1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/hypervisor.h>
19 #include <asm/processor.h>
20 #include <asm/sections.h>
21 #include <linux/topology.h>
22 #include <linux/cpumask.h>
23 #include <asm/pgtable.h>
24 #include <linux/atomic.h>
25 #include <asm/proto.h>
26 #include <asm/setup.h>
31 #include <linux/numa.h>
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask
;
46 cpumask_var_t cpu_callout_mask
;
47 cpumask_var_t cpu_callin_mask
;
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask
;
52 /* correctly size the local cpu masks */
53 void __init
setup_cpu_local_masks(void)
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask
);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask
);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask
);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask
);
61 static void __cpuinit
default_init(struct cpuinfo_x86
*c
)
64 cpu_detect_cache_sizes(c
);
66 /* Not much we can do here... */
67 /* Check if at least it has cpuid */
68 if (c
->cpuid_level
== -1) {
69 /* No cpuid. It must be an ancient CPU */
71 strcpy(c
->x86_model_id
, "486");
73 strcpy(c
->x86_model_id
, "386");
78 static const struct cpu_dev __cpuinitconst default_cpu
= {
79 .c_init
= default_init
,
80 .c_vendor
= "Unknown",
81 .c_x86_vendor
= X86_VENDOR_UNKNOWN
,
84 static const struct cpu_dev
*this_cpu __cpuinitdata
= &default_cpu
;
86 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page
, gdt_page
) = { .gdt
= {
89 * We need valid kernel segments for data and code in long mode too
90 * IRET will check the segment types kkeil 2000/10/28
91 * Also sysret mandates a special GDT layout
93 * TLS descriptors are currently at a different place compared to i386.
94 * Hopefully nobody expects them at a fixed place (Wine?)
96 [GDT_ENTRY_KERNEL32_CS
] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99 [GDT_ENTRY_DEFAULT_USER32_CS
] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
103 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
108 * Segments used for calling PnP BIOS have byte granularity.
109 * They code segments and data segments have fixed 64k limits,
110 * the transfer segment sizes are set at run time.
113 [GDT_ENTRY_PNPBIOS_CS32
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
115 [GDT_ENTRY_PNPBIOS_CS16
] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
117 [GDT_ENTRY_PNPBIOS_DS
] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
119 [GDT_ENTRY_PNPBIOS_TS1
] = GDT_ENTRY_INIT(0x0092, 0, 0),
121 [GDT_ENTRY_PNPBIOS_TS2
] = GDT_ENTRY_INIT(0x0092, 0, 0),
123 * The APM segments have byte granularity and their bases
124 * are set at run time. All have 64k limits.
127 [GDT_ENTRY_APMBIOS_BASE
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 [GDT_ENTRY_APMBIOS_BASE
+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 [GDT_ENTRY_APMBIOS_BASE
+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
133 [GDT_ENTRY_ESPFIX_SS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 [GDT_ENTRY_PERCPU
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 GDT_STACK_CANARY_INIT
138 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
140 static int __init
x86_xsave_setup(char *s
)
142 setup_clear_cpu_cap(X86_FEATURE_XSAVE
);
143 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT
);
146 __setup("noxsave", x86_xsave_setup
);
148 static int __init
x86_xsaveopt_setup(char *s
)
150 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT
);
153 __setup("noxsaveopt", x86_xsaveopt_setup
);
156 static int cachesize_override __cpuinitdata
= -1;
157 static int disable_x86_serial_nr __cpuinitdata
= 1;
159 static int __init
cachesize_setup(char *str
)
161 get_option(&str
, &cachesize_override
);
164 __setup("cachesize=", cachesize_setup
);
166 static int __init
x86_fxsr_setup(char *s
)
168 setup_clear_cpu_cap(X86_FEATURE_FXSR
);
169 setup_clear_cpu_cap(X86_FEATURE_XMM
);
172 __setup("nofxsr", x86_fxsr_setup
);
174 static int __init
x86_sep_setup(char *s
)
176 setup_clear_cpu_cap(X86_FEATURE_SEP
);
179 __setup("nosep", x86_sep_setup
);
181 /* Standard macro to see if a specific flag is changeable */
182 static inline int flag_is_changeable_p(u32 flag
)
187 * Cyrix and IDT cpus allow disabling of CPUID
188 * so the code below may return different results
189 * when it is executed before and after enabling
190 * the CPUID. Add "volatile" to not allow gcc to
191 * optimize the subsequent calls to this function.
