPAR
);
682 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
683 tbisr
, tanar
, tanlpar
);
685 if ( (fullduplex
= (tanlpar
& TANAR_FULL_DUP
)
686 && (tanar
& TANAR_FULL_DUP
)) ) {
688 /* both of us are full duplex */
689 writel(readl(dev
->base
+ TXCFG
)
690 | TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
,
692 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
694 /* Light up full duplex LED */
695 writel(readl(dev
->base
+ GPIOR
) | GPIOR_GP1_OUT
,
698 } else if(((tanlpar
& TANAR_HALF_DUP
)
699 && (tanar
& TANAR_HALF_DUP
))
700 || ((tanlpar
& TANAR_FULL_DUP
)
701 && (tanar
& TANAR_HALF_DUP
))
702 || ((tanlpar
& TANAR_HALF_DUP
)
703 && (tanar
& TANAR_FULL_DUP
))) {
705 /* one or both of us are half duplex */
706 writel((readl(dev
->base
+ TXCFG
)
707 & ~(TXCFG_CSI
| TXCFG_HBI
)) | TXCFG_ATP
,
709 writel(readl(dev
->base
+ RXCFG
) & ~RXCFG_RX_FD
,
711 /* Turn off full duplex LED */
712 writel(readl(dev
->base
+ GPIOR
) & ~GPIOR_GP1_OUT
,
716 speed
= 4; /* 1000F */
719 /* we have a copper transceiver */
720 new_cfg
= dev
->CFG_cache
& ~(CFG_SB
| CFG_MODE_1000
| CFG_SPDSTS
);
722 if (cfg
& CFG_SPDSTS1
)
723 new_cfg
|= CFG_MODE_1000
;
725 new_cfg
&= ~CFG_MODE_1000
;
727 speed
= ((cfg
/ CFG_SPDSTS0
) & 3);
728 fullduplex
= (cfg
& CFG_DUPSTS
);
733 if ((cfg
& CFG_LNKSTS
) &&
734 ((new_cfg
^ dev
->CFG_cache
) & CFG_MODE_1000
)) {
735 writel(new_cfg
, dev
->base
+ CFG
);
736 dev
->CFG_cache
= new_cfg
;
739 dev
->CFG_cache
&= ~CFG_SPDSTS
;
740 dev
->CFG_cache
|= cfg
& CFG_SPDSTS
;
743 newlinkstate
= (cfg
& CFG_LNKSTS
) ? LINK_UP
: LINK_DOWN
;
745 if (newlinkstate
& LINK_UP
746 && dev
->linkstate
!= newlinkstate
) {
747 netif_start_queue(ndev
);
748 netif_wake_queue(ndev
);
749 printk(KERN_INFO
"%s: link now %s mbps, %s duplex and up.\n",
752 fullduplex
? "full" : "half");
753 } else if (newlinkstate
& LINK_DOWN
754 && dev
->linkstate
!= newlinkstate
) {
755 netif_stop_queue(ndev
);
756 printk(KERN_INFO
"%s: link now down.\n", ndev
->name
);
759 dev
->linkstate
= newlinkstate
;
762 static int ns83820_setup_rx(struct net_device
*ndev
)
764 struct ns83820
*dev
= PRIV(ndev
);
768 dprintk("ns83820_setup_rx(%p)\n", ndev
);
770 dev
->rx_info
.idle
= 1;
771 dev
->rx_info
.next_rx
= 0;
772 dev
->rx_info
.next_rx_desc
= dev
->rx_info
.descs
;
773 dev
->rx_info
.next_empty
= 0;
775 for (i
=0; i
<NR_RX_DESC
; i
++)
776 clear_rx_desc(dev
, i
);
778 writel(0, dev
->base
+ RXDP_HI
);
779 writel(dev
->rx_info
.phy_descs
, dev
->base
+ RXDP
);
781 ret
= rx_refill(ndev
, GFP_KERNEL
);
783 dprintk("starting receiver\n");
784 /* prevent the interrupt handler from stomping on us */
785 spin_lock_irq(&dev
->rx_info
.lock
);
787 writel(0x0001, dev
->base
+ CCSR
);
788 writel(0, dev
->base
+ RFCR
);
789 writel(0x7fc00000, dev
->base
+ RFCR
);
790 writel(0xffc00000, dev
->base
+ RFCR
);
796 /* Okay, let it rip */
797 spin_lock_irq(&dev
->misc_lock
);
798 dev
->IMR_cache
|= ISR_PHY
;
799 dev
->IMR_cache
|= ISR_RXRCMP
;
800 //dev->IMR_cache |= ISR_RXERR;
801 //dev->IMR_cache |= ISR_RXOK;
802 dev
->IMR_cache
|= ISR_RXORN
;
803 dev
->IMR_cache
|= ISR_RXSOVR
;
804 dev
->IMR_cache
|= ISR_RXDESC
;
805 dev
->IMR_cache
|= ISR_RXIDLE
;
806 dev
->IMR_cache
|= ISR_TXDESC
;
807 dev
->IMR_cache
|= ISR_TXIDLE
;
809 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
810 writel(1, dev
->base
+ IER
);
811 spin_unlock_irq(&dev
->misc_lock
);
815 spin_unlock_irq(&dev
->rx_info
.lock
);
820 static void ns83820_cleanup_rx(struct ns83820
*dev
)
825 dprintk("ns83820_cleanup_rx(%p)\n", dev
);
827 /* disable receive interrupts */
828 spin_lock_irqsave(&dev
->misc_lock
, flags
);
829 dev
->IMR_cache
&= ~(ISR_RXOK
| ISR_RXDESC
| ISR_RXERR
| ISR_RXEARLY
| ISR_RXIDLE
);
830 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
831 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
833 /* synchronize with the interrupt handler and kill it */
835 synchronize_irq(dev
->pci_dev
->irq
);
837 /* touch the pci bus... */
838 readl(dev
->base
+ IMR
);
840 /* assumes the transmitter is already disabled and reset */
841 writel(0, dev
->base
+ RXDP_HI
);
842 writel(0, dev
->base
+ RXDP
);
844 for (i
=0; i
<NR_RX_DESC
; i
++) {
845 struct sk_buff
*skb
= dev
->rx_info
.skbs
[i
];
846 dev
->rx_info
.skbs
[i
] = NULL
;
847 clear_rx_desc(dev
, i
);
853 static void FASTCALL(ns83820_rx_kick(struct net_device
*ndev
));
854 static void fastcall
ns83820_rx_kick(struct net_device
*ndev
)
856 struct ns83820
*dev
= PRIV(ndev
);
857 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
858 if (dev
->rx_info
.up
) {
859 rx_refill_atomic(ndev
);
864 if (dev
->rx_info
.up
&& nr_rx_empty(dev
) > NR_RX_DESC
*3/4)
865 schedule_work(&dev
->tq_refill
);
868 if (dev
->rx_info
.idle
)
869 printk(KERN_DEBUG
"%s: BAD\n", ndev
->name
);
875 static void FASTCALL(rx_irq(struct net_device
*ndev
));
876 static void fastcall
rx_irq(struct net_device
*ndev
)
878 struct ns83820
*dev
= PRIV(ndev
);
879 struct rx_info
*info
= &dev
->rx_info
;
886 dprintk("rx_irq(%p)\n", ndev
);
