2 * linux/include/asm-arm/arch-ixp4xx/io.h
4 * Author: Deepak Saxena <dsaxena@plexity.net>
6 * Copyright (C) 2002-2004 MontaVista Software, Inc.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #ifndef __ASM_ARM_ARCH_IO_H
14 #define __ASM_ARM_ARCH_IO_H
16 #include <asm/hardware.h>
18 #define IO_SPACE_LIMIT 0xffff0000
20 #define BIT(x) ((1)<<(x))
23 extern int (*ixp4xx_pci_read
)(u32 addr
, u32 cmd
, u32
* data
);
24 extern int ixp4xx_pci_write(u32 addr
, u32 cmd
, u32 data
);
28 * IXP4xx provides two methods of accessing PCI memory space:
30 * 1) A direct mapped window from 0x48000000 to 0x4bffffff (64MB).
31 * To access PCI via this space, we simply ioremap() the BAR
32 * into the kernel and we can use the standard read[bwl]/write[bwl]
33 * macros. This is the preffered method due to speed but it
34 * limits the system to just 64MB of PCI memory. This can be
35 * problamatic if using video cards and other memory-heavy
38 * 2) If > 64MB of memory space is required, the IXP4xx can be configured
39 * to use indirect registers to access PCI (as we do below for I/O
40 * transactions). This allows for up to 128MB (0x48000000 to 0x4fffffff)
41 * of memory on the bus. The disadvantadge of this is that every
42 * PCI access requires three local register accesses plus a spinlock,
43 * but in some cases the performance hit is acceptable. In addition,
44 * you cannot mmap() PCI devices in this case.
47 #ifndef CONFIG_IXP4XX_INDIRECT_PCI
49 #define __mem_pci(a) (a)
56 * In the case of using indirect PCI, we simply return the actual PCI
57 * address and our read/write implementation use that to drive the
58 * access registers. If something outside of PCI is ioremap'd, we
59 * fallback to the default.
61 static inline void __iomem
*
62 __ixp4xx_ioremap(unsigned long addr
, size_t size
, unsigned long flags
, unsigned long align
)
64 extern void __iomem
* __ioremap(unsigned long, size_t, unsigned long, unsigned long);
65 if((addr
< 0x48000000) || (addr
> 0x4fffffff))
66 return __ioremap(addr
, size
, flags
, align
);
72 __ixp4xx_iounmap(void __iomem
*addr
)
74 extern void __iounmap(void __iomem
*addr
);
76 if ((u32
)addr
>= VMALLOC_START
)
80 #define __arch_ioremap(a, s, f, x) __ixp4xx_ioremap(a, s, f, x)
81 #define __arch_iounmap(a) __ixp4xx_iounmap(a)
83 #define writeb(p, v) __ixp4xx_writeb(p, v)
84 #define writew(p, v) __ixp4xx_writew(p, v)
85 #define writel(p, v) __ixp4xx_writel(p, v)
87 #define writesb(p, v, l) __ixp4xx_writesb(p, v, l)
88 #define writesw(p, v, l) __ixp4xx_writesw(p, v, l)
89 #define writesl(p, v, l) __ixp4xx_writesl(p, v, l)
91 #define readb(p) __ixp4xx_readb(p)
92 #define readw(p) __ixp4xx_readw(p)
