2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
45 /* Simple attribute files */
47 int (*get
)(void *, u64
*);
48 int (*set
)(void *, u64
);
49 char get_buf
[24]; /* enough to store a u64 and "\n\0" */
52 const char *fmt
; /* format for read operation */
53 struct mutex mutex
; /* protects access to these buffers */
56 static int spufs_attr_open(struct inode
*inode
, struct file
*file
,
57 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
60 struct spufs_attr
*attr
;
62 attr
= kmalloc(sizeof(*attr
), GFP_KERNEL
);
68 attr
->data
= inode
->i_private
;
70 mutex_init(&attr
->mutex
);
71 file
->private_data
= attr
;
73 return nonseekable_open(inode
, file
);
76 static int spufs_attr_release(struct inode
*inode
, struct file
*file
)
78 kfree(file
->private_data
);
82 static ssize_t
spufs_attr_read(struct file
*file
, char __user
*buf
,
83 size_t len
, loff_t
*ppos
)
85 struct spufs_attr
*attr
;
89 attr
= file
->private_data
;
93 ret
= mutex_lock_interruptible(&attr
->mutex
);
97 if (*ppos
) { /* continued read */
98 size
= strlen(attr
->get_buf
);
99 } else { /* first read */
101 ret
= attr
->get(attr
->data
, &val
);
105 size
= scnprintf(attr
->get_buf
, sizeof(attr
->get_buf
),
106 attr
->fmt
, (unsigned long long)val
);
109 ret
= simple_read_from_buffer(buf
, len
, ppos
, attr
->get_buf
, size
);
111 mutex_unlock(&attr
->mutex
);
115 static ssize_t
spufs_attr_write(struct file
*file
, const char __user
*buf
,
116 size_t len
, loff_t
*ppos
)
118 struct spufs_attr
*attr
;
123 attr
= file
->private_data
;
127 ret
= mutex_lock_interruptible(&attr
->mutex
);
132 size
= min(sizeof(attr
->set_buf
) - 1, len
);
133 if (copy_from_user(attr
->set_buf
, buf
, size
))
136 ret
= len
; /* claim we got the whole input */
137 attr
->set_buf
[size
] = '\0';
138 val
= simple_strtol(attr
->set_buf
, NULL
, 0);
139 attr
->set(attr
->data
, val
);
141 mutex_unlock(&attr
->mutex
);
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
146 static int __fops ## _open(struct inode *inode, struct file *file) \
148 __simple_attr_check_format(__fmt, 0ull); \
149 return spufs_attr_open(inode, file, __get, __set, __fmt); \
151 static const struct file_operations __fops = { \
152 .owner = THIS_MODULE, \
153 .open = __fops ## _open, \
154 .release = spufs_attr_release, \
155 .read = spufs_attr_read, \
156 .write = spufs_attr_write, \
157 .llseek = generic_file_llseek, \
162 spufs_mem_open(struct inode
*inode
, struct file
*file
)
164 struct spufs_inode_info
*i
= SPUFS_I(inode
);
165 struct spu_context
*ctx
= i
->i_ctx
;
167 mutex_lock(&ctx
->mapping_lock
);
168 file
->private_data
= ctx
;
170 ctx
->local_store
= inode
->i_mapping
;
171 mutex_unlock(&ctx
->mapping_lock
);
176 spufs_mem_release(struct inode
*inode
, struct file
*file
)
178 struct spufs_inode_info
*i
= SPUFS_I(inode
);
179 struct spu_context
*ctx
= i
->i_ctx
;
181 mutex_lock(&ctx
->mapping_lock
);
183 ctx
->local_store
= NULL
;
184 mutex_unlock(&ctx
->mapping_lock
);
189 __spufs_mem_read(struct spu_context
*ctx
, char __user
*buffer
,
190 size_t size
, loff_t
*pos
)
192 char *local_store
= ctx
->ops
->get_ls(ctx
);
193 return simple_read_from_buffer(buffer
, size
, pos
, local_store
,
198 spufs_mem_read(struct file
*file
, char __user
*buffer
,
199 size_t size
, loff_t
*pos
)
201 struct spu_context
*ctx
= file
->private_data
;
204 ret
= spu_acquire(ctx
);
207 ret
= __spufs_mem_read(ctx
, buffer
, size
, pos
);
214 spufs_mem_write(struct file
*file
, const char __user
*buffer
,
215 size_t size
, loff_t
*ppos
)
217 struct spu_context
*ctx
= file
->private_data
;
225 ret
= spu_acquire(ctx
);
229 local_store
= ctx
->ops
->get_ls(ctx
);
230 size
= simple_write_to_buffer(local_store
, LS_SIZE
, ppos
, buffer
, size
);
237 spufs_mem_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
239 struct spu_context
*ctx
= vma
->vm_file
->private_data
;
240 unsigned long address
= (unsigned long)vmf
->virtual_address
;
241 unsigned long pfn
, offset
;
243 #ifdef CONFIG_SPU_FS_64K_LS
244 struct spu_state
*csa
= &ctx
->csa
;
247 /* Check what page size we are using */
248 psize
= get_slice_psize(vma
->vm_mm
, address
);
250 /* Some sanity checking */
251 BUG_ON(csa
->use_big_pages
!= (psize
== MMU_PAGE_64K
));
253 /* Wow, 64K, cool, we need to align the address though */
254 if (csa
->use_big_pages
) {
255 BUG_ON(vma
->vm_start
& 0xffff);
256 address
&= ~0xfffful
;
258 #endif /* CONFIG_SPU_FS_64K_LS */
260 offset
= vmf
->pgoff
<< PAGE_SHIFT
;
261 if (offset
>= LS_SIZE
)
262 return VM_FAULT_SIGBUS
;
264 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
267 if (spu_acquire(ctx
))
268 return VM_FAULT_NOPAGE
;
270 if (ctx
->state
== SPU_STATE_SAVED
) {
271 vma
->vm_page_prot
= pgprot_cached(vma
->vm_page_prot
);
272 pfn
= vmalloc_to_pfn(ctx
->csa
.lscsa
->ls
+ offset
);
274 vma
->vm_page_prot
= pgprot_noncached_wc(vma
->vm_page_prot
);
275 pfn
= (ctx
->spu
->local_store_phys
+ offset
) >> PAGE_SHIFT
;
277 vm_insert_pfn(vma
, address
, pfn
);
281 return VM_FAULT_NOPAGE
;
284 static int spufs_mem_mmap_access(struct vm_area_struct
*vma
,
285 unsigned long address
,
286 void *buf
, int len
, int write
)
288 struct spu_context
*ctx
= vma
->vm_file
->private_data
;
289 unsigned long offset
= address
- vma
->vm_start
;
292 if (write
&& !(vma
->vm_flags
& VM_WRITE
))
294 if (spu_acquire(ctx
))
296 if ((offset
+ len
) > vma
->vm_end
)
297 len
= vma
->vm_end
- offset
;
298 local_store
= ctx
->ops
->get_ls(ctx
);
300 memcpy_toio(local_store
+ offset
, buf
, len
);
302 memcpy_fromio(buf
, local_store
+ offset
, len
);
307 static const struct vm_operations_struct spufs_mem_mmap_vmops
= {
308 .fault
= spufs_mem_mmap_fault
,
309 .access
= spufs_mem_mmap_access
,
312 static int spufs_mem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
314 #ifdef CONFIG_SPU_FS_64K_LS
315 struct spu_context
*ctx
= file
->private_data
;
316 struct spu_state
*csa
= &ctx
->csa
;
318 /* Sanity check VMA alignment */
319 if (csa
->use_big_pages
) {
320 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
321 " pgoff=0x%lx\n", vma
->vm_start
, vma
->vm_end
,
323 if (vma
->vm_start
& 0xffff)
325 if (vma
->vm_pgoff
& 0xf)
328 #endif /* CONFIG_SPU_FS_64K_LS */
330 if (!(vma
->vm_flags
& VM_SHARED
))
333 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
334 vma
->vm_page_prot
= pgprot_noncached_wc(vma
->vm_page_prot
);
336 vma
->vm_ops
= &spufs_mem_mmap_vmops
;
340 #ifdef CONFIG_SPU_FS_64K_LS
341 static unsigned long spufs_get_unmapped_area(struct file
*file
,
342 unsigned long addr
, unsigned long len
, unsigned long pgoff
,
345 struct spu_context
*ctx
= file
->private_data
;
346 struct spu_state
*csa
= &ctx
->csa
;
348 /* If not using big pages, fallback to normal MM g_u_a */
349 if (!csa
->use_big_pages
)
350 return current
->mm
->get_unmapped_area(file
, addr
, len
,
353 /* Else, try to obtain a 64K pages slice */
354 return slice_get_unmapped_area(addr
, len
, flags
,
357 #endif /* CONFIG_SPU_FS_64K_LS */
359 static const struct file_operations spufs_mem_fops
= {
360 .open
= spufs_mem_open
,
361 .release
= spufs_mem_release
,
362 .read
= spufs_mem_read
,
363 .write
= spufs_mem_write
,
364 .llseek
= generic_file_llseek
,
365 .mmap
= spufs_mem_mmap
,
366 #ifdef CONFIG_SPU_FS_64K_LS
367 .get_unmapped_area
= spufs_get_unmapped_area
,
371 static int spufs_ps_fault(struct vm_area_struct
*vma
,
372 struct vm_fault
*vmf
,
373 unsigned long ps_offs
,
374 unsigned long ps_size
)
376 struct spu_context
*ctx
= vma
->vm_file
->private_data
;
377 unsigned long area
, offset
= vmf
->pgoff
<< PAGE_SHIFT
;
380 spu_context_nospu_trace(spufs_ps_fault__enter
, ctx
);
382 if (offset
>= ps_size
)
383 return VM_FAULT_SIGBUS
;
385 if (fatal_signal_pending(current
))
386 return VM_FAULT_SIGBUS
;
389 * Because we release the mmap_sem, the context may be destroyed while
390 * we're in spu_wait. Grab an extra reference so it isn't destroyed
393 get_spu_context(ctx
);
396 * We have to wait for context to be loaded before we have
397 * pages to hand out to the user, but we don't want to wait
398 * with the mmap_sem held.