887 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
888 readl(dev
->base
+ RXDP
),
889 (long)(dev
->rx_info
.phy_descs
),
890 (int)dev
->rx_info
.next_rx
,
891 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_rx
)),
892 (int)dev
->rx_info
.next_empty
,
893 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_empty
))
896 spin_lock_irqsave(&info
->lock
, flags
);
900 dprintk("walking descs\n");
901 next_rx
= info
->next_rx
;
902 desc
= info
->next_rx_desc
;
903 while ((CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) &&
904 (cmdsts
!= CMDSTS_OWN
)) {
906 u32 extsts
= le32_to_cpu(desc
[DESC_EXTSTS
]);
907 dma_addr_t bufptr
= desc_addr_get(desc
+ DESC_BUFPTR
);
909 dprintk("cmdsts: %08x\n", cmdsts
);
910 dprintk("link: %08x\n", cpu_to_le32(desc
[DESC_LINK
]));
911 dprintk("extsts: %08x\n", extsts
);
913 skb
= info
->skbs
[next_rx
];
914 info
->skbs
[next_rx
] = NULL
;
915 info
->next_rx
= (next_rx
+ 1) % NR_RX_DESC
;
918 clear_rx_desc(dev
, next_rx
);
920 pci_unmap_single(dev
->pci_dev
, bufptr
,
921 RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
922 len
= cmdsts
& CMDSTS_LEN_MASK
;
923 #ifdef NS83820_VLAN_ACCEL_SUPPORT
924 /* NH: As was mentioned below, this chip is kinda
925 * brain dead about vlan tag stripping. Frames
926 * that are 64 bytes with a vlan header appended
927 * like arp frames, or pings, are flagged as Runts
928 * when the tag is stripped and hardware. This
929 * also means that the OK bit in the descriptor
930 * is cleared when the frame comes in so we have
931 * to do a specific length check here to make sure
932 * the frame would have been ok, had we not stripped
935 if (likely((CMDSTS_OK
& cmdsts
) ||
936 ((cmdsts
& CMDSTS_RUNT
) && len
>= 56))) {
938 if (likely(CMDSTS_OK
& cmdsts
)) {
942 goto netdev_mangle_me_harder_failed
;
943 if (cmdsts
& CMDSTS_DEST_MULTI
)
944 dev
->stats
.multicast
++;
945 dev
->stats
.rx_packets
++;
946 dev
->stats
.rx_bytes
+= len
;
947 if ((extsts
& 0x002a0000) && !(extsts
& 0x00540000)) {
948 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
950 skb
->ip_summed
= CHECKSUM_NONE
;
952 skb
->protocol
= eth_type_trans(skb
, ndev
);
953 #ifdef NS83820_VLAN_ACCEL_SUPPORT
954 if(extsts
& EXTSTS_VPKT
) {
956 tag
= ntohs(extsts
& EXTSTS_VTG_MASK
);
957 rx_rc
= vlan_hwaccel_rx(skb
,dev
->vlgrp
,tag
);
959 rx_rc
= netif_rx(skb
);
962 rx_rc
= netif_rx(skb
);
964 if (NET_RX_DROP
== rx_rc
) {
965 netdev_mangle_me_harder_failed
:
966 dev
->stats
.rx_dropped
++;
973 next_rx
= info
->next_rx
;
974 desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
976 info
->next_rx
= next_rx
;
977 info
->next_rx_desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
981 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts
);
984 spin_unlock_irqrestore(&info
->lock
, flags
);
987 static void rx_action(unsigned long _dev
)
989 struct net_device
*ndev
= (void *)_dev
;
990 struct ns83820
*dev
= PRIV(ndev
);
992 writel(ihr
, dev
->base
+ IHR
);
994 spin_lock_irq(&dev
->misc_lock
);
995 dev
->IMR_cache
|= ISR_RXDESC
;
996 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
997 spin_unlock_irq(&dev
->misc_lock
);
1000 ns83820_rx_kick(ndev
);
1003 /* Packet Transmit code
1005 static inline void kick_tx(struct ns83820
*dev
)
1007 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
1008 dev
, dev
->tx_idx
, dev
->tx_free_idx
);
1009 writel(CR_TXE
, dev
->base
+ CR
);
1012 /* No spinlock needed on the transmit irq path as the interrupt handler is
1015 static void do_tx_done(struct net_device
*ndev
)
1017 struct ns83820
*dev
= PRIV(ndev
);
1018 u32 cmdsts
, tx_done_idx
, *desc
;
1020 spin_lock_irq(&dev
->tx_lock
);
1022 dprintk("do_tx_done(%p)\n", ndev
);
1023 tx_done_idx
= dev
->tx_done_idx
;
1024 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1026 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1027 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1028 while ((tx_done_idx
!= dev
->tx_free_idx
) &&
1029 !(CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) ) {
1030 struct sk_buff
*skb
;
1034 if (cmdsts
& CMDSTS_ERR
)
1035 dev
->stats
.tx_errors
++;
1036 if (cmdsts
& CMDSTS_OK
)
1037 dev
->stats
.tx_packets
++;
1038 if (cmdsts
& CMDSTS_OK
)
1039 dev
->stats
.tx_bytes
+= cmdsts
& 0xffff;
1041 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1042 tx_done_idx
, dev
->tx_free_idx
, cmdsts
);
1043 skb
= dev
->tx_skbs
[tx_done_idx
];
1044 dev
->tx_skbs
[tx_done_idx
] = NULL
;
1045 dprintk("done(%p)\n", skb
);
1047 len
= cmdsts
& CMDSTS_LEN_MASK
;
1048 addr
= desc_addr_get(desc
+ DESC_BUFPTR
);
1050 pci_unmap_single(dev
->pci_dev
,
1054 dev_kfree_skb_irq(skb
);
1055 atomic_dec(&dev
->nr_tx_skbs
);
1057 pci_unmap_page(dev
->pci_dev
,
1062 tx_done_idx
= (tx_done_idx
+ 1) % NR_TX_DESC
;
1063 dev
->tx_done_idx
= tx_done_idx
;
1064 desc
[DESC_CMDSTS
] = cpu_to_le32(0);
1066 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1069 /* Allow network stack to resume queueing packets after we've
1070 * finished transmitting at least 1/4 of the packets in the queue.
