staging:iio:imu:adis16400 remove now unused headers.
[linux-2.6/next.git] / arch / sparc / mm / tsb.c
blob536412d8f4161d486a1d5b79cd00b605e3f1b323
1 /* arch/sparc64/mm/tsb.c
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/system.h>
10 #include <asm/page.h>
11 #include <asm/tlbflush.h>
12 #include <asm/tlb.h>
13 #include <asm/mmu_context.h>
14 #include <asm/pgtable.h>
15 #include <asm/tsb.h>
16 #include <asm/oplib.h>
18 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
20 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
22 vaddr >>= hash_shift;
23 return vaddr & (nentries - 1);
26 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
28 return (tag == (vaddr >> 22));
31 /* TSB flushes need only occur on the processor initiating the address
32 * space modification, not on each cpu the address space has run on.
33 * Only the TLB flush needs that treatment.
36 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
38 unsigned long v;
40 for (v = start; v < end; v += PAGE_SIZE) {
41 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
42 KERNEL_TSB_NENTRIES);
43 struct tsb *ent = &swapper_tsb[hash];
45 if (tag_compare(ent->tag, v))
46 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
50 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
51 unsigned long tsb, unsigned long nentries)
53 unsigned long i;
55 for (i = 0; i < tb->tlb_nr; i++) {
56 unsigned long v = tb->vaddrs[i];
57 unsigned long tag, ent, hash;
59 v &= ~0x1UL;
61 hash = tsb_hash(v, hash_shift, nentries);
62 ent = tsb + (hash * sizeof(struct tsb));
63 tag = (v >> 22UL);
65 tsb_flush(ent, tag);
69 void flush_tsb_user(struct tlb_batch *tb)
71 struct mm_struct *mm = tb->mm;
72 unsigned long nentries, base, flags;
74 spin_lock_irqsave(&mm->context.lock, flags);
76 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
77 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
78 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
79 base = __pa(base);
80 __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
82 #ifdef CONFIG_HUGETLB_PAGE
83 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
84 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
85 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
86 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
87 base = __pa(base);
88 __flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
90 #endif
91 spin_unlock_irqrestore(&mm->context.lock, flags);
94 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
95 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
96 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
97 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
98 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
99 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
100 #else
101 #error Broken base page size setting...
102 #endif
104 #ifdef CONFIG_HUGETLB_PAGE
105 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
106 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
107 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
108 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
109 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
110 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
111 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
112 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
113 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
114 #else
115 #error Broken huge page size setting...
116 #endif
117 #endif
119 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
121 unsigned long tsb_reg, base, tsb_paddr;
122 unsigned long page_sz, tte;
124 mm->context.tsb_block[tsb_idx].tsb_nentries =
125 tsb_bytes / sizeof(struct tsb);
127 base = TSBMAP_BASE;
128 tte = pgprot_val(PAGE_KERNEL_LOCKED);
129 tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
130 BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
132 /* Use the smallest page size that can map the whole TSB
133 * in one TLB entry.
135 switch (tsb_bytes) {
136 case 8192 << 0:
137 tsb_reg = 0x0UL;
138 #ifdef DCACHE_ALIASING_POSSIBLE
139 base += (tsb_paddr & 8192);
140 #endif
141 page_sz = 8192;
142 break;
144 case 8192 << 1:
145 tsb_reg = 0x1UL;
146 page_sz = 64 * 1024;
147 break;
149 case 8192 << 2:
150 tsb_reg = 0x2UL;
151 page_sz = 64 * 1024;
152 break;
154 case 8192 << 3:
155 tsb_reg = 0x3UL;
156 page_sz = 64 * 1024;
157 break;
159 case 8192 << 4:
160 tsb_reg = 0x4UL;
161 page_sz = 512 * 1024;
162 break;
164 case 8192 << 5:
165 tsb_reg = 0x5UL;
166 page_sz = 512 * 1024;
167 break;
169 case 8192 << 6:
170 tsb_reg = 0x6UL;
171 page_sz = 512 * 1024;
172 break;
174 case 8192 << 7:
175 tsb_reg = 0x7UL;
176 page_sz = 4 * 1024 * 1024;
177 break;
179 default:
180 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
181 current->comm, current->pid, tsb_bytes);
182 do_exit(SIGSEGV);
184 tte |= pte_sz_bits(page_sz);
186 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
