staging:iio:imu:adis16400 remove now unused headers.
[linux-2.6/next.git] / arch / x86 / platform / efi / efi.c
blob3ae4128013e6063c5f63523342c9a8a284d35603
1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
23 * Implemented EFI runtime services and virtual mode calls. --davidm
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/spinlock.h>
35 #include <linux/uaccess.h>
36 #include <linux/time.h>
37 #include <linux/io.h>
38 #include <linux/reboot.h>
39 #include <linux/bcd.h>
41 #include <asm/setup.h>
42 #include <asm/efi.h>
43 #include <asm/time.h>
44 #include <asm/cacheflush.h>
45 #include <asm/tlbflush.h>
46 #include <asm/x86_init.h>
48 #define EFI_DEBUG 1
49 #define PFX "EFI: "
51 int efi_enabled;
52 EXPORT_SYMBOL(efi_enabled);
54 struct efi __read_mostly efi = {
55 .mps = EFI_INVALID_TABLE_ADDR,
56 .acpi = EFI_INVALID_TABLE_ADDR,
57 .acpi20 = EFI_INVALID_TABLE_ADDR,
58 .smbios = EFI_INVALID_TABLE_ADDR,
59 .sal_systab = EFI_INVALID_TABLE_ADDR,
60 .boot_info = EFI_INVALID_TABLE_ADDR,
61 .hcdp = EFI_INVALID_TABLE_ADDR,
62 .uga = EFI_INVALID_TABLE_ADDR,
63 .uv_systab = EFI_INVALID_TABLE_ADDR,
65 EXPORT_SYMBOL(efi);
67 struct efi_memory_map memmap;
69 static struct efi efi_phys __initdata;
70 static efi_system_table_t efi_systab __initdata;
72 static int __init setup_noefi(char *arg)
74 efi_enabled = 0;
75 return 0;
77 early_param("noefi", setup_noefi);
79 int add_efi_memmap;
80 EXPORT_SYMBOL(add_efi_memmap);
82 static int __init setup_add_efi_memmap(char *arg)
84 add_efi_memmap = 1;
85 return 0;
87 early_param("add_efi_memmap", setup_add_efi_memmap);
90 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
92 unsigned long flags;
93 efi_status_t status;
95 spin_lock_irqsave(&rtc_lock, flags);
96 status = efi_call_virt2(get_time, tm, tc);
97 spin_unlock_irqrestore(&rtc_lock, flags);
98 return status;
101 static efi_status_t virt_efi_set_time(efi_time_t *tm)
103 unsigned long flags;
104 efi_status_t status;
106 spin_lock_irqsave(&rtc_lock, flags);
107 status = efi_call_virt1(set_time, tm);
108 spin_unlock_irqrestore(&rtc_lock, flags);
109 return status;
112 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
113 efi_bool_t *pending,
114 efi_time_t *tm)
116 unsigned long flags;
117 efi_status_t status;
119 spin_lock_irqsave(&rtc_lock, flags);
120 status = efi_call_virt3(get_wakeup_time,
121 enabled, pending, tm);
122 spin_unlock_irqrestore(&rtc_lock, flags);
123 return status;
126 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
128 unsigned long flags;
129 efi_status_t status;
131 spin_lock_irqsave(&rtc_lock, flags);
132 status = efi_call_virt2(set_wakeup_time,
133 enabled, tm);
134 spin_unlock_irqrestore(&rtc_lock, flags);
135 return status;
138 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
139 efi_guid_t *vendor,
140 u32 *attr,
141 unsigned long *data_size,
142 void *data)
144 return efi_call_virt5(get_variable,
145 name, vendor, attr,
146 data_size, data);
149 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
150 efi_char16_t *name,
151 efi_guid_t *vendor)
153 return efi_call_virt3(get_next_variable,
154 name_size, name, vendor);
157 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
158 efi_guid_t *vendor,
159 u32 attr,
160 unsigned long data_size,
161 void *data)
163 return efi_call_virt5(set_variable,
164 name, vendor, attr,
165 data_size, data);
168 static efi_status_t virt_efi_query_variable_info(u32 attr,
169 u64 *storage_space,
170 u64 *remaining_space,
171 u64 *max_variable_size)
173 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
174 return EFI_UNSUPPORTED;
176 return efi_call_virt4(query_variable_info, attr, storage_space,
177 remaining_space, max_variable_size);
180 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
182 return efi_call_virt1(get_next_high_mono_count, count);
185 static void virt_efi_reset_system(int reset_type,
186 efi_status_t status,
187 unsigned long data_size,
188 efi_char16_t *data)
190 efi_call_virt4(reset_system, reset_type, status,
191 data_size, data);
194 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
195 unsigned long count,
196 unsigned long sg_list)
198 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
199 return EFI_UNSUPPORTED;
201 return efi_call_virt3(update_capsule, capsules, count, sg_list);
204 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
205 unsigned long count,
206 u64 *max_size,
207 int *reset_type)
209 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
210 return EFI_UNSUPPORTED;
212 return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
213 reset_type);
216 static efi_status_t __init phys_efi_set_virtual_address_map(