193 asm volatile ("pushfl \n\t"
204 : "=&r" (f1
), "=&r" (f2
)
207 return ((f1
^f2
) & flag
) != 0;
210 /* Probe for the CPUID instruction */
211 static int __cpuinit
have_cpuid_p(void)
213 return flag_is_changeable_p(X86_EFLAGS_ID
);
216 static void __cpuinit
squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
218 unsigned long lo
, hi
;
220 if (!cpu_has(c
, X86_FEATURE_PN
) || !disable_x86_serial_nr
)
223 /* Disable processor serial number: */
225 rdmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
227 wrmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
229 printk(KERN_NOTICE
"CPU serial number disabled.\n");
230 clear_cpu_cap(c
, X86_FEATURE_PN
);
232 /* Disabling the serial number may affect the cpuid level */
233 c
->cpuid_level
= cpuid_eax(0);
236 static int __init
x86_serial_nr_setup(char *s
)
238 disable_x86_serial_nr
= 0;
241 __setup("serialnumber", x86_serial_nr_setup
);
243 static inline int flag_is_changeable_p(u32 flag
)
247 /* Probe for the CPUID instruction */
248 static inline int have_cpuid_p(void)
252 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
257 static int disable_smep __cpuinitdata
;
258 static __init
int setup_disable_smep(char *arg
)
263 __setup("nosmep", setup_disable_smep
);
265 static __cpuinit
void setup_smep(struct cpuinfo_x86
*c
)
267 if (cpu_has(c
, X86_FEATURE_SMEP
)) {
268 if (unlikely(disable_smep
)) {
269 setup_clear_cpu_cap(X86_FEATURE_SMEP
);
270 clear_in_cr4(X86_CR4_SMEP
);
272 set_in_cr4(X86_CR4_SMEP
);
277 * Some CPU features depend on higher CPUID levels, which may not always
278 * be available due to CPUID level capping or broken virtualization
279 * software. Add those features to this table to auto-disable them.
281 struct cpuid_dependent_feature
{
286 static const struct cpuid_dependent_feature __cpuinitconst
287 cpuid_dependent_features
[] = {
288 { X86_FEATURE_MWAIT
, 0x00000005 },
289 { X86_FEATURE_DCA
, 0x00000009 },
290 { X86_FEATURE_XSAVE
, 0x0000000d },
294 static void __cpuinit
filter_cpuid_features(struct cpuinfo_x86
*c
, bool warn
)
296 const struct cpuid_dependent_feature
*df
;
298 for (df
= cpuid_dependent_features
; df
->feature
; df
++) {
300 if (!cpu_has(c
, df
->feature
))
303 * Note: cpuid_level is set to -1 if unavailable, but
304 * extended_extended_level is set to 0 if unavailable
305 * and the legitimate extended levels are all negative
306 * when signed; hence the weird messing around with
309 if (!((s32
)df
->level
< 0 ?
310 (u32
)df
->level
> (u32
)c
->extended_cpuid_level
:
311 (s32
)df
->level
> (s32
)c
->cpuid_level
))
314 clear_cpu_cap(c
, df
->feature
);
319 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
320 x86_cap_flags
[df
->feature
], df
->level
);
325 * Naming convention should be: <Name> [(<Codename>)]
326 * This table only is used unless init_<vendor>() below doesn't set it;
327 * in particular, if CPUID levels 0x80000002..4 are supported, this
331 /* Look up CPU names by table lookup. */
332 static const char *__cpuinit
table_lookup_model(struct cpuinfo_x86
*c
)
334 const struct cpu_model_info
*info
;
336 if (c
->x86_model
>= 16)
337 return NULL
; /* Range check */
342 info
= this_cpu
->c_models
;
344 while (info
&& info
->family
) {
345 if (info
->family
== c
->x86
)
346 return info
->model_names
[c
->x86_model
];
349 return NULL
; /* Not found */
352 __u32 cpu_caps_cleared
[NCAPINTS
] __cpuinitdata
;
353 __u32 cpu_caps_set
[NCAPINTS
] __cpuinitdata
;
355 void load_percpu_segment(int cpu
)
358 loadsegment(fs
, __KERNEL_PERCPU
);
361 wrmsrl(MSR_GS_BASE
, (unsigned long)per_cpu(irq_stack_union
.gs_base
, cpu
));
363 load_stack_canary_segment();
367 * Current gdt points %fs at the "master" per-cpu area: after this,
368 * it's on the real one.