399 * It is possible to drop the mmap_sem here, but then we need
400 * to return VM_FAULT_NOPAGE because the mappings may have
403 if (spu_acquire(ctx
))
406 if (ctx
->state
== SPU_STATE_SAVED
) {
407 up_read(¤t
->mm
->mmap_sem
);
408 spu_context_nospu_trace(spufs_ps_fault__sleep
, ctx
);
409 ret
= spufs_wait(ctx
->run_wq
, ctx
->state
== SPU_STATE_RUNNABLE
);
410 spu_context_trace(spufs_ps_fault__wake
, ctx
, ctx
->spu
);
411 down_read(¤t
->mm
->mmap_sem
);
413 area
= ctx
->spu
->problem_phys
+ ps_offs
;
414 vm_insert_pfn(vma
, (unsigned long)vmf
->virtual_address
,
415 (area
+ offset
) >> PAGE_SHIFT
);
416 spu_context_trace(spufs_ps_fault__insert
, ctx
, ctx
->spu
);
423 put_spu_context(ctx
);
424 return VM_FAULT_NOPAGE
;
428 static int spufs_cntl_mmap_fault(struct vm_area_struct
*vma
,
429 struct vm_fault
*vmf
)
431 return spufs_ps_fault(vma
, vmf
, 0x4000, SPUFS_CNTL_MAP_SIZE
);
434 static const struct vm_operations_struct spufs_cntl_mmap_vmops
= {
435 .fault
= spufs_cntl_mmap_fault
,
439 * mmap support for problem state control area [0x4000 - 0x4fff].
441 static int spufs_cntl_mmap(struct file
*file
, struct vm_area_struct
*vma
)
443 if (!(vma
->vm_flags
& VM_SHARED
))
446 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
447 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
449 vma
->vm_ops
= &spufs_cntl_mmap_vmops
;
452 #else /* SPUFS_MMAP_4K */
453 #define spufs_cntl_mmap NULL
454 #endif /* !SPUFS_MMAP_4K */
456 static int spufs_cntl_get(void *data
, u64
*val
)
458 struct spu_context
*ctx
= data
;
461 ret
= spu_acquire(ctx
);
464 *val
= ctx
->ops
->status_read(ctx
);
470 static int spufs_cntl_set(void *data
, u64 val
)
472 struct spu_context
*ctx
= data
;
475 ret
= spu_acquire(ctx
);
478 ctx
->ops
->runcntl_write(ctx
, val
);
484 static int spufs_cntl_open(struct inode
*inode
, struct file
*file
)
486 struct spufs_inode_info
*i
= SPUFS_I(inode
);
487 struct spu_context
*ctx
= i
->i_ctx
;
489 mutex_lock(&ctx
->mapping_lock
);
490 file
->private_data
= ctx
;
492 ctx
->cntl
= inode
->i_mapping
;
493 mutex_unlock(&ctx
->mapping_lock
);
494 return simple_attr_open(inode
, file
, spufs_cntl_get
,
495 spufs_cntl_set
, "0x%08lx");
499 spufs_cntl_release(struct inode
*inode
, struct file
*file
)
501 struct spufs_inode_info
*i
= SPUFS_I(inode
);
502 struct spu_context
*ctx
= i
->i_ctx
;
504 simple_attr_release(inode
, file
);
506 mutex_lock(&ctx
->mapping_lock
);
509 mutex_unlock(&ctx
->mapping_lock
);
513 static const struct file_operations spufs_cntl_fops
= {
514 .open
= spufs_cntl_open
,
515 .release
= spufs_cntl_release
,
516 .read
= simple_attr_read
,
517 .write
= simple_attr_write
,
518 .llseek
= generic_file_llseek
,
519 .mmap
= spufs_cntl_mmap
,
523 spufs_regs_open(struct inode
*inode
, struct file
*file
)
525 struct spufs_inode_info
*i
= SPUFS_I(inode
);
526 file
->private_data
= i
->i_ctx
;
531 __spufs_regs_read(struct spu_context
*ctx
, char __user
*buffer
,
532 size_t size
, loff_t
*pos
)
534 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
535 return simple_read_from_buffer(buffer
, size
, pos
,
536 lscsa
->gprs
, sizeof lscsa
->gprs
);
540 spufs_regs_read(struct file
*file
, char __user
*buffer
,
541 size_t size
, loff_t
*pos
)
544 struct spu_context
*ctx
= file
->private_data
;
546 /* pre-check for file position: if we'd return EOF, there's no point
547 * causing a deschedule */
548 if (*pos
>= sizeof(ctx
->csa
.lscsa
->gprs
))
551 ret
= spu_acquire_saved(ctx
);
554 ret
= __spufs_regs_read(ctx
, buffer
, size
, pos
);
555 spu_release_saved(ctx
);
560 spufs_regs_write(struct file
*file
, const char __user
*buffer
,
561 size_t size
, loff_t
*pos
)
563 struct spu_context
*ctx
= file
->private_data
;
564 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
567 if (*pos
>= sizeof(lscsa
->gprs
))
570 ret
= spu_acquire_saved(ctx
);
574 size
= simple_write_to_buffer(lscsa
->gprs
, sizeof(lscsa
->gprs
), pos
,
577 spu_release_saved(ctx
);
581 static const struct file_operations spufs_regs_fops
= {
582 .open
= spufs_regs_open
,
583 .read
= spufs_regs_read
,
584 .write
= spufs_regs_write
,
585 .llseek
= generic_file_llseek
,
589 __spufs_fpcr_read(struct spu_context
*ctx
, char __user
* buffer
,
590 size_t size
, loff_t
* pos
)
592 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
593 return simple_read_from_buffer(buffer
, size
, pos
,
594 &lscsa
->fpcr
, sizeof(lscsa
->fpcr
));
598 spufs_fpcr_read(struct file
*file
, char __user
* buffer
,
599 size_t size
, loff_t
* pos
)
602 struct spu_context
*ctx
= file
->private_data
;
604 ret
= spu_acquire_saved(ctx
);
607 ret
= __spufs_fpcr_read(ctx
, buffer
, size
, pos
);
608 spu_release_saved(ctx
);
613 spufs_fpcr_write(struct file
*file
, const char __user
* buffer
,
614 size_t size
, loff_t
* pos
)
616 struct spu_context
*ctx
= file
->private_data
;
617 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
620 if (*pos
>= sizeof(lscsa
->fpcr
))
623 ret
= spu_acquire_saved(ctx
);
627 size
= simple_write_to_buffer(&lscsa
->fpcr
, sizeof(lscsa
->fpcr
), pos
,
630 spu_release_saved(ctx
);
634 static const struct file_operations spufs_fpcr_fops
= {
635 .open
= spufs_regs_open
,
636 .read
= spufs_fpcr_read
,
637 .write
= spufs_fpcr_write
,
638 .llseek
= generic_file_llseek
,
641 /* generic open function for all pipe-like files */
642 static int spufs_pipe_open(struct inode
*inode
, struct file
*file
)
644 struct spufs_inode_info
*i
= SPUFS_I(inode
);
645 file
->private_data
= i
->i_ctx
;
647 return nonseekable_open(inode
, file
);
651 * Read as many bytes from the mailbox as possible, until
652 * one of the conditions becomes true:
654 * - no more data available in the mailbox
655 * - end of the user provided buffer
656 * - end of the mapped area
658 static ssize_t
spufs_mbox_read(struct file
*file
, char __user
*buf
,
659 size_t len
, loff_t
*pos
)
661 struct spu_context
*ctx
= file
->private_data
;
662 u32 mbox_data
, __user
*udata
;
668 if (!access_ok(VERIFY_WRITE
, buf
, len
))
671 udata
= (void __user
*)buf
;
673 count
= spu_acquire(ctx
);
677 for (count
= 0; (count
+ 4) <= len
; count
+= 4, udata
++) {
679 ret
= ctx
->ops
->mbox_read(ctx
, &mbox_data
);
684 * at the end of the mapped area, we can fault
685 * but still need to return the data we have
686 * read successfully so far.