217 unsigned long memory_map_size,
218 unsigned long descriptor_size,
219 u32 descriptor_version,
220 efi_memory_desc_t *virtual_map)
222 efi_status_t status;
224 efi_call_phys_prelog();
225 status = efi_call_phys4(efi_phys.set_virtual_address_map,
226 memory_map_size, descriptor_size,
227 descriptor_version, virtual_map);
228 efi_call_phys_epilog();
229 return status;
232 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
233 efi_time_cap_t *tc)
235 unsigned long flags;
236 efi_status_t status;
238 spin_lock_irqsave(&rtc_lock, flags);
239 efi_call_phys_prelog();
240 status = efi_call_phys2(efi_phys.get_time, tm, tc);
241 efi_call_phys_epilog();
242 spin_unlock_irqrestore(&rtc_lock, flags);
243 return status;
246 int efi_set_rtc_mmss(unsigned long nowtime)
248 int real_seconds, real_minutes;
249 efi_status_t status;
250 efi_time_t eft;
251 efi_time_cap_t cap;
253 status = efi.get_time(&eft, &cap);
254 if (status != EFI_SUCCESS) {
255 printk(KERN_ERR "Oops: efitime: can't read time!\n");
256 return -1;
259 real_seconds = nowtime % 60;
260 real_minutes = nowtime / 60;
261 if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
262 real_minutes += 30;
263 real_minutes %= 60;
264 eft.minute = real_minutes;
265 eft.second = real_seconds;
267 status = efi.set_time(&eft);
268 if (status != EFI_SUCCESS) {
269 printk(KERN_ERR "Oops: efitime: can't write time!\n");
270 return -1;
272 return 0;
275 unsigned long efi_get_time(void)
277 efi_status_t status;
278 efi_time_t eft;
279 efi_time_cap_t cap;
281 status = efi.get_time(&eft, &cap);
282 if (status != EFI_SUCCESS)
283 printk(KERN_ERR "Oops: efitime: can't read time!\n");
285 return mktime(eft.year, eft.month, eft.day, eft.hour,
286 eft.minute, eft.second);
290 * Tell the kernel about the EFI memory map. This might include
291 * more than the max 128 entries that can fit in the e820 legacy
292 * (zeropage) memory map.
295 static void __init do_add_efi_memmap(void)
297 void *p;
299 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
300 efi_memory_desc_t *md = p;
301 unsigned long long start = md->phys_addr;
302 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
303 int e820_type;
305 switch (md->type) {
306 case EFI_LOADER_CODE:
307 case EFI_LOADER_DATA:
308 case EFI_BOOT_SERVICES_CODE:
309 case EFI_BOOT_SERVICES_DATA:
310 case EFI_CONVENTIONAL_MEMORY:
311 if (md->attribute & EFI_MEMORY_WB)
312 e820_type = E820_RAM;
313 else
314 e820_type = E820_RESERVED;
315 break;
316 case EFI_ACPI_RECLAIM_MEMORY:
317 e820_type = E820_ACPI;
318 break;
319 case EFI_ACPI_MEMORY_NVS:
320 e820_type = E820_NVS;
321 break;
322 case EFI_UNUSABLE_MEMORY:
323 e820_type = E820_UNUSABLE;
324 break;
325 default:
327 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
328 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
329 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
331 e820_type = E820_RESERVED;
332 break;
334 e820_add_region(start, size, e820_type);
336 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
339 void __init efi_memblock_x86_reserve_range(void)
341 unsigned long pmap;
343 #ifdef CONFIG_X86_32
344 pmap = boot_params.efi_info.efi_memmap;
345 #else
346 pmap = (boot_params.efi_info.efi_memmap |
347 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
348 #endif
349 memmap.phys_map = (void *)pmap;
350 memmap.nr_map = boot_params.efi_info.efi_memmap_size /
351 boot_params.efi_info.efi_memdesc_size;
352 memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
353 memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
354 memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
355 "EFI memmap");
358 #if EFI_DEBUG
359 static void __init print_efi_memmap(void)
361 efi_memory_desc_t *md;
362 void *p;
363 int i;
365 for (p = memmap.map, i = 0;
366 p < memmap.map_end;
367 p += memmap.desc_size, i++) {
368 md = p;
369 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
370 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
371 i, md->type, md->attribute, md->phys_addr,
372 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
373 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
376 #endif /* EFI_DEBUG */
378 void __init efi_reserve_boot_services(void)
380 void *p;
382 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
383 efi_memory_desc_t *md = p;
384 u64 start = md->phys_addr;
385 u64 size = md->num_pages << EFI_PAGE_SHIFT;
387 if (md->type != EFI_BOOT_SERVICES_CODE &&
388 md->type != EFI_BOOT_SERVICES_DATA)
389 continue;
390 /* Only reserve where possible:
391 * - Not within any already allocated areas
392 * - Not over any memory area (really needed, if above?)