370 void switch_to_new_gdt(int cpu
)
372 struct desc_ptr gdt_descr
;
374 gdt_descr
.address
= (long)get_cpu_gdt_table(cpu
);
375 gdt_descr
.size
= GDT_SIZE
- 1;
376 load_gdt(&gdt_descr
);
377 /* Reload the per-cpu base */
379 load_percpu_segment(cpu
);
382 static const struct cpu_dev
*__cpuinitdata cpu_devs
[X86_VENDOR_NUM
] = {};
384 static void __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
389 if (c
->extended_cpuid_level
< 0x80000004)
392 v
= (unsigned int *)c
->x86_model_id
;
393 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
394 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
395 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
396 c
->x86_model_id
[48] = 0;
399 * Intel chips right-justify this string for some dumb reason;
400 * undo that brain damage:
402 p
= q
= &c
->x86_model_id
[0];
408 while (q
<= &c
->x86_model_id
[48])
409 *q
++ = '\0'; /* Zero-pad the rest */
413 void __cpuinit
cpu_detect_cache_sizes(struct cpuinfo_x86
*c
)
415 unsigned int n
, dummy
, ebx
, ecx
, edx
, l2size
;
417 n
= c
->extended_cpuid_level
;
419 if (n
>= 0x80000005) {
420 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
421 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
423 /* On K8 L1 TLB is inclusive, so don't count it */
428 if (n
< 0x80000006) /* Some chips just has a large L1. */
431 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
435 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
437 /* do processor-specific cache resizing */
438 if (this_cpu
->c_size_cache
)
439 l2size
= this_cpu
->c_size_cache(c
, l2size
);
441 /* Allow user to override all this if necessary. */
442 if (cachesize_override
!= -1)
443 l2size
= cachesize_override
;
446 return; /* Again, no L2 cache is possible */
449 c
->x86_cache_size
= l2size
;
452 void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
455 u32 eax
, ebx
, ecx
, edx
;
456 int index_msb
, core_bits
;
459 if (!cpu_has(c
, X86_FEATURE_HT
))
462 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
465 if (cpu_has(c
, X86_FEATURE_XTOPOLOGY
))
468 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
470 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
472 if (smp_num_siblings
== 1) {
473 printk_once(KERN_INFO
"CPU0: Hyper-Threading is disabled\n");
477 if (smp_num_siblings
<= 1)
480 index_msb
= get_count_order(smp_num_siblings
);
481 c
->phys_proc_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
);
483 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
485 index_msb
= get_count_order(smp_num_siblings
);
487 core_bits
= get_count_order(c
->x86_max_cores
);
489 c
->cpu_core_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
) &
490 ((1 << core_bits
) - 1);
493 if (!printed
&& (c
->x86_max_cores
* smp_num_siblings
) > 1) {
494 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n",
496 printk(KERN_INFO
"CPU: Processor Core ID: %d\n",
503 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
)
505 char *v
= c
->x86_vendor_id
;
508 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
512 if (!strcmp(v
, cpu_devs
[i
]->c_ident
[0]) ||
513 (cpu_devs