1072 if (netif_queue_stopped(ndev
) && start_tx_okay(dev
)) {
1073 dprintk("start_queue(%p)\n", ndev
);
1074 netif_start_queue(ndev
);
1075 netif_wake_queue(ndev
);
1077 spin_unlock_irq(&dev
->tx_lock
);
1080 static void ns83820_cleanup_tx(struct ns83820
*dev
)
1084 for (i
=0; i
<NR_TX_DESC
; i
++) {
1085 struct sk_buff
*skb
= dev
->tx_skbs
[i
];
1086 dev
->tx_skbs
[i
] = NULL
;
1088 u32
*desc
= dev
->tx_descs
+ (i
* DESC_SIZE
);
1089 pci_unmap_single(dev
->pci_dev
,
1090 desc_addr_get(desc
+ DESC_BUFPTR
),
1091 le32_to_cpu(desc
[DESC_CMDSTS
]) & CMDSTS_LEN_MASK
,
1093 dev_kfree_skb_irq(skb
);
1094 atomic_dec(&dev
->nr_tx_skbs
);
1098 memset(dev
->tx_descs
, 0, NR_TX_DESC
* DESC_SIZE
* 4);
1101 /* transmit routine. This code relies on the network layer serializing
1102 * its calls in, but will run happily in parallel with the interrupt
1103 * handler. This code currently has provisions for fragmenting tx buffers
1104 * while trying to track down a bug in either the zero copy code or
1105 * the tx fifo (hence the MAX_FRAG_LEN).
1107 static int ns83820_hard_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
1109 struct ns83820
*dev
= PRIV(ndev
);
1110 u32 free_idx
, cmdsts
, extsts
;
1111 int nr_free
, nr_frags
;
1112 unsigned tx_done_idx
, last_idx
;
1118 volatile u32
*first_desc
;
1120 dprintk("ns83820_hard_start_xmit\n");
1122 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1124 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
)) {
1125 netif_stop_queue(ndev
);
1126 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
))
1128 netif_start_queue(ndev
);
1131 last_idx
= free_idx
= dev
->tx_free_idx
;
1132 tx_done_idx
= dev
->tx_done_idx
;
1133 nr_free
= (tx_done_idx
+ NR_TX_DESC
-2 - free_idx
) % NR_TX_DESC
;
1135 if (nr_free
<= nr_frags
) {
1136 dprintk("stop_queue - not enough(%p)\n", ndev
);
1137 netif_stop_queue(ndev
);
1139 /* Check again: we may have raced with a tx done irq */
1140 if (dev
->tx_done_idx
!= tx_done_idx
) {
1141 dprintk("restart queue(%p)\n", ndev
);
1142 netif_start_queue(ndev
);
1148 if (free_idx
== dev
->tx_intr_idx
) {
1150 dev
->tx_intr_idx
= (dev
->tx_intr_idx
+ NR_TX_DESC
/4) % NR_TX_DESC
;
1153 nr_free
-= nr_frags
;
1154 if (nr_free
< MIN_TX_DESC_FREE
) {
1155 dprintk("stop_queue - last entry(%p)\n", ndev
);
1156 netif_stop_queue(ndev
);
1160 frag
= skb_shinfo(skb
)->frags
;
1164 if (skb
->ip_summed
== CHECKSUM_HW
) {
1165 extsts
|= EXTSTS_IPPKT
;
1166 if (IPPROTO_TCP
== skb
->nh
.iph
->protocol
)
1167 extsts
|= EXTSTS_TCPPKT
;
1168 else if (IPPROTO_UDP
== skb
->nh
.iph
->protocol
)
1169 extsts
|= EXTSTS_UDPPKT
;
1172 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1173 if(vlan_tx_tag_present(skb
)) {
1174 /* fetch the vlan tag info out of the
1175 * ancilliary data if the vlan code
1176 * is using hw vlan acceleration
1178 short tag
= vlan_tx_tag_get(skb
);
1179 extsts
|= (EXTSTS_VPKT
| htons(tag
));
1185 len
-= skb
->data_len
;
1186 buf
= pci_map_single(dev
->pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
1188 first_desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1191 volatile u32
*desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1194 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx
, len
,
1195 (unsigned long long)buf
);
1196 last_idx
= free_idx
;
1197 free_idx
= (free_idx
+ 1) % NR_TX_DESC
;
1198 desc
[DESC_LINK
] = cpu_to_le32(dev
->tx_phy_descs
+ (free_idx
* DESC_SIZE
* 4));
1199 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
1200 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
1202 cmdsts
= ((nr_frags
|residue
) ? CMDSTS_MORE
: do_intr
? CMDSTS_INTR
: 0);
1203 cmdsts
|= (desc
== first_desc
) ? 0 : CMDSTS_OWN
;
1205 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
1216 buf
= pci_map_page(dev
->pci_dev
, frag
->page
,
1218 frag
->size
, PCI_DMA_TODEVICE
);
1219 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1220 (long long)buf
, (long) page_to_pfn(frag
->page
),
1226 dprintk("done pkt\n");
1228 spin_lock_irq(&dev
->tx_lock
);
1229 dev
->tx_skbs
[last_idx
] = skb
;
1230 first_desc
[DESC_CMDSTS
] |= cpu_to_le32(CMDSTS_OWN
);
1231 dev
->tx_free_idx
= free_idx
;
1232 atomic_inc(&dev
->nr_tx_skbs
);
1233 spin_unlock_irq(&dev
->tx_lock
);
1237 /* Check again: we may have raced with a tx done irq */
1238 if (stopped
&& (dev
->tx_done_idx
!= tx_done_idx
) && start_tx_okay(dev
))
1239 netif_start_queue(ndev
);
1241 /* set the transmit start time to catch transmit timeouts */
1242 ndev
->trans_start
= jiffies
;
1246 static void ns83820_update_stats(struct ns83820
*dev
)
1248 u8 __iomem
*base
= dev
->base
;
1250 /* the DP83820 will freeze counters, so we need to read all of them */
