staging:iio:imu:adis16400 remove now unused headers.
[linux-2.6/next.git] / fs / btrfs / ctree.c
blob011cab3aca8d9ffeba2690f642badec7e36471c9
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_key *ins_key,
31 struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 struct btrfs_root *root, struct extent_buffer *dst,
34 struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 struct btrfs_root *root,
37 struct extent_buffer *dst_buf,
38 struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 struct btrfs_path *path, int level, int slot);
42 struct btrfs_path *btrfs_alloc_path(void)
44 struct btrfs_path *path;
45 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46 return path;
50 * set all locked nodes in the path to blocking locks. This should
51 * be done before scheduling
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 int i;
56 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57 if (!p->nodes[i] || !p->locks[i])
58 continue;
59 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60 if (p->locks[i] == BTRFS_READ_LOCK)
61 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62 else if (p->locks[i] == BTRFS_WRITE_LOCK)
63 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 * reset all the locked nodes in the patch to spinning locks.
70 * held is used to keep lockdep happy, when lockdep is enabled
71 * we set held to a blocking lock before we go around and
72 * retake all the spinlocks in the path. You can safely use NULL
73 * for held
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76 struct extent_buffer *held, int held_rw)
78 int i;
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 /* lockdep really cares that we take all of these spinlocks
82 * in the right order. If any of the locks in the path are not
83 * currently blocking, it is going to complain. So, make really
84 * really sure by forcing the path to blocking before we clear
85 * the path blocking.
87 if (held) {
88 btrfs_set_lock_blocking_rw(held, held_rw);
89 if (held_rw == BTRFS_WRITE_LOCK)
90 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91 else if (held_rw == BTRFS_READ_LOCK)
92 held_rw = BTRFS_READ_LOCK_BLOCKING;
94 btrfs_set_path_blocking(p);
95 #endif
97 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98 if (p->nodes[i] && p->locks[i]) {
99 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101 p->locks[i] = BTRFS_WRITE_LOCK;
102 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103 p->locks[i] = BTRFS_READ_LOCK;
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 if (held)
109 btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
116 if (!p)
117 return;
118 btrfs_release_path(p);
119 kmem_cache_free(btrfs_path_cachep, p);
123 * path release drops references on the extent buffers in the path
124 * and it drops any locks held by this path
126 * It is safe to call this on paths that no locks or extent buffers held.
128 noinline void btrfs_release_path(struct btrfs_path *p)
130 int i;
132 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133 p->slots[i] = 0;
134 if (!p->nodes[i])
135 continue;
136 if (p->locks[i]) {
137 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138 p->locks[i] = 0;
140 free_extent_buffer(p->nodes[i]);
141 p->nodes[i] = NULL;
146 * safely gets a reference on the root node of a tree. A lock
147 * is not taken, so a concurrent writer may put a different node
148 * at the root of the tree. See btrfs_lock_root_node for the
149 * looping required.
151 * The extent buffer returned by this has a reference taken, so
152 * it won't disappear. It may stop being the root of the tree
153 * at any time because there are no locks held.
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
157 struct extent_buffer *eb;
159 rcu_read_lock();
160 eb = rcu_dereference(root->node);
161 extent_buffer_get(eb);
162 rcu_read_unlock();
163 return eb;
166 /* loop around taking references on and locking the root node of the
167 * tree until you end up with a lock on the root. A locked buffer
168 * is returned, with a reference held.
170 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
172 struct extent_buffer *eb;
174 while (1) {
175 eb = btrfs_root_node(root);
176 btrfs_tree_lock(eb);
177 if (eb == root->node)
178 break;
179 btrfs_tree_unlock(eb);
180 free_extent_buffer(eb);
182 return eb;
185 /* loop around taking references on and locking the root node of the
186 * tree until you end up with a lock on the root. A locked buffer
187 * is returned, with a reference held.
189 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
191 struct extent_buffer *eb;
193 while (1) {
194 eb = btrfs_root_node(root);
195 btrfs_tree_read_lock(eb);
196 if (eb == root->node)
197 break;
198 btrfs_tree_read_unlock(eb);
199 free_extent_buffer(eb);
201 return eb;
204 /* cowonly root (everything not a reference counted cow subvolume), just get
205 * put onto a simple dirty list. transaction.c walks this to make sure they
206 * get properly updated on disk.
208 static void add_root_to_dirty_list(struct btrfs_root *root)
210 if (root->track_dirty && list_empty(&root->dirty_list)) {
211 list_add(&root->dirty_list,
212 &root->fs_info->dirty_cowonly_roots);
217 * used by snapshot creation to make a copy of a root for a tree with
218 * a given objectid. The buffer with the new root node is returned in
219 * cow_ret, and this func returns zero on success or a negative error code.
221 int btrfs_copy_root(struct btrfs_trans_handle *trans,
222 struct btrfs_root *root,
223 struct extent_buffer *buf,
224 struct extent_buffer **cow_ret, u64 new_root_objectid)
226 struct extent_buffer *cow;
227 int ret = 0;
228 int level;
229 struct btrfs_disk_key disk_key;
231 WARN_ON(root->ref_cows && trans->transid !=
232 root->fs_info->running_transaction->transid);
233 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
235 level = btrfs_header_level(buf);
236 if (level == 0)
237 btrfs_item_key(buf, &disk_key, 0);
238 else
239 btrfs_node_key(buf, &disk_key, 0);
241 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
242 new_root_objectid, &disk_key, level,
243 buf->start, 0);
244 if (IS_ERR(cow))
245 return PTR_ERR(cow);
247 copy_extent_buffer(cow, buf, 0, 0, cow->len);
248 btrfs_set_header_bytenr(cow, cow->start);
249 btrfs_set_header_generation(cow, trans->transid);
250 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
251 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
252 BTRFS_HEADER_FLAG_RELOC);
253 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
254 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
255 else
256 btrfs_set_header_owner(cow, new_root_objectid);
258 write_extent_buffer(cow, root->fs_info->fsid,
259 (unsigned long)btrfs_header_fsid(cow),
260 BTRFS_FSID_SIZE);
262 WARN_ON(btrfs_header_generation(buf) > trans->transid);
263 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
264 ret = btrfs_inc_ref(trans, root, cow, 1);
265 else
266 ret = btrfs_inc_ref(trans, root, cow, 0);
268 if (ret)
269 return ret;
271 btrfs_mark_buffer_dirty(cow);
272 *cow_ret = cow;
273 return 0;
277 * check if the tree block can be shared by multiple trees
279 int btrfs_block_can_be_shared(struct btrfs_root *root,
280 struct extent_buffer *buf)
283 * Tree blocks not in refernece counted trees and tree roots
284 * are never shared. If a block was allocated after the last
285 * snapshot and the block was not allocated by tree relocation,
286 * we know the block is not shared.
288 if (root->ref_cows &&
289 buf != root->node && buf != root->commit_root &&
290 (btrfs_header_generation(buf) <=
291 btrfs_root_last_snapshot(&root->root_item) ||
292 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
293 return 1;
294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
295 if (root->ref_cows &&
296 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
297 return 1;
298 #endif
299 return 0;
302 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
303 struct btrfs_root *root,
304 struct extent_buffer *buf,
305 struct extent_buffer *cow,
306 int *last_ref)
308 u64 refs;
309 u64 owner;
310 u64 flags;
311 u64 new_flags = 0;
312 int ret;
315 * Backrefs update rules:
317 * Always use full backrefs for extent pointers in tree block
318 * allocated by tree relocation.
320 * If a shared tree block is no longer referenced by its owner
321 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
322 * use full backrefs for extent pointers in tree block.
324 * If a tree block is been relocating
325 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
326 * use full backrefs for extent pointers in tree block.
327 * The reason for this is some operations (such as drop tree)
328 * are only allowed for blocks use full backrefs.
331 if (btrfs_block_can_be_shared(root, buf)) {
332 ret = btrfs_lookup_extent_info(trans, root, buf->start,
333 buf->len, &refs, &flags);
334 BUG_ON(ret);
335 BUG_ON(refs == 0);
336 } else {
337 refs = 1;
338 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
339 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
340 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
341 else
342 flags = 0;
345 owner = btrfs_header_owner(buf);
346 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
347 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
349 if (refs > 1) {
350 if ((owner == root->root_key.objectid ||
351 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
352 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
353 ret = btrfs_inc_ref(trans, root, buf, 1);
354 BUG_ON(ret);
356 if (root->root_key.objectid ==
357 BTRFS_TREE_RELOC_OBJECTID) {
358 ret = btrfs_dec_ref(trans, root, buf, 0);
359 BUG_ON(ret);
360 ret = btrfs_inc_ref(trans, root, cow, 1);
361 BUG_ON(ret);
363 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
364 } else {
366 if (root->root_key.objectid ==
367 BTRFS_TREE_RELOC_OBJECTID)
368 ret = btrfs_inc_ref(trans, root, cow, 1);
369 else
370 ret = btrfs_inc_ref(trans, root, cow, 0);
371 BUG_ON(ret);
373 if (new_flags != 0) {
374 ret = btrfs_set_disk_extent_flags(trans, root,
375 buf->start,
376 buf->len,
377 new_flags, 0);
378 BUG_ON(ret);
380 } else {
381 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
382 if (root->root_key.objectid ==
383 BTRFS_TREE_RELOC_OBJECTID)
384 ret = btrfs_inc_ref(trans, root, cow, 1);
385 else
386 ret = btrfs_inc_ref(trans, root, cow, 0);
387 BUG_ON(ret);
388 ret = btrfs_dec_ref(trans, root, buf, 1);
389 BUG_ON(ret);
391 clean_tree_block(trans, root, buf);
392 *last_ref = 1;
394 return 0;
398 * does the dirty work in cow of a single block. The parent block (if
399 * supplied) is updated to point to the new cow copy. The new buffer is marked
400 * dirty and returned locked. If you modify the block it needs to be marked
401 * dirty again.
403 * search_start -- an allocation hint for the new block
405 * empty_size -- a hint that you plan on doing more cow. This is the size in
406 * bytes the allocator should try to find free next to the block it returns.
407 * This is just a hint and may be ignored by the allocator.
409 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
410 struct btrfs_root *root,
411 struct extent_buffer *buf,
412 struct extent_buffer *parent, int parent_slot,
413 struct extent_buffer **cow_ret,
414 u64 search_start, u64 empty_size)
416 struct btrfs_disk_key disk_key;
417 struct extent_buffer *cow;
418 int level;
419 int last_ref = 0;
420 int unlock_orig = 0;
421 u64 parent_start;
423 if (*cow_ret == buf)
424 unlock_orig = 1;
426 btrfs_assert_tree_locked(buf);
428 WARN_ON(root->ref_cows && trans->transid !=
429 root->fs_info->running_transaction->transid);
430 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
432 level = btrfs_header_level(buf);
434 if (level == 0)
435 btrfs_item_key(buf, &disk_key, 0);
436 else
437 btrfs_node_key(buf, &disk_key, 0);
439 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
440 if (parent)
441 parent_start = parent->start;
442 else
443 parent_start = 0;
444 } else
445 parent_start = 0;
447 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
448 root->root_key.objectid, &disk_key,
449 level, search_start, empty_size);
450 if (IS_ERR(cow))
451 return PTR_ERR(cow);
453 /* cow is set to blocking by btrfs_init_new_buffer */
455 copy_extent_buffer(cow, buf, 0, 0, cow->len);
456 btrfs_set_header_bytenr(cow, cow->start);
457 btrfs_set_header_generation(cow, trans->transid);
458 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
459 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
460 BTRFS_HEADER_FLAG_RELOC);
461 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
462 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
463 else
464 btrfs_set_header_owner(cow, root->root_key.objectid);
466 write_extent_buffer(cow, root->fs_info->fsid,
467 (unsigned long)btrfs_header_fsid(cow),
468 BTRFS_FSID_SIZE);
470 update_ref_for_cow(trans, root, buf, cow, &last_ref);
472 if (root->ref_cows)
473 btrfs_reloc_cow_block(trans, root, buf, cow);
475 if (buf == root->node) {
476 WARN_ON(parent && parent != buf);
477 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
478 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
479 parent_start = buf->start;
480 else
481 parent_start = 0;
483 extent_buffer_get(cow);
484 rcu_assign_pointer(root->node, cow);
486 btrfs_free_tree_block(trans, root, buf, parent_start,
487 last_ref);
488 free_extent_buffer(buf);
489 add_root_to_dirty_list(root);
490 } else {
491 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
492 parent_start = parent->start;
493 else
494 parent_start = 0;
496 WARN_ON(trans->transid != btrfs_header_generation(parent));
497 btrfs_set_node_blockptr(parent, parent_slot,
498 cow->start);
499 btrfs_set_node_ptr_generation(parent, parent_slot,
500 trans->transid);
501 btrfs_mark_buffer_dirty(parent);
502 btrfs_free_tree_block(trans, root, buf, parent_start,
503 last_ref);
505 if (unlock_orig)
506 btrfs_tree_unlock(buf);
507 free_extent_buffer(buf);
508 btrfs_mark_buffer_dirty(cow);
509 *cow_ret = cow;
510 return 0;
513 static inline int should_cow_block(struct btrfs_trans_handle *trans,
514 struct btrfs_root *root,
515 struct extent_buffer *buf)
517 if (btrfs_header_generation(buf) == trans->transid &&
518 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
519 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
520 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
521 return 0;
522 return 1;
526 * cows a single block, see __btrfs_cow_block for the real work.