688 ret
= __put_user(mbox_data
, udata
);
703 static const struct file_operations spufs_mbox_fops
= {
704 .open
= spufs_pipe_open
,
705 .read
= spufs_mbox_read
,
709 static ssize_t
spufs_mbox_stat_read(struct file
*file
, char __user
*buf
,
710 size_t len
, loff_t
*pos
)
712 struct spu_context
*ctx
= file
->private_data
;
719 ret
= spu_acquire(ctx
);
723 mbox_stat
= ctx
->ops
->mbox_stat_read(ctx
) & 0xff;
727 if (copy_to_user(buf
, &mbox_stat
, sizeof mbox_stat
))
733 static const struct file_operations spufs_mbox_stat_fops
= {
734 .open
= spufs_pipe_open
,
735 .read
= spufs_mbox_stat_read
,
739 /* low-level ibox access function */
740 size_t spu_ibox_read(struct spu_context
*ctx
, u32
*data
)
742 return ctx
->ops
->ibox_read(ctx
, data
);
745 static int spufs_ibox_fasync(int fd
, struct file
*file
, int on
)
747 struct spu_context
*ctx
= file
->private_data
;
749 return fasync_helper(fd
, file
, on
, &ctx
->ibox_fasync
);
752 /* interrupt-level ibox callback function. */
753 void spufs_ibox_callback(struct spu
*spu
)
755 struct spu_context
*ctx
= spu
->ctx
;
760 wake_up_all(&ctx
->ibox_wq
);
761 kill_fasync(&ctx
->ibox_fasync
, SIGIO
, POLLIN
);
765 * Read as many bytes from the interrupt mailbox as possible, until
766 * one of the conditions becomes true:
768 * - no more data available in the mailbox
769 * - end of the user provided buffer
770 * - end of the mapped area
772 * If the file is opened without O_NONBLOCK, we wait here until
773 * any data is available, but return when we have been able to
776 static ssize_t
spufs_ibox_read(struct file
*file
, char __user
*buf
,
777 size_t len
, loff_t
*pos
)
779 struct spu_context
*ctx
= file
->private_data
;
780 u32 ibox_data
, __user
*udata
;
786 if (!access_ok(VERIFY_WRITE
, buf
, len
))
789 udata
= (void __user
*)buf
;
791 count
= spu_acquire(ctx
);
795 /* wait only for the first element */
797 if (file
->f_flags
& O_NONBLOCK
) {
798 if (!spu_ibox_read(ctx
, &ibox_data
)) {
803 count
= spufs_wait(ctx
->ibox_wq
, spu_ibox_read(ctx
, &ibox_data
));
808 /* if we can't write at all, return -EFAULT */
809 count
= __put_user(ibox_data
, udata
);
813 for (count
= 4, udata
++; (count
+ 4) <= len
; count
+= 4, udata
++) {
815 ret
= ctx
->ops
->ibox_read(ctx
, &ibox_data
);
819 * at the end of the mapped area, we can fault
820 * but still need to return the data we have
821 * read successfully so far.
823 ret
= __put_user(ibox_data
, udata
);
834 static unsigned int spufs_ibox_poll(struct file
*file
, poll_table
*wait
)
836 struct spu_context
*ctx
= file
->private_data
;
839 poll_wait(file
, &ctx
->ibox_wq
, wait
);
842 * For now keep this uninterruptible and also ignore the rule
843 * that poll should not sleep. Will be fixed later.
845 mutex_lock(&ctx
->state_mutex
);
846 mask
= ctx
->ops
->mbox_stat_poll(ctx
, POLLIN
| POLLRDNORM
);
852 static const struct file_operations spufs_ibox_fops
= {
853 .open
= spufs_pipe_open
,
854 .read
= spufs_ibox_read
,
855 .poll
= spufs_ibox_poll
,
856 .fasync
= spufs_ibox_fasync
,
860 static ssize_t
spufs_ibox_stat_read(struct file
*file
, char __user
*buf
,
861 size_t len
, loff_t
*pos
)
863 struct spu_context
*ctx
= file
->private_data
;
870 ret
= spu_acquire(ctx
);
873 ibox_stat
= (ctx
->ops
->mbox_stat_read(ctx
) >> 16) & 0xff;
876 if (copy_to_user(buf
, &ibox_stat
, sizeof ibox_stat
))
882 static const struct file_operations spufs_ibox_stat_fops
= {
883 .open
= spufs_pipe_open
,
884 .read
= spufs_ibox_stat_read
,
888 /* low-level mailbox write */
889 size_t spu_wbox_write(struct spu_context
*ctx
, u32 data
)
891 return ctx
->ops
->wbox_write(ctx
, data
);
894 static int spufs_wbox_fasync(int fd
, struct file
*file
, int on
)
896 struct spu_context
*ctx
= file
->private_data
;
899 ret
= fasync_helper(fd
, file
, on
, &ctx
->wbox_fasync
);
904 /* interrupt-level wbox callback function. */
905 void spufs_wbox_callback(struct spu
*spu
)
907 struct spu_context
*ctx
= spu
->ctx
;
912 wake_up_all(&ctx
->wbox_wq
);
913 kill_fasync(&ctx
->wbox_fasync
, SIGIO
, POLLOUT
);
917 * Write as many bytes to the interrupt mailbox as possible, until
918 * one of the conditions becomes true:
920 * - the mailbox is full
921 * - end of the user provided buffer
922 * - end of the mapped area
924 * If the file is opened without O_NONBLOCK, we wait here until
925 * space is availabyl, but return when we have been able to
928 static ssize_t
spufs_wbox_write(struct file
*file
, const char __user
*buf
,
929 size_t len
, loff_t
*pos
)
931 struct spu_context
*ctx
= file
->private_data
;
932 u32 wbox_data
, __user
*udata
;
938 udata
= (void __user
*)buf
;
939 if (!access_ok(VERIFY_READ
, buf
, len
))
942 if (__get_user(wbox_data
, udata
))
945 count
= spu_acquire(ctx
);
950 * make sure we can at least write one element, by waiting
951 * in case of !O_NONBLOCK
954 if (file
->f_flags
& O_NONBLOCK
) {
955 if (!spu_wbox_write(ctx
, wbox_data
)) {
960 count
= spufs_wait(ctx
->wbox_wq
, spu_wbox_write(ctx
, wbox_data
));
966 /* write as much as possible */
967 for (count
= 4, udata
++; (count
+ 4) <= len
; count
+= 4, udata
++) {
969 ret
= __get_user(wbox_data
, udata
);
973 ret
= spu_wbox_write(ctx
, wbox_data
);
984 static unsigned int spufs_wbox_poll(struct file
*file
, poll_table
*wait
)
986 struct spu_context
*ctx
= file
->private_data
;
989 poll_wait(file
, &ctx
->wbox_wq
, wait
);
992 * For now keep this uninterruptible and also ignore the rule
993 * that poll should not sleep. Will be fixed later.
995 mutex_lock(&ctx
->state_mutex
);
996 mask
= ctx
->ops
->mbox_stat_poll(ctx
, POLLOUT
| POLLWRNORM
);
1002 static const struct file_operations spufs_wbox_fops
= {
1003 .open
= spufs_pipe_open
,
1004 .write
= spufs_wbox_write
,
1005 .poll
= spufs_wbox_poll
,
1006 .fasync
= spufs_wbox_fasync
,
1007 .llseek
= no_llseek
,
1010 static ssize_t
spufs_wbox_stat_read(struct file
*file
, char __user
*buf
,
1011 size_t len
, loff_t
*pos
)
1013 struct spu_context
*ctx
= file
->private_data
;
1020 ret
= spu_acquire(ctx
);
1023 wbox_stat
= (ctx
->ops
->mbox_stat_read(ctx
) >> 8) & 0xff;
1026 if (copy_to_user(buf
, &wbox_stat
, sizeof wbox_stat
))
1032 static const struct file_operations spufs_wbox_stat_fops
= {
1033 .open
= spufs_pipe_open
,
1034 .read
= spufs_wbox_stat_read
,
1035 .llseek
= no_llseek
,
1038 static int spufs_signal1_open(struct inode
*inode
, struct file
*file
)
1040 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1041 struct spu_context
*ctx
= i
->i_ctx
;
1043 mutex_lock(&ctx
->mapping_lock
);
1044 file
->private_data
= ctx
;
1045 if (!i
->i_openers
++)
1046 ctx
->signal1
= inode
->i_mapping
;
1047 mutex_unlock(&ctx
->mapping_lock
);
1048 return nonseekable_open(inode
, file
);
1052 spufs_signal1_release(struct inode
*inode
, struct file
*file
)
1054 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1055 struct spu_context
*ctx
= i
->i_ctx
;
1057 mutex_lock(&ctx
->mapping_lock
);
1058 if (!--i
->i_openers
)
1059 ctx
->signal1
= NULL
;
1060 mutex_unlock(&ctx
->mapping_lock
);
1064 static ssize_t
__spufs_signal1_read(struct spu_context
*ctx
, char __user
*buf
,
1065 size_t len
, loff_t
*pos
)
1073 if (ctx
->csa
.spu_chnlcnt_RW
[3]) {
1074 data
= ctx
->csa
.spu_chnldata_RW
[3];
1081 if (copy_to_user(buf
, &data
, 4))
1088 static ssize_t
spufs_signal1_read(struct file
*file
, char __user
*buf
,
1089 size_t len
, loff_t
*pos
)
1092 struct spu_context
*ctx
= file
->private_data
;
1094 ret
= spu_acquire_saved(ctx
);
1097 ret
= __spufs_signal1_read(ctx
, buf
, len
, pos
);
1098 spu_release_saved(ctx
);
1103 static ssize_t
spufs_signal1_write(struct file
*file
, const char __user
*buf
,
1104 size_t len
, loff_t
*pos
)
1106 struct spu_context
*ctx
;
1110 ctx
= file
->private_data
;
1115 if (copy_from_user(&data
, buf
, 4))
1118 ret
= spu_acquire(ctx
);
1121 ctx
->ops
->signal1_write(ctx
, data
);