1251 dev
->stats
.rx_errors
+= readl(base
+ 0x60) & 0xffff;
1252 dev
->stats
.rx_crc_errors
+= readl(base
+ 0x64) & 0xffff;
1253 dev
->stats
.rx_missed_errors
+= readl(base
+ 0x68) & 0xffff;
1254 dev
->stats
.rx_frame_errors
+= readl(base
+ 0x6c) & 0xffff;
1255 /*dev->stats.rx_symbol_errors +=*/ readl(base
+ 0x70);
1256 dev
->stats
.rx_length_errors
+= readl(base
+ 0x74) & 0xffff;
1257 dev
->stats
.rx_length_errors
+= readl(base
+ 0x78) & 0xffff;
1258 /*dev->stats.rx_badopcode_errors += */ readl(base
+ 0x7c);
1259 /*dev->stats.rx_pause_count += */ readl(base
+ 0x80);
1260 /*dev->stats.tx_pause_count += */ readl(base
+ 0x84);
1261 dev
->stats
.tx_carrier_errors
+= readl(base
+ 0x88) & 0xff;
1264 static struct net_device_stats
*ns83820_get_stats(struct net_device
*ndev
)
1266 struct ns83820
*dev
= PRIV(ndev
);
1268 /* somewhat overkill */
1269 spin_lock_irq(&dev
->misc_lock
);
1270 ns83820_update_stats(dev
);
1271 spin_unlock_irq(&dev
->misc_lock
);
1276 static void ns83820_get_drvinfo(struct net_device
*ndev
, struct ethtool_drvinfo
*info
)
1278 struct ns83820
*dev
= PRIV(ndev
);
1279 strcpy(info
->driver
, "ns83820");
1280 strcpy(info
->version
, VERSION
);
1281 strcpy(info
->bus_info
, pci_name(dev
->pci_dev
));
1284 static u32
ns83820_get_link(struct net_device
*ndev
)
1286 struct ns83820
*dev
= PRIV(ndev
);
1287 u32 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1288 return cfg
& CFG_LNKSTS
? 1 : 0;
1291 static struct ethtool_ops ops
= {
1292 .get_drvinfo
= ns83820_get_drvinfo
,
1293 .get_link
= ns83820_get_link
1296 static void ns83820_mib_isr(struct ns83820
*dev
)
1298 spin_lock(&dev
->misc_lock
);
1299 ns83820_update_stats(dev
);
1300 spin_unlock(&dev
->misc_lock
);
1303 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
);
1304 static irqreturn_t
ns83820_irq(int foo
, void *data
, struct pt_regs
*regs
)
1306 struct net_device
*ndev
= data
;
1307 struct ns83820
*dev
= PRIV(ndev
);
1309 dprintk("ns83820_irq(%p)\n", ndev
);
1313 isr
= readl(dev
->base
+ ISR
);
1314 dprintk("irq: %08x\n", isr
);
1315 ns83820_do_isr(ndev
, isr
);
1319 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
)
1321 struct ns83820
*dev
= PRIV(ndev
);
1323 if (isr
& ~(ISR_PHY
| ISR_RXDESC
| ISR_RXEARLY
| ISR_RXOK
| ISR_RXERR
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXDESC
))
1324 Dprintk("odd isr? 0x%08x\n", isr
);
1327 if (ISR_RXIDLE
& isr
) {
1328 dev
->rx_info
.idle
= 1;
1329 Dprintk("oh dear, we are idle\n");
1330 ns83820_rx_kick(ndev
);
1333 if ((ISR_RXDESC
| ISR_RXOK
) & isr
) {
1334 prefetch(dev
->rx_info
.next_rx_desc
);
1336 spin_lock_irq(&dev
->misc_lock
);
1337 dev
->IMR_cache
&= ~(ISR_RXDESC
| ISR_RXOK
);
1338 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1339 spin_unlock_irq(&dev
->misc_lock
);
1341 tasklet_schedule(&dev
->rx_tasklet
);
1343 //writel(4, dev->base + IHR);
1346 if ((ISR_RXIDLE
| ISR_RXORN
| ISR_RXDESC
| ISR_RXOK
| ISR_RXERR
) & isr
)
1347 ns83820_rx_kick(ndev
);
1349 if (unlikely(ISR_RXSOVR
& isr
)) {
1350 //printk("overrun: rxsovr\n");
1351 dev
->stats
.rx_fifo_errors
++;
1354 if (unlikely(ISR_RXORN
& isr
)) {
1355 //printk("overrun: rxorn\n");
1356 dev
->stats
.rx_fifo_errors
++;
1359 if ((ISR_RXRCMP
& isr
) && dev
->rx_info
.up
)
1360 writel(CR_RXE
, dev
->base
+ CR
);
1362 if (ISR_TXIDLE
& isr
) {
1364 txdp
= readl(dev
->base
+ TXDP
);
1365 dprintk("txdp: %08x\n", txdp
);
1366 txdp
-= dev
->tx_phy_descs
;
1367 dev
->tx_idx
= txdp
/ (DESC_SIZE
* 4);
1368 if (dev
->tx_idx
>= NR_TX_DESC
) {
1369 printk(KERN_ALERT
"%s: BUG -- txdp out of range\n", ndev
->name
);
1372 /* The may have been a race between a pci originated read
1373 * and the descriptor update from the cpu. Just in case,
1374 * kick the transmitter if the hardware thinks it is on a
1375 * different descriptor than we are.
1377 if (dev
->tx_idx
!= dev
->tx_free_idx
)
1381 /* Defer tx ring processing until more than a minimum amount of
1382 * work has accumulated
1384 if ((ISR_TXDESC
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXERR
) & isr
) {
1387 /* Disable TxOk if there are no outstanding tx packets.
1389 if ((dev
->tx_done_idx
== dev
->tx_free_idx
) &&
1390 (dev
->IMR_cache
& ISR_TXOK
)) {
1391 spin_lock_irq(&dev
->misc_lock
);
1392 dev
->IMR_cache
&= ~ISR_TXOK
;
1393 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1394 spin_unlock_irq(&dev
->misc_lock
);
1398 /* The TxIdle interrupt can come in before the transmit has
1399 * completed. Normally we reap packets off of the combination
1400 * of TxDesc and TxIdle and leave TxOk disabled (since it
1401 * occurs on every packet), but when no further irqs of this
1402 * nature are expected, we must enable TxOk.