527 * This version of it has extra checks so that a block isn't cow'd more than
528 * once per transaction, as long as it hasn't been written yet
530 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
531 struct btrfs_root *root, struct extent_buffer *buf,
532 struct extent_buffer *parent, int parent_slot,
533 struct extent_buffer **cow_ret)
535 u64 search_start;
536 int ret;
538 if (trans->transaction != root->fs_info->running_transaction) {
539 printk(KERN_CRIT "trans %llu running %llu\n",
540 (unsigned long long)trans->transid,
541 (unsigned long long)
542 root->fs_info->running_transaction->transid);
543 WARN_ON(1);
545 if (trans->transid != root->fs_info->generation) {
546 printk(KERN_CRIT "trans %llu running %llu\n",
547 (unsigned long long)trans->transid,
548 (unsigned long long)root->fs_info->generation);
549 WARN_ON(1);
552 if (!should_cow_block(trans, root, buf)) {
553 *cow_ret = buf;
554 return 0;
557 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
559 if (parent)
560 btrfs_set_lock_blocking(parent);
561 btrfs_set_lock_blocking(buf);
563 ret = __btrfs_cow_block(trans, root, buf, parent,
564 parent_slot, cow_ret, search_start, 0);
566 trace_btrfs_cow_block(root, buf, *cow_ret);
568 return ret;
572 * helper function for defrag to decide if two blocks pointed to by a
573 * node are actually close by
575 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
577 if (blocknr < other && other - (blocknr + blocksize) < 32768)
578 return 1;
579 if (blocknr > other && blocknr - (other + blocksize) < 32768)
580 return 1;
581 return 0;
585 * compare two keys in a memcmp fashion
587 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
589 struct btrfs_key k1;
591 btrfs_disk_key_to_cpu(&k1, disk);
593 return btrfs_comp_cpu_keys(&k1, k2);
597 * same as comp_keys only with two btrfs_key's
599 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
601 if (k1->objectid > k2->objectid)
602 return 1;
603 if (k1->objectid < k2->objectid)
604 return -1;
605 if (k1->type > k2->type)
606 return 1;
607 if (k1->type < k2->type)
608 return -1;
609 if (k1->offset > k2->offset)
610 return 1;
611 if (k1->offset < k2->offset)
612 return -1;
613 return 0;
617 * this is used by the defrag code to go through all the
618 * leaves pointed to by a node and reallocate them so that
619 * disk order is close to key order
621 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root, struct extent_buffer *parent,
623 int start_slot, int cache_only, u64 *last_ret,
624 struct btrfs_key *progress)
626 struct extent_buffer *cur;
627 u64 blocknr;
628 u64 gen;
629 u64 search_start = *last_ret;
630 u64 last_block = 0;
631 u64 other;
632 u32 parent_nritems;
633 int end_slot;
634 int i;
635 int err = 0;
636 int parent_level;
637 int uptodate;
638 u32 blocksize;
639 int progress_passed = 0;
640 struct btrfs_disk_key disk_key;
642 parent_level = btrfs_header_level(parent);
643 if (cache_only && parent_level != 1)
644 return 0;
646 if (trans->transaction != root->fs_info->running_transaction)
647 WARN_ON(1);
648 if (trans->transid != root->fs_info->generation)
649 WARN_ON(1);
651 parent_nritems = btrfs_header_nritems(parent);
652 blocksize = btrfs_level_size(root, parent_level - 1);
653 end_slot = parent_nritems;
655 if (parent_nritems == 1)
656 return 0;
658 btrfs_set_lock_blocking(parent);
660 for (i = start_slot; i < end_slot; i++) {
661 int close = 1;
663 btrfs_node_key(parent, &disk_key, i);
664 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
665 continue;
667 progress_passed = 1;
668 blocknr = btrfs_node_blockptr(parent, i);
669 gen = btrfs_node_ptr_generation(parent, i);
670 if (last_block == 0)
671 last_block = blocknr;
673 if (i > 0) {
674 other = btrfs_node_blockptr(parent, i - 1);
675 close = close_blocks(blocknr, other, blocksize);
677 if (!close && i < end_slot - 2) {
678 other = btrfs_node_blockptr(parent, i + 1);
679 close = close_blocks(blocknr, other, blocksize);
681 if (close) {
682 last_block = blocknr;
683 continue;
686 cur = btrfs_find_tree_block(root, blocknr, blocksize);
687 if (cur)
688 uptodate = btrfs_buffer_uptodate(cur, gen);
689 else
690 uptodate = 0;
691 if (!cur || !uptodate) {
692 if (cache_only) {
693 free_extent_buffer(cur);
694 continue;
696 if (!cur) {
697 cur = read_tree_block(root, blocknr,
698 blocksize, gen);
699 if (!cur)
700 return -EIO;
701 } else if (!uptodate) {
702 btrfs_read_buffer(cur, gen);
705 if (search_start == 0)
706 search_start = last_block;
708 btrfs_tree_lock(cur);
709 btrfs_set_lock_blocking(cur);
710 err = __btrfs_cow_block(trans, root, cur, parent, i,
711 &cur, search_start,
712 min(16 * blocksize,
713 (end_slot - i) * blocksize));
714 if (err) {
715 btrfs_tree_unlock(cur);
716 free_extent_buffer(cur);
717 break;
719 search_start = cur->start;
720 last_block = cur->start;
721 *last_ret = search_start;
722 btrfs_tree_unlock(cur);
723 free_extent_buffer(cur);
725 return err;
729 * The leaf data grows from end-to-front in the node.
730 * this returns the address of the start of the last item,
731 * which is the stop of the leaf data stack
733 static inline unsigned int leaf_data_end(struct btrfs_root *root,
734 struct extent_buffer *leaf)
736 u32 nr = btrfs_header_nritems(leaf);
737 if (nr == 0)
738 return BTRFS_LEAF_DATA_SIZE(root);
739 return btrfs_item_offset_nr(leaf, nr - 1);
744 * search for key in the extent_buffer. The items start at offset p,
745 * and they are item_size apart. There are 'max' items in p.
747 * the slot in the array is returned via slot, and it points to
748 * the place where you would insert key if it is not found in
749 * the array.
751 * slot may point to max if the key is bigger than all of the keys
753 static noinline int generic_bin_search(struct extent_buffer *eb,
754 unsigned long p,
755 int item_size, struct btrfs_key *key,
756 int max, int *slot)
758 int low = 0;
759 int high = max;
760 int mid;
761 int ret;
762 struct btrfs_disk_key *tmp = NULL;
763 struct btrfs_disk_key unaligned;
764 unsigned long offset;
765 char *kaddr = NULL;
766 unsigned long map_start = 0;
767 unsigned long map_len = 0;
768 int err;
770 while (low < high) {
771 mid = (low + high) / 2;
772 offset = p + mid * item_size;
774 if (!kaddr || offset < map_start ||
775 (offset + sizeof(struct btrfs_disk_key)) >
776 map_start + map_len) {
778 err = map_private_extent_buffer(eb, offset,
779 sizeof(struct btrfs_disk_key),
780 &kaddr, &map_start, &map_len);
782 if (!err) {
783 tmp = (struct btrfs_disk_key *)(kaddr + offset -
784 map_start);
785 } else {
786 read_extent_buffer(eb, &unaligned,
787 offset, sizeof(unaligned));
788 tmp = &unaligned;
791 } else {
792 tmp = (struct btrfs_disk_key *)(kaddr + offset -
793 map_start);
795 ret = comp_keys(tmp, key);
797 if (ret < 0)
798 low = mid + 1;
799 else if (ret > 0)
800 high = mid;
801 else {
802 *slot = mid;
803 return 0;
806 *slot = low;
807 return 1;
811 * simple bin_search frontend that does the right thing for
812 * leaves vs nodes
814 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
815 int level, int *slot)
817 if (level == 0) {
818 return generic_bin_search(eb,
819 offsetof(struct btrfs_leaf, items),
820 sizeof(struct btrfs_item),
821 key, btrfs_header_nritems(eb),
822 slot);
823 } else {
824 return generic_bin_search(eb,
825 offsetof(struct btrfs_node, ptrs),
826 sizeof(struct btrfs_key_ptr),
827 key, btrfs_header_nritems(eb),
828 slot);
830 return -1;
833 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
834 int level, int *slot)
836 return bin_search(eb, key, level, slot);
839 static void root_add_used(struct btrfs_root *root, u32 size)
841 spin_lock(&root->accounting_lock);
842 btrfs_set_root_used(&root->root_item,
843 btrfs_root_used(&root->root_item) + size);
844 spin_unlock(&root->accounting_lock);
847 static void root_sub_used(struct btrfs_root *root, u32 size)
849 spin_lock(&root->accounting_lock);
850 btrfs_set_root_used(&root->root_item,
851 btrfs_root_used(&root->root_item) - size);
852 spin_unlock(&root->accounting_lock);
855 /* given a node and slot number, this reads the blocks it points to. The
856 * extent buffer is returned with a reference taken (but unlocked).
857 * NULL is returned on error.
859 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
860 struct extent_buffer *parent, int slot)
862 int level = btrfs_header_level(parent);
863 if (slot < 0)
864 return NULL;
865 if (slot >= btrfs_header_nritems(parent))
866 return NULL;
868 BUG_ON(level == 0);
870 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
871 btrfs_level_size(root, level - 1),
872 btrfs_node_ptr_generation(parent, slot));
876 * node level balancing, used to make sure nodes are in proper order for
877 * item deletion. We balance from the top down, so we have to make sure
878 * that a deletion won't leave an node completely empty later on.
880 static noinline int balance_level(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root,
882 struct btrfs_path *path, int level)
884 struct extent_buffer *right = NULL;
885 struct extent_buffer *mid;
886 struct extent_buffer *left = NULL;
887 struct extent_buffer *parent = NULL;
888 int ret = 0;
889 int wret;
890 int pslot;
891 int orig_slot = path->slots[level];
892 u64 orig_ptr;
894 if (level == 0)
895 return 0;
897 mid = path->nodes[level];
899 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
900 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
901 WARN_ON(btrfs_header_generation(mid) != trans->transid);
903 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
905 if (level < BTRFS_MAX_LEVEL - 1)
906 parent = path->nodes[level + 1];
907 pslot = path->slots[level + 1];
910 * deal with the case where there is only one pointer in the root
911 * by promoting the node below to a root
913 if (!parent) {
914 struct extent_buffer *child;
916 if (btrfs_header_nritems(mid) != 1)
917 return 0;
919 /* promote the child to a root */
920 child = read_node_slot(root, mid, 0);
921 BUG_ON(!child);
922 btrfs_tree_lock(child);
923 btrfs_set_lock_blocking(child);
924 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
925 if (ret) {
926 btrfs_tree_unlock(child);
927 free_extent_buffer(child);
928 goto enospc;
931 rcu_assign_pointer(root->node, child);
933 add_root_to_dirty_list(root);
934 btrfs_tree_unlock(child);
936 path->locks[level] = 0;
937 path->nodes[level] = NULL;
938 clean_tree_block(trans, root, mid);
939 btrfs_tree_unlock(mid);
940 /* once for the path */
941 free_extent_buffer(mid);
943 root_sub_used(root, mid->len);
944 btrfs_free_tree_block(trans, root, mid, 0, 1);
945 /* once for the root ptr */
946 free_extent_buffer(mid);
947 return 0;
949 if (btrfs_header_nritems(mid) >
950 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
951 return 0;
953 btrfs_header_nritems(mid);
955 left = read_node_slot(root, parent, pslot - 1);
956 if (left) {
957 btrfs_tree_lock(left);
958 btrfs_set_lock_blocking(left);
959 wret = btrfs_cow_block(trans, root, left,
960 parent, pslot - 1, &left);
961 if (wret) {
962 ret = wret;
963 goto enospc;
966 right = read_node_slot(root, parent, pslot + 1);
967 if (right) {
968 btrfs_tree_lock(right);
969 btrfs_set_lock_blocking(right);
970 wret = btrfs_cow_block(trans, root, right,
971 parent, pslot + 1, &right);
972 if (wret) {
973 ret = wret;
974 goto enospc;
978 /* first, try to make some room in the middle buffer */
979 if (left) {
980 orig_slot += btrfs_header_nritems(left);
981 wret = push_node_left(trans, root, left, mid, 1);
982 if (wret < 0)
983 ret = wret;
984 btrfs_header_nritems(mid);
988 * then try to empty the right most buffer into the middle
990 if (right) {
991 wret = push_node_left(trans, root, mid, right, 1);
992 if (wret < 0 && wret != -ENOSPC)
993 ret = wret;
994 if (btrfs_header_nritems(right) == 0) {
995 clean_tree_block(trans, root, right);
996 btrfs_tree_unlock(right);
997 wret = del_ptr(trans, root, path, level + 1, pslot +
999 if (wret)
1000 ret = wret;
1001 root_sub_used(root, right->len);
1002 btrfs_free_tree_block(trans, root, right, 0, 1);
1003 free_extent_buffer(right);
1004 right = NULL;
1005 } else {
1006 struct btrfs_disk_key right_key;
1007 btrfs_node_key(right, &right_key, 0);
1008 btrfs_set_node_key(parent, &right_key, pslot + 1);
1009 btrfs_mark_buffer_dirty(parent);
1012 if (btrfs_header_nritems(mid) == 1) {
1014 * we're not allowed to leave a node with one item in the
1015 * tree during a delete. A deletion from lower in the tree
1016 * could try to delete the only pointer in this node.
1017 * So, pull some keys from the left.
1018 * There has to be a left pointer at this point because
1019 * otherwise we would have pulled some pointers from the
1020 * right
1022 BUG_ON(!left);
1023 wret = balance_node_right(trans, root, mid, left);
1024 if (wret < 0) {
1025 ret = wret;
1026 goto enospc;
1028 if (wret == 1) {
1029 wret = push_node_left(trans, root, left, mid, 1);
1030 if (wret < 0)
1031 ret = wret;
1033 BUG_ON(wret == 1);
1035 if (btrfs_header_nritems(mid) == 0) {
1036 clean_tree_block(trans, root, mid);
1037 btrfs_tree_unlock(mid);
1038 wret = del_ptr(trans, root, path, level + 1, pslot);
1039 if (wret)
1040 ret = wret;
1041 root_sub_used(root, mid->len);
1042 btrfs_free_tree_block(trans, root, mid, 0, 1);
1043 free_extent_buffer(mid);
1044 mid = NULL;
1045 } else {
1046 /* update the parent key to reflect our changes */
1047 struct btrfs_disk_key mid_key;
1048 btrfs_node_key(mid, &mid_key, 0);
1049 btrfs_set_node_key(parent, &mid_key, pslot);
1050 btrfs_mark_buffer_dirty(parent);
1053 /* update the path */
1054 if (left) {
1055 if (btrfs_header_nritems(left) > orig_slot) {
1056 extent_buffer_get(left);
1057 /* left was locked after cow */
1058 path->nodes[level] = left;
1059 path->slots[level + 1] -= 1;
1060 path->slots[level] = orig_slot;
1061 if (mid) {
1062 btrfs_tree_unlock(mid);
1063 free_extent_buffer(mid);
1065 } else {
1066 orig_slot -= btrfs_header_nritems(left);
1067 path->slots[level] = orig_slot;
1070 /* double check we haven't messed things up */
1071 if (orig_ptr !=
1072 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1073 BUG();
1074 enospc:
1075 if (right) {
1076 btrfs_tree_unlock(right);
1077 free_extent_buffer(right);
1079 if (left) {
1080 if (path->nodes[level] != left)
1081 btrfs_tree_unlock(left);
1082 free_extent_buffer(left);
1084 return ret;
1087 /* Node balancing for insertion. Here we only split or push nodes around
1088 * when they are completely full. This is also done top down, so we
1089 * have to be pessimistic.