1128 spufs_signal1_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1130 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1131 return spufs_ps_fault(vma
, vmf
, 0x14000, SPUFS_SIGNAL_MAP_SIZE
);
1132 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1133 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1134 * signal 1 and 2 area
1136 return spufs_ps_fault(vma
, vmf
, 0x10000, SPUFS_SIGNAL_MAP_SIZE
);
1138 #error unsupported page size
1142 static const struct vm_operations_struct spufs_signal1_mmap_vmops
= {
1143 .fault
= spufs_signal1_mmap_fault
,
1146 static int spufs_signal1_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1148 if (!(vma
->vm_flags
& VM_SHARED
))
1151 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1152 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1154 vma
->vm_ops
= &spufs_signal1_mmap_vmops
;
1158 static const struct file_operations spufs_signal1_fops
= {
1159 .open
= spufs_signal1_open
,
1160 .release
= spufs_signal1_release
,
1161 .read
= spufs_signal1_read
,
1162 .write
= spufs_signal1_write
,
1163 .mmap
= spufs_signal1_mmap
,
1164 .llseek
= no_llseek
,
1167 static const struct file_operations spufs_signal1_nosched_fops
= {
1168 .open
= spufs_signal1_open
,
1169 .release
= spufs_signal1_release
,
1170 .write
= spufs_signal1_write
,
1171 .mmap
= spufs_signal1_mmap
,
1172 .llseek
= no_llseek
,
1175 static int spufs_signal2_open(struct inode
*inode
, struct file
*file
)
1177 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1178 struct spu_context
*ctx
= i
->i_ctx
;
1180 mutex_lock(&ctx
->mapping_lock
);
1181 file
->private_data
= ctx
;
1182 if (!i
->i_openers
++)
1183 ctx
->signal2
= inode
->i_mapping
;
1184 mutex_unlock(&ctx
->mapping_lock
);
1185 return nonseekable_open(inode
, file
);
1189 spufs_signal2_release(struct inode
*inode
, struct file
*file
)
1191 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1192 struct spu_context
*ctx
= i
->i_ctx
;
1194 mutex_lock(&ctx
->mapping_lock
);
1195 if (!--i
->i_openers
)
1196 ctx
->signal2
= NULL
;
1197 mutex_unlock(&ctx
->mapping_lock
);
1201 static ssize_t
__spufs_signal2_read(struct spu_context
*ctx
, char __user
*buf
,
1202 size_t len
, loff_t
*pos
)
1210 if (ctx
->csa
.spu_chnlcnt_RW
[4]) {
1211 data
= ctx
->csa
.spu_chnldata_RW
[4];
1218 if (copy_to_user(buf
, &data
, 4))
1225 static ssize_t
spufs_signal2_read(struct file
*file
, char __user
*buf
,
1226 size_t len
, loff_t
*pos
)
1228 struct spu_context
*ctx
= file
->private_data
;
1231 ret
= spu_acquire_saved(ctx
);
1234 ret
= __spufs_signal2_read(ctx
, buf
, len
, pos
);
1235 spu_release_saved(ctx
);
1240 static ssize_t
spufs_signal2_write(struct file
*file
, const char __user
*buf
,
1241 size_t len
, loff_t
*pos
)
1243 struct spu_context
*ctx
;
1247 ctx
= file
->private_data
;
1252 if (copy_from_user(&data
, buf
, 4))
1255 ret
= spu_acquire(ctx
);
1258 ctx
->ops
->signal2_write(ctx
, data
);
1266 spufs_signal2_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1268 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1269 return spufs_ps_fault(vma
, vmf
, 0x1c000, SPUFS_SIGNAL_MAP_SIZE
);
1270 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1271 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1272 * signal 1 and 2 area
1274 return spufs_ps_fault(vma
, vmf
, 0x10000, SPUFS_SIGNAL_MAP_SIZE
);
1276 #error unsupported page size
1280 static const struct vm_operations_struct spufs_signal2_mmap_vmops
= {
1281 .fault
= spufs_signal2_mmap_fault
,
1284 static int spufs_signal2_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1286 if (!(vma
->vm_flags
& VM_SHARED
))
1289 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1290 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1292 vma
->vm_ops
= &spufs_signal2_mmap_vmops
;
1295 #else /* SPUFS_MMAP_4K */
1296 #define spufs_signal2_mmap NULL
1297 #endif /* !SPUFS_MMAP_4K */
1299 static const struct file_operations spufs_signal2_fops
= {
1300 .open
= spufs_signal2_open
,
1301 .release
= spufs_signal2_release
,
1302 .read
= spufs_signal2_read
,
1303 .write
= spufs_signal2_write
,
1304 .mmap
= spufs_signal2_mmap
,
1305 .llseek
= no_llseek
,
1308 static const struct file_operations spufs_signal2_nosched_fops
= {
1309 .open
= spufs_signal2_open
,
1310 .release
= spufs_signal2_release
,
1311 .write
= spufs_signal2_write
,
1312 .mmap
= spufs_signal2_mmap
,
1313 .llseek
= no_llseek
,
1317 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1318 * work of acquiring (or not) the SPU context before calling through
1319 * to the actual get routine. The set routine is called directly.
1321 #define SPU_ATTR_NOACQUIRE 0
1322 #define SPU_ATTR_ACQUIRE 1
1323 #define SPU_ATTR_ACQUIRE_SAVED 2
1325 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1326 static int __##__get(void *data, u64 *val) \
1328 struct spu_context *ctx = data; \
1331 if (__acquire == SPU_ATTR_ACQUIRE) { \
1332 ret = spu_acquire(ctx); \
1335 *val = __get(ctx); \
1337 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1338 ret = spu_acquire_saved(ctx); \
1341 *val = __get(ctx); \
1342 spu_release_saved(ctx); \
1344 *val = __get(ctx); \
1348 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1350 static int spufs_signal1_type_set(void *data
, u64 val
)
1352 struct spu_context
*ctx
= data
;
1355 ret
= spu_acquire(ctx
);
1358 ctx
->ops
->signal1_type_set(ctx
, val
);
1364 static u64
spufs_signal1_type_get(struct spu_context
*ctx
)
1366 return ctx
->ops
->signal1_type_get(ctx
);
1368 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type
, spufs_signal1_type_get
,
1369 spufs_signal1_type_set
, "%llu\n", SPU_ATTR_ACQUIRE
);
1372 static int spufs_signal2_type_set(void *data
, u64 val
)
1374 struct spu_context
*ctx
= data
;
1377 ret
= spu_acquire(ctx
);
1380 ctx
->ops
->signal2_type_set(ctx
, val
);
1386 static u64
spufs_signal2_type_get(struct spu_context
*ctx
)
1388 return ctx
->ops
->signal2_type_get(ctx
);
1390 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type
, spufs_signal2_type_get
,
1391 spufs_signal2_type_set
, "%llu\n", SPU_ATTR_ACQUIRE
);
1395 spufs_mss_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1397 return spufs_ps_fault(vma
, vmf
, 0x0000, SPUFS_MSS_MAP_SIZE
);
1400 static const struct vm_operations_struct spufs_mss_mmap_vmops
= {
1401 .fault
= spufs_mss_mmap_fault
,
1405 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1407 static int spufs_mss_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1409 if (!(vma
->vm_flags
& VM_SHARED
))
1412 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1413 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1415 vma
->vm_ops
= &spufs_mss_mmap_vmops
;
1418 #else /* SPUFS_MMAP_4K */
1419 #define spufs_mss_mmap NULL
1420 #endif /* !SPUFS_MMAP_4K */
1422 static int spufs_mss_open(struct inode
*inode
, struct file
*file
)
1424 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1425 struct spu_context
*ctx
= i
->i_ctx
;
1427 file
->private_data
= i
->i_ctx
;
1429 mutex_lock(&ctx
->mapping_lock
);
1430 if (!i
->i_openers
++)
1431 ctx
->mss
= inode
->i_mapping
;
1432 mutex_unlock(&ctx
->mapping_lock
);
1433 return nonseekable_open(inode
, file
);
1437 spufs_mss_release(struct inode
*inode
, struct file
*file
)
1439 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1440 struct spu_context
*ctx
= i
->i_ctx
;
1442 mutex_lock(&ctx
->mapping_lock
);
1443 if (!--i
->i_openers
)
1445 mutex_unlock(&ctx
->mapping_lock
);
1449 static const struct file_operations spufs_mss_fops
= {
1450 .open
= spufs_mss_open
,
1451 .release
= spufs_mss_release
,
1452 .mmap
= spufs_mss_mmap
,
1453 .llseek
= no_llseek
,
1457 spufs_psmap_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1459 return spufs_ps_fault(vma
, vmf
, 0x0000, SPUFS_PS_MAP_SIZE
);
1462 static const struct vm_operations_struct spufs_psmap_mmap_vmops
= {
1463 .fault
= spufs_psmap_mmap_fault
,
1467 * mmap support for full problem state area [0x00000 - 0x1ffff].