187 /* Physical mapping, no locked TLB entry for TSB. */
188 tsb_reg |= tsb_paddr;
190 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
191 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
192 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
193 } else {
194 tsb_reg |= base;
195 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
196 tte |= (tsb_paddr & ~(page_sz - 1UL));
198 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
199 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
200 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
203 /* Setup the Hypervisor TSB descriptor. */
204 if (tlb_type == hypervisor) {
205 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
207 switch (tsb_idx) {
208 case MM_TSB_BASE:
209 hp->pgsz_idx = HV_PGSZ_IDX_BASE;
210 break;
211 #ifdef CONFIG_HUGETLB_PAGE
212 case MM_TSB_HUGE:
213 hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
214 break;
215 #endif
216 default:
217 BUG();
219 hp->assoc = 1;
220 hp->num_ttes = tsb_bytes / 16;
221 hp->ctx_idx = 0;
222 switch (tsb_idx) {
223 case MM_TSB_BASE:
224 hp->pgsz_mask = HV_PGSZ_MASK_BASE;
225 break;
226 #ifdef CONFIG_HUGETLB_PAGE
227 case MM_TSB_HUGE:
228 hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
229 break;
230 #endif
231 default:
232 BUG();
234 hp->tsb_base = tsb_paddr;
235 hp->resv = 0;
239 struct kmem_cache *pgtable_cache __read_mostly;
241 static struct kmem_cache *tsb_caches[8] __read_mostly;
243 static const char *tsb_cache_names[8] = {
244 "tsb_8KB",
245 "tsb_16KB",
246 "tsb_32KB",
247 "tsb_64KB",
248 "tsb_128KB",
249 "tsb_256KB",
250 "tsb_512KB",
251 "tsb_1MB",
254 void __init pgtable_cache_init(void)
256 unsigned long i;
258 pgtable_cache = kmem_cache_create("pgtable_cache",
259 PAGE_SIZE, PAGE_SIZE,
261 _clear_page);
262 if (!pgtable_cache) {
263 prom_printf("pgtable_cache_init(): Could not create!\n");
264 prom_halt();
267 for (i = 0; i < 8; i++) {
268 unsigned long size = 8192 << i;
269 const char *name = tsb_cache_names[i];
271 tsb_caches[i] = kmem_cache_create(name,
272 size, size,
273 0, NULL);
274 if (!tsb_caches[i]) {
275 prom_printf("Could not create %s cache\n", name);
276 prom_halt();
281 int sysctl_tsb_ratio = -2;
283 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
285 unsigned long num_ents = (new_size / sizeof(struct tsb));
287 if (sysctl_tsb_ratio < 0)
288 return num_ents - (num_ents >> -sysctl_tsb_ratio);
289 else
290 return num_ents + (num_ents >> sysctl_tsb_ratio);
293 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
294 * do_sparc64_fault() invokes this routine to try and grow it.
296 * When we reach the maximum TSB size supported, we stick ~0UL into
297 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
298 * will not trigger any longer.
300 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
301 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
302 * must be 512K aligned. It also must be physically contiguous, so we
303 * cannot use vmalloc().
305 * The idea here is to grow the TSB when the RSS of the process approaches
306 * the number of entries that the current TSB can hold at once. Currently,
307 * we trigger when the RSS hits 3/4 of the TSB capacity.
309 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
311 unsigned long max_tsb_size = 1 * 1024 * 1024;
312 unsigned long new_size, old_size, flags;
313 struct tsb *old_tsb, *new_tsb;
314 unsigned long new_cache_index, old_cache_index;
315 unsigned long new_rss_limit;
316 gfp_t gfp_flags;
318 if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
319 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
321 new_cache_index = 0;
322 for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
323 new_rss_limit = tsb_size_to_rss_limit(new_size);
324 if (new_rss_limit > rss)
325 break;
326 new_cache_index++;
329 if (new_size == max_tsb_size)
330 new_rss_limit = ~0UL;
332 retry_tsb_alloc:
333 gfp_flags = GFP_KERNEL;
334 if (new_size > (PAGE_SIZE * 2))
335 gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
337 new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
338 gfp_flags, numa_node_id());
339 if (unlikely(!new_tsb)) {
340 /* Not being able to fork due to a high-order TSB
341 * allocation failure is very bad behavior. Just back
342 * down to a 0-order allocation and force no TSB
343 * growing for this address space.
345 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
346 new_cache_index > 0) {
347 new_cache_index = 0;
348 new_size = 8192;
349 new_rss_limit = ~0UL;
350 goto retry_tsb_alloc;
353 /* If we failed on a TSB grow, we are under serious
354 * memory pressure so don't try to grow any more.
356 if (mm->context.tsb_block[tsb_index].tsb != NULL)
357 mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
358 return;
361 /* Mark all tags as invalid. */
362 tsb_init(new_tsb, new_size);
364 /* Ok, we are about to commit the changes. If we are
365 * growing an existing TSB the locking is very tricky,
366 * so WATCH OUT!