1091 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1092 struct btrfs_root *root,
1093 struct btrfs_path *path, int level)
1095 struct extent_buffer *right = NULL;
1096 struct extent_buffer *mid;
1097 struct extent_buffer *left = NULL;
1098 struct extent_buffer *parent = NULL;
1099 int ret = 0;
1100 int wret;
1101 int pslot;
1102 int orig_slot = path->slots[level];
1104 if (level == 0)
1105 return 1;
1107 mid = path->nodes[level];
1108 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1110 if (level < BTRFS_MAX_LEVEL - 1)
1111 parent = path->nodes[level + 1];
1112 pslot = path->slots[level + 1];
1114 if (!parent)
1115 return 1;
1117 left = read_node_slot(root, parent, pslot - 1);
1119 /* first, try to make some room in the middle buffer */
1120 if (left) {
1121 u32 left_nr;
1123 btrfs_tree_lock(left);
1124 btrfs_set_lock_blocking(left);
1126 left_nr = btrfs_header_nritems(left);
1127 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1128 wret = 1;
1129 } else {
1130 ret = btrfs_cow_block(trans, root, left, parent,
1131 pslot - 1, &left);
1132 if (ret)
1133 wret = 1;
1134 else {
1135 wret = push_node_left(trans, root,
1136 left, mid, 0);
1139 if (wret < 0)
1140 ret = wret;
1141 if (wret == 0) {
1142 struct btrfs_disk_key disk_key;
1143 orig_slot += left_nr;
1144 btrfs_node_key(mid, &disk_key, 0);
1145 btrfs_set_node_key(parent, &disk_key, pslot);
1146 btrfs_mark_buffer_dirty(parent);
1147 if (btrfs_header_nritems(left) > orig_slot) {
1148 path->nodes[level] = left;
1149 path->slots[level + 1] -= 1;
1150 path->slots[level] = orig_slot;
1151 btrfs_tree_unlock(mid);
1152 free_extent_buffer(mid);
1153 } else {
1154 orig_slot -=
1155 btrfs_header_nritems(left);
1156 path->slots[level] = orig_slot;
1157 btrfs_tree_unlock(left);
1158 free_extent_buffer(left);
1160 return 0;
1162 btrfs_tree_unlock(left);
1163 free_extent_buffer(left);
1165 right = read_node_slot(root, parent, pslot + 1);
1168 * then try to empty the right most buffer into the middle
1170 if (right) {
1171 u32 right_nr;
1173 btrfs_tree_lock(right);
1174 btrfs_set_lock_blocking(right);
1176 right_nr = btrfs_header_nritems(right);
1177 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1178 wret = 1;
1179 } else {
1180 ret = btrfs_cow_block(trans, root, right,
1181 parent, pslot + 1,
1182 &right);
1183 if (ret)
1184 wret = 1;
1185 else {
1186 wret = balance_node_right(trans, root,
1187 right, mid);
1190 if (wret < 0)
1191 ret = wret;
1192 if (wret == 0) {
1193 struct btrfs_disk_key disk_key;
1195 btrfs_node_key(right, &disk_key, 0);
1196 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1197 btrfs_mark_buffer_dirty(parent);
1199 if (btrfs_header_nritems(mid) <= orig_slot) {
1200 path->nodes[level] = right;
1201 path->slots[level + 1] += 1;
1202 path->slots[level] = orig_slot -
1203 btrfs_header_nritems(mid);
1204 btrfs_tree_unlock(mid);
1205 free_extent_buffer(mid);
1206 } else {
1207 btrfs_tree_unlock(right);
1208 free_extent_buffer(right);
1210 return 0;
1212 btrfs_tree_unlock(right);
1213 free_extent_buffer(right);
1215 return 1;
1219 * readahead one full node of leaves, finding things that are close
1220 * to the block in 'slot', and triggering ra on them.
1222 static void reada_for_search(struct btrfs_root *root,
1223 struct btrfs_path *path,
1224 int level, int slot, u64 objectid)
1226 struct extent_buffer *node;
1227 struct btrfs_disk_key disk_key;
1228 u32 nritems;
1229 u64 search;
1230 u64 target;
1231 u64 nread = 0;
1232 u64 gen;
1233 int direction = path->reada;
1234 struct extent_buffer *eb;
1235 u32 nr;
1236 u32 blocksize;
1237 u32 nscan = 0;
1239 if (level != 1)
1240 return;
1242 if (!path->nodes[level])
1243 return;
1245 node = path->nodes[level];
1247 search = btrfs_node_blockptr(node, slot);
1248 blocksize = btrfs_level_size(root, level - 1);
1249 eb = btrfs_find_tree_block(root, search, blocksize);
1250 if (eb) {
1251 free_extent_buffer(eb);
1252 return;
1255 target = search;
1257 nritems = btrfs_header_nritems(node);
1258 nr = slot;
1260 while (1) {
1261 if (direction < 0) {
1262 if (nr == 0)
1263 break;
1264 nr--;
1265 } else if (direction > 0) {
1266 nr++;
1267 if (nr >= nritems)
1268 break;
1270 if (path->reada < 0 && objectid) {
1271 btrfs_node_key(node, &disk_key, nr);
1272 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1273 break;
1275 search = btrfs_node_blockptr(node, nr);
1276 if ((search <= target && target - search <= 65536) ||
1277 (search > target && search - target <= 65536)) {
1278 gen = btrfs_node_ptr_generation(node, nr);
1279 readahead_tree_block(root, search, blocksize, gen);
1280 nread += blocksize;
1282 nscan++;
1283 if ((nread > 65536 || nscan > 32))
1284 break;
1289 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1290 * cache
1292 static noinline int reada_for_balance(struct btrfs_root *root,
1293 struct btrfs_path *path, int level)
1295 int slot;
1296 int nritems;
1297 struct extent_buffer *parent;
1298 struct extent_buffer *eb;
1299 u64 gen;
1300 u64 block1 = 0;
1301 u64 block2 = 0;
1302 int ret = 0;
1303 int blocksize;
1305 parent = path->nodes[level + 1];
1306 if (!parent)
1307 return 0;
1309 nritems = btrfs_header_nritems(parent);
1310 slot = path->slots[level + 1];
1311 blocksize = btrfs_level_size(root, level);
1313 if (slot > 0) {
1314 block1 = btrfs_node_blockptr(parent, slot - 1);
1315 gen = btrfs_node_ptr_generation(parent, slot - 1);
1316 eb = btrfs_find_tree_block(root, block1, blocksize);
1317 if (eb && btrfs_buffer_uptodate(eb, gen))
1318 block1 = 0;
1319 free_extent_buffer(eb);
1321 if (slot + 1 < nritems) {
1322 block2 = btrfs_node_blockptr(parent, slot + 1);
1323 gen = btrfs_node_ptr_generation(parent, slot + 1);
1324 eb = btrfs_find_tree_block(root, block2, blocksize);
1325 if (eb && btrfs_buffer_uptodate(eb, gen))
1326 block2 = 0;
1327 free_extent_buffer(eb);
1329 if (block1 || block2) {
1330 ret = -EAGAIN;
1332 /* release the whole path */
1333 btrfs_release_path(path);
1335 /* read the blocks */
1336 if (block1)
1337 readahead_tree_block(root, block1, blocksize, 0);
1338 if (block2)
1339 readahead_tree_block(root, block2, blocksize, 0);
1341 if (block1) {
1342 eb = read_tree_block(root, block1, blocksize, 0);
1343 free_extent_buffer(eb);
1345 if (block2) {
1346 eb = read_tree_block(root, block2, blocksize, 0);
1347 free_extent_buffer(eb);
1350 return ret;
1355 * when we walk down the tree, it is usually safe to unlock the higher layers
1356 * in the tree. The exceptions are when our path goes through slot 0, because
1357 * operations on the tree might require changing key pointers higher up in the
1358 * tree.
1360 * callers might also have set path->keep_locks, which tells this code to keep
1361 * the lock if the path points to the last slot in the block. This is part of
1362 * walking through the tree, and selecting the next slot in the higher block.
1364 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1365 * if lowest_unlock is 1, level 0 won't be unlocked
1367 static noinline void unlock_up(struct btrfs_path *path, int level,
1368 int lowest_unlock)
1370 int i;
1371 int skip_level = level;
1372 int no_skips = 0;
1373 struct extent_buffer *t;
1375 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1376 if (!path->nodes[i])
1377 break;
1378 if (!path->locks[i])
1379 break;
1380 if (!no_skips && path->slots[i] == 0) {
1381 skip_level = i + 1;
1382 continue;
1384 if (!no_skips && path->keep_locks) {
1385 u32 nritems;
1386 t = path->nodes[i];
1387 nritems = btrfs_header_nritems(t);
1388 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1389 skip_level = i + 1;
1390 continue;
1393 if (skip_level < i && i >= lowest_unlock)
1394 no_skips = 1;
1396 t = path->nodes[i];
1397 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1398 btrfs_tree_unlock_rw(t, path->locks[i]);
1399 path->locks[i] = 0;
1405 * This releases any locks held in the path starting at level and
1406 * going all the way up to the root.
1408 * btrfs_search_slot will keep the lock held on higher nodes in a few
1409 * corner cases, such as COW of the block at slot zero in the node. This
1410 * ignores those rules, and it should only be called when there are no
1411 * more updates to be done higher up in the tree.
1413 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1415 int i;
1417 if (path->keep_locks)
1418 return;
1420 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1421 if (!path->nodes[i])
1422 continue;
1423 if (!path->locks[i])
1424 continue;
1425 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1426 path->locks[i] = 0;
1431 * helper function for btrfs_search_slot. The goal is to find a block
1432 * in cache without setting the path to blocking. If we find the block
1433 * we return zero and the path is unchanged.
1435 * If we can't find the block, we set the path blocking and do some
1436 * reada. -EAGAIN is returned and the search must be repeated.
1438 static int
1439 read_block_for_search(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root, struct btrfs_path *p,
1441 struct extent_buffer **eb_ret, int level, int slot,
1442 struct btrfs_key *key)
1444 u64 blocknr;
1445 u64 gen;
1446 u32 blocksize;
1447 struct extent_buffer *b = *eb_ret;
1448 struct extent_buffer *tmp;
1449 int ret;
1451 blocknr = btrfs_node_blockptr(b, slot);
1452 gen = btrfs_node_ptr_generation(b, slot);
1453 blocksize = btrfs_level_size(root, level - 1);
1455 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1456 if (tmp) {
1457 if (btrfs_buffer_uptodate(tmp, 0)) {
1458 if (btrfs_buffer_uptodate(tmp, gen)) {
1460 * we found an up to date block without
1461 * sleeping, return
1462 * right away
1464 *eb_ret = tmp;
1465 return 0;
1467 /* the pages were up to date, but we failed
1468 * the generation number check. Do a full
1469 * read for the generation number that is correct.
1470 * We must do this without dropping locks so
1471 * we can trust our generation number
1473 free_extent_buffer(tmp);
1474 btrfs_set_path_blocking(p);
1476 tmp = read_tree_block(root, blocknr, blocksize, gen);
1477 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1478 *eb_ret = tmp;
1479 return 0;
1481 free_extent_buffer(tmp);
1482 btrfs_release_path(p);
1483 return -EIO;
1488 * reduce lock contention at high levels
1489 * of the btree by dropping locks before
1490 * we read. Don't release the lock on the current
1491 * level because we need to walk this node to figure
1492 * out which blocks to read.
1494 btrfs_unlock_up_safe(p, level + 1);
1495 btrfs_set_path_blocking(p);
1497 free_extent_buffer(tmp);
1498 if (p->reada)
1499 reada_for_search(root, p, level, slot, key->objectid);
1501 btrfs_release_path(p);
1503 ret = -EAGAIN;
1504 tmp = read_tree_block(root, blocknr, blocksize, 0);
1505 if (tmp) {
1507 * If the read above didn't mark this buffer up to date,
1508 * it will never end up being up to date. Set ret to EIO now
1509 * and give up so that our caller doesn't loop forever
1510 * on our EAGAINs.
1512 if (!btrfs_buffer_uptodate(tmp, 0))
1513 ret = -EIO;
1514 free_extent_buffer(tmp);
1516 return ret;
1520 * helper function for btrfs_search_slot. This does all of the checks
1521 * for node-level blocks and does any balancing required based on
1522 * the ins_len.