1404 if ((ISR_TXIDLE
& isr
) && (dev
->tx_done_idx
!= dev
->tx_free_idx
)) {
1405 spin_lock_irq(&dev
->misc_lock
);
1406 dev
->IMR_cache
|= ISR_TXOK
;
1407 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1408 spin_unlock_irq(&dev
->misc_lock
);
1411 /* MIB interrupt: one of the statistics counters is about to overflow */
1412 if (unlikely(ISR_MIB
& isr
))
1413 ns83820_mib_isr(dev
);
1415 /* PHY: Link up/down/negotiation state change */
1416 if (unlikely(ISR_PHY
& isr
))
1419 #if 0 /* Still working on the interrupt mitigation strategy */
1421 writel(dev
->ihr
, dev
->base
+ IHR
);
1425 static void ns83820_do_reset(struct ns83820
*dev
, u32 which
)
1427 Dprintk("resetting chip...\n");
1428 writel(which
, dev
->base
+ CR
);
1431 } while (readl(dev
->base
+ CR
) & which
);
1435 static int ns83820_stop(struct net_device
*ndev
)
1437 struct ns83820
*dev
= PRIV(ndev
);
1439 /* FIXME: protect against interrupt handler? */
1440 del_timer_sync(&dev
->tx_watchdog
);
1442 /* disable interrupts */
1443 writel(0, dev
->base
+ IMR
);
1444 writel(0, dev
->base
+ IER
);
1445 readl(dev
->base
+ IER
);
1447 dev
->rx_info
.up
= 0;
1448 synchronize_irq(dev
->pci_dev
->irq
);
1450 ns83820_do_reset(dev
, CR_RST
);
1452 synchronize_irq(dev
->pci_dev
->irq
);
1454 spin_lock_irq(&dev
->misc_lock
);
1455 dev
->IMR_cache
&= ~(ISR_TXURN
| ISR_TXIDLE
| ISR_TXERR
| ISR_TXDESC
| ISR_TXOK
);
1456 spin_unlock_irq(&dev
->misc_lock
);
1458 ns83820_cleanup_rx(dev
);
1459 ns83820_cleanup_tx(dev
);
1464 static void ns83820_tx_timeout(struct net_device
*ndev
)
1466 struct ns83820
*dev
= PRIV(ndev
);
1467 u32 tx_done_idx
, *desc
;
1468 unsigned long flags
;
1470 local_irq_save(flags
);
1472 tx_done_idx
= dev
->tx_done_idx
;
1473 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1475 printk(KERN_INFO
"%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1477 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1482 isr
= readl(dev
->base
+ ISR
);
1483 printk("irq: %08x imr: %08x\n", isr
, dev
->IMR_cache
);
1484 ns83820_do_isr(ndev
, isr
);
1490 tx_done_idx
= dev
->tx_done_idx
;
1491 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1493 printk(KERN_INFO
"%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1495 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1497 local_irq_restore(flags
);
1500 static void ns83820_tx_watch(unsigned long data
)
1502 struct net_device
*ndev
= (void *)data
;
1503 struct ns83820
*dev
= PRIV(ndev
);
1506 printk("ns83820_tx_watch: %u %u %d\n",
1507 dev
->tx_done_idx
, dev
->tx_free_idx
, atomic_read(&dev
->nr_tx_skbs
)
1511 if (time_after(jiffies
, ndev
->trans_start
+ 1*HZ
) &&
1512 dev
->tx_done_idx
!= dev
->tx_free_idx
) {
1513 printk(KERN_DEBUG
"%s: ns83820_tx_watch: %u %u %d\n",
1515 dev
->tx_done_idx
, dev
->tx_free_idx
,
1516 atomic_read(&dev
->nr_tx_skbs
));
1517 ns83820_tx_timeout(ndev
);
1520 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1523 static int ns83820_open(struct net_device
*ndev
)
1525 struct ns83820
*dev
= PRIV(ndev
);
1530 dprintk("ns83820_open\n");
1532 writel(0, dev
->base
+ PQCR
);
1534 ret
= ns83820_setup_rx(ndev
);
1538 memset(dev
->tx_descs
, 0, 4 * NR_TX_DESC
* DESC_SIZE
);
1539 for (i
=0; i
<NR_TX_DESC
; i
++) {
1540 dev
->tx_descs
[(i
* DESC_SIZE
) + DESC_LINK
]
1543 + ((i
+1) % NR_TX_DESC
) * DESC_SIZE
* 4);
1547 dev
->tx_done_idx
= 0;
1548 desc
= dev
->tx_phy_descs
;
1549 writel(0, dev
->base
+ TXDP_HI
);
1550 writel(desc
, dev
->base
+ TXDP
);
1552 init_timer(&dev
->tx_watchdog
);
1553 dev
->tx_watchdog
.data
= (unsigned long)ndev
;
1554 dev
->tx_watchdog
.function
= ns83820_tx_watch
;
1555 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1557 netif_start_queue(ndev
); /* FIXME: wait for phy to come up */
1566 static void ns83820_getmac(struct ns83820
*dev
, u8
*mac
)
1569 for (i
=0; i
<3; i
++) {
1571 #if 0 /* I've left this in as an example of how to use eeprom.h */
1572 data
= eeprom_readw(&dev
->ee
, 0xa + 2 - i
);
1574 /* Read from the perfect match memory: this is loaded by
1575 * the chip from the EEPROM via the EELOAD self test.