1469 static int spufs_psmap_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1471 if (!(vma
->vm_flags
& VM_SHARED
))
1474 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1475 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1477 vma
->vm_ops
= &spufs_psmap_mmap_vmops
;
1481 static int spufs_psmap_open(struct inode
*inode
, struct file
*file
)
1483 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1484 struct spu_context
*ctx
= i
->i_ctx
;
1486 mutex_lock(&ctx
->mapping_lock
);
1487 file
->private_data
= i
->i_ctx
;
1488 if (!i
->i_openers
++)
1489 ctx
->psmap
= inode
->i_mapping
;
1490 mutex_unlock(&ctx
->mapping_lock
);
1491 return nonseekable_open(inode
, file
);
1495 spufs_psmap_release(struct inode
*inode
, struct file
*file
)
1497 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1498 struct spu_context
*ctx
= i
->i_ctx
;
1500 mutex_lock(&ctx
->mapping_lock
);
1501 if (!--i
->i_openers
)
1503 mutex_unlock(&ctx
->mapping_lock
);
1507 static const struct file_operations spufs_psmap_fops
= {
1508 .open
= spufs_psmap_open
,
1509 .release
= spufs_psmap_release
,
1510 .mmap
= spufs_psmap_mmap
,
1511 .llseek
= no_llseek
,
1517 spufs_mfc_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1519 return spufs_ps_fault(vma
, vmf
, 0x3000, SPUFS_MFC_MAP_SIZE
);
1522 static const struct vm_operations_struct spufs_mfc_mmap_vmops
= {
1523 .fault
= spufs_mfc_mmap_fault
,
1527 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1529 static int spufs_mfc_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1531 if (!(vma
->vm_flags
& VM_SHARED
))
1534 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1535 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1537 vma
->vm_ops
= &spufs_mfc_mmap_vmops
;
1540 #else /* SPUFS_MMAP_4K */
1541 #define spufs_mfc_mmap NULL
1542 #endif /* !SPUFS_MMAP_4K */
1544 static int spufs_mfc_open(struct inode
*inode
, struct file
*file
)
1546 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1547 struct spu_context
*ctx
= i
->i_ctx
;
1549 /* we don't want to deal with DMA into other processes */
1550 if (ctx
->owner
!= current
->mm
)
1553 if (atomic_read(&inode
->i_count
) != 1)
1556 mutex_lock(&ctx
->mapping_lock
);
1557 file
->private_data
= ctx
;
1558 if (!i
->i_openers
++)
1559 ctx
->mfc
= inode
->i_mapping
;
1560 mutex_unlock(&ctx
->mapping_lock
);
1561 return nonseekable_open(inode
, file
);
1565 spufs_mfc_release(struct inode
*inode
, struct file
*file
)
1567 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1568 struct spu_context
*ctx
= i
->i_ctx
;
1570 mutex_lock(&ctx
->mapping_lock
);
1571 if (!--i
->i_openers
)
1573 mutex_unlock(&ctx
->mapping_lock
);
1577 /* interrupt-level mfc callback function. */
1578 void spufs_mfc_callback(struct spu
*spu
)
1580 struct spu_context
*ctx
= spu
->ctx
;
1585 wake_up_all(&ctx
->mfc_wq
);
1587 pr_debug("%s %s\n", __func__
, spu
->name
);
1588 if (ctx
->mfc_fasync
) {
1589 u32 free_elements
, tagstatus
;
1592 /* no need for spu_acquire in interrupt context */
1593 free_elements
= ctx
->ops
->get_mfc_free_elements(ctx
);
1594 tagstatus
= ctx
->ops
->read_mfc_tagstatus(ctx
);
1597 if (free_elements
& 0xffff)
1599 if (tagstatus
& ctx
->tagwait
)
1602 kill_fasync(&ctx
->mfc_fasync
, SIGIO
, mask
);
1606 static int spufs_read_mfc_tagstatus(struct spu_context
*ctx
, u32
*status
)
1608 /* See if there is one tag group is complete */
1609 /* FIXME we need locking around tagwait */
1610 *status
= ctx
->ops
->read_mfc_tagstatus(ctx
) & ctx
->tagwait
;
1611 ctx
->tagwait
&= ~*status
;
1615 /* enable interrupt waiting for any tag group,
1616 may silently fail if interrupts are already enabled */
1617 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 1);
1621 static ssize_t
spufs_mfc_read(struct file
*file
, char __user
*buffer
,
1622 size_t size
, loff_t
*pos
)
1624 struct spu_context
*ctx
= file
->private_data
;
1631 ret
= spu_acquire(ctx
);
1636 if (file
->f_flags
& O_NONBLOCK
) {
1637 status
= ctx
->ops
->read_mfc_tagstatus(ctx
);
1638 if (!(status
& ctx
->tagwait
))
1641 /* XXX(hch): shouldn't we clear ret here? */
1642 ctx
->tagwait
&= ~status
;
1644 ret
= spufs_wait(ctx
->mfc_wq
,
1645 spufs_read_mfc_tagstatus(ctx
, &status
));
1652 if (copy_to_user(buffer
, &status
, 4))
1659 static int spufs_check_valid_dma(struct mfc_dma_command
*cmd
)
1661 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd
->lsa
,
1662 cmd
->ea
, cmd
->size
, cmd
->tag
, cmd
->cmd
);
1673 pr_debug("invalid DMA opcode %x\n", cmd
->cmd
);
1677 if ((cmd
->lsa
& 0xf) != (cmd
->ea
&0xf)) {
1678 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1683 switch (cmd
->size
& 0xf) {
1704 pr_debug("invalid DMA alignment %x for size %x\n",
1705 cmd
->lsa
& 0xf, cmd
->size
);
1709 if (cmd
->size
> 16 * 1024) {
1710 pr_debug("invalid DMA size %x\n", cmd
->size
);
1714 if (cmd
->tag
& 0xfff0) {
1715 /* we reserve the higher tag numbers for kernel use */
1716 pr_debug("invalid DMA tag\n");
1721 /* not supported in this version */
1722 pr_debug("invalid DMA class\n");
1729 static int spu_send_mfc_command(struct spu_context
*ctx
,
1730 struct mfc_dma_command cmd
,
1733 *error
= ctx
->ops
->send_mfc_command(ctx
, &cmd
);
1734 if (*error
== -EAGAIN
) {
1735 /* wait for any tag group to complete
1736 so we have space for the new command */
1737 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 1);
1738 /* try again, because the queue might be
1740 *error
= ctx
->ops
->send_mfc_command(ctx
, &cmd
);
1741 if (*error
== -EAGAIN
)
1747 static ssize_t
spufs_mfc_write(struct file
*file
, const char __user
*buffer
,
1748 size_t size
, loff_t
*pos
)
1750 struct spu_context
*ctx
= file
->private_data
;
1751 struct mfc_dma_command cmd
;
1754 if (size
!= sizeof cmd
)
1758 if (copy_from_user(&cmd
, buffer
, sizeof cmd
))
1761 ret
= spufs_check_valid_dma(&cmd
);
1765 ret
= spu_acquire(ctx
);
1769 ret
= spufs_wait(ctx
->run_wq
, ctx
->state
== SPU_STATE_RUNNABLE
);
1773 if (file
->f_flags
& O_NONBLOCK
) {
1774 ret
= ctx
->ops
->send_mfc_command(ctx
, &cmd
);
1777 ret
= spufs_wait(ctx
->mfc_wq
,
1778 spu_send_mfc_command(ctx
, cmd
, &status
));
1788 ctx
->tagwait
|= 1 << cmd
.tag
;
1797 static unsigned int spufs_mfc_poll(struct file
*file
,poll_table
*wait
)
1799 struct spu_context
*ctx
= file
->private_data
;
1800 u32 free_elements
, tagstatus
;
1803 poll_wait(file
, &ctx
->mfc_wq
, wait
);
1806 * For now keep this uninterruptible and also ignore the rule
1807 * that poll should not sleep. Will be fixed later.
1809 mutex_lock(&ctx
->state_mutex
);
1810 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 2);
1811 free_elements
= ctx
->ops
->get_mfc_free_elements(ctx
);
1812 tagstatus
= ctx
->ops
->read_mfc_tagstatus(ctx
);
1816 if (free_elements
& 0xffff)
1817 mask
|= POLLOUT
| POLLWRNORM
;
1818 if (tagstatus
& ctx
->tagwait
)
1819 mask
|= POLLIN
| POLLRDNORM
;
1821 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__
,
1822 free_elements
, tagstatus
, ctx
->tagwait
);
1827 static int spufs_mfc_flush(struct file
*file
, fl_owner_t id
)
1829 struct spu_context
*ctx
= file
->private_data
;
1832 ret
= spu_acquire(ctx
);
1836 /* this currently hangs */
1837 ret
= spufs_wait(ctx
->mfc_wq
,
1838 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 2));
1841 ret
= spufs_wait(ctx
->mfc_wq
,
1842 ctx
->ops
->read_mfc_tagstatus(ctx
) == ctx
->tagwait
);
1853 static int spufs_mfc_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1855 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1856 int err
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
1858 mutex_lock(&inode
->i_mutex
);
1859 err
= spufs_mfc_flush(file
, NULL
);
1860 mutex_unlock(&inode
->i_mutex
);
1865 static int spufs_mfc_fasync(int fd
, struct file
*file
, int on
)
1867 struct spu_context
*ctx
= file
->private_data
;
1869 return fasync_helper(fd
, file
, on
, &ctx
->mfc_fasync
);
1872 static const struct file_operations spufs_mfc_fops
= {
1873 .open
= spufs_mfc_open
,
1874 .release
= spufs_mfc_release
,
1875 .read
= spufs_mfc_read
,
1876 .write
= spufs_mfc_write
,
1877 .poll
= spufs_mfc_poll
,
1878 .flush
= spufs_mfc_flush
,
1879 .fsync
= spufs_mfc_fsync
,
1880 .fasync
= spufs_mfc_fasync
,
1881 .mmap
= spufs_mfc_mmap
,
1882 .llseek
= no_llseek
,
1885 static int spufs_npc_set(void *data
, u64 val
)
1887 struct spu_context
*ctx
= data
;
1890 ret
= spu_acquire(ctx
);
1893 ctx
->ops