1524 * If no extra work was required, zero is returned. If we had to
1525 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1526 * start over
1528 static int
1529 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *root, struct btrfs_path *p,
1531 struct extent_buffer *b, int level, int ins_len,
1532 int *write_lock_level)
1534 int ret;
1535 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1536 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1537 int sret;
1539 if (*write_lock_level < level + 1) {
1540 *write_lock_level = level + 1;
1541 btrfs_release_path(p);
1542 goto again;
1545 sret = reada_for_balance(root, p, level);
1546 if (sret)
1547 goto again;
1549 btrfs_set_path_blocking(p);
1550 sret = split_node(trans, root, p, level);
1551 btrfs_clear_path_blocking(p, NULL, 0);
1553 BUG_ON(sret > 0);
1554 if (sret) {
1555 ret = sret;
1556 goto done;
1558 b = p->nodes[level];
1559 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1560 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1561 int sret;
1563 if (*write_lock_level < level + 1) {
1564 *write_lock_level = level + 1;
1565 btrfs_release_path(p);
1566 goto again;
1569 sret = reada_for_balance(root, p, level);
1570 if (sret)
1571 goto again;
1573 btrfs_set_path_blocking(p);
1574 sret = balance_level(trans, root, p, level);
1575 btrfs_clear_path_blocking(p, NULL, 0);
1577 if (sret) {
1578 ret = sret;
1579 goto done;
1581 b = p->nodes[level];
1582 if (!b) {
1583 btrfs_release_path(p);
1584 goto again;
1586 BUG_ON(btrfs_header_nritems(b) == 1);
1588 return 0;
1590 again:
1591 ret = -EAGAIN;
1592 done:
1593 return ret;
1597 * look for key in the tree. path is filled in with nodes along the way
1598 * if key is found, we return zero and you can find the item in the leaf
1599 * level of the path (level 0)
1601 * If the key isn't found, the path points to the slot where it should
1602 * be inserted, and 1 is returned. If there are other errors during the
1603 * search a negative error number is returned.
1605 * if ins_len > 0, nodes and leaves will be split as we walk down the
1606 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1607 * possible)
1609 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1610 *root, struct btrfs_key *key, struct btrfs_path *p, int
1611 ins_len, int cow)
1613 struct extent_buffer *b;
1614 int slot;
1615 int ret;
1616 int err;
1617 int level;
1618 int lowest_unlock = 1;
1619 int root_lock;
1620 /* everything at write_lock_level or lower must be write locked */
1621 int write_lock_level = 0;
1622 u8 lowest_level = 0;
1624 lowest_level = p->lowest_level;
1625 WARN_ON(lowest_level && ins_len > 0);
1626 WARN_ON(p->nodes[0] != NULL);
1628 if (ins_len < 0) {
1629 lowest_unlock = 2;
1631 /* when we are removing items, we might have to go up to level
1632 * two as we update tree pointers Make sure we keep write
1633 * for those levels as well
1635 write_lock_level = 2;
1636 } else if (ins_len > 0) {
1638 * for inserting items, make sure we have a write lock on
1639 * level 1 so we can update keys
1641 write_lock_level = 1;
1644 if (!cow)
1645 write_lock_level = -1;
1647 if (cow && (p->keep_locks || p->lowest_level))
1648 write_lock_level = BTRFS_MAX_LEVEL;
1650 again:
1652 * we try very hard to do read locks on the root
1654 root_lock = BTRFS_READ_LOCK;
1655 level = 0;
1656 if (p->search_commit_root) {
1658 * the commit roots are read only
1659 * so we always do read locks
1661 b = root->commit_root;
1662 extent_buffer_get(b);
1663 level = btrfs_header_level(b);
1664 if (!p->skip_locking)
1665 btrfs_tree_read_lock(b);
1666 } else {
1667 if (p->skip_locking) {
1668 b = btrfs_root_node(root);
1669 level = btrfs_header_level(b);
1670 } else {
1671 /* we don't know the level of the root node
1672 * until we actually have it read locked
1674 b = btrfs_read_lock_root_node(root);
1675 level = btrfs_header_level(b);
1676 if (level <= write_lock_level) {
1677 /* whoops, must trade for write lock */
1678 btrfs_tree_read_unlock(b);
1679 free_extent_buffer(b);
1680 b = btrfs_lock_root_node(root);
1681 root_lock = BTRFS_WRITE_LOCK;
1683 /* the level might have changed, check again */
1684 level = btrfs_header_level(b);
1688 p->nodes[level] = b;
1689 if (!p->skip_locking)
1690 p->locks[level] = root_lock;
1692 while (b) {
1693 level = btrfs_header_level(b);
1696 * setup the path here so we can release it under lock
1697 * contention with the cow code
1699 if (cow) {
1701 * if we don't really need to cow this block
1702 * then we don't want to set the path blocking,
1703 * so we test it here
1705 if (!should_cow_block(trans, root, b))
1706 goto cow_done;
1708 btrfs_set_path_blocking(p);
1711 * must have write locks on this node and the
1712 * parent
1714 if (level + 1 > write_lock_level) {
1715 write_lock_level = level + 1;
1716 btrfs_release_path(p);
1717 goto again;
1720 err = btrfs_cow_block(trans, root, b,
1721 p->nodes[level + 1],
1722 p->slots[level + 1], &b);
1723 if (err) {
1724 ret = err;
1725 goto done;
1728 cow_done:
1729 BUG_ON(!cow && ins_len);
1731 p->nodes[level] = b;
1732 btrfs_clear_path_blocking(p, NULL, 0);
1735 * we have a lock on b and as long as we aren't changing
1736 * the tree, there is no way to for the items in b to change.
1737 * It is safe to drop the lock on our parent before we
1738 * go through the expensive btree search on b.
1740 * If cow is true, then we might be changing slot zero,
1741 * which may require changing the parent. So, we can't
1742 * drop the lock until after we know which slot we're
1743 * operating on.
1745 if (!cow)
1746 btrfs_unlock_up_safe(p, level + 1);
1748 ret = bin_search(b, key, level, &slot);
1750 if (level != 0) {
1751 int dec = 0;
1752 if (ret && slot > 0) {
1753 dec = 1;
1754 slot -= 1;
1756 p->slots[level] = slot;
1757 err = setup_nodes_for_search(trans, root, p, b, level,
1758 ins_len, &write_lock_level);
1759 if (err == -EAGAIN)
1760 goto again;
1761 if (err) {
1762 ret = err;
1763 goto done;
1765 b = p->nodes[level];
1766 slot = p->slots[level];
1769 * slot 0 is special, if we change the key
1770 * we have to update the parent pointer
1771 * which means we must have a write lock
1772 * on the parent
1774 if (slot == 0 && cow &&
1775 write_lock_level < level + 1) {
1776 write_lock_level = level + 1;
1777 btrfs_release_path(p);
1778 goto again;
1781 unlock_up(p, level, lowest_unlock);
1783 if (level == lowest_level) {
1784 if (dec)
1785 p->slots[level]++;
1786 goto done;
1789 err = read_block_for_search(trans, root, p,
1790 &b, level, slot, key);
1791 if (err == -EAGAIN)
1792 goto again;
1793 if (err) {
1794 ret = err;
1795 goto done;
1798 if (!p->skip_locking) {
1799 level = btrfs_header_level(b);
1800 if (level <= write_lock_level) {
1801 err = btrfs_try_tree_write_lock(b);
1802 if (!err) {
1803 btrfs_set_path_blocking(p);
1804 btrfs_tree_lock(b);
1805 btrfs_clear_path_blocking(p, b,
1806 BTRFS_WRITE_LOCK);
1808 p->locks[level] = BTRFS_WRITE_LOCK;
1809 } else {
1810 err = btrfs_try_tree_read_lock(b);
1811 if (!err) {
1812 btrfs_set_path_blocking(p);
1813 btrfs_tree_read_lock(b);
1814 btrfs_clear_path_blocking(p, b,
1815 BTRFS_READ_LOCK);
1817 p->locks[level] = BTRFS_READ_LOCK;
1819 p->nodes[level] = b;
1821 } else {
1822 p->slots[level] = slot;
1823 if (ins_len > 0 &&
1824 btrfs_leaf_free_space(root, b) < ins_len) {
1825 if (write_lock_level < 1) {
1826 write_lock_level = 1;
1827 btrfs_release_path(p);
1828 goto again;
1831 btrfs_set_path_blocking(p);
1832 err = split_leaf(trans, root, key,
1833 p, ins_len, ret == 0);
1834 btrfs_clear_path_blocking(p, NULL, 0);
1836 BUG_ON(err > 0);
1837 if (err) {
1838 ret = err;
1839 goto done;
1842 if (!p->search_for_split)
1843 unlock_up(p, level, lowest_unlock);
1844 goto done;
1847 ret = 1;
1848 done:
1850 * we don't really know what they plan on doing with the path
1851 * from here on, so for now just mark it as blocking
1853 if (!p->leave_spinning)
1854 btrfs_set_path_blocking(p);
1855 if (ret < 0)
1856 btrfs_release_path(p);
1857 return ret;
1861 * adjust the pointers going up the tree, starting at level
1862 * making sure the right key of each node is points to 'key'.
1863 * This is used after shifting pointers to the left, so it stops
1864 * fixing up pointers when a given leaf/node is not in slot 0 of the
1865 * higher levels
1867 * If this fails to write a tree block, it returns -1, but continues
1868 * fixing up the blocks in ram so the tree is consistent.
1870 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root, struct btrfs_path *path,
1872 struct btrfs_disk_key *key, int level)
1874 int i;
1875 int ret = 0;
1876 struct extent_buffer *t;
1878 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1879 int tslot = path->slots[i];
1880 if (!path->nodes[i])
1881 break;
1882 t = path->nodes[i];
1883 btrfs_set_node_key(t, key, tslot);
1884 btrfs_mark_buffer_dirty(path->nodes[i]);
1885 if (tslot != 0)
1886 break;
1888 return ret;
1892 * update item key.
1894 * This function isn't completely safe. It's the caller's responsibility
1895 * that the new key won't break the order
1897 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1898 struct btrfs_root *root, struct btrfs_path *path,
1899 struct btrfs_key *new_key)
1901 struct btrfs_disk_key disk_key;
1902 struct extent_buffer *eb;
1903 int slot;
1905 eb = path->nodes[0];
1906 slot = path->slots[0];
1907 if (slot > 0) {
1908 btrfs_item_key(eb, &disk_key, slot - 1);
1909 if (comp_keys(&disk_key, new_key) >= 0)
1910 return -1;
1912 if (slot < btrfs_header_nritems(eb) - 1) {
1913 btrfs_item_key(eb, &disk_key, slot + 1);
1914 if (comp_keys(&disk_key, new_key) <= 0)
1915 return -1;
1918 btrfs_cpu_key_to_disk(&disk_key, new_key);
1919 btrfs_set_item_key(eb, &disk_key, slot);
1920 btrfs_mark_buffer_dirty(eb);
1921 if (slot == 0)
1922 fixup_low_keys(trans, root, path, &disk_key, 1);
1923 return 0;
1927 * try to push data from one node into the next node left in the
1928 * tree.
1930 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931 * error, and > 0 if there was no room in the left hand block.
1933 static int push_node_left(struct btrfs_trans_handle *trans,
1934 struct btrfs_root *root, struct extent_buffer *dst,
1935 struct extent_buffer *src, int empty)
1937 int push_items = 0;
1938 int src_nritems;
1939 int dst_nritems;
1940 int ret = 0;
1942 src_nritems = btrfs_header_nritems(src);
1943 dst_nritems = btrfs_header_nritems(dst);
1944 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1945 WARN_ON(btrfs_header_generation(src) != trans->transid);
1946 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1948 if (!empty && src_nritems <= 8)
1949 return 1;
1951 if (push_items <= 0)
1952 return 1;
1954 if (empty) {
1955 push_items = min(src_nritems, push_items);
1956 if (push_items < src_nritems) {
1957 /* leave at least 8 pointers in the node if
1958 * we aren't going to empty it
1960 if (src_nritems - push_items < 8) {
1961 if (push_items <= 8)
1962 return 1;
1963 push_items -= 8;
1966 } else
1967 push_items = min(src_nritems - 8, push_items);
1969 copy_extent_buffer(dst, src,
1970 btrfs_node_key_ptr_offset(dst_nritems),
1971 btrfs_node_key_ptr_offset(0),
1972 push_items * sizeof(struct btrfs_key_ptr));
1974 if (push_items < src_nritems) {
1975 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1976 btrfs_node_key_ptr_offset(push_items),
1977 (src_nritems - push_items) *
1978 sizeof(struct btrfs_key_ptr));
1980 btrfs_set_header_nritems(src, src_nritems - push_items);
1981 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1982 btrfs_mark_buffer_dirty(src);
1983 btrfs_mark_buffer_dirty(dst);
1985 return ret;
1989 * try to push data from one node into the next node right in the
1990 * tree.
1992 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993 * error, and > 0 if there was no room in the right hand block.
1995 * this will only push up to 1/2 the contents of the left node over
1997 static int balance_node_right(struct btrfs_trans_handle *trans,
1998 struct btrfs_root *root,
1999 struct extent_buffer *dst,
2000 struct extent_buffer *src)
2002 int push_items = 0;
2003 int max_push;
2004 int src_nritems;
2005 int dst_nritems;
2006 int ret = 0;
2008 WARN_ON(btrfs_header_generation(src) != trans->transid);
2009 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2011 src_nritems = btrfs_header_nritems(src);
2012 dst_nritems = btrfs_header_nritems(dst);
2013 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2014 if (push_items <= 0)
2015 return 1;
2017 if (src_nritems < 4)
2018 return 1;
2020 max_push = src_nritems / 2 + 1;
2021 /* don't try to empty the node */
2022 if (max_push >= src_nritems)
2023 return 1;
2025 if (max_push < push_items)
2026 push_items = max_push;
2028 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2029 btrfs_node_key_ptr_offset(0),
2030 (dst_nritems) *
2031 sizeof(struct btrfs_key_ptr));
2033 copy_extent_buffer(dst, src,
2034 btrfs_node_key_ptr_offset(0),
2035 btrfs_node_key_ptr_offset(src_nritems - push_items),
2036 push_items * sizeof(struct btrfs_key_ptr));
2038 btrfs_set_header_nritems(src, src_nritems - push_items);
2039 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2041 btrfs_mark_buffer_dirty(src);
2042 btrfs_mark_buffer_dirty(dst);
2044 return ret;
2048 * helper function to insert a new root level in the tree.
2049 * A new node is allocated, and a single item is inserted to
2050 * point to the existing root
2052 * returns zero on success or < 0 on failure.