1577 writel(i
*2, dev
->base
+ RFCR
);
1578 data
= readl(dev
->base
+ RFDR
);
1585 static int ns83820_change_mtu(struct net_device
*ndev
, int new_mtu
)
1587 if (new_mtu
> RX_BUF_SIZE
)
1589 ndev
->mtu
= new_mtu
;
1593 static void ns83820_set_multicast(struct net_device
*ndev
)
1595 struct ns83820
*dev
= PRIV(ndev
);
1596 u8 __iomem
*rfcr
= dev
->base
+ RFCR
;
1597 u32 and_mask
= 0xffffffff;
1601 if (ndev
->flags
& IFF_PROMISC
)
1602 or_mask
|= RFCR_AAU
| RFCR_AAM
;
1604 and_mask
&= ~(RFCR_AAU
| RFCR_AAM
);
1606 if (ndev
->flags
& IFF_ALLMULTI
)
1607 or_mask
|= RFCR_AAM
;
1609 and_mask
&= ~RFCR_AAM
;
1611 spin_lock_irq(&dev
->misc_lock
);
1612 val
= (readl(rfcr
) & and_mask
) | or_mask
;
1613 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1614 writel(val
& ~RFCR_RFEN
, rfcr
);
1616 spin_unlock_irq(&dev
->misc_lock
);
1619 static void ns83820_run_bist(struct net_device
*ndev
, const char *name
, u32 enable
, u32 done
, u32 fail
)
1621 struct ns83820
*dev
= PRIV(ndev
);
1627 dprintk("%s: start %s\n", ndev
->name
, name
);
1631 writel(enable
, dev
->base
+ PTSCR
);
1634 status
= readl(dev
->base
+ PTSCR
);
1635 if (!(status
& enable
))
1641 if ((jiffies
- start
) >= HZ
) {
1645 set_current_state(TASK_UNINTERRUPTIBLE
);
1646 schedule_timeout(1);
1650 printk(KERN_INFO
"%s: %s failed! (0x%08x & 0x%08x)\n",
1651 ndev
->name
, name
, status
, fail
);
1653 printk(KERN_INFO
"%s: run_bist %s timed out! (%08x)\n",
1654 ndev
->name
, name
, status
);
1656 dprintk("%s: done %s in %d loops\n", ndev
->name
, name
, loops
);
1659 #ifdef PHY_CODE_IS_FINISHED
1660 static void ns83820_mii_write_bit(struct ns83820
*dev
, int bit
)
1663 dev
->MEAR_cache
&= ~MEAR_MDC
;
1664 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1665 readl(dev
->base
+ MEAR
);
1667 /* enable output, set bit */
1668 dev
->MEAR_cache
|= MEAR_MDDIR
;
1670 dev
->MEAR_cache
|= MEAR_MDIO
;
1672 dev
->MEAR_cache
&= ~MEAR_MDIO
;
1674 /* set the output bit */
1675 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1676 readl(dev
->base
+ MEAR
);
1678 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1681 /* drive MDC high causing the data bit to be latched */
1682 dev
->MEAR_cache
|= MEAR_MDC
;
1683 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1684 readl(dev
->base
+ MEAR
);
1690 static int ns83820_mii_read_bit(struct ns83820
*dev
)
1694 /* drive MDC low, disable output */
1695 dev
->MEAR_cache
&= ~MEAR_MDC
;
1696 dev
->MEAR_cache
&= ~MEAR_MDDIR
;
1697 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1698 readl(dev
->base
+ MEAR
);
1700 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1703 /* drive MDC high causing the data bit to be latched */
1704 bit
= (readl(dev
->base
+ MEAR
) & MEAR_MDIO
) ? 1 : 0;
1705 dev
->MEAR_cache
|= MEAR_MDC
;
1706 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1714 static unsigned ns83820_mii_read_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
)
1719 /* read some garbage so that we eventually sync up */
1720 for (i
=0; i
<64; i
++)
1721 ns83820_mii_read_bit(dev
);
1723 ns83820_mii_write_bit(dev
, 0); /* start */
1724 ns83820_mii_write_bit(dev
, 1);
1725 ns83820_mii_write_bit(dev
, 1); /* opcode read */
1726 ns83820_mii_write_bit(dev
, 0);
1728 /* write out the phy address: 5 bits, msb first */
1730 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1732 /* write out the register address, 5 bits, msb first */
1734 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1736 ns83820_mii_read_bit(dev
); /* turn around cycles */
1737 ns83820_mii_read_bit(dev
);
1739 /* read in the register data, 16 bits msb first */
1740 for (i
=0; i
<16; i
++) {
1742 data
|= ns83820_mii_read_bit(dev
);
1748 static unsigned ns83820_mii_write_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
, unsigned data
)
1752 /* read some garbage so that we eventually sync up */
1753 for (i
=0; i
<64; i
++)
1754 ns83820_mii_read_bit(dev
);
1756 ns83820_mii_write_bit(dev
, 0); /* start */
1757 ns83820_mii_write_bit(dev
, 1);
1758 ns83820_mii_write_bit(dev
, 0); /* opcode read */
1759 ns83820_mii_write_bit(dev
, 1);
1761 /* write out the phy address: 5 bits, msb first */
1763 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1765 /* write out the register address, 5 bits, msb first */
1767 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1769 ns83820_mii_read_bit(dev
); /* turn around cycles */
1770 ns83820_mii_read_bit(dev
);
1772 /* read in the register data, 16 bits msb first */
1773 for (i
=0; i
<16; i
++)
1774 ns83820_mii_write_bit(dev
, (data
>> (15 - i
)) & 1);
1779 static void ns83820_probe_phy(struct net_device
*ndev
)
1781 struct ns83820
*dev
= PRIV(ndev
);
1784 #define MII_PHYIDR1 0x02
1785 #define MII_PHYIDR2 0x03
1790 ns83820_mii_read_reg(dev
, 1, 0x09);
1791 ns83820_mii_write_reg(dev
, 1, 0x10, 0x0d3e);
1793 tmp
= ns83820_mii_read_reg(dev
, 1, 0x00);
1794 ns83820_mii_write_reg(dev
, 1, 0x00, tmp
| 0x8000);
1796 ns83820_mii_read_reg(dev
, 1, 0x09);
1801 for (i
=1; i
<2; i
++) {
1804 a
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR1
);
1805 b
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR2
);
1807 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1808 // ndev->name, i, a, b);
1810 for (j
=0; j
<0x16; j
+=4) {
1811 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1813 ns83820_mii_read_reg(dev
, i
, 0 + j
),
1814 ns83820_mii_read_reg(dev
, i
, 1 + j
),
1815 ns83820_mii_read_reg(dev
, i
, 2 + j
),
1816 ns83820_mii_read_reg(dev
, i
, 3 + j
)
1822 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1823 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1824 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1825 a
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1827 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1828 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1829 b
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1830 dprintk("version: 0x%04x 0x%04x\n", a
, b
);
1835 static int __devinit
ns83820_init_one(struct pci_dev
*pci_dev
, const struct pci_device_id
*id
)
1837 struct net_device
*ndev
;
1838 struct ns83820
*dev
;
1843 /* See if we can set the dma mask early on; failure is fatal. */
1844 if (TRY_DAC
&& !pci_set_dma_mask(pci_dev
, 0xffffffffffffffffULL
)) {
1846 } else if (!pci_set_dma_mask(pci_dev
, 0xffffffff)) {
1849 printk(KERN_WARNING
"ns83820.c: pci_set_dma_mask failed!\n");
1853 ndev
= alloc_etherdev(sizeof(struct ns83820
));
1859 spin_lock_init(&dev
->rx_info
.lock
);
1860 spin_lock_init(&dev
->tx_lock
);
1861 spin_lock_init(&dev
->misc_lock
);
1862 dev
->pci_dev
= pci_dev
;
1864 dev
->ee
.cache
= &dev
->MEAR_cache
;
1865 dev
->ee
.lock
= &dev
->misc_lock
;
1866 SET_MODULE_OWNER(ndev
);
1867 SET_NETDEV_DEV(ndev
, &pci_dev
->dev
);
1869 INIT_WORK(&dev
->tq_refill
, queue_refill
, ndev
);
1870 tasklet_init(&dev
->rx_tasklet
, rx_action
, (unsigned long)ndev
);
1872 err
= pci_enable_device(pci_dev
);
1874 printk(KERN_INFO
"ns83820: pci_enable_dev failed: %d\n", err
);
1878 pci_set_master(pci_dev
);
1879 addr
= pci_resource_start(pci_dev
, 1);
1880 dev
->base
= ioremap_nocache(addr
, PAGE_SIZE
);
1881 dev
->tx_descs
= pci_alloc_consistent(pci_dev
,
1882 4 * DESC_SIZE
* NR_TX_DESC
, &dev
->tx_phy_descs
);
1883 dev
->rx_info
.descs
= pci_alloc_consistent(pci_dev
,
1884 4 * DESC_SIZE
* NR_RX_DESC
, &dev
->rx_info
.phy_descs
);
1886 if (!dev
->base
|| !dev
->tx_descs
|| !dev
->rx_info
.descs
)
1889 dprintk("%p: %08lx %p: %08lx\n",
1890 dev
->tx_descs
, (long)dev
->tx_phy_descs
,
1891 dev
->rx_info
.descs
, (long)dev
->rx_info
.phy_descs
);
1893 /* disable interrupts */
1894 writel(0, dev
->base
+ IMR
);
1895 writel(0, dev
->base
+ IER
);
1896 readl(dev
->base
+ IER
);
1900 setup_ee_mem_bitbanger(&dev
->ee
, dev
->base
+ MEAR
, 3, 2, 1, 0,
1903 err
= request_irq(pci_dev
->irq
, ns83820_irq
, SA_SHIRQ
,
1906 printk(KERN_INFO
"ns83820: unable to register irq %d\n",
1912 * FIXME: we are holding rtnl_lock() over obscenely long area only
1913 * because some of the setup code uses dev->name. It's Wrong(tm) -
1914 * we should be using driver-specific names for all that stuff.