[i
]->c_ident
[1] &&
514 !strcmp(v
, cpu_devs
[i
]->c_ident
[1]))) {
516 this_cpu
= cpu_devs
[i
];
517 c
->x86_vendor
= this_cpu
->c_x86_vendor
;
523 "CPU: vendor_id '%s' unknown, using generic init.\n" \
524 "CPU: Your system may be unstable.\n", v
);
526 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
527 this_cpu
= &default_cpu
;
530 void __cpuinit
cpu_detect(struct cpuinfo_x86
*c
)
532 /* Get vendor name */
533 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
534 (unsigned int *)&c
->x86_vendor_id
[0],
535 (unsigned int *)&c
->x86_vendor_id
[8],
536 (unsigned int *)&c
->x86_vendor_id
[4]);
539 /* Intel-defined flags: level 0x00000001 */
540 if (c
->cpuid_level
>= 0x00000001) {
541 u32 junk
, tfms
, cap0
, misc
;
543 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
544 c
->x86
= (tfms
>> 8) & 0xf;
545 c
->x86_model
= (tfms
>> 4) & 0xf;
546 c
->x86_mask
= tfms
& 0xf;
549 c
->x86
+= (tfms
>> 20) & 0xff;
551 c
->x86_model
+= ((tfms
>> 16) & 0xf) << 4;
553 if (cap0
& (1<<19)) {
554 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
555 c
->x86_cache_alignment
= c
->x86_clflush_size
;
560 void __cpuinit
get_cpu_cap(struct cpuinfo_x86
*c
)
565 /* Intel-defined flags: level 0x00000001 */
566 if (c
->cpuid_level
>= 0x00000001) {
567 u32 capability
, excap
;
569 cpuid(0x00000001, &tfms
, &ebx
, &excap
, &capability
);
570 c
->x86_capability
[0] = capability
;
571 c
->x86_capability
[4] = excap
;
574 /* Additional Intel-defined flags: level 0x00000007 */
575 if (c
->cpuid_level
>= 0x00000007) {
576 u32 eax
, ebx
, ecx
, edx
;
578 cpuid_count(0x00000007, 0, &eax
, &ebx
, &ecx
, &edx
);
580 c
->x86_capability
[9] = ebx
;
583 /* AMD-defined flags: level 0x80000001 */
584 xlvl
= cpuid_eax(0x80000000);
585 c
->extended_cpuid_level
= xlvl
;
587 if ((xlvl
& 0xffff0000) == 0x80000000) {
588 if (xlvl
>= 0x80000001) {
589 c
->x86_capability
[1] = cpuid_edx(0x80000001);
590 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
594 if (c
->extended_cpuid_level
>= 0x80000008) {
595 u32 eax
= cpuid_eax(0x80000008);
597 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
598 c
->x86_phys_bits
= eax
& 0xff;
601 else if (cpu_has(c
, X86_FEATURE_PAE
) || cpu_has(c
, X86_FEATURE_PSE36
))
602 c
->x86_phys_bits
= 36;
605 if (c
->extended_cpuid_level
>= 0x80000007)
606 c
->x86_power
= cpuid_edx(0x80000007);
608 init_scattered_cpuid_features(c
);
611 static void __cpuinit
identify_cpu_without_cpuid(struct cpuinfo_x86
*c
)
617 * First of all, decide if this is a 486 or higher
618 * It's a 486 if we can modify the AC flag
620 if (flag_is_changeable_p(X86_EFLAGS_AC
))
625 for (i
= 0; i
< X86_VENDOR_NUM
; i
++)
626 if (cpu_devs
[i
] && cpu_devs
[i
]->c_identify
) {
627 c
->x86_vendor_id
[0] = 0;
628 cpu_devs
[i
]->c_identify(c
);
629 if (c
->x86_vendor_id
[0]) {
638 * Do minimum CPU detection early.
639 * Fields really needed: vendor, cpuid_level, family, model, mask,
641 * The others are not touched to avoid unwanted side effects.
643 * WARNING: this function is only called on the BP. Don't add code here
644 * that is supposed to run on all CPUs.