2054 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2055 struct btrfs_root *root,
2056 struct btrfs_path *path, int level)
2058 u64 lower_gen;
2059 struct extent_buffer *lower;
2060 struct extent_buffer *c;
2061 struct extent_buffer *old;
2062 struct btrfs_disk_key lower_key;
2064 BUG_ON(path->nodes[level]);
2065 BUG_ON(path->nodes[level-1] != root->node);
2067 lower = path->nodes[level-1];
2068 if (level == 1)
2069 btrfs_item_key(lower, &lower_key, 0);
2070 else
2071 btrfs_node_key(lower, &lower_key, 0);
2073 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2074 root->root_key.objectid, &lower_key,
2075 level, root->node->start, 0);
2076 if (IS_ERR(c))
2077 return PTR_ERR(c);
2079 root_add_used(root, root->nodesize);
2081 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2082 btrfs_set_header_nritems(c, 1);
2083 btrfs_set_header_level(c, level);
2084 btrfs_set_header_bytenr(c, c->start);
2085 btrfs_set_header_generation(c, trans->transid);
2086 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2087 btrfs_set_header_owner(c, root->root_key.objectid);
2089 write_extent_buffer(c, root->fs_info->fsid,
2090 (unsigned long)btrfs_header_fsid(c),
2091 BTRFS_FSID_SIZE);
2093 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2094 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2095 BTRFS_UUID_SIZE);
2097 btrfs_set_node_key(c, &lower_key, 0);
2098 btrfs_set_node_blockptr(c, 0, lower->start);
2099 lower_gen = btrfs_header_generation(lower);
2100 WARN_ON(lower_gen != trans->transid);
2102 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2104 btrfs_mark_buffer_dirty(c);
2106 old = root->node;
2107 rcu_assign_pointer(root->node, c);
2109 /* the super has an extra ref to root->node */
2110 free_extent_buffer(old);
2112 add_root_to_dirty_list(root);
2113 extent_buffer_get(c);
2114 path->nodes[level] = c;
2115 path->locks[level] = BTRFS_WRITE_LOCK;
2116 path->slots[level] = 0;
2117 return 0;
2121 * worker function to insert a single pointer in a node.
2122 * the node should have enough room for the pointer already
2124 * slot and level indicate where you want the key to go, and
2125 * blocknr is the block the key points to.
2127 * returns zero on success and < 0 on any error
2129 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2130 *root, struct btrfs_path *path, struct btrfs_disk_key
2131 *key, u64 bytenr, int slot, int level)
2133 struct extent_buffer *lower;
2134 int nritems;
2136 BUG_ON(!path->nodes[level]);
2137 btrfs_assert_tree_locked(path->nodes[level]);
2138 lower = path->nodes[level];
2139 nritems = btrfs_header_nritems(lower);
2140 BUG_ON(slot > nritems);
2141 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2142 BUG();
2143 if (slot != nritems) {
2144 memmove_extent_buffer(lower,
2145 btrfs_node_key_ptr_offset(slot + 1),
2146 btrfs_node_key_ptr_offset(slot),
2147 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2149 btrfs_set_node_key(lower, key, slot);
2150 btrfs_set_node_blockptr(lower, slot, bytenr);
2151 WARN_ON(trans->transid == 0);
2152 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2153 btrfs_set_header_nritems(lower, nritems + 1);
2154 btrfs_mark_buffer_dirty(lower);
2155 return 0;
2159 * split the node at the specified level in path in two.
2160 * The path is corrected to point to the appropriate node after the split
2162 * Before splitting this tries to make some room in the node by pushing
2163 * left and right, if either one works, it returns right away.
2165 * returns 0 on success and < 0 on failure
2167 static noinline int split_node(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root,
2169 struct btrfs_path *path, int level)
2171 struct extent_buffer *c;
2172 struct extent_buffer *split;
2173 struct btrfs_disk_key disk_key;
2174 int mid;
2175 int ret;
2176 int wret;
2177 u32 c_nritems;
2179 c = path->nodes[level];
2180 WARN_ON(btrfs_header_generation(c) != trans->transid);
2181 if (c == root->node) {
2182 /* trying to split the root, lets make a new one */
2183 ret = insert_new_root(trans, root, path, level + 1);
2184 if (ret)
2185 return ret;
2186 } else {
2187 ret = push_nodes_for_insert(trans, root, path, level);
2188 c = path->nodes[level];
2189 if (!ret && btrfs_header_nritems(c) <
2190 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2191 return 0;
2192 if (ret < 0)
2193 return ret;
2196 c_nritems = btrfs_header_nritems(c);
2197 mid = (c_nritems + 1) / 2;
2198 btrfs_node_key(c, &disk_key, mid);
2200 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2201 root->root_key.objectid,
2202 &disk_key, level, c->start, 0);
2203 if (IS_ERR(split))
2204 return PTR_ERR(split);
2206 root_add_used(root, root->nodesize);
2208 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2209 btrfs_set_header_level(split, btrfs_header_level(c));
2210 btrfs_set_header_bytenr(split, split->start);
2211 btrfs_set_header_generation(split, trans->transid);
2212 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2213 btrfs_set_header_owner(split, root->root_key.objectid);
2214 write_extent_buffer(split, root->fs_info->fsid,
2215 (unsigned long)btrfs_header_fsid(split),
2216 BTRFS_FSID_SIZE);
2217 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2218 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2219 BTRFS_UUID_SIZE);
2222 copy_extent_buffer(split, c,
2223 btrfs_node_key_ptr_offset(0),
2224 btrfs_node_key_ptr_offset(mid),
2225 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2226 btrfs_set_header_nritems(split, c_nritems - mid);
2227 btrfs_set_header_nritems(c, mid);
2228 ret = 0;
2230 btrfs_mark_buffer_dirty(c);
2231 btrfs_mark_buffer_dirty(split);
2233 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2234 path->slots[level + 1] + 1,
2235 level + 1);
2236 if (wret)
2237 ret = wret;
2239 if (path->slots[level] >= mid) {
2240 path->slots[level] -= mid;
2241 btrfs_tree_unlock(c);
2242 free_extent_buffer(c);
2243 path->nodes[level] = split;
2244 path->slots[level + 1] += 1;
2245 } else {
2246 btrfs_tree_unlock(split);
2247 free_extent_buffer(split);
2249 return ret;
2253 * how many bytes are required to store the items in a leaf. start
2254 * and nr indicate which items in the leaf to check. This totals up the
2255 * space used both by the item structs and the item data
2257 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2259 int data_len;
2260 int nritems = btrfs_header_nritems(l);
2261 int end = min(nritems, start + nr) - 1;
2263 if (!nr)
2264 return 0;
2265 data_len = btrfs_item_end_nr(l, start);
2266 data_len = data_len - btrfs_item_offset_nr(l, end);
2267 data_len += sizeof(struct btrfs_item) * nr;
2268 WARN_ON(data_len < 0);
2269 return data_len;
2273 * The space between the end of the leaf items and
2274 * the start of the leaf data. IOW, how much room
2275 * the leaf has left for both items and data
2277 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2278 struct extent_buffer *leaf)
2280 int nritems = btrfs_header_nritems(leaf);
2281 int ret;
2282 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2283 if (ret < 0) {
2284 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2285 "used %d nritems %d\n",
2286 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2287 leaf_space_used(leaf, 0, nritems), nritems);
2289 return ret;
2293 * min slot controls the lowest index we're willing to push to the
2294 * right. We'll push up to and including min_slot, but no lower
2296 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2297 struct btrfs_root *root,
2298 struct btrfs_path *path,
2299 int data_size, int empty,
2300 struct extent_buffer *right,
2301 int free_space, u32 left_nritems,
2302 u32 min_slot)
2304 struct extent_buffer *left = path->nodes[0];
2305 struct extent_buffer *upper = path->nodes[1];
2306 struct btrfs_disk_key disk_key;
2307 int slot;
2308 u32 i;
2309 int push_space = 0;
2310 int push_items = 0;
2311 struct btrfs_item *item;
2312 u32 nr;
2313 u32 right_nritems;
2314 u32 data_end;
2315 u32 this_item_size;
2317 if (empty)
2318 nr = 0;
2319 else
2320 nr = max_t(u32, 1, min_slot);
2322 if (path->slots[0] >= left_nritems)
2323 push_space += data_size;
2325 slot = path->slots[1];
2326 i = left_nritems - 1;
2327 while (i >= nr) {
2328 item = btrfs_item_nr(left, i);
2330 if (!empty && push_items > 0) {
2331 if (path->slots[0] > i)
2332 break;
2333 if (path->slots[0] == i) {
2334 int space = btrfs_leaf_free_space(root, left);
2335 if (space + push_space * 2 > free_space)
2336 break;
2340 if (path->slots[0] == i)
2341 push_space += data_size;
2343 this_item_size = btrfs_item_size(left, item);
2344 if (this_item_size + sizeof(*item) + push_space > free_space)
2345 break;
2347 push_items++;
2348 push_space += this_item_size + sizeof(*item);
2349 if (i == 0)
2350 break;
2351 i--;
2354 if (push_items == 0)
2355 goto out_unlock;
2357 if (!empty && push_items == left_nritems)
2358 WARN_ON(1);
2360 /* push left to right */
2361 right_nritems = btrfs_header_nritems(right);
2363 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2364 push_space -= leaf_data_end(root, left);
2366 /* make room in the right data area */
2367 data_end = leaf_data_end(root, right);
2368 memmove_extent_buffer(right,
2369 btrfs_leaf_data(right) + data_end - push_space,
2370 btrfs_leaf_data(right) + data_end,
2371 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2373 /* copy from the left data area */
2374 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2375 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2376 btrfs_leaf_data(left) + leaf_data_end(root, left),
2377 push_space);
2379 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2380 btrfs_item_nr_offset(0),
2381 right_nritems * sizeof(struct btrfs_item));
2383 /* copy the items from left to right */
2384 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2385 btrfs_item_nr_offset(left_nritems - push_items),
2386 push_items * sizeof(struct btrfs_item));
2388 /* update the item pointers */
2389 right_nritems += push_items;
2390 btrfs_set_header_nritems(right, right_nritems);
2391 push_space = BTRFS_LEAF_DATA_SIZE(root);
2392 for (i = 0; i < right_nritems; i++) {
2393 item = btrfs_item_nr(right, i);
2394 push_space -= btrfs_item_size(right, item);
2395 btrfs_set_item_offset(right, item, push_space);
2398 left_nritems -= push_items;
2399 btrfs_set_header_nritems(left, left_nritems);
2401 if (left_nritems)
2402 btrfs_mark_buffer_dirty(left);
2403 else
2404 clean_tree_block(trans, root, left);
2406 btrfs_mark_buffer_dirty(right);
2408 btrfs_item_key(right, &disk_key, 0);
2409 btrfs_set_node_key(upper, &disk_key, slot + 1);
2410 btrfs_mark_buffer_dirty(upper);
2412 /* then fixup the leaf pointer in the path */
2413 if (path->slots[0] >= left_nritems) {
2414 path->slots[0] -= left_nritems;
2415 if (btrfs_header_nritems(path->nodes[0]) == 0)
2416 clean_tree_block(trans, root, path->nodes[0]);
2417 btrfs_tree_unlock(path->nodes[0]);
2418 free_extent_buffer(path->nodes[0]);
2419 path->nodes[0] = right;
2420 path->slots[1] += 1;
2421 } else {
2422 btrfs_tree_unlock(right);
2423 free_extent_buffer(right);
2425 return 0;
2427 out_unlock:
2428 btrfs_tree_unlock(right);
2429 free_extent_buffer(right);
2430 return 1;
2434 * push some data in the path leaf to the right, trying to free up at
2435 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2437 * returns 1 if the push failed because the other node didn't have enough
2438 * room, 0 if everything worked out and < 0 if there were major errors.