1915 * For now that will do, but we really need to come back and kill
1916 * most of the dev_alloc_name() users later.
1919 err
= dev_alloc_name(ndev
, ndev
->name
);
1921 printk(KERN_INFO
"ns83820: unable to get netdev name: %d\n", err
);
1925 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1926 ndev
->name
, le32_to_cpu(readl(dev
->base
+ 0x22c)),
1927 pci_dev
->subsystem_vendor
, pci_dev
->subsystem_device
);
1929 ndev
->open
= ns83820_open
;
1930 ndev
->stop
= ns83820_stop
;
1931 ndev
->hard_start_xmit
= ns83820_hard_start_xmit
;
1932 ndev
->get_stats
= ns83820_get_stats
;
1933 ndev
->change_mtu
= ns83820_change_mtu
;
1934 ndev
->set_multicast_list
= ns83820_set_multicast
;
1935 SET_ETHTOOL_OPS(ndev
, &ops
);
1936 ndev
->tx_timeout
= ns83820_tx_timeout
;
1937 ndev
->watchdog_timeo
= 5 * HZ
;
1938 pci_set_drvdata(pci_dev
, ndev
);
1940 ns83820_do_reset(dev
, CR_RST
);
1942 /* Must reset the ram bist before running it */
1943 writel(PTSCR_RBIST_RST
, dev
->base
+ PTSCR
);
1944 ns83820_run_bist(ndev
, "sram bist", PTSCR_RBIST_EN
,
1945 PTSCR_RBIST_DONE
, PTSCR_RBIST_FAIL
);
1946 ns83820_run_bist(ndev
, "eeprom bist", PTSCR_EEBIST_EN
, 0,
1948 ns83820_run_bist(ndev
, "eeprom load", PTSCR_EELOAD_EN
, 0, 0);
1950 /* I love config registers */
1951 dev
->CFG_cache
= readl(dev
->base
+ CFG
);
1953 if ((dev
->CFG_cache
& CFG_PCI64_DET
)) {
1954 printk(KERN_INFO
"%s: detected 64 bit PCI data bus.\n",
1956 /*dev->CFG_cache |= CFG_DATA64_EN;*/
1957 if (!(dev
->CFG_cache
& CFG_DATA64_EN
))
1958 printk(KERN_INFO
"%s: EEPROM did not enable 64 bit bus. Disabled.\n",
1961 dev
->CFG_cache
&= ~(CFG_DATA64_EN
);
1963 dev
->CFG_cache
&= (CFG_TBI_EN
| CFG_MRM_DIS
| CFG_MWI_DIS
|
1964 CFG_T64ADDR
| CFG_DATA64_EN
| CFG_EXT_125
|
1966 dev
->CFG_cache
|= CFG_PINT_DUPSTS
| CFG_PINT_LNKSTS
| CFG_PINT_SPDSTS
|
1967 CFG_EXTSTS_EN
| CFG_EXD
| CFG_PESEL
;
1968 dev
->CFG_cache
|= CFG_REQALG
;
1969 dev
->CFG_cache
|= CFG_POW
;
1970 dev
->CFG_cache
|= CFG_TMRTEST
;
1972 /* When compiled with 64 bit addressing, we must always enable
1973 * the 64 bit descriptor format.
1975 #ifdef USE_64BIT_ADDR
1976 dev
->CFG_cache
|= CFG_M64ADDR
;
1979 dev
->CFG_cache
|= CFG_T64ADDR
;
1981 /* Big endian mode does not seem to do what the docs suggest */
1982 dev
->CFG_cache
&= ~CFG_BEM
;
1984 /* setup optical transceiver if we have one */
1985 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1986 printk(KERN_INFO
"%s: enabling optical transceiver\n",
1988 writel(readl(dev
->base
+ GPIOR
) | 0x3e8, dev
->base
+ GPIOR
);
1990 /* setup auto negotiation feature advertisement */
1991 writel(readl(dev
->base
+ TANAR
)
1992 | TANAR_HALF_DUP
| TANAR_FULL_DUP
,
1995 /* start auto negotiation */
1996 writel(TBICR_MR_AN_ENABLE
| TBICR_MR_RESTART_AN
,
1998 writel(TBICR_MR_AN_ENABLE
, dev
->base
+ TBICR
);
1999 dev
->linkstate
= LINK_AUTONEGOTIATE
;
2001 dev
->CFG_cache
|= CFG_MODE_1000
;
2004 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
2005 dprintk("CFG: %08x\n", dev
->CFG_cache
);
2008 printk(KERN_INFO
"%s: resetting phy\n", ndev
->name
);
2009 writel(dev
->CFG_cache
| CFG_PHY_RST
, dev
->base
+ CFG
);
2011 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
2014 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2015 * the PCI layer. FIXME.
2017 if (readl(dev
->base
+ SRR
))
2018 writel(readl(dev
->base
+0x20c) | 0xfe00, dev
->base
+ 0x20c);
2021 /* Note! The DMA burst size interacts with packet
2022 * transmission, such that the largest packet that
2023 * can be transmitted is 8192 - FLTH - burst size.