->npc_write(ctx
, val
);
1899 static u64
spufs_npc_get(struct spu_context
*ctx
)
1901 return ctx
->ops
->npc_read(ctx
);
1903 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops
, spufs_npc_get
, spufs_npc_set
,
1904 "0x%llx\n", SPU_ATTR_ACQUIRE
);
1906 static int spufs_decr_set(void *data
, u64 val
)
1908 struct spu_context
*ctx
= data
;
1909 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1912 ret
= spu_acquire_saved(ctx
);
1915 lscsa
->decr
.slot
[0] = (u32
) val
;
1916 spu_release_saved(ctx
);
1921 static u64
spufs_decr_get(struct spu_context
*ctx
)
1923 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1924 return lscsa
->decr
.slot
[0];
1926 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops
, spufs_decr_get
, spufs_decr_set
,
1927 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED
);
1929 static int spufs_decr_status_set(void *data
, u64 val
)
1931 struct spu_context
*ctx
= data
;
1934 ret
= spu_acquire_saved(ctx
);
1938 ctx
->csa
.priv2
.mfc_control_RW
|= MFC_CNTL_DECREMENTER_RUNNING
;
1940 ctx
->csa
.priv2
.mfc_control_RW
&= ~MFC_CNTL_DECREMENTER_RUNNING
;
1941 spu_release_saved(ctx
);
1946 static u64
spufs_decr_status_get(struct spu_context
*ctx
)
1948 if (ctx
->csa
.priv2
.mfc_control_RW
& MFC_CNTL_DECREMENTER_RUNNING
)
1949 return SPU_DECR_STATUS_RUNNING
;
1953 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops
, spufs_decr_status_get
,
1954 spufs_decr_status_set
, "0x%llx\n",
1955 SPU_ATTR_ACQUIRE_SAVED
);
1957 static int spufs_event_mask_set(void *data
, u64 val
)
1959 struct spu_context
*ctx
= data
;
1960 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1963 ret
= spu_acquire_saved(ctx
);
1966 lscsa
->event_mask
.slot
[0] = (u32
) val
;
1967 spu_release_saved(ctx
);
1972 static u64
spufs_event_mask_get(struct spu_context
*ctx
)
1974 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1975 return lscsa
->event_mask
.slot
[0];
1978 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops
, spufs_event_mask_get
,
1979 spufs_event_mask_set
, "0x%llx\n",
1980 SPU_ATTR_ACQUIRE_SAVED
);
1982 static u64
spufs_event_status_get(struct spu_context
*ctx
)
1984 struct spu_state
*state
= &ctx
->csa
;
1986 stat
= state
->spu_chnlcnt_RW
[0];
1988 return state
->spu_chnldata_RW
[0];
1991 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops
, spufs_event_status_get
,
1992 NULL
, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED
)
1994 static int spufs_srr0_set(void *data
, u64 val
)
1996 struct spu_context
*ctx
= data
;
1997 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
2000 ret
= spu_acquire_saved(ctx
);
2003 lscsa
->srr0
.slot
[0] = (u32
) val
;
2004 spu_release_saved(ctx
);
2009 static u64
spufs_srr0_get(struct spu_context
*ctx
)
2011 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
2012 return lscsa
->srr0
.slot
[0];
2014 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops
, spufs_srr0_get
, spufs_srr0_set
,
2015 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED
)
2017 static u64
spufs_id_get(struct spu_context
*ctx
)
2021 if (ctx
->state
== SPU_STATE_RUNNABLE
)
2022 num
= ctx
->spu
->number
;
2024 num
= (unsigned int)-1;
2028 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops
, spufs_id_get
, NULL
, "0x%llx\n",
2031 static u64
spufs_object_id_get(struct spu_context
*ctx
)
2033 /* FIXME: Should there really be no locking here? */
2034 return ctx
->object_id
;
2037 static int spufs_object_id_set(void *data
, u64 id
)
2039 struct spu_context
*ctx
= data
;
2040 ctx
->object_id
= id
;
2045 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops
, spufs_object_id_get
,
2046 spufs_object_id_set
, "0x%llx\n", SPU_ATTR_NOACQUIRE
);
2048 static u64
spufs_lslr_get(struct spu_context
*ctx
)
2050 return ctx
->csa
.priv2
.spu_lslr_RW
;
2052 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops
, spufs_lslr_get
, NULL
, "0x%llx\n",
2053 SPU_ATTR_ACQUIRE_SAVED
);
2055 static int spufs_info_open(struct inode
*inode
, struct file
*file
)
2057 struct spufs_inode_info
*i
= SPUFS_I(inode
);
2058 struct spu_context
*ctx
= i
->i_ctx
;
2059 file
->private_data
= ctx
;
2063 static int spufs_caps_show(struct seq_file
*s
, void *private)
2065 struct spu_context
*ctx
= s
->private;
2067 if (!(ctx
->flags
& SPU_CREATE_NOSCHED
))
2068 seq_puts(s
, "sched\n");
2069 if (!(ctx
->flags
& SPU_CREATE_ISOLATE
))
2070 seq_puts(s
, "step\n");
2074 static int spufs_caps_open(struct inode
*inode
, struct file
*file
)
2076 return single_open(file
, spufs_caps_show
, SPUFS_I(inode
)->i_ctx
);
2079 static const struct file_operations spufs_caps_fops
= {
2080 .open
= spufs_caps_open
,
2082 .llseek
= seq_lseek
,
2083 .release
= single_release
,
2086 static ssize_t
__spufs_mbox_info_read(struct spu_context
*ctx
,
2087 char __user
*buf
, size_t len
, loff_t
*pos
)
2091 /* EOF if there's no entry in the mbox */
2092 if (!(ctx
->csa
.prob
.mb_stat_R
& 0x0000ff))
2095 data
= ctx
->csa
.prob
.pu_mb_R
;
2097 return simple_read_from_buffer(buf
, len
, pos
, &data
, sizeof data
);
2100 static ssize_t
spufs_mbox_info_read(struct file
*file
, char __user
*buf
,
2101 size_t len
, loff_t
*pos
)
2104 struct spu_context
*ctx
= file
->private_data
;
2106 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2109 ret
= spu_acquire_saved(ctx
);
2112 spin_lock(&ctx
->csa
.register_lock
);
2113 ret
= __spufs_mbox_info_read(ctx
, buf
, len
, pos
);
2114 spin_unlock(&ctx
->csa
.register_lock
);
2115 spu_release_saved(ctx
);
2120 static const struct file_operations spufs_mbox_info_fops
= {
2121 .open
= spufs_info_open
,
2122 .read
= spufs_mbox_info_read
,
2123 .llseek
= generic_file_llseek
,
2126 static ssize_t
__spufs_ibox_info_read(struct spu_context
*ctx
,
2127 char __user
*buf
, size_t len
, loff_t
*pos
)
2131 /* EOF if there's no entry in the ibox */
2132 if (!(ctx
->csa
.prob
.mb_stat_R
& 0xff0000))
2135 data
= ctx
->csa
.priv2
.puint_mb_R
;
2137 return simple_read_from_buffer(buf
, len
, pos
, &data
, sizeof data
);
2140 static ssize_t
spufs_ibox_info_read(struct file
*file
, char __user
*buf
,
2141 size_t len
, loff_t
*pos
)
2143 struct spu_context
*ctx
= file
->private_data
;
2146 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2149 ret
= spu_acquire_saved(ctx
);
2152 spin_lock(&ctx
->csa
.register_lock
);
2153 ret
= __spufs_ibox_info_read(ctx
, buf
, len
, pos
);
2154 spin_unlock(&ctx
->csa
.register_lock
);
2155 spu_release_saved(ctx
);
2160 static const struct file_operations spufs_ibox_info_fops
= {
2161 .open
= spufs_info_open
,
2162 .read
= spufs_ibox_info_read
,
2163 .llseek
= generic_file_llseek
,
2166 static ssize_t
__spufs_wbox_info_read(struct spu_context
*ctx
,
2167 char __user
*buf
, size_t len
, loff_t
*pos
)
2173 wbox_stat
= ctx
->csa
.prob
.mb_stat_R
;
2174 cnt
= 4 - ((wbox_stat
& 0x00ff00) >> 8);
2175 for (i
= 0; i
< cnt
; i
++) {
2176 data
[i
] = ctx
->csa
.spu_mailbox_data
[i
];
2179 return simple_read_from_buffer(buf
, len
, pos
, &data
,
2183 static ssize_t
spufs_wbox_info_read(struct file
*file
, char __user
*buf
,
2184 size_t len
, loff_t
*pos
)
2186 struct spu_context
*ctx
= file
->private_data
;
2189 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2192 ret
= spu_acquire_saved(ctx
);
2195 spin_lock(&ctx
->csa
.register_lock
);
2196 ret
= __spufs_wbox_info_read(ctx
, buf
, len
, pos
);
2197 spin_unlock(&ctx
->csa
.register_lock
);
2198 spu_release_saved(ctx
);
2203 static const struct file_operations spufs_wbox_info_fops
= {
2204 .open
= spufs_info_open
,
2205 .read
= spufs_wbox_info_read
,
2206 .llseek
= generic_file_llseek
,
2209 static ssize_t
__spufs_dma_info_read(struct spu_context
*ctx
,
2210 char __user
*buf
, size_t len
, loff_t
*pos
)
2212 struct spu_dma_info info
;
2213 struct mfc_cq_sr
*qp
, *spuqp
;
2216 info
.dma_info_type
= ctx
->csa
.priv2
.spu_tag_status_query_RW
;
2217 info
.dma_info_mask
= ctx
->csa
.lscsa
->tag_mask
.slot
[0];
2218 info
.dma_info_status
= ctx
->csa
.spu_chnldata_RW
[24];
2219 info
.dma_info_stall_and_notify
= ctx
->csa
.spu_chnldata_RW
[25];
2220 info
.dma_info_atomic_command_status
= ctx
->csa
.spu_chnldata_RW
[27];
2221 for (i
= 0; i
< 16; i
++) {
2222 qp
= &info
.dma_info_command_data
[i
];
2223 spuqp
= &ctx
->csa
.priv2
.spuq
[i
];
2225 qp
->mfc_cq_data0_RW
= spuqp
->mfc_cq_data0_RW
;
2226 qp
->mfc_cq_data1_RW
= spuqp
->mfc_cq_data1_RW
;
2227 qp
->mfc_cq_data2_RW
= spuqp
->mfc_cq_data2_RW
;
2228 qp