2440 * this will push starting from min_slot to the end of the leaf. It won't
2441 * push any slot lower than min_slot
2443 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2444 *root, struct btrfs_path *path,
2445 int min_data_size, int data_size,
2446 int empty, u32 min_slot)
2448 struct extent_buffer *left = path->nodes[0];
2449 struct extent_buffer *right;
2450 struct extent_buffer *upper;
2451 int slot;
2452 int free_space;
2453 u32 left_nritems;
2454 int ret;
2456 if (!path->nodes[1])
2457 return 1;
2459 slot = path->slots[1];
2460 upper = path->nodes[1];
2461 if (slot >= btrfs_header_nritems(upper) - 1)
2462 return 1;
2464 btrfs_assert_tree_locked(path->nodes[1]);
2466 right = read_node_slot(root, upper, slot + 1);
2467 if (right == NULL)
2468 return 1;
2470 btrfs_tree_lock(right);
2471 btrfs_set_lock_blocking(right);
2473 free_space = btrfs_leaf_free_space(root, right);
2474 if (free_space < data_size)
2475 goto out_unlock;
2477 /* cow and double check */
2478 ret = btrfs_cow_block(trans, root, right, upper,
2479 slot + 1, &right);
2480 if (ret)
2481 goto out_unlock;
2483 free_space = btrfs_leaf_free_space(root, right);
2484 if (free_space < data_size)
2485 goto out_unlock;
2487 left_nritems = btrfs_header_nritems(left);
2488 if (left_nritems == 0)
2489 goto out_unlock;
2491 return __push_leaf_right(trans, root, path, min_data_size, empty,
2492 right, free_space, left_nritems, min_slot);
2493 out_unlock:
2494 btrfs_tree_unlock(right);
2495 free_extent_buffer(right);
2496 return 1;
2500 * push some data in the path leaf to the left, trying to free up at
2501 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2503 * max_slot can put a limit on how far into the leaf we'll push items. The
2504 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2505 * items
2507 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2508 struct btrfs_root *root,
2509 struct btrfs_path *path, int data_size,
2510 int empty, struct extent_buffer *left,
2511 int free_space, u32 right_nritems,
2512 u32 max_slot)
2514 struct btrfs_disk_key disk_key;
2515 struct extent_buffer *right = path->nodes[0];
2516 int i;
2517 int push_space = 0;
2518 int push_items = 0;
2519 struct btrfs_item *item;
2520 u32 old_left_nritems;
2521 u32 nr;
2522 int ret = 0;
2523 int wret;
2524 u32 this_item_size;
2525 u32 old_left_item_size;
2527 if (empty)
2528 nr = min(right_nritems, max_slot);
2529 else
2530 nr = min(right_nritems - 1, max_slot);
2532 for (i = 0; i < nr; i++) {
2533 item = btrfs_item_nr(right, i);
2535 if (!empty && push_items > 0) {
2536 if (path->slots[0] < i)
2537 break;
2538 if (path->slots[0] == i) {
2539 int space = btrfs_leaf_free_space(root, right);
2540 if (space + push_space * 2 > free_space)
2541 break;
2545 if (path->slots[0] == i)
2546 push_space += data_size;
2548 this_item_size = btrfs_item_size(right, item);
2549 if (this_item_size + sizeof(*item) + push_space > free_space)
2550 break;
2552 push_items++;
2553 push_space += this_item_size + sizeof(*item);
2556 if (push_items == 0) {
2557 ret = 1;
2558 goto out;
2560 if (!empty && push_items == btrfs_header_nritems(right))
2561 WARN_ON(1);
2563 /* push data from right to left */
2564 copy_extent_buffer(left, right,
2565 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2566 btrfs_item_nr_offset(0),
2567 push_items * sizeof(struct btrfs_item));
2569 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2570 btrfs_item_offset_nr(right, push_items - 1);
2572 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2573 leaf_data_end(root, left) - push_space,
2574 btrfs_leaf_data(right) +
2575 btrfs_item_offset_nr(right, push_items - 1),
2576 push_space);
2577 old_left_nritems = btrfs_header_nritems(left);
2578 BUG_ON(old_left_nritems <= 0);
2580 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2581 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2582 u32 ioff;
2584 item = btrfs_item_nr(left, i);
2586 ioff = btrfs_item_offset(left, item);
2587 btrfs_set_item_offset(left, item,
2588 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2590 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2592 /* fixup right node */
2593 if (push_items > right_nritems) {
2594 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2595 right_nritems);
2596 WARN_ON(1);
2599 if (push_items < right_nritems) {
2600 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2601 leaf_data_end(root, right);
2602 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2603 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2604 btrfs_leaf_data(right) +
2605 leaf_data_end(root, right), push_space);
2607 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2608 btrfs_item_nr_offset(push_items),
2609 (btrfs_header_nritems(right) - push_items) *
2610 sizeof(struct btrfs_item));
2612 right_nritems -= push_items;
2613 btrfs_set_header_nritems(right, right_nritems);
2614 push_space = BTRFS_LEAF_DATA_SIZE(root);
2615 for (i = 0; i < right_nritems; i++) {
2616 item = btrfs_item_nr(right, i);
2618 push_space = push_space - btrfs_item_size(right, item);
2619 btrfs_set_item_offset(right, item, push_space);
2622 btrfs_mark_buffer_dirty(left);
2623 if (right_nritems)
2624 btrfs_mark_buffer_dirty(right);
2625 else
2626 clean_tree_block(trans, root, right);
2628 btrfs_item_key(right, &disk_key, 0);
2629 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2630 if (wret)
2631 ret = wret;
2633 /* then fixup the leaf pointer in the path */
2634 if (path->slots[0] < push_items) {
2635 path->slots[0] += old_left_nritems;
2636 btrfs_tree_unlock(path->nodes[0]);
2637 free_extent_buffer(path->nodes[0]);
2638 path->nodes[0] = left;
2639 path->slots[1] -= 1;
2640 } else {
2641 btrfs_tree_unlock(left);
2642 free_extent_buffer(left);
2643 path->slots[0] -= push_items;
2645 BUG_ON(path->slots[0] < 0);
2646 return ret;
2647 out:
2648 btrfs_tree_unlock(left);
2649 free_extent_buffer(left);
2650 return ret;
2654 * push some data in the path leaf to the left, trying to free up at
2655 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2657 * max_slot can put a limit on how far into the leaf we'll push items. The
2658 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
2659 * items
2661 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2662 *root, struct btrfs_path *path, int min_data_size,
2663 int data_size, int empty, u32 max_slot)
2665 struct extent_buffer *right = path->nodes[0];
2666 struct extent_buffer *left;
2667 int slot;
2668 int free_space;
2669 u32 right_nritems;
2670 int ret = 0;
2672 slot = path->slots[1];
2673 if (slot == 0)
2674 return 1;
2675 if (!path->nodes[1])
2676 return 1;
2678 right_nritems = btrfs_header_nritems(right);
2679 if (right_nritems == 0)
2680 return 1;
2682 btrfs_assert_tree_locked(path->nodes[1]);
2684 left = read_node_slot(root, path->nodes[1], slot - 1);
2685 if (left == NULL)
2686 return 1;
2688 btrfs_tree_lock(left);
2689 btrfs_set_lock_blocking(left);
2691 free_space = btrfs_leaf_free_space(root, left);
2692 if (free_space < data_size) {
2693 ret = 1;
2694 goto out;
2697 /* cow and double check */
2698 ret = btrfs_cow_block(trans, root, left,
2699 path->nodes[1], slot - 1, &left);
2700 if (ret) {
2701 /* we hit -ENOSPC, but it isn't fatal here */
2702 ret = 1;
2703 goto out;
2706 free_space = btrfs_leaf_free_space(root, left);
2707 if (free_space < data_size) {
2708 ret = 1;
2709 goto out;
2712 return __push_leaf_left(trans, root, path, min_data_size,
2713 empty, left, free_space, right_nritems,
2714 max_slot);
2715 out:
2716 btrfs_tree_unlock(left);
2717 free_extent_buffer(left);
2718 return ret;
2722 * split the path's leaf in two, making sure there is at least data_size
2723 * available for the resulting leaf level of the path.
2725 * returns 0 if all went well and < 0 on failure.
2727 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2728 struct btrfs_root *root,
2729 struct btrfs_path *path,
2730 struct extent_buffer *l,
2731 struct extent_buffer *right,
2732 int slot, int mid, int nritems)
2734 int data_copy_size;
2735 int rt_data_off;
2736 int i;
2737 int ret = 0;
2738 int wret;
2739 struct btrfs_disk_key disk_key;
2741 nritems = nritems - mid;
2742 btrfs_set_header_nritems(right, nritems);
2743 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2745 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2746 btrfs_item_nr_offset(mid),
2747 nritems * sizeof(struct btrfs_item));
2749 copy_extent_buffer(right, l,
2750 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2751 data_copy_size, btrfs_leaf_data(l) +
2752 leaf_data_end(root, l), data_copy_size);
2754 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2755 btrfs_item_end_nr(l, mid);
2757 for (i = 0; i < nritems; i++) {
2758 struct btrfs_item *item = btrfs_item_nr(right, i);
2759 u32 ioff;
2761 ioff = btrfs_item_offset(right, item);
2762 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2765 btrfs_set_header_nritems(l, mid);
2766 ret = 0;
2767 btrfs_item_key(right, &disk_key, 0);
2768 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2769 path->slots[1] + 1, 1);
2770 if (wret)
2771 ret = wret;
2773 btrfs_mark_buffer_dirty(right);
2774 btrfs_mark_buffer_dirty(l);
2775 BUG_ON(path->slots[0] != slot);
2777 if (mid <= slot) {
2778 btrfs_tree_unlock(path->nodes[0]);
2779 free_extent_buffer(path->nodes[0]);
2780 path->nodes[0] = right;
2781 path->slots[0] -= mid;
2782 path->slots[1] += 1;
2783 } else {
2784 btrfs_tree_unlock(right);
2785 free_extent_buffer(right);
2788 BUG_ON(path->slots[0] < 0);
2790 return ret;
2794 * double splits happen when we need to insert a big item in the middle
2795 * of a leaf. A double split can leave us with 3 mostly empty leaves:
2796 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2797 * A B C
2799 * We avoid this by trying to push the items on either side of our target
2800 * into the adjacent leaves. If all goes well we can avoid the double split
2801 * completely.
2803 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2804 struct btrfs_root *root,
2805 struct btrfs_path *path,
2806 int data_size)
2808 int ret;
2809 int progress = 0;
2810 int slot;
2811 u32 nritems;
2813 slot = path->slots[0];
2816 * try to push all the items after our slot into the
2817 * right leaf
2819 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2820 if (ret < 0)
2821 return ret;
2823 if (ret == 0)
2824 progress++;
2826 nritems = btrfs_header_nritems(path->nodes[0]);
2828 * our goal is to get our slot at the start or end of a leaf. If
2829 * we've done so we're done
2831 if (path->slots[0] == 0 || path->slots[0] == nritems)
2832 return 0;
2834 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2835 return 0;
2837 /* try to push all the items before our slot into the next leaf */
2838 slot = path->slots[0];
2839 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2840 if (ret < 0)
2841 return ret;
2843 if (ret == 0)
2844 progress++;
2846 if (progress)
2847 return 0;
2848 return 1;
2852 * split the path's leaf in two, making sure there is at least data_size
2853 * available for the resulting leaf level of the path.
2855 * returns 0 if all went well and < 0 on failure.
2857 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2858 struct btrfs_root *root,
2859 struct btrfs_key *ins_key,
2860 struct btrfs_path *path, int data_size,
2861 int extend)
2863 struct btrfs_disk_key disk_key;
2864 struct extent_buffer *l;
2865 u32 nritems;
2866 int mid;
2867 int slot;
2868 struct extent_buffer *right;
2869 int ret = 0;
2870 int wret;
2871 int split;
2872 int num_doubles = 0;
2873 int tried_avoid_double = 0;
2875 l = path->nodes[0];
2876 slot = path->slots[0];
2877 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2878 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2879 return -EOVERFLOW;
2881 /* first try to make some room by pushing left and right */
2882 if (data_size) {
2883 wret = push_leaf_right(trans, root, path, data_size,
2884 data_size, 0, 0);
2885 if (wret < 0)
2886 return wret;
2887 if (wret) {
2888 wret = push_leaf_left(trans, root, path, data_size,
2889 data_size, 0, (u32)-1);
2890 if (wret < 0)
2891 return wret;
2893 l = path->nodes[0];
2895 /* did the pushes work? */
2896 if (btrfs_leaf_free_space(root, l) >= data_size)
2897 return 0;
2900 if (!path->nodes[1]) {
2901 ret = insert_new_root(trans, root, path, 1);
2902 if (ret)
2903 return ret;
2905 again:
2906 split = 1;
2907 l = path->nodes[0];
2908 slot = path->slots[0];
2909 nritems = btrfs_header_nritems(l);
2910 mid = (nritems + 1) / 2;
2912 if (mid <= slot) {
2913 if (nritems == 1 ||
2914 leaf_space_used(l, mid, nritems - mid) + data_size >
2915 BTRFS_LEAF_DATA_SIZE(root)) {
2916 if (slot >= nritems) {
2917 split = 0;
2918 } else {
2919 mid = slot;
2920 if (mid != nritems &&
2921 leaf_space_used(l, mid, nritems - mid) +
2922 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2923 if (data_size && !tried_avoid_double)
2924 goto push_for_double;
2925 split = 2;
2929 } else {
2930 if (leaf_space_used(l, 0, mid) + data_size >
2931 BTRFS_LEAF_DATA_SIZE(root)) {
2932 if (!extend && data_size && slot == 0) {
2933 split = 0;
2934 } else if ((extend || !data_size) && slot == 0) {
2935 mid = 1;
2936 } else {
2937 mid = slot;
2938 if (mid != nritems &&
2939 leaf_space_used(l, mid, nritems - mid) +
2940 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2941 if (data_size && !tried_avoid_double)
2942 goto push_for_double;
2943 split = 2 ;
2949 if (split == 0)
2950 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2951 else
2952 btrfs_item_key(l, &disk_key, mid);
2954 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2955 root->root_key.objectid,
2956 &disk_key, 0, l->start, 0);
2957 if (IS_ERR(right))
2958 return PTR_ERR(right);
2960 root_add_used(root, root->leafsize);
2962 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2963 btrfs_set_header_bytenr(right, right->start);
2964 btrfs_set_header_generation(right, trans->transid);
2965 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2966 btrfs_set_header_owner(right, root->root_key.objectid);
2967 btrfs_set_header_level(right, 0);
2968 write_extent_buffer(right, root->fs_info->fsid,
2969 (unsigned long)btrfs_header_fsid(right),
2970 BTRFS_FSID_SIZE);
2972 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2973 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2974 BTRFS_UUID_SIZE);
2976 if (split == 0) {
2977 if (mid <= slot) {
2978 btrfs_set_header_nritems(right, 0);
2979 wret = insert_ptr(trans, root, path,
2980 &disk_key, right->start,
2981 path->slots[1] + 1, 1);
2982 if (wret)
2983 ret = wret;
2985 btrfs_tree_unlock(path->nodes[0]);
2986 free_extent_buffer(path->nodes[0]);
2987 path->nodes[0] = right;
2988 path->slots[0] = 0;
2989 path->slots[1] += 1;
2990 } else {
2991 btrfs_set_header_nritems(right, 0);
2992 wret = insert_ptr(trans, root, path,
2993 &disk_key,
2994 right->start,
2995 path->slots[1], 1);
2996 if (wret)
2997 ret = wret;
2998 btrfs_tree_unlock(path->nodes[0]);
2999 free_extent_buffer(path->nodes[0]);
3000 path->nodes[0] = right;
3001 path->slots[0] = 0;
3002 if (path->slots[1] == 0) {
3003 wret = fixup_low_keys(trans, root,
3004 path, &disk_key, 1);
3005 if (wret)
3006 ret = wret;
3009 btrfs_mark_buffer_dirty(right);
3010 return ret;
3013 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3014 BUG_ON(ret);
3016 if (split == 2) {
3017 BUG_ON(num_doubles != 0);
3018 num_doubles++;
3019 goto again;
3022 return ret;
3024 push_for_double:
3025 push_for_double_split(trans, root, path, data_size);
3026 tried_avoid_double = 1;
3027 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3028 return 0;
3029 goto again;
3032 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3033 struct btrfs_root *root,
3034 struct btrfs_path *path, int ins_len)
3036 struct btrfs_key key;
3037 struct extent_buffer *leaf;
3038 struct btrfs_file_extent_item *fi;
3039 u64 extent_len = 0;
3040 u32 item_size;
3041 int ret;
3043 leaf = path->nodes[0];
3044 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3046 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3047 key.type != BTRFS_EXTENT_CSUM_KEY);
3049 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3050 return 0;
3052 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3053 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3054 fi = btrfs_item_ptr(leaf, path->slots[0],
3055 struct btrfs_file_extent_item);
3056 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3058 btrfs_release_path(path);
3060 path->keep_locks = 1;
3061 path->search_for_split = 1;
3062 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3063 path->search_for_split = 0;
3064 if (ret < 0)
3065 goto err;
3067 ret = -EAGAIN;
3068 leaf = path->nodes[0];
3069 /* if our item isn't there or got smaller, return now */
3070 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3071 goto err;
3073 /* the leaf has changed, it now has room. return now */
3074 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3075 goto err;
3077 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3078 fi = btrfs_item_ptr(leaf, path->slots[0],
3079 struct btrfs_file_extent_item);
3080 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3081 goto err;
3084 btrfs_set_path_blocking(path);
3085 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3086 if (ret)
3087 goto err;
3089 path->keep_locks = 0;
3090 btrfs_unlock_up_safe(path, 1);
3091 return 0;
3092 err:
3093 path->keep_locks = 0;
3094 return ret;
3097 static noinline int split_item(struct btrfs_trans_handle *trans,
3098 struct btrfs_root *root,
3099 struct btrfs_path *path,
3100 struct btrfs_key *new_key,
3101 unsigned long split_offset)
3103 struct extent_buffer *leaf;
3104 struct btrfs_item *item;
3105 struct btrfs_item *new_item;
3106 int slot;
3107 char *buf;
3108 u32 nritems;
3109 u32 item_size;
3110 u32 orig_offset;
3111 struct btrfs_disk_key disk_key;
3113 leaf = path->nodes[0];
3114 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3116 btrfs_set_path_blocking(path);
3118 item = btrfs_item_nr(leaf, path->slots[0]);
3119 orig_offset = btrfs_item_offset(leaf, item);
3120 item_size = btrfs_item_size(leaf, item);
3122 buf = kmalloc(item_size, GFP_NOFS);
3123 if (!buf)
3124 return -ENOMEM;
3126 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3127 path->slots[0]), item_size);
3129 slot = path->slots[0] + 1;
3130 nritems = btrfs_header_nritems(leaf);
3131 if (slot != nritems) {
3132 /* shift the items */
3133 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3134 btrfs_item_nr_offset(slot),
3135 (nritems - slot) * sizeof(struct btrfs_item));
3138 btrfs_cpu_key_to_disk(&disk_key, new_key);
3139 btrfs_set_item_key(leaf, &disk_key, slot);
3141 new_item = btrfs_item_nr(leaf, slot);
3143 btrfs_set_item_offset(leaf, new_item, orig_offset);
3144 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3146 btrfs_set_item_offset(leaf, item,
3147 orig_offset + item_size - split_offset);
3148 btrfs_set_item_size(leaf, item, split_offset);
3150 btrfs_set_header_nritems(leaf, nritems + 1);
3152 /* write the data for the start of the original item */
3153 write_extent_buffer(leaf, buf,
3154 btrfs_item_ptr_offset(leaf, path->slots[0]),
3155 split_offset);
3157 /* write the data for the new item */
3158 write_extent_buffer(leaf, buf + split_offset,
3159 btrfs_item_ptr_offset(leaf, slot),
3160 item_size - split_offset);
3161 btrfs_mark_buffer_dirty(leaf);
3163 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3164 kfree(buf);
3165 return 0;
3169 * This function splits a single item into two items,
3170 * giving 'new_key' to the new item and splitting the
3171 * old one at split_offset (from the start of the item).