93 #define readl(p) __ixp4xx_readl(p)
95 #define readsb(p, v, l) __ixp4xx_readsb(p, v, l)
96 #define readsw(p, v, l) __ixp4xx_readsw(p, v, l)
97 #define readsl(p, v, l) __ixp4xx_readsl(p, v, l)
100 __ixp4xx_writeb(u8 value
, u32 addr
)
102 u32 n
, byte_enables
, data
;
104 if (addr
>= VMALLOC_START
) {
105 __raw_writeb(value
, addr
);
110 byte_enables
= (0xf & ~BIT(n
)) << IXP4XX_PCI_NP_CBE_BESL
;
111 data
= value
<< (8*n
);
112 ixp4xx_pci_write(addr
, byte_enables
| NP_CMD_MEMWRITE
, data
);
116 __ixp4xx_writesb(u32 bus_addr
, u8
*vaddr
, int count
)
119 writeb(*vaddr
++, bus_addr
);
123 __ixp4xx_writew(u16 value
, u32 addr
)
125 u32 n
, byte_enables
, data
;
127 if (addr
>= VMALLOC_START
) {
128 __raw_writew(value
, addr
);
133 byte_enables
= (0xf & ~(BIT(n
) | BIT(n
+1))) << IXP4XX_PCI_NP_CBE_BESL
;
134 data
= value
<< (8*n
);
135 ixp4xx_pci_write(addr
, byte_enables
| NP_CMD_MEMWRITE
, data
);
139 __ixp4xx_writesw(u32 bus_addr
, u16
*vaddr
, int count
)
142 writew(*vaddr
++, bus_addr
);
146 __ixp4xx_writel(u32 value
, u32 addr
)
148 if (addr
>= VMALLOC_START
) {
149 __raw_writel(value
, addr
);
153 ixp4xx_pci_write(addr
, NP_CMD_MEMWRITE
, value
);
157 __ixp4xx_writesl(u32 bus_addr
, u32
*vaddr
, int count
)
160 writel(*vaddr
++, bus_addr
);
163 static inline unsigned char
164 __ixp4xx_readb(u32 addr
)
166 u32 n
, byte_enables
, data
;
168 if (addr
>= VMALLOC_START
)
169 return __raw_readb(addr
);
172 byte_enables
= (0xf & ~BIT(n
)) << IXP4XX_PCI_NP_CBE_BESL
;
173 if (ixp4xx_pci_read(addr
, byte_enables
| NP_CMD_MEMREAD
, &data
))
176 return data
>> (8*n
);
180 __ixp4xx_readsb(u32 bus_addr
, u8
*vaddr
, u32 count
)
183 *vaddr
++ = readb(bus_addr
);
186 static inline unsigned short
187 __ixp4xx_readw(u32 addr
)
189 u32 n
, byte_enables
, data
;
191 if (addr
>= VMALLOC_START
)
192 return __raw_readw(addr
);
195 byte_enables
= (0xf & ~(BIT(n
) | BIT(n
+1))) << IXP4XX_PCI_NP_CBE_BESL
;
196 if (ixp4xx_pci_read(addr
, byte_enables
| NP_CMD_MEMREAD
, &data
))
203 __ixp4xx_readsw(u32 bus_addr
, u16
*vaddr
, u32 count
)
206 *vaddr
++ = readw(bus_addr
);
209 static inline unsigned long
210 __ixp4xx_readl(u32 addr
)
214 if (addr
>= VMALLOC_START
)
215 return __raw_readl(addr
);
217 if (ixp4xx_pci_read(addr
, NP_CMD_MEMREAD
, &data
))
224 __ixp4xx_readsl(u32 bus_addr
, u32
*vaddr
, u32 count
)
227 *vaddr
++ = readl(bus_addr
);
232 * We can use the built-in functions b/c they end up calling writeb/readb
234 #define memset_io(c,v,l) _memset_io((c),(v),(l))
235 #define memcpy_fromio(a,c,l) _memcpy_fromio((a),(c),(l))
236 #define memcpy_toio(c,a,l) _memcpy_toio((c),(a),(l))
238 #define eth_io_copy_and_sum(s,c,l,b) \