393 * - Not within any part of the kernel
394 * - Not the bios reserved area
396 if ((start+size >= virt_to_phys(_text)
397 && start <= virt_to_phys(_end)) ||
398 !e820_all_mapped(start, start+size, E820_RAM) ||
399 memblock_x86_check_reserved_size(&start, &size,
400 1<<EFI_PAGE_SHIFT)) {
401 /* Could not reserve, skip it */
402 md->num_pages = 0;
403 memblock_dbg(PFX "Could not reserve boot range "
404 "[0x%010llx-0x%010llx]\n",
405 start, start+size-1);
406 } else
407 memblock_x86_reserve_range(start, start+size,
408 "EFI Boot");
412 static void __init efi_free_boot_services(void)
414 void *p;
416 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
417 efi_memory_desc_t *md = p;
418 unsigned long long start = md->phys_addr;
419 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
421 if (md->type != EFI_BOOT_SERVICES_CODE &&
422 md->type != EFI_BOOT_SERVICES_DATA)
423 continue;
425 /* Could not reserve boot area */
426 if (!size)
427 continue;
429 free_bootmem_late(start, size);
433 void __init efi_init(void)
435 efi_config_table_t *config_tables;
436 efi_runtime_services_t *runtime;
437 efi_char16_t *c16;
438 char vendor[100] = "unknown";
439 int i = 0;
440 void *tmp;
442 #ifdef CONFIG_X86_32
443 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
444 #else
445 efi_phys.systab = (efi_system_table_t *)
446 (boot_params.efi_info.efi_systab |
447 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
448 #endif
450 efi.systab = early_ioremap((unsigned long)efi_phys.systab,
451 sizeof(efi_system_table_t));
452 if (efi.systab == NULL)
453 printk(KERN_ERR "Couldn't map the EFI system table!\n");
454 memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
455 early_iounmap(efi.systab, sizeof(efi_system_table_t));
456 efi.systab = &efi_systab;
459 * Verify the EFI Table
461 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
462 printk(KERN_ERR "EFI system table signature incorrect!\n");
463 if ((efi.systab->hdr.revision >> 16) == 0)
464 printk(KERN_ERR "Warning: EFI system table version "
465 "%d.%02d, expected 1.00 or greater!\n",
466 efi.systab->hdr.revision >> 16,
467 efi.systab->hdr.revision & 0xffff);
470 * Show what we know for posterity
472 c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
473 if (c16) {
474 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
475 vendor[i] = *c16++;
476 vendor[i] = '\0';
477 } else
478 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
479 early_iounmap(tmp, 2);
481 printk(KERN_INFO "EFI v%u.%.02u by %s\n",
482 efi.systab->hdr.revision >> 16,
483 efi.systab->hdr.revision & 0xffff, vendor);
486 * Let's see what config tables the firmware passed to us.