3173 * The path may be released by this operation. After
3174 * the split, the path is pointing to the old item. The
3175 * new item is going to be in the same node as the old one.
3177 * Note, the item being split must be smaller enough to live alone on
3178 * a tree block with room for one extra struct btrfs_item
3180 * This allows us to split the item in place, keeping a lock on the
3181 * leaf the entire time.
3183 int btrfs_split_item(struct btrfs_trans_handle *trans,
3184 struct btrfs_root *root,
3185 struct btrfs_path *path,
3186 struct btrfs_key *new_key,
3187 unsigned long split_offset)
3189 int ret;
3190 ret = setup_leaf_for_split(trans, root, path,
3191 sizeof(struct btrfs_item));
3192 if (ret)
3193 return ret;
3195 ret = split_item(trans, root, path, new_key, split_offset);
3196 return ret;
3200 * This function duplicate a item, giving 'new_key' to the new item.
3201 * It guarantees both items live in the same tree leaf and the new item
3202 * is contiguous with the original item.
3204 * This allows us to split file extent in place, keeping a lock on the
3205 * leaf the entire time.
3207 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3208 struct btrfs_root *root,
3209 struct btrfs_path *path,
3210 struct btrfs_key *new_key)
3212 struct extent_buffer *leaf;
3213 int ret;
3214 u32 item_size;
3216 leaf = path->nodes[0];
3217 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3218 ret = setup_leaf_for_split(trans, root, path,
3219 item_size + sizeof(struct btrfs_item));
3220 if (ret)
3221 return ret;
3223 path->slots[0]++;
3224 ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3225 item_size, item_size +
3226 sizeof(struct btrfs_item), 1);
3227 BUG_ON(ret);
3229 leaf = path->nodes[0];
3230 memcpy_extent_buffer(leaf,
3231 btrfs_item_ptr_offset(leaf, path->slots[0]),
3232 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3233 item_size);
3234 return 0;
3238 * make the item pointed to by the path smaller. new_size indicates
3239 * how small to make it, and from_end tells us if we just chop bytes
3240 * off the end of the item or if we shift the item to chop bytes off
3241 * the front.
3243 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *root,
3245 struct btrfs_path *path,
3246 u32 new_size, int from_end)
3248 int slot;
3249 struct extent_buffer *leaf;
3250 struct btrfs_item *item;
3251 u32 nritems;
3252 unsigned int data_end;
3253 unsigned int old_data_start;
3254 unsigned int old_size;
3255 unsigned int size_diff;
3256 int i;
3258 leaf = path->nodes[0];
3259 slot = path->slots[0];
3261 old_size = btrfs_item_size_nr(leaf, slot);
3262 if (old_size == new_size)
3263 return 0;
3265 nritems = btrfs_header_nritems(leaf);
3266 data_end = leaf_data_end(root, leaf);
3268 old_data_start = btrfs_item_offset_nr(leaf, slot);
3270 size_diff = old_size - new_size;
3272 BUG_ON(slot < 0);
3273 BUG_ON(slot >= nritems);
3276 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3278 /* first correct the data pointers */
3279 for (i = slot; i < nritems; i++) {
3280 u32 ioff;
3281 item = btrfs_item_nr(leaf, i);
3283 ioff = btrfs_item_offset(leaf, item);
3284 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3287 /* shift the data */
3288 if (from_end) {
3289 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3290 data_end + size_diff, btrfs_leaf_data(leaf) +
3291 data_end, old_data_start + new_size - data_end);
3292 } else {
3293 struct btrfs_disk_key disk_key;
3294 u64 offset;
3296 btrfs_item_key(leaf, &disk_key, slot);
3298 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3299 unsigned long ptr;
3300 struct btrfs_file_extent_item *fi;
3302 fi = btrfs_item_ptr(leaf, slot,
3303 struct btrfs_file_extent_item);
3304 fi = (struct btrfs_file_extent_item *)(
3305 (unsigned long)fi - size_diff);
3307 if (btrfs_file_extent_type(leaf, fi) ==
3308 BTRFS_FILE_EXTENT_INLINE) {
3309 ptr = btrfs_item_ptr_offset(leaf, slot);
3310 memmove_extent_buffer(leaf, ptr,
3311 (unsigned long)fi,
3312 offsetof(struct btrfs_file_extent_item,
3313 disk_bytenr));
3317 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3318 data_end + size_diff, btrfs_leaf_data(leaf) +
3319 data_end, old_data_start - data_end);
3321 offset = btrfs_disk_key_offset(&disk_key);
3322 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3323 btrfs_set_item_key(leaf, &disk_key, slot);
3324 if (slot == 0)
3325 fixup_low_keys(trans, root, path, &disk_key, 1);
3328 item = btrfs_item_nr(leaf, slot);
3329 btrfs_set_item_size(leaf, item, new_size);
3330 btrfs_mark_buffer_dirty(leaf);
3332 if (btrfs_leaf_free_space(root, leaf) < 0) {
3333 btrfs_print_leaf(root, leaf);
3334 BUG();
3336 return 0;
3340 * make the item pointed to by the path bigger, data_size is the new size.
3342 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3343 struct btrfs_root *root, struct btrfs_path *path,
3344 u32 data_size)
3346 int slot;
3347 struct extent_buffer *leaf;
3348 struct btrfs_item *item;
3349 u32 nritems;
3350 unsigned int data_end;
3351 unsigned int old_data;
3352 unsigned int old_size;
3353 int i;
3355 leaf = path->nodes[0];
3357 nritems = btrfs_header_nritems(leaf);
3358 data_end = leaf_data_end(root, leaf);
3360 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3361 btrfs_print_leaf(root, leaf);
3362 BUG();
3364 slot = path->slots[0];
3365 old_data = btrfs_item_end_nr(leaf, slot);
3367 BUG_ON(slot < 0);
3368 if (slot >= nritems) {
3369 btrfs_print_leaf(root, leaf);
3370 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3371 slot, nritems);
3372 BUG_ON(1);
3376 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3378 /* first correct the data pointers */
3379 for (i = slot; i < nritems; i++) {
3380 u32 ioff;
3381 item = btrfs_item_nr(leaf, i);
3383 ioff = btrfs_item_offset(leaf, item);
3384 btrfs_set_item_offset(leaf, item, ioff - data_size);
3387 /* shift the data */
3388 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3389 data_end - data_size, btrfs_leaf_data(leaf) +
3390 data_end, old_data - data_end);
3392 data_end = old_data;
3393 old_size = btrfs_item_size_nr(leaf, slot);
3394 item = btrfs_item_nr(leaf, slot);
3395 btrfs_set_item_size(leaf, item, old_size + data_size);
3396 btrfs_mark_buffer_dirty(leaf);
3398 if (btrfs_leaf_free_space(root, leaf) < 0) {
3399 btrfs_print_leaf(root, leaf);
3400 BUG();
3402 return 0;
3406 * Given a key and some data, insert items into the tree.
3407 * This does all the path init required, making room in the tree if needed.
3408 * Returns the number of keys that were inserted.
3410 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3411 struct btrfs_root *root,
3412 struct btrfs_path *path,
3413 struct btrfs_key *cpu_key, u32 *data_size,
3414 int nr)
3416 struct extent_buffer *leaf;
3417 struct btrfs_item *item;
3418 int ret = 0;
3419 int slot;
3420 int i;
3421 u32 nritems;
3422 u32 total_data = 0;
3423 u32 total_size = 0;
3424 unsigned int data_end;
3425 struct btrfs_disk_key disk_key;
3426 struct btrfs_key found_key;
3428 for (i = 0; i < nr; i++) {
3429 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3430 BTRFS_LEAF_DATA_SIZE(root)) {
3431 break;
3432 nr = i;
3434 total_data += data_size[i];
3435 total_size += data_size[i] + sizeof(struct btrfs_item);
3437 BUG_ON(nr == 0);
3439 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3440 if (ret == 0)
3441 return -EEXIST;
3442 if (ret < 0)
3443 goto out;
3445 leaf = path->nodes[0];
3447 nritems = btrfs_header_nritems(leaf);
3448 data_end = leaf_data_end(root, leaf);
3450 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3451 for (i = nr; i >= 0; i--) {
3452 total_data -= data_size[i];
3453 total_size -= data_size[i] + sizeof(struct btrfs_item);
3454 if (total_size < btrfs_leaf_free_space(root, leaf))
3455 break;
3457 nr = i;
3460 slot = path->slots[0];
3461 BUG_ON(slot < 0);
3463 if (slot != nritems) {
3464 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3466 item = btrfs_item_nr(leaf, slot);
3467 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3469 /* figure out how many keys we can insert in here */
3470 total_data = data_size[0];
3471 for (i = 1; i < nr; i++) {
3472 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3473 break;
3474 total_data += data_size[i];
3476 nr = i;
3478 if (old_data < data_end) {
3479 btrfs_print_leaf(root, leaf);
3480 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3481 slot, old_data, data_end);
3482 BUG_ON(1);
3485 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3487 /* first correct the data pointers */
3488 for (i = slot; i < nritems; i++) {
3489 u32 ioff;
3491 item = btrfs_item_nr(leaf, i);
3492 ioff = btrfs_item_offset(leaf, item);
3493 btrfs_set_item_offset(leaf, item, ioff - total_data);
3495 /* shift the items */
3496 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3497 btrfs_item_nr_offset(slot),
3498 (nritems - slot) * sizeof(struct btrfs_item));
3500 /* shift the data */
3501 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3502 data_end - total_data, btrfs_leaf_data(leaf) +
3503 data_end, old_data - data_end);
3504 data_end = old_data;
3505 } else {
3507 * this sucks but it has to be done, if we are inserting at
3508 * the end of the leaf only insert 1 of the items, since we
3509 * have no way of knowing whats on the next leaf and we'd have
3510 * to drop our current locks to figure it out
3512 nr = 1;
3515 /* setup the item for the new data */
3516 for (i = 0; i < nr; i++) {
3517 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3518 btrfs_set_item_key(leaf, &disk_key, slot + i);
3519 item = btrfs_item_nr(leaf, slot + i);
3520 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3521 data_end -= data_size[i];
3522 btrfs_set_item_size(leaf, item, data_size[i]);
3524 btrfs_set_header_nritems(leaf, nritems + nr);
3525 btrfs_mark_buffer_dirty(leaf);
3527 ret = 0;
3528 if (slot == 0) {
3529 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3530 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3533 if (btrfs_leaf_free_space(root, leaf) < 0) {
3534 btrfs_print_leaf(root, leaf);
3535 BUG();
3537 out:
3538 if (!ret)
3539 ret = nr;
3540 return ret;
3544 * this is a helper for btrfs_insert_empty_items, the main goal here is
3545 * to save stack depth by doing the bulk of the work in a function
3546 * that doesn't call btrfs_search_slot
3548 int setup_items_for_insert(struct btrfs_trans_handle *trans,
3549 struct btrfs_root *root, struct btrfs_path *path,
3550 struct btrfs_key *cpu_key, u32 *data_size,
3551 u32 total_data, u32 total_size, int nr)
3553 struct btrfs_item *item;
3554 int i;
3555 u32 nritems;
3556 unsigned int data_end;
3557 struct btrfs_disk_key disk_key;
3558 int ret;
3559 struct extent_buffer *leaf;
3560 int slot;
3562 leaf = path->nodes[0];
3563 slot = path->slots[0];
3565 nritems = btrfs_header_nritems(leaf);
3566 data_end = leaf_data_end(root, leaf);
3568 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3569 btrfs_print_leaf(root, leaf);
3570 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3571 total_size, btrfs_leaf_free_space(root, leaf));
3572 BUG();
3575 if (slot != nritems) {
3576 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3578 if (old_data < data_end) {
3579 btrfs_print_leaf(root, leaf);
3580 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3581 slot, old_data, data_end);
3582 BUG_ON(1);
3585 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3587 /* first correct the data pointers */
3588 for (i = slot; i < nritems; i++) {
3589 u32 ioff;
3591 item = btrfs_item_nr(leaf, i);
3592 ioff = btrfs_item_offset(leaf, item);
3593 btrfs_set_item_offset(leaf, item, ioff - total_data);
3595 /* shift the items */
3596 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3597 btrfs_item_nr_offset(slot),
3598 (nritems - slot) * sizeof(struct btrfs_item));
3600 /* shift the data */
3601 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3602 data_end - total_data, btrfs_leaf_data(leaf) +
3603 data_end, old_data - data_end);
3604 data_end = old_data;
3607 /* setup the item for the new data */
3608 for (i = 0; i < nr; i++) {
3609 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3610 btrfs_set_item_key(leaf, &disk_key, slot + i);
3611 item = btrfs_item_nr(leaf, slot + i);
3612 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3613 data_end -= data_size[i];
3614 btrfs_set_item_size(leaf, item, data_size[i]);
3617 btrfs_set_header_nritems(leaf, nritems + nr);
3619 ret = 0;
3620 if (slot == 0) {
3621 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3622 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3624 btrfs_unlock_up_safe(path, 1);
3625 btrfs_mark_buffer_dirty(leaf);
3627 if (btrfs_leaf_free_space(root, leaf) < 0) {
3628 btrfs_print_leaf(root, leaf);
3629 BUG();
3631 return ret;
3635 * Given a key and some data, insert items into the tree.