->mfc_cq_data3_RW
= spuqp
->mfc_cq_data3_RW
;
2231 return simple_read_from_buffer(buf
, len
, pos
, &info
,
2235 static ssize_t
spufs_dma_info_read(struct file
*file
, char __user
*buf
,
2236 size_t len
, loff_t
*pos
)
2238 struct spu_context
*ctx
= file
->private_data
;
2241 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2244 ret
= spu_acquire_saved(ctx
);
2247 spin_lock(&ctx
->csa
.register_lock
);
2248 ret
= __spufs_dma_info_read(ctx
, buf
, len
, pos
);
2249 spin_unlock(&ctx
->csa
.register_lock
);
2250 spu_release_saved(ctx
);
2255 static const struct file_operations spufs_dma_info_fops
= {
2256 .open
= spufs_info_open
,
2257 .read
= spufs_dma_info_read
,
2258 .llseek
= no_llseek
,
2261 static ssize_t
__spufs_proxydma_info_read(struct spu_context
*ctx
,
2262 char __user
*buf
, size_t len
, loff_t
*pos
)
2264 struct spu_proxydma_info info
;
2265 struct mfc_cq_sr
*qp
, *puqp
;
2266 int ret
= sizeof info
;
2272 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2275 info
.proxydma_info_type
= ctx
->csa
.prob
.dma_querytype_RW
;
2276 info
.proxydma_info_mask
= ctx
->csa
.prob
.dma_querymask_RW
;
2277 info
.proxydma_info_status
= ctx
->csa
.prob
.dma_tagstatus_R
;
2278 for (i
= 0; i
< 8; i
++) {
2279 qp
= &info
.proxydma_info_command_data
[i
];
2280 puqp
= &ctx
->csa
.priv2
.puq
[i
];
2282 qp
->mfc_cq_data0_RW
= puqp
->mfc_cq_data0_RW
;
2283 qp
->mfc_cq_data1_RW
= puqp
->mfc_cq_data1_RW
;
2284 qp
->mfc_cq_data2_RW
= puqp
->mfc_cq_data2_RW
;
2285 qp
->mfc_cq_data3_RW
= puqp
->mfc_cq_data3_RW
;
2288 return simple_read_from_buffer(buf
, len
, pos
, &info
,
2292 static ssize_t
spufs_proxydma_info_read(struct file
*file
, char __user
*buf
,
2293 size_t len
, loff_t
*pos
)
2295 struct spu_context
*ctx
= file
->private_data
;
2298 ret
= spu_acquire_saved(ctx
);
2301 spin_lock(&ctx
->csa
.register_lock
);
2302 ret
= __spufs_proxydma_info_read(ctx
, buf
, len
, pos
);
2303 spin_unlock(&ctx
->csa
.register_lock
);
2304 spu_release_saved(ctx
);
2309 static const struct file_operations spufs_proxydma_info_fops
= {
2310 .open
= spufs_info_open
,
2311 .read
= spufs_proxydma_info_read
,
2312 .llseek
= no_llseek
,
2315 static int spufs_show_tid(struct seq_file
*s
, void *private)
2317 struct spu_context
*ctx
= s
->private;
2319 seq_printf(s
, "%d\n", ctx
->tid
);
2323 static int spufs_tid_open(struct inode
*inode
, struct file
*file
)
2325 return single_open(file
, spufs_show_tid
, SPUFS_I(inode
)->i_ctx
);
2328 static const struct file_operations spufs_tid_fops
= {
2329 .open
= spufs_tid_open
,
2331 .llseek
= seq_lseek
,
2332 .release
= single_release
,
2335 static const char *ctx_state_names
[] = {
2336 "user", "system", "iowait", "loaded"
2339 static unsigned long long spufs_acct_time(struct spu_context
*ctx
,
2340 enum spu_utilization_state state
)
2343 unsigned long long time
= ctx
->stats
.times
[state
];
2346 * In general, utilization statistics are updated by the controlling
2347 * thread as the spu context moves through various well defined
2348 * state transitions, but if the context is lazily loaded its
2349 * utilization statistics are not updated as the controlling thread
2350 * is not tightly coupled with the execution of the spu context. We
2351 * calculate and apply the time delta from the last recorded state
2352 * of the spu context.
2354 if (ctx
->spu
&& ctx
->stats
.util_state
== state
) {
2356 time
+= timespec_to_ns(&ts
) - ctx
->stats
.tstamp
;
2359 return time
/ NSEC_PER_MSEC
;
2362 static unsigned long long spufs_slb_flts(struct spu_context
*ctx
)
2364 unsigned long long slb_flts
= ctx
->stats
.slb_flt
;
2366 if (ctx
->state
== SPU_STATE_RUNNABLE
) {
2367 slb_flts
+= (ctx
->spu
->stats
.slb_flt
-
2368 ctx
->stats
.slb_flt_base
);
2374 static unsigned long long spufs_class2_intrs(struct spu_context
*ctx
)
2376 unsigned long long class2_intrs
= ctx
->stats
.class2_intr
;
2378 if (ctx
->state
== SPU_STATE_RUNNABLE
) {
2379 class2_intrs
+= (ctx
->spu
->stats
.class2_intr
-
2380 ctx
->stats
.class2_intr_base
);
2383 return class2_intrs
;
2387 static int spufs_show_stat(struct seq_file
*s
, void *private)
2389 struct spu_context
*ctx
= s
->private;
2392 ret
= spu_acquire(ctx
);
2396 seq_printf(s
, "%s %llu %llu %llu %llu "
2397 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2398 ctx_state_names
[ctx
->stats
.util_state
],
2399 spufs_acct_time(ctx
, SPU_UTIL_USER
),
2400 spufs_acct_time(ctx
, SPU_UTIL_SYSTEM
),
2401 spufs_acct_time(ctx
, SPU_UTIL_IOWAIT
),
2402 spufs_acct_time(ctx
, SPU_UTIL_IDLE_LOADED
),
2403 ctx
->stats
.vol_ctx_switch
,
2404 ctx
->stats
.invol_ctx_switch
,
2405 spufs_slb_flts(ctx
),
2406 ctx
->stats
.hash_flt
,
2409 spufs_class2_intrs(ctx
),
2410 ctx
->stats
.libassist
);
2415 static int spufs_stat_open(struct inode
*inode
, struct file
*file
)
2417 return single_open(file
, spufs_show_stat
, SPUFS_I(inode
)->i_ctx
);
2420 static const struct file_operations spufs_stat_fops
= {
2421 .open
= spufs_stat_open
,
2423 .llseek
= seq_lseek
,
2424 .release
= single_release
,
2427 static inline int spufs_switch_log_used(struct spu_context
*ctx
)
2429 return (ctx
->switch_log
->head
- ctx
->switch_log
->tail
) %
2433 static inline int spufs_switch_log_avail(struct spu_context
*ctx
)
2435 return SWITCH_LOG_BUFSIZE
- spufs_switch_log_used(ctx
);
2438 static int spufs_switch_log_open(struct inode
*inode
, struct file
*file
)
2440 struct spu_context
*ctx
= SPUFS_I(inode
)->i_ctx
;
2443 rc
= spu_acquire(ctx
);
2447 if (ctx
->switch_log
) {
2452 ctx
->switch_log
= kmalloc(sizeof(struct switch_log
) +
2453 SWITCH_LOG_BUFSIZE
* sizeof(struct switch_log_entry
),
2456 if (!ctx
->switch_log
) {
2461 ctx
->switch_log
->head
= ctx
->switch_log
->tail
= 0;
2462 init_waitqueue_head(&ctx
->switch_log
->wait
);
2470 static int spufs_switch_log_release(struct inode
*inode
, struct file
*file
)
2472 struct spu_context
*ctx
= SPUFS_I(inode
)->i_ctx
;
2475 rc
= spu_acquire(ctx
);
2479 kfree(ctx
->switch_log
);
2480 ctx
->switch_log
= NULL
;
2486 static int switch_log_sprint(struct spu_context
*ctx
, char *tbuf
, int n
)
2488 struct switch_log_entry
*p
;
2490 p
= ctx
->switch_log
->log
+ ctx
->switch_log
->tail
% SWITCH_LOG_BUFSIZE
;
2492 return snprintf(tbuf
, n
, "%u.%09u %d %u %u %llu\n",
2493 (unsigned int) p
->tstamp
.tv_sec
,
2494 (unsigned int) p
->tstamp
.tv_nsec
,
2496 (unsigned int) p
->type
,
2497 (unsigned int) p
->val
,
2498 (unsigned long long) p
->timebase
);
2501 static ssize_t
spufs_switch_log_read(struct file
*file
, char __user
*buf
,
2502 size_t len
, loff_t
*ppos
)
2504 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
2505 struct spu_context
*ctx
= SPUFS_I(inode
)->i_ctx
;
2506 int error
= 0, cnt
= 0;
2511 error
= spu_acquire(ctx
);
2519 if (spufs_switch_log_used(ctx
) == 0) {
2521 /* If there's data ready to go, we can
2522 * just return straight away */
2525 } else if (file
->f_flags
& O_NONBLOCK
) {
2530 /* spufs_wait will drop the mutex and
2531 * re-acquire, but since we're in read(), the
2532 * file cannot be _released (and so
2533 * ctx->switch_log is stable).
2535 error
= spufs_wait(ctx
->switch_log
->wait
,
2536 spufs_switch_log_used(ctx
) > 0);
2538 /* On error, spufs_wait returns without the
2539 * state mutex held */
2543 /* We may have had entries read from underneath
2544 * us while we dropped the mutex in spufs_wait,
2546 if (spufs_switch_log_used(ctx
) == 0)
2551 width
= switch_log_sprint(ctx
, tbuf
, sizeof(tbuf
));
2553 ctx
->switch_log
->tail
=
2554 (ctx
->switch_log
->tail
+ 1) %
2557 /* If the record is greater than space available return
2558 * partial buffer (so far) */
2561 error
= copy_to_user(buf
+ cnt
, tbuf
, width
);
2569 return cnt
== 0 ? error
: cnt
;
2572 static unsigned int spufs_switch_log_poll(struct file
*file
, poll_table
*wait
)
2574 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
2575 struct spu_context
*ctx
= SPUFS_I(inode
)->i_ctx
;
2576 unsigned int mask
= 0;
2579 poll_wait(file
, &ctx
->switch_log
->wait
, wait
);
2581 rc
= spu_acquire(ctx
);
2585 if (spufs_switch_log_used(ctx
) > 0)
2593 static const struct file_operations spufs_switch_log_fops
= {
2594 .owner
= THIS_MODULE
,
2595 .open
= spufs_switch_log_open
,
2596 .read
= spufs_switch_log_read
,
2597 .poll
= spufs_switch_log_poll
,
2598 .release
= spufs_switch_log_release
,
2599 .llseek
= no_llseek
,
2603 * Log a context switch event to a switch log reader.