646 static void __init
early_identify_cpu(struct cpuinfo_x86
*c
)
649 c
->x86_clflush_size
= 64;
650 c
->x86_phys_bits
= 36;
651 c
->x86_virt_bits
= 48;
653 c
->x86_clflush_size
= 32;
654 c
->x86_phys_bits
= 32;
655 c
->x86_virt_bits
= 32;
657 c
->x86_cache_alignment
= c
->x86_clflush_size
;
659 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
660 c
->extended_cpuid_level
= 0;
663 identify_cpu_without_cpuid(c
);
665 /* cyrix could have cpuid enabled via c_identify()*/
675 if (this_cpu
->c_early_init
)
676 this_cpu
->c_early_init(c
);
681 filter_cpuid_features(c
, false);
686 void __init
early_cpu_init(void)
688 const struct cpu_dev
*const *cdev
;
691 #ifdef CONFIG_PROCESSOR_SELECT
692 printk(KERN_INFO
"KERNEL supported cpus:\n");
695 for (cdev
= __x86_cpu_dev_start
; cdev
< __x86_cpu_dev_end
; cdev
++) {
696 const struct cpu_dev
*cpudev
= *cdev
;
698 if (count
>= X86_VENDOR_NUM
)
700 cpu_devs
[count
] = cpudev
;
703 #ifdef CONFIG_PROCESSOR_SELECT
707 for (j
= 0; j
< 2; j
++) {
708 if (!cpudev
->c_ident
[j
])
710 printk(KERN_INFO
" %s %s\n", cpudev
->c_vendor
,
716 early_identify_cpu(&boot_cpu_data
);
720 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
721 * unfortunately, that's not true in practice because of early VIA
722 * chips and (more importantly) broken virtualizers that are not easy
723 * to detect. In the latter case it doesn't even *fail* reliably, so
724 * probing for it doesn't even work. Disable it completely on 32-bit
725 * unless we can find a reliable way to detect all the broken cases.
726 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
728 static void __cpuinit
detect_nopl(struct cpuinfo_x86
*c
)
731 clear_cpu_cap(c
, X86_FEATURE_NOPL
);
733 set_cpu_cap(c
, X86_FEATURE_NOPL
);
737 static void __cpuinit
generic_identify(struct cpuinfo_x86
*c
)
739 c
->extended_cpuid_level
= 0;
742 identify_cpu_without_cpuid(c
);
744 /* cyrix could have cpuid enabled via c_identify()*/
754 if (c
->cpuid_level
>= 0x00000001) {
755 c
->initial_apicid
= (cpuid_ebx(1) >> 24) & 0xFF;
757 # ifdef CONFIG_X86_HT
758 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
760 c
->apicid
= c
->initial_apicid
;
765 c
->phys_proc_id
= c
->initial_apicid
;
771 get_model_name(c
); /* Default name */
777 * This does the hard work of actually picking apart the CPU stuff...
779 static void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
783 c
->loops_per_jiffy
= loops_per_jiffy
;
784 c
->x86_cache_size
= -1;
785 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
786 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
787 c
->x86_vendor_id
[0] = '\0'; /* Unset */
788 c
->x86_model_id
[0] = '\0'; /* Unset */
789 c
->x86_max_cores
= 1;
790 c
->x86_coreid_bits
= 0;
792 c
->x86_clflush_size
= 64;
793 c
->x86_phys_bits
= 36;
794 c
->x86_virt_bits
= 48;
796 c
->cpuid_level
= -1; /* CPUID not detected */
797 c
->x86_clflush_size
= 32;
798 c
->x86_phys_bits
= 32;
799 c
->x86_virt_bits
= 32;
801 c
->x86_cache_alignment
= c
->x86_clflush_size
;
802 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
806 if (this_cpu
->c_identify
)
807 this_cpu
->c_identify(c
);
809 /* Clear/Set all flags overriden by options, after probe */
810 for (i
= 0; i
< NCAPINTS
; i
++) {
811 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
812 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
816 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
820 * Vendor-specific initialization. In this section we
821 * canonicalize the feature flags, meaning if there are
822 * features a certain CPU supports which CPUID doesn't
823 * tell us, CPUID claiming incorrect flags, or other bugs,
824 * we handle them here.
826 * At the end of this section, c->x86_capability better
827 * indicate the features this CPU genuinely supports!
829 if (this_cpu
->c_init
)
832 /* Disable the PN if appropriate */
833 squash_the_stupid_serial_number(c
);
836 * The vendor-specific functions might have changed features.
837 * Now we do "generic changes."