488 config_tables = early_ioremap(
489 efi.systab->tables,
490 efi.systab->nr_tables * sizeof(efi_config_table_t));
491 if (config_tables == NULL)
492 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
494 printk(KERN_INFO);
495 for (i = 0; i < efi.systab->nr_tables; i++) {
496 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
497 efi.mps = config_tables[i].table;
498 printk(" MPS=0x%lx ", config_tables[i].table);
499 } else if (!efi_guidcmp(config_tables[i].guid,
500 ACPI_20_TABLE_GUID)) {
501 efi.acpi20 = config_tables[i].table;
502 printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
503 } else if (!efi_guidcmp(config_tables[i].guid,
504 ACPI_TABLE_GUID)) {
505 efi.acpi = config_tables[i].table;
506 printk(" ACPI=0x%lx ", config_tables[i].table);
507 } else if (!efi_guidcmp(config_tables[i].guid,
508 SMBIOS_TABLE_GUID)) {
509 efi.smbios = config_tables[i].table;
510 printk(" SMBIOS=0x%lx ", config_tables[i].table);
511 #ifdef CONFIG_X86_UV
512 } else if (!efi_guidcmp(config_tables[i].guid,
513 UV_SYSTEM_TABLE_GUID)) {
514 efi.uv_systab = config_tables[i].table;
515 printk(" UVsystab=0x%lx ", config_tables[i].table);
516 #endif
517 } else if (!efi_guidcmp(config_tables[i].guid,
518 HCDP_TABLE_GUID)) {
519 efi.hcdp = config_tables[i].table;
520 printk(" HCDP=0x%lx ", config_tables[i].table);
521 } else if (!efi_guidcmp(config_tables[i].guid,
522 UGA_IO_PROTOCOL_GUID)) {
523 efi.uga = config_tables[i].table;
524 printk(" UGA=0x%lx ", config_tables[i].table);
527 printk("\n");
528 early_iounmap(config_tables,
529 efi.systab->nr_tables * sizeof(efi_config_table_t));
532 * Check out the runtime services table. We need to map
533 * the runtime services table so that we can grab the physical
534 * address of several of the EFI runtime functions, needed to
535 * set the firmware into virtual mode.
537 runtime = early_ioremap((unsigned long)efi.systab->runtime,
538 sizeof(efi_runtime_services_t));
539 if (runtime != NULL) {
541 * We will only need *early* access to the following
542 * two EFI runtime services before set_virtual_address_map
543 * is invoked.
545 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
546 efi_phys.set_virtual_address_map =
547 (efi_set_virtual_address_map_t *)
548 runtime->set_virtual_address_map;
550 * Make efi_get_time can be called before entering
551 * virtual mode.
553 efi.get_time = phys_efi_get_time;
554 } else
555 printk(KERN_ERR "Could not map the EFI runtime service "
556 "table!\n");
557 early_iounmap(runtime, sizeof(efi_runtime_services_t));
559 /* Map the EFI memory map */
560 memmap.map = early_ioremap((unsigned long)memmap.phys_map,
561 memmap.nr_map * memmap.desc_size);
562 if (memmap.map == NULL)
563 printk(KERN_ERR "Could not map the EFI memory map!\n");
564 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
566 if (memmap.desc_size != sizeof(efi_memory_desc_t))
567 printk(KERN_WARNING
568 "Kernel-defined memdesc doesn't match the one from EFI!\n");
570 if (add_efi_memmap)
571 do_add_efi_memmap();
573 #ifdef CONFIG_X86_32
574 x86_platform.get_wallclock = efi_get_time;
575 x86_platform.set_wallclock = efi_set_rtc_mmss;
576 #endif
578 #if EFI_DEBUG
579 print_efi_memmap();
580 #endif
583 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
585 u64 addr, npages;
587 addr = md->virt_addr;
588 npages = md->num_pages;
590 memrange_efi_to_native(&addr, &npages);
592 if (executable)
593 set_memory_x(addr, npages);
594 else
595 set_memory_nx(addr, npages);
598 static void __init runtime_code_page_mkexec(void)
600 efi_memory_desc_t *md;
601 void *p;
603 /* Make EFI runtime service code area executable */
604 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
605 md = p;
607 if (md->type != EFI_RUNTIME_SERVICES_CODE)
608 continue;
610 efi_set_executable(md, true);
615 * This function will switch the EFI runtime services to virtual mode.
616 * Essentially, look through the EFI memmap and map every region that
617 * has the runtime attribute bit set in its memory descriptor and update
618 * that memory descriptor with the virtual address obtained from ioremap().
619 * This enables the runtime services to be called without having to
620 * thunk back into physical mode for every invocation.