368 * We have to hold mm->context.lock while committing to the
369 * new TSB, this synchronizes us with processors in
370 * flush_tsb_user() and switch_mm() for this address space.
372 * But even with that lock held, processors run asynchronously
373 * accessing the old TSB via TLB miss handling. This is OK
374 * because those actions are just propagating state from the
375 * Linux page tables into the TSB, page table mappings are not
376 * being changed. If a real fault occurs, the processor will
377 * synchronize with us when it hits flush_tsb_user(), this is
378 * also true for the case where vmscan is modifying the page
379 * tables. The only thing we need to be careful with is to
380 * skip any locked TSB entries during copy_tsb().
382 * When we finish committing to the new TSB, we have to drop
383 * the lock and ask all other cpus running this address space
384 * to run tsb_context_switch() to see the new TSB table.
386 spin_lock_irqsave(&mm->context.lock, flags);
388 old_tsb = mm->context.tsb_block[tsb_index].tsb;
389 old_cache_index =
390 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
391 old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
392 sizeof(struct tsb));
395 /* Handle multiple threads trying to grow the TSB at the same time.
396 * One will get in here first, and bump the size and the RSS limit.
397 * The others will get in here next and hit this check.
399 if (unlikely(old_tsb &&
400 (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
401 spin_unlock_irqrestore(&mm->context.lock, flags);
403 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
404 return;
407 mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
409 if (old_tsb) {
410 extern void copy_tsb(unsigned long old_tsb_base,
411 unsigned long old_tsb_size,
412 unsigned long new_tsb_base,
413 unsigned long new_tsb_size);
414 unsigned long old_tsb_base = (unsigned long) old_tsb;
415 unsigned long new_tsb_base = (unsigned long) new_tsb;
417 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
418 old_tsb_base = __pa(old_tsb_base);
419 new_tsb_base = __pa(new_tsb_base);
421 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
424 mm->context.tsb_block[tsb_index].tsb = new_tsb;
425 setup_tsb_params(mm, tsb_index, new_size);
427 spin_unlock_irqrestore(&mm->context.lock, flags);
429 /* If old_tsb is NULL, we're being invoked for the first time
430 * from init_new_context().
432 if (old_tsb) {
433 /* Reload it on the local cpu. */
434 tsb_context_switch(mm);
436 /* Now force other processors to do the same. */
437 preempt_disable();
438 smp_tsb_sync(mm);
439 preempt_enable();
441 /* Now it is safe to free the old tsb. */
442 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
446 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
448 #ifdef CONFIG_HUGETLB_PAGE
449 unsigned long huge_pte_count;
450 #endif
451 unsigned int i;
453 spin_lock_init(&mm->context.lock);
455 mm->context.sparc64_ctx_val = 0UL;
457 #ifdef CONFIG_HUGETLB_PAGE
458 /* We reset it to zero because the fork() page copying
459 * will re-increment the counters as the parent PTEs are
460 * copied into the child address space.
462 huge_pte_count = mm->context.huge_pte_count;
463 mm->context.huge_pte_count = 0;
464 #endif
466 /* copy_mm() copies over the parent's mm_struct before calling
467 * us, so we need to zero out the TSB pointer or else tsb_grow()
468 * will be confused and think there is an older TSB to free up.
470 for (i = 0; i < MM_NUM_TSBS; i++)
471 mm->context.tsb_block[i].tsb = NULL;
473 /* If this is fork, inherit the parent's TSB size. We would
474 * grow it to that size on the first page fault anyways.
476 tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
478 #ifdef CONFIG_HUGETLB_PAGE
479 if (unlikely(huge_pte_count))
480 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
481 #endif
483 if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
484 return -ENOMEM;
486 return 0;
489 static void tsb_destroy_one(struct tsb_config *tp)
491 unsigned long cache_index;
493 if (!tp->tsb)
494 return;
495 cache_index = tp->tsb_reg_val & 0x7UL;
496 kmem_cache_free(tsb_caches[cache_index], tp->tsb);
497 tp->tsb = NULL;
498 tp->tsb_reg_val = 0UL;
501 void destroy_context(struct mm_struct *mm)
503 unsigned long flags, i;
505 for (i = 0; i < MM_NUM_TSBS; i++)
506 tsb_destroy_one(&mm->context.tsb_block[i]);
508 spin_lock_irqsave(&ctx_alloc_lock, flags);
510 if (CTX_VALID(mm->context)) {
511 unsigned long nr = CTX_NRBITS(mm->context);
512 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
515 spin_unlock_irqrestore(&ctx_alloc_lock, flags);