840 /* Filter out anything that depends on CPUID levels we don't have */
841 filter_cpuid_features(c
, true);
843 /* If the model name is still unset, do table lookup. */
844 if (!c
->x86_model_id
[0]) {
846 p
= table_lookup_model(c
);
848 strcpy(c
->x86_model_id
, p
);
851 sprintf(c
->x86_model_id
, "%02x/%02x",
852 c
->x86
, c
->x86_model
);
862 * Clear/Set all flags overriden by options, need do it
863 * before following smp all cpus cap AND.
865 for (i
= 0; i
< NCAPINTS
; i
++) {
866 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
867 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
871 * On SMP, boot_cpu_data holds the common feature set between
872 * all CPUs; so make sure that we indicate which features are
873 * common between the CPUs. The first time this routine gets
874 * executed, c == &boot_cpu_data.
876 if (c
!= &boot_cpu_data
) {
877 /* AND the already accumulated flags with these */
878 for (i
= 0; i
< NCAPINTS
; i
++)
879 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
882 /* Init Machine Check Exception if available. */
885 select_idle_routine(c
);
888 numa_add_cpu(smp_processor_id());
893 static void vgetcpu_set_mode(void)
895 if (cpu_has(&boot_cpu_data
, X86_FEATURE_RDTSCP
))
896 vgetcpu_mode
= VGETCPU_RDTSCP
;
898 vgetcpu_mode
= VGETCPU_LSL
;
902 void __init
identify_boot_cpu(void)
904 identify_cpu(&boot_cpu_data
);
905 init_amd_e400_c1e_mask();
914 void __cpuinit
identify_secondary_cpu(struct cpuinfo_x86
*c
)
916 BUG_ON(c
== &boot_cpu_data
);
929 static const struct msr_range msr_range_array
[] __cpuinitconst
= {
930 { 0x00000000, 0x00000418},
931 { 0xc0000000, 0xc000040b},
932 { 0xc0010000, 0xc0010142},
933 { 0xc0011000, 0xc001103b},
936 static void __cpuinit
print_cpu_msr(void)
938 unsigned index_min
, index_max
;
943 for (i
= 0; i
< ARRAY_SIZE(msr_range_array
); i
++) {
944 index_min
= msr_range_array
[i
].min
;
945 index_max
= msr_range_array
[i
].max
;
947 for (index
= index_min
; index
< index_max
; index
++) {
948 if (rdmsrl_amd_safe(index
, &val
))
950 printk(KERN_INFO
" MSR%08x: %016llx\n", index
, val
);
955 static int show_msr __cpuinitdata
;
957 static __init
int setup_show_msr(char *arg
)
961 get_option(&arg
, &num
);
967 __setup("show_msr=", setup_show_msr
);
969 static __init
int setup_noclflush(char *arg
)
971 setup_clear_cpu_cap(X86_FEATURE_CLFLSH
);
974 __setup("noclflush", setup_noclflush
);
976 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
978 const char *vendor
= NULL
;
980 if (c
->x86_vendor
< X86_VENDOR_NUM
) {
981 vendor
= this_cpu
->c_vendor
;
983 if (c
->cpuid_level
>= 0)
984 vendor
= c
->x86_vendor_id
;
987 if (vendor
&& !strstr(c
->x86_model_id
, vendor
))
988 printk(KERN_CONT
"%s ", vendor
);
990 if (c
->x86_model_id
[0])
991 printk(KERN_CONT
"%s", c
->x86_model_id
);
993 printk(KERN_CONT
"%d86", c
->x86
);
995 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
996 printk(KERN_CONT
" stepping %02x\n", c
->x86_mask
);
998 printk(KERN_CONT
"\n");
1001 if (c
->cpu_index
< show_msr
)
1009 static __init
int setup_disablecpuid(char *arg
)
1013 if (get_option(&arg
, &bit
) && bit
< NCAPINTS
*32)
1014 setup_clear_cpu_cap(bit
);
1020 __setup("clearcpuid=", setup_disablecpuid
);
1022 #ifdef CONFIG_X86_64
1023 struct desc_ptr idt_descr
= { NR_VECTORS
* 16 - 1, (unsigned long) idt_table
};
1025 DEFINE_PER_CPU_FIRST(union irq_stack_union
,
1026 irq_stack_union
) __aligned(PAGE_SIZE
);
1029 * The following four percpu variables are hot. Align current_task to
1030 * cacheline size such that all four fall in the same cacheline.