622 void __init efi_enter_virtual_mode(void)
624 efi_memory_desc_t *md, *prev_md = NULL;
625 efi_status_t status;
626 unsigned long size;
627 u64 end, systab, addr, npages, end_pfn;
628 void *p, *va, *new_memmap = NULL;
629 int count = 0;
631 efi.systab = NULL;
633 /* Merge contiguous regions of the same type and attribute */
634 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
635 u64 prev_size;
636 md = p;
638 if (!prev_md) {
639 prev_md = md;
640 continue;
643 if (prev_md->type != md->type ||
644 prev_md->attribute != md->attribute) {
645 prev_md = md;
646 continue;
649 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
651 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
652 prev_md->num_pages += md->num_pages;
653 md->type = EFI_RESERVED_TYPE;
654 md->attribute = 0;
655 continue;
657 prev_md = md;
660 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
661 md = p;
662 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
663 md->type != EFI_BOOT_SERVICES_CODE &&
664 md->type != EFI_BOOT_SERVICES_DATA)
665 continue;
667 size = md->num_pages << EFI_PAGE_SHIFT;
668 end = md->phys_addr + size;
670 end_pfn = PFN_UP(end);
671 if (end_pfn <= max_low_pfn_mapped
672 || (end_pfn > (1UL << (32 - PAGE_SHIFT))
673 && end_pfn <= max_pfn_mapped))
674 va = __va(md->phys_addr);
675 else
676 va = efi_ioremap(md->phys_addr, size, md->type);
678 md->virt_addr = (u64) (unsigned long) va;
680 if (!va) {
681 printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
682 (unsigned long long)md->phys_addr);
683 continue;
686 if (!(md->attribute & EFI_MEMORY_WB)) {
687 addr = md->virt_addr;
688 npages = md->num_pages;
689 memrange_efi_to_native(&addr, &npages);
690 set_memory_uc(addr, npages);
693 systab = (u64) (unsigned long) efi_phys.systab;
694 if (md->phys_addr <= systab && systab < end) {
695 systab += md->virt_addr - md->phys_addr;
696 efi.systab = (efi_system_table_t *) (unsigned long) systab;
698 new_memmap = krealloc(new_memmap,
699 (count + 1) * memmap.desc_size,
700 GFP_KERNEL);
701 memcpy(new_memmap + (count * memmap.desc_size), md,
702 memmap.desc_size);
703 count++;
706 BUG_ON(!efi.systab);
708 status = phys_efi_set_virtual_address_map(
709 memmap.desc_size * count,
710 memmap.desc_size,
711 memmap.desc_version,
712 (efi_memory_desc_t *)__pa(new_memmap));
714 if (status != EFI_SUCCESS) {
715 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
716 "(status=%lx)!\n", status);
717 panic("EFI call to SetVirtualAddressMap() failed!");
721 * Thankfully, it does seem that no runtime services other than
722 * SetVirtualAddressMap() will touch boot services code, so we can
723 * get rid of it all at this point
725 efi_free_boot_services();
728 * Now that EFI is in virtual mode, update the function
729 * pointers in the runtime service table to the new virtual addresses.
731 * Call EFI services through wrapper functions.
733 efi.get_time = virt_efi_get_time;
734 efi.set_time = virt_efi_set_time;
735 efi.get_wakeup_time = virt_efi_get_wakeup_time;
736 efi.set_wakeup_time = virt_efi_set_wakeup_time;
737 efi.get_variable = virt_efi_get_variable;
738 efi.get_next_variable = virt_efi_get_next_variable;
739 efi.set_variable = virt_efi_set_variable;
740 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
741 efi.reset_system = virt_efi_reset_system;
742 efi.set_virtual_address_map = NULL;
743 efi.query_variable_info = virt_efi_query_variable_info;
744 efi.update_capsule = virt_efi_update_capsule;
745 efi.query_capsule_caps = virt_efi_query_capsule_caps;
746 if (__supported_pte_mask & _PAGE_NX)
747 runtime_code_page_mkexec();
748 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
749 memmap.map = NULL;
750 kfree(new_memmap);
754 * Convenience functions to obtain memory types and attributes
756 u32 efi_mem_type(unsigned long phys_addr)
758 efi_memory_desc_t *md;
759 void *p;
761 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
762 md = p;
763 if ((md->phys_addr <= phys_addr) &&
764 (phys_addr < (md->phys_addr +
765 (md->num_pages << EFI_PAGE_SHIFT))))
766 return md->type;
768 return 0;
771 u64 efi_mem_attributes(unsigned long phys_addr)
773 efi_memory_desc_t *md;
774 void *p;
776 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
777 md = p;
778 if ((md->phys_addr <= phys_addr) &&
779 (phys_addr < (md->phys_addr +
780 (md->num_pages << EFI_PAGE_SHIFT))))
781 return md->attribute;
783 return 0;