239 eth_copy_and_sum((s),__mem_pci(c),(l),(b))
242 check_signature(unsigned long bus_addr
, const unsigned char *signature
,
247 if (readb(bus_addr
) != *signature
)
261 * IXP4xx does not have a transparent cpu -> PCI I/O translation
262 * window. Instead, it has a set of registers that must be tweaked
263 * with the proper byte lanes, command types, and address for the
264 * transaction. This means that we need to override the default
267 #define outb(p, v) __ixp4xx_outb(p, v)
268 #define outw(p, v) __ixp4xx_outw(p, v)
269 #define outl(p, v) __ixp4xx_outl(p, v)
271 #define outsb(p, v, l) __ixp4xx_outsb(p, v, l)
272 #define outsw(p, v, l) __ixp4xx_outsw(p, v, l)
273 #define outsl(p, v, l) __ixp4xx_outsl(p, v, l)
275 #define inb(p) __ixp4xx_inb(p)
276 #define inw(p) __ixp4xx_inw(p)
277 #define inl(p) __ixp4xx_inl(p)
279 #define insb(p, v, l) __ixp4xx_insb(p, v, l)
280 #define insw(p, v, l) __ixp4xx_insw(p, v, l)
281 #define insl(p, v, l) __ixp4xx_insl(p, v, l)
285 __ixp4xx_outb(u8 value
, u32 addr
)
287 u32 n
, byte_enables
, data
;
289 byte_enables
= (0xf & ~BIT(n
)) << IXP4XX_PCI_NP_CBE_BESL
;
290 data
= value
<< (8*n
);
291 ixp4xx_pci_write(addr
, byte_enables
| NP_CMD_IOWRITE
, data
);
295 __ixp4xx_outsb(u32 io_addr
, const u8
*vaddr
, u32 count
)
298 outb(*vaddr
++, io_addr
);
302 __ixp4xx_outw(u16 value
, u32 addr
)
304 u32 n
, byte_enables
, data
;
306 byte_enables
= (0xf & ~(BIT(n
) | BIT(n
+1))) << IXP4XX_PCI_NP_CBE_BESL
;
307 data
= value
<< (8*n
);
308 ixp4xx_pci_write(addr
, byte_enables
| NP_CMD_IOWRITE
, data
);
312 __ixp4xx_outsw(u32 io_addr
, const u16
*vaddr
, u32 count
)
315 outw(cpu_to_le16(*vaddr
++), io_addr
);
319 __ixp4xx_outl(u32 value
, u32 addr
)
321 ixp4xx_pci_write(addr
, NP_CMD_IOWRITE
, value
);
325 __ixp4xx_outsl(u32 io_addr
, const u32
*vaddr
, u32 count
)
328 outl(*vaddr
++, io_addr
);
332 __ixp4xx_inb(u32 addr
)
334 u32 n
, byte_enables
, data
;
336 byte_enables
= (0xf & ~BIT(n
)) << IXP4XX_PCI_NP_CBE_BESL
;
337 if (ixp4xx_pci_read(addr
, byte_enables
| NP_CMD_IOREAD
, &data
))
340 return data
>> (8*n
);
344 __ixp4xx_insb(u32 io_addr
, u8
*vaddr
, u32 count
)
347 *vaddr
++ = inb(io_addr
);
351 __ixp4xx_inw(u32 addr
)
353 u32 n
, byte_enables
, data
;
355 byte_enables
= (0xf & ~(BIT(n
) | BIT(n
+1))) << IXP4XX_PCI_NP_CBE_BESL
;
356 if (ixp4xx_pci_read(addr
, byte_enables
| NP_CMD_IOREAD
, &data
))
363 __ixp4xx_insw(u32 io_addr
, u16
*vaddr
, u32 count
)
366 *vaddr
++ = le16_to_cpu(inw(io_addr
));
370 __ixp4xx_inl(u32 addr
)
373 if (ixp4xx_pci_read(addr
, NP_CMD_IOREAD
, &data
))
380 __ixp4xx_insl(u32 io_addr
, u32
*vaddr
, u32 count
)
383 *vaddr
++ = inl(io_addr
);
387 #endif // __ASM_ARM_ARCH_IO_H