3636 * This does all the path init required, making room in the tree if needed.
3638 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3639 struct btrfs_root *root,
3640 struct btrfs_path *path,
3641 struct btrfs_key *cpu_key, u32 *data_size,
3642 int nr)
3644 int ret = 0;
3645 int slot;
3646 int i;
3647 u32 total_size = 0;
3648 u32 total_data = 0;
3650 for (i = 0; i < nr; i++)
3651 total_data += data_size[i];
3653 total_size = total_data + (nr * sizeof(struct btrfs_item));
3654 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3655 if (ret == 0)
3656 return -EEXIST;
3657 if (ret < 0)
3658 goto out;
3660 slot = path->slots[0];
3661 BUG_ON(slot < 0);
3663 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3664 total_data, total_size, nr);
3666 out:
3667 return ret;
3671 * Given a key and some data, insert an item into the tree.
3672 * This does all the path init required, making room in the tree if needed.
3674 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3675 *root, struct btrfs_key *cpu_key, void *data, u32
3676 data_size)
3678 int ret = 0;
3679 struct btrfs_path *path;
3680 struct extent_buffer *leaf;
3681 unsigned long ptr;
3683 path = btrfs_alloc_path();
3684 if (!path)
3685 return -ENOMEM;
3686 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3687 if (!ret) {
3688 leaf = path->nodes[0];
3689 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3690 write_extent_buffer(leaf, data, ptr, data_size);
3691 btrfs_mark_buffer_dirty(leaf);
3693 btrfs_free_path(path);
3694 return ret;
3698 * delete the pointer from a given node.
3700 * the tree should have been previously balanced so the deletion does not
3701 * empty a node.
3703 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3704 struct btrfs_path *path, int level, int slot)
3706 struct extent_buffer *parent = path->nodes[level];
3707 u32 nritems;
3708 int ret = 0;
3709 int wret;
3711 nritems = btrfs_header_nritems(parent);
3712 if (slot != nritems - 1) {
3713 memmove_extent_buffer(parent,
3714 btrfs_node_key_ptr_offset(slot),
3715 btrfs_node_key_ptr_offset(slot + 1),
3716 sizeof(struct btrfs_key_ptr) *
3717 (nritems - slot - 1));
3719 nritems--;
3720 btrfs_set_header_nritems(parent, nritems);
3721 if (nritems == 0 && parent == root->node) {
3722 BUG_ON(btrfs_header_level(root->node) != 1);
3723 /* just turn the root into a leaf and break */
3724 btrfs_set_header_level(root->node, 0);
3725 } else if (slot == 0) {
3726 struct btrfs_disk_key disk_key;
3728 btrfs_node_key(parent, &disk_key, 0);
3729 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3730 if (wret)
3731 ret = wret;
3733 btrfs_mark_buffer_dirty(parent);
3734 return ret;
3738 * a helper function to delete the leaf pointed to by path->slots[1] and
3739 * path->nodes[1].
3741 * This deletes the pointer in path->nodes[1] and frees the leaf
3742 * block extent. zero is returned if it all worked out, < 0 otherwise.
3744 * The path must have already been setup for deleting the leaf, including
3745 * all the proper balancing. path->nodes[1] must be locked.
3747 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3748 struct btrfs_root *root,
3749 struct btrfs_path *path,
3750 struct extent_buffer *leaf)
3752 int ret;
3754 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3755 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3756 if (ret)
3757 return ret;
3760 * btrfs_free_extent is expensive, we want to make sure we
3761 * aren't holding any locks when we call it
3763 btrfs_unlock_up_safe(path, 0);
3765 root_sub_used(root, leaf->len);
3767 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3768 return 0;
3771 * delete the item at the leaf level in path. If that empties
3772 * the leaf, remove it from the tree
3774 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3775 struct btrfs_path *path, int slot, int nr)
3777 struct extent_buffer *leaf;
3778 struct btrfs_item *item;
3779 int last_off;
3780 int dsize = 0;
3781 int ret = 0;
3782 int wret;
3783 int i;
3784 u32 nritems;
3786 leaf = path->nodes[0];
3787 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3789 for (i = 0; i < nr; i++)
3790 dsize += btrfs_item_size_nr(leaf, slot + i);
3792 nritems = btrfs_header_nritems(leaf);
3794 if (slot + nr != nritems) {
3795 int data_end = leaf_data_end(root, leaf);
3797 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3798 data_end + dsize,
3799 btrfs_leaf_data(leaf) + data_end,
3800 last_off - data_end);
3802 for (i = slot + nr; i < nritems; i++) {
3803 u32 ioff;
3805 item = btrfs_item_nr(leaf, i);
3806 ioff = btrfs_item_offset(leaf, item);
3807 btrfs_set_item_offset(leaf, item, ioff + dsize);
3810 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3811 btrfs_item_nr_offset(slot + nr),
3812 sizeof(struct btrfs_item) *
3813 (nritems - slot - nr));
3815 btrfs_set_header_nritems(leaf, nritems - nr);
3816 nritems -= nr;
3818 /* delete the leaf if we've emptied it */
3819 if (nritems == 0) {
3820 if (leaf == root->node) {
3821 btrfs_set_header_level(leaf, 0);
3822 } else {
3823 btrfs_set_path_blocking(path);
3824 clean_tree_block(trans, root, leaf);
3825 ret = btrfs_del_leaf(trans, root, path, leaf);
3826 BUG_ON(ret);
3828 } else {
3829 int used = leaf_space_used(leaf, 0, nritems);
3830 if (slot == 0) {
3831 struct btrfs_disk_key disk_key;
3833 btrfs_item_key(leaf, &disk_key, 0);
3834 wret = fixup_low_keys(trans, root, path,
3835 &disk_key, 1);
3836 if (wret)
3837 ret = wret;
3840 /* delete the leaf if it is mostly empty */
3841 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3842 /* push_leaf_left fixes the path.
3843 * make sure the path still points to our leaf
3844 * for possible call to del_ptr below
3846 slot = path->slots[1];
3847 extent_buffer_get(leaf);
3849 btrfs_set_path_blocking(path);
3850 wret = push_leaf_left(trans, root, path, 1, 1,
3851 1, (u32)-1);
3852 if (wret < 0 && wret != -ENOSPC)
3853 ret = wret;
3855 if (path->nodes[0] == leaf &&
3856 btrfs_header_nritems(leaf)) {
3857 wret = push_leaf_right(trans, root, path, 1,
3858 1, 1, 0);
3859 if (wret < 0 && wret != -ENOSPC)
3860 ret = wret;
3863 if (btrfs_header_nritems(leaf) == 0) {
3864 path->slots[1] = slot;
3865 ret = btrfs_del_leaf(trans, root, path, leaf);
3866 BUG_ON(ret);
3867 free_extent_buffer(leaf);
3868 } else {
3869 /* if we're still in the path, make sure
3870 * we're dirty. Otherwise, one of the
3871 * push_leaf functions must have already
3872 * dirtied this buffer
3874 if (path->nodes[0] == leaf)
3875 btrfs_mark_buffer_dirty(leaf);
3876 free_extent_buffer(leaf);
3878 } else {
3879 btrfs_mark_buffer_dirty(leaf);
3882 return ret;
3886 * search the tree again to find a leaf with lesser keys
3887 * returns 0 if it found something or 1 if there are no lesser leaves.
3888 * returns < 0 on io errors.
3890 * This may release the path, and so you may lose any locks held at the
3891 * time you call it.
3893 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3895 struct btrfs_key key;
3896 struct btrfs_disk_key found_key;
3897 int ret;
3899 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3901 if (key.offset > 0)
3902 key.offset--;
3903 else if (key.type > 0)
3904 key.type--;
3905 else if (key.objectid > 0)
3906 key.objectid--;
3907 else
3908 return 1;
3910 btrfs_release_path(path);
3911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3912 if (ret < 0)
3913 return ret;
3914 btrfs_item_key(path->nodes[0], &found_key, 0);
3915 ret = comp_keys(&found_key, &key);
3916 if (ret < 0)
3917 return 0;
3918 return 1;
3922 * A helper function to walk down the tree starting at min_key, and looking
3923 * for nodes or leaves that are either in cache or have a minimum
3924 * transaction id. This is used by the btree defrag code, and tree logging
3926 * This does not cow, but it does stuff the starting key it finds back
3927 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928 * key and get a writable path.
3930 * This does lock as it descends, and path->keep_locks should be set
3931 * to 1 by the caller.
3933 * This honors path->lowest_level to prevent descent past a given level
3934 * of the tree.
3936 * min_trans indicates the oldest transaction that you are interested
3937 * in walking through. Any nodes or leaves older than min_trans are
3938 * skipped over (without reading them).
3940 * returns zero if something useful was found, < 0 on error and 1 if there
3941 * was nothing in the tree that matched the search criteria.
3943 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3944 struct btrfs_key *max_key,
3945 struct btrfs_path *path, int cache_only,
3946 u64 min_trans)
3948 struct extent_buffer *cur;
3949 struct btrfs_key found_key;
3950 int slot;
3951 int sret;
3952 u32 nritems;
3953 int level;
3954 int ret = 1;
3956 WARN_ON(!path->keep_locks);
3957 again:
3958 cur = btrfs_read_lock_root_node(root);
3959 level = btrfs_header_level(cur);
3960 WARN_ON(path->nodes[level]);
3961 path->nodes[level] = cur;
3962 path->locks[level] = BTRFS_READ_LOCK;
3964 if (btrfs_header_generation(cur) < min_trans) {
3965 ret = 1;
3966 goto out;
3968 while (1) {
3969 nritems = btrfs_header_nritems(cur);
3970 level = btrfs_header_level(cur);
3971 sret = bin_search(cur, min_key, level, &slot);
3973 /* at the lowest level, we're done, setup the path and exit */
3974 if (level == path->lowest_level) {
3975 if (slot >= nritems)
3976 goto find_next_key;
3977 ret = 0;
3978 path->slots[level] = slot;
3979 btrfs_item_key_to_cpu(cur, &found_key, slot);
3980 goto out;
3982 if (sret && slot > 0)
3983 slot--;
3985 * check this node pointer against the cache_only and
3986 * min_trans parameters. If it isn't in cache or is too
3987 * old, skip to the next one.
3989 while (slot < nritems) {
3990 u64 blockptr;
3991 u64 gen;
3992 struct extent_buffer *tmp;
3993 struct btrfs_disk_key disk_key;
3995 blockptr = btrfs_node_blockptr(cur, slot);
3996 gen = btrfs_node_ptr_generation(cur, slot);
3997 if (gen < min_trans) {
3998 slot++;
3999 continue;
4001 if (!cache_only)
4002 break;
4004 if (max_key) {
4005 btrfs_node_key(cur, &disk_key, slot);
4006 if (comp_keys(&disk_key, max_key) >= 0) {
4007 ret = 1;
4008 goto out;
4012 tmp = btrfs_find_tree_block(root, blockptr,
4013 btrfs_level_size(root, level - 1));
4015 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4016 free_extent_buffer(tmp);
4017 break;
4019 if (tmp)
4020 free_extent_buffer(tmp);
4021 slot++;
4023 find_next_key:
4025 * we didn't find a candidate key in this node, walk forward
4026 * and find another one
4028 if (slot >= nritems) {
4029 path->slots[level] = slot;
4030 btrfs_set_path_blocking(path);
4031 sret = btrfs_find_next_