1032 DEFINE_PER_CPU(struct task_struct
*, current_task
) ____cacheline_aligned
=
1034 EXPORT_PER_CPU_SYMBOL(current_task
);
1036 DEFINE_PER_CPU(unsigned long, kernel_stack
) =
1037 (unsigned long)&init_thread_union
- KERNEL_STACK_OFFSET
+ THREAD_SIZE
;
1038 EXPORT_PER_CPU_SYMBOL(kernel_stack
);
1040 DEFINE_PER_CPU(char *, irq_stack_ptr
) =
1041 init_per_cpu_var(irq_stack_union
.irq_stack
) + IRQ_STACK_SIZE
- 64;
1043 DEFINE_PER_CPU(unsigned int, irq_count
) = -1;
1046 * Special IST stacks which the CPU switches to when it calls
1047 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1048 * limit), all of them are 4K, except the debug stack which
1051 static const unsigned int exception_stack_sizes
[N_EXCEPTION_STACKS
] = {
1052 [0 ... N_EXCEPTION_STACKS
- 1] = EXCEPTION_STKSZ
,
1053 [DEBUG_STACK
- 1] = DEBUG_STKSZ
1056 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1057 [(N_EXCEPTION_STACKS
- 1) * EXCEPTION_STKSZ
+ DEBUG_STKSZ
]);
1059 /* May not be marked __init: used by software suspend */
1060 void syscall_init(void)
1063 * LSTAR and STAR live in a bit strange symbiosis.
1064 * They both write to the same internal register. STAR allows to
1065 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1067 wrmsrl(MSR_STAR
, ((u64
)__USER32_CS
)<<48 | ((u64
)__KERNEL_CS
)<<32);
1068 wrmsrl(MSR_LSTAR
, system_call
);
1069 wrmsrl(MSR_CSTAR
, ignore_sysret
);
1071 #ifdef CONFIG_IA32_EMULATION
1072 syscall32_cpu_init();
1075 /* Flags to clear on syscall */
1076 wrmsrl(MSR_SYSCALL_MASK
,
1077 X86_EFLAGS_TF
|X86_EFLAGS_DF
|X86_EFLAGS_IF
|X86_EFLAGS_IOPL
);
1080 unsigned long kernel_eflags
;
1083 * Copies of the original ist values from the tss are only accessed during
1084 * debugging, no special alignment required.
1086 DEFINE_PER_CPU(struct orig_ist
, orig_ist
);
1088 #else /* CONFIG_X86_64 */
1090 DEFINE_PER_CPU(struct task_struct
*, current_task
) = &init_task
;
1091 EXPORT_PER_CPU_SYMBOL(current_task
);
1093 #ifdef CONFIG_CC_STACKPROTECTOR
1094 DEFINE_PER_CPU_ALIGNED(struct stack_canary
, stack_canary
);
1097 /* Make sure %fs and %gs are initialized properly in idle threads */
1098 struct pt_regs
* __cpuinit
idle_regs(struct pt_regs
*regs
)
1100 memset(regs
, 0, sizeof(struct pt_regs
));
1101 regs
->fs
= __KERNEL_PERCPU
;
1102 regs
->gs
= __KERNEL_STACK_CANARY
;
1106 #endif /* CONFIG_X86_64 */
1109 * Clear all 6 debug registers:
1111 static void clear_all_debug_regs(void)
1115 for (i
= 0; i
< 8; i
++) {
1116 /* Ignore db4, db5 */
1117 if ((i
== 4) || (i
== 5))
1126 * Restore debug regs if using kgdbwait and you have a kernel debugger
1127 * connection established.
1129 static void dbg_restore_debug_regs(void)
1131 if (unlikely(kgdb_connected
&& arch_kgdb_ops
.correct_hw_break
))
1132 arch_kgdb_ops
.correct_hw_break();
1134 #else /* ! CONFIG_KGDB */
1135 #define dbg_restore_debug_regs()
1136 #endif /* ! CONFIG_KGDB */
1139 * cpu_init() initializes state that is per-CPU. Some data is already
1140 * initialized (naturally) in the bootstrap process, such as the GDT
1141 * and IDT. We reload them nevertheless, this function acts as a
1142 * 'CPU state barrier', nothing should get across.