2605 * Must be called with ctx->state_mutex held.
2607 void spu_switch_log_notify(struct spu
*spu
, struct spu_context
*ctx
,
2610 if (!ctx
->switch_log
)
2613 if (spufs_switch_log_avail(ctx
) > 1) {
2614 struct switch_log_entry
*p
;
2616 p
= ctx
->switch_log
->log
+ ctx
->switch_log
->head
;
2617 ktime_get_ts(&p
->tstamp
);
2618 p
->timebase
= get_tb();
2619 p
->spu_id
= spu
? spu
->number
: -1;
2623 ctx
->switch_log
->head
=
2624 (ctx
->switch_log
->head
+ 1) % SWITCH_LOG_BUFSIZE
;
2627 wake_up(&ctx
->switch_log
->wait
);
2630 static int spufs_show_ctx(struct seq_file
*s
, void *private)
2632 struct spu_context
*ctx
= s
->private;
2635 mutex_lock(&ctx
->state_mutex
);
2637 struct spu
*spu
= ctx
->spu
;
2638 struct spu_priv2 __iomem
*priv2
= spu
->priv2
;
2640 spin_lock_irq(&spu
->register_lock
);
2641 mfc_control_RW
= in_be64(&priv2
->mfc_control_RW
);
2642 spin_unlock_irq(&spu
->register_lock
);
2644 struct spu_state
*csa
= &ctx
->csa
;
2646 mfc_control_RW
= csa
->priv2
.mfc_control_RW
;
2649 seq_printf(s
, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2650 " %c %llx %llx %llx %llx %x %x\n",
2651 ctx
->state
== SPU_STATE_SAVED
? 'S' : 'R',
2656 ctx
->spu
? ctx
->spu
->number
: -1,
2657 !list_empty(&ctx
->rq
) ? 'q' : ' ',
2658 ctx
->csa
.class_0_pending
,
2659 ctx
->csa
.class_0_dar
,
2660 ctx
->csa
.class_1_dsisr
,
2662 ctx
->ops
->runcntl_read(ctx
),
2663 ctx
->ops
->status_read(ctx
));
2665 mutex_unlock(&ctx
->state_mutex
);
2670 static int spufs_ctx_open(struct inode
*inode
, struct file
*file
)
2672 return single_open(file
, spufs_show_ctx
, SPUFS_I(inode
)->i_ctx
);
2675 static const struct file_operations spufs_ctx_fops
= {
2676 .open
= spufs_ctx_open
,
2678 .llseek
= seq_lseek
,
2679 .release
= single_release
,
2682 const struct spufs_tree_descr spufs_dir_contents
[] = {
2683 { "capabilities", &spufs_caps_fops
, 0444, },
2684 { "mem", &spufs_mem_fops
, 0666, LS_SIZE
, },
2685 { "regs", &spufs_regs_fops
, 0666, sizeof(struct spu_reg128
[128]), },
2686 { "mbox", &spufs_mbox_fops
, 0444, },
2687 { "ibox", &spufs_ibox_fops
, 0444, },
2688 { "wbox", &spufs_wbox_fops
, 0222, },
2689 { "mbox_stat", &spufs_mbox_stat_fops
, 0444, sizeof(u32
), },
2690 { "ibox_stat", &spufs_ibox_stat_fops
, 0444, sizeof(u32
), },
2691 { "wbox_stat", &spufs_wbox_stat_fops
, 0444, sizeof(u32
), },
2692 { "signal1", &spufs_signal1_fops
, 0666, },
2693 { "signal2", &spufs_signal2_fops
, 0666, },
2694 { "signal1_type", &spufs_signal1_type
, 0666, },
2695 { "signal2_type", &spufs_signal2_type
, 0666, },
2696 { "cntl", &spufs_cntl_fops
, 0666, },
2697 { "fpcr", &spufs_fpcr_fops
, 0666, sizeof(struct spu_reg128
), },
2698 { "lslr", &spufs_lslr_ops
, 0444, },
2699 { "mfc", &spufs_mfc_fops
, 0666, },
2700 { "mss", &spufs_mss_fops
, 0666, },
2701 { "npc", &spufs_npc_ops
, 0666, },
2702 { "srr0", &spufs_srr0_ops
, 0666, },
2703 { "decr", &spufs_decr_ops
, 0666, },
2704 { "decr_status", &spufs_decr_status_ops
, 0666, },
2705 { "event_mask", &spufs_event_mask_ops
, 0666, },
2706 { "event_status", &spufs_event_status_ops
, 0444, },
2707 { "psmap", &spufs_psmap_fops
, 0666, SPUFS_PS_MAP_SIZE
, },
2708 { "phys-id", &spufs_id_ops
, 0666, },
2709 { "object-id", &spufs_object_id_ops
, 0666, },
2710 { "mbox_info", &spufs_mbox_info_fops
, 0444, sizeof(u32
), },
2711 { "ibox_info", &spufs_ibox_info_fops
, 0444, sizeof(u32
), },
2712 { "wbox_info", &spufs_wbox_info_fops
, 0444, sizeof(u32
), },
2713 { "dma_info", &spufs_dma_info_fops
, 0444,
2714 sizeof(struct spu_dma_info
), },
2715 { "proxydma_info", &spufs_proxydma_info_fops
, 0444,
2716 sizeof(struct spu_proxydma_info
)},
2717 { "tid", &spufs_tid_fops
, 0444, },
2718 { "stat", &spufs_stat_fops
, 0444, },
2719 { "switch_log", &spufs_switch_log_fops
, 0444 },
2723 const struct spufs_tree_descr spufs_dir_nosched_contents
[] = {
2724 { "capabilities", &spufs_caps_fops
, 0444, },
2725 { "mem", &spufs_mem_fops
, 0666, LS_SIZE
, },
2726 { "mbox", &spufs_mbox_fops
, 0444, },
2727 { "ibox", &spufs_ibox_fops
, 0444, },
2728 { "wbox", &spufs_wbox_fops
, 0222, },
2729 { "mbox_stat", &spufs_mbox_stat_fops
, 0444, sizeof(u32
), },
2730 { "ibox_stat", &spufs_ibox_stat_fops
, 0444, sizeof(u32
), },
2731 { "wbox_stat", &spufs_wbox_stat_fops
, 0444, sizeof(u32
), },
2732 { "signal1", &spufs_signal1_nosched_fops
, 0222, },
2733 { "signal2", &spufs_signal2_nosched_fops
, 0222, },
2734 { "signal1_type", &spufs_signal1_type
, 0666, },
2735 { "signal2_type", &spufs_signal2_type
, 0666, },
2736 { "mss", &spufs_mss_fops
, 0666, },
2737 { "mfc", &spufs_mfc_fops
, 0666, },
2738 { "cntl", &spufs_cntl_fops
, 0666, },
2739 { "npc", &spufs_npc_ops
, 0666, },
2740 { "psmap", &spufs_psmap_fops
, 0666, SPUFS_PS_MAP_SIZE
, },
2741 { "phys-id", &spufs_id_ops
, 0666, },
2742 { "object-id", &spufs_object_id_ops
, 0666, },
2743 { "tid", &spufs_tid_fops
, 0444, },
2744 { "stat", &spufs_stat_fops
, 0444, },
2748 const struct spufs_tree_descr spufs_dir_debug_contents
[] = {
2749 { ".ctx", &spufs_ctx_fops
, 0444, },
2753 const struct spufs_coredump_reader spufs_coredump_read
[] = {
2754 { "regs", __spufs_regs_read
, NULL
, sizeof(struct spu_reg128
[128])},
2755 { "fpcr", __spufs_fpcr_read
, NULL
, sizeof(struct spu_reg128
) },
2756 { "lslr", NULL
, spufs_lslr_get
, 19 },
2757 { "decr", NULL
, spufs_decr_get
, 19 },
2758 { "decr_status", NULL
, spufs_decr_status_get
, 19 },
2759 { "mem", __spufs_mem_read
, NULL
, LS_SIZE
, },
2760 { "signal1", __spufs_signal1_read
, NULL
, sizeof(u32
) },
2761 { "signal1_type", NULL
, spufs_signal1_type_get
, 19 },
2762 { "signal2", __spufs_signal2_read
, NULL
, sizeof(u32
) },
2763 { "signal2_type", NULL
, spufs_signal2_type_get
, 19 },
2764 { "event_mask", NULL
, spufs_event_mask_get
, 19 },
2765 { "event_status", NULL
, spufs_event_status_get
, 19 },
2766 { "mbox_info", __spufs_mbox_info_read
, NULL
, sizeof(u32
) },
2767 { "ibox_info", __spufs_ibox_info_read
, NULL
, sizeof(u32
) },
2768 { "wbox_info", __spufs_wbox_info_read
, NULL
, 4 * sizeof(u32
)},
2769 { "dma_info", __spufs_dma_info_read
, NULL
, sizeof(struct spu_dma_info
)},
2770 { "proxydma_info", __spufs_proxydma_info_read
,
2771 NULL
, sizeof(struct spu_proxydma_info
)},
2772 { "object-id", NULL
, spufs_object_id_get
, 19 },
2773 { "npc", NULL
, spufs_npc_get
, 19 },