2024 * If only the transmit fifo was larger...
2026 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2027 * some DELL and COMPAQ SMP systems */
2028 writel(TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
| TXCFG_MXDMA512
2029 | ((1600 / 32) * 0x100),
2032 /* Flush the interrupt holdoff timer */
2033 writel(0x000, dev
->base
+ IHR
);
2034 writel(0x100, dev
->base
+ IHR
);
2035 writel(0x000, dev
->base
+ IHR
);
2037 /* Set Rx to full duplex, don't accept runt, errored, long or length
2038 * range errored packets. Use 512 byte DMA.
2040 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2041 * some DELL and COMPAQ SMP systems
2042 * Turn on ALP, only we are accpeting Jumbo Packets */
2043 writel(RXCFG_AEP
| RXCFG_ARP
| RXCFG_AIRL
| RXCFG_RX_FD
2046 | (RXCFG_MXDMA512
) | 0, dev
->base
+ RXCFG
);
2048 /* Disable priority queueing */
2049 writel(0, dev
->base
+ PQCR
);
2051 /* Enable IP checksum validation and detetion of VLAN headers.
2052 * Note: do not set the reject options as at least the 0x102
2053 * revision of the chip does not properly accept IP fragments
2056 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2057 * the MAC it calculates the packetsize AFTER stripping the VLAN
2058 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2059 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2060 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2061 * it discrards it!. These guys......
2062 * also turn on tag stripping if hardware acceleration is enabled
2064 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2065 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2067 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2069 writel(VRCR_INIT_VALUE
, dev
->base
+ VRCR
);
2071 /* Enable per-packet TCP/UDP/IP checksumming
2072 * and per packet vlan tag insertion if
2073 * vlan hardware acceleration is enabled
2075 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2076 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2078 #define VTCR_INIT_VALUE VTCR_PPCHK
2080 writel(VTCR_INIT_VALUE
, dev
->base
+ VTCR
);
2082 /* Ramit : Enable async and sync pause frames */
2083 /* writel(0, dev->base + PCR); */
2084 writel((PCR_PS_MCAST
| PCR_PS_DA
| PCR_PSEN
| PCR_FFLO_4K
|
2085 PCR_FFHI_8K
| PCR_STLO_4
| PCR_STHI_8
| PCR_PAUSE_CNT
),
2088 /* Disable Wake On Lan */
2089 writel(0, dev
->base
+ WCSR
);
2091 ns83820_getmac(dev
, ndev
->dev_addr
);
2093 /* Yes, we support dumb IP checksum on transmit */
2094 ndev
->features
|= NETIF_F_SG
;
2095 ndev
->features
|= NETIF_F_IP_CSUM
;
2097 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2098 /* We also support hardware vlan acceleration */
2099 ndev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
2100 ndev
->vlan_rx_register
= ns83820_vlan_rx_register
;
2101 ndev
->vlan_rx_kill_vid
= ns83820_vlan_rx_kill_vid
;
2105 printk(KERN_INFO
"%s: using 64 bit addressing.\n",
2107 ndev
->features
|= NETIF_F_HIGHDMA
;
2110 printk(KERN_INFO
"%s: ns83820 v" VERSION
": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
2112 (unsigned)readl(dev
->base
+ SRR
) >> 8,
2113 (unsigned)readl(dev
->base
+ SRR
) & 0xff,
2114 ndev
->dev_addr
[0], ndev
->dev_addr
[1],
2115 ndev
->dev_addr
[2], ndev
->dev_addr
[3],
2116 ndev
->dev_addr
[4], ndev
->dev_addr
[5],
2118 (ndev
->features
& NETIF_F_HIGHDMA
) ? "h,sg" : "sg"
2121 #ifdef PHY_CODE_IS_FINISHED
2122 ns83820_probe_phy(ndev
);
2125 err
= register_netdevice(ndev
);
2127 printk(KERN_INFO
"ns83820: unable to register netdev: %d\n", err
);
2135 writel(0, dev
->base
+ IMR
); /* paranoia */
2136 writel(0, dev
->base
+ IER
);
2137 readl(dev
->base
+ IER
);
2140 free_irq(pci_dev
->irq
, ndev
);
2144 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
, dev
->tx_descs
, dev
->tx_phy_descs
);
2145 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
, dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2146 pci_disable_device(pci_dev
);
2149 pci_set_drvdata(pci_dev
, NULL
);
2154 static void __devexit
ns83820_remove_one(struct pci_dev
*pci_dev
)
2156 struct net_device
*ndev
= pci_get_drvdata(pci_dev
);
2157 struct ns83820
*dev
= PRIV(ndev
); /* ok even if NULL */
2159 if (!ndev
) /* paranoia */
2162 writel(0, dev
->base
+ IMR
); /* paranoia */
2163 writel(0, dev
->base
+ IER
);
2164 readl(dev
->base
+ IER
);
2166 unregister_netdev(ndev
);
2167 free_irq(dev
->pci_dev
->irq
, ndev
);
2169 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
,
2170 dev
->tx_descs
, dev
->tx_phy_descs
);
2171 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
,
2172 dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2173 pci_disable_device(dev
->pci_dev
);
2175 pci_set_drvdata(pci_dev
, NULL
);
2178 static struct pci_device_id ns83820_pci_tbl
[] = {
2179 { 0x100b, 0x0022, PCI_ANY_ID
, PCI_ANY_ID
, 0, .driver_data
= 0, },
2183 static struct pci_driver driver
= {
2185 .id_table
= ns83820_pci_tbl
,
2186 .probe
= ns83820_init_one
,
2187 .remove
= __devexit_p(ns83820_remove_one
),
2188 #if 0 /* FIXME: implement */
2195 static int __init
ns83820_init(void)
2197 printk(KERN_INFO
"ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2198 return pci_module_init(&driver
);
2201 static void __exit
ns83820_exit(void)
2203 pci_unregister_driver(&driver
);
2206 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2207 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2208 MODULE_LICENSE("GPL");
2210 MODULE_DEVICE_TABLE(pci
, ns83820_pci_tbl
);
2212 module_param(lnksts
, int, 0);
2213 MODULE_PARM_DESC(lnksts
, "Polarity of LNKSTS bit");
2215 module_param(ihr
, int, 0);
2216 MODULE_PARM_DESC(ihr
, "Time in 100 us increments to delay interrupts (range 0-127)");
2218 module_param(reset_phy
, int, 0);
2219 MODULE_PARM_DESC(reset_phy
, "Set to 1 to reset the PHY on startup");
2221 module_init(ns83820_init
);
2222 module_exit(ns83820_exit
);