1143 * A lot of state is already set up in PDA init for 64 bit
1145 #ifdef CONFIG_X86_64
1147 void __cpuinit
cpu_init(void)
1149 struct orig_ist
*oist
;
1150 struct task_struct
*me
;
1151 struct tss_struct
*t
;
1156 cpu
= stack_smp_processor_id();
1157 t
= &per_cpu(init_tss
, cpu
);
1158 oist
= &per_cpu(orig_ist
, cpu
);
1161 if (cpu
!= 0 && percpu_read(numa_node
) == 0 &&
1162 early_cpu_to_node(cpu
) != NUMA_NO_NODE
)
1163 set_numa_node(early_cpu_to_node(cpu
));
1168 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
))
1169 panic("CPU#%d already initialized!\n", cpu
);
1171 pr_debug("Initializing CPU#%d\n", cpu
);
1173 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1176 * Initialize the per-CPU GDT with the boot GDT,
1177 * and set up the GDT descriptor:
1180 switch_to_new_gdt(cpu
);
1183 load_idt((const struct desc_ptr
*)&idt_descr
);
1185 memset(me
->thread
.tls_array
, 0, GDT_ENTRY_TLS_ENTRIES
* 8);
1188 wrmsrl(MSR_FS_BASE
, 0);
1189 wrmsrl(MSR_KERNEL_GS_BASE
, 0);
1197 * set up and load the per-CPU TSS
1199 if (!oist
->ist
[0]) {
1200 char *estacks
= per_cpu(exception_stacks
, cpu
);
1202 for (v
= 0; v
< N_EXCEPTION_STACKS
; v
++) {
1203 estacks
+= exception_stack_sizes
[v
];
1204 oist
->ist
[v
] = t
->x86_tss
.ist
[v
] =
1205 (unsigned long)estacks
;
1209 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1212 * <= is required because the CPU will access up to
1213 * 8 bits beyond the end of the IO permission bitmap.
1215 for (i
= 0; i
<= IO_BITMAP_LONGS
; i
++)
1216 t
->io_bitmap
[i
] = ~0UL;
1218 atomic_inc(&init_mm
.mm_count
);
1219 me
->active_mm
= &init_mm
;
1221 enter_lazy_tlb(&init_mm
, me
);
1223 load_sp0(t
, ¤t
->thread
);
1224 set_tss_desc(cpu
, t
);
1226 load_LDT(&init_mm
.context
);
1228 clear_all_debug_regs();
1229 dbg_restore_debug_regs();
1234 raw_local_save_flags(kernel_eflags
);
1242 void __cpuinit
cpu_init(void)
1244 int cpu
= smp_processor_id();
1245 struct task_struct
*curr
= current
;
1246 struct tss_struct
*t
= &per_cpu(init_tss
, cpu
);
1247 struct thread_struct
*thread
= &curr
->thread
;
1249 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
)) {
1250 printk(KERN_WARNING
"CPU#%d already initialized!\n", cpu
);
1255 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
1257 if (cpu_has_vme
|| cpu_has_tsc
|| cpu_has_de
)
1258 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1260 load_idt(&idt_descr
);
1261 switch_to_new_gdt(cpu
);
1264 * Set up and load the per-CPU TSS and LDT
1266 atomic_inc(&init_mm
.mm_count
);
1267 curr
->active_mm
= &init_mm
;
1269 enter_lazy_tlb(&init_mm
, curr
);
1271 load_sp0(t
, thread
);
1272 set_tss_desc(cpu
, t
);
1274 load_LDT(&init_mm
.context
);
1276 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1278 #ifdef CONFIG_DOUBLEFAULT
1279 /* Set up doublefault TSS pointer in the GDT */
1280 __set_tss_desc(cpu
, GDT_ENTRY_DOUBLEFAULT_TSS
, &doublefault_tss
);
1283 clear_all_debug_regs();
1284 dbg_restore_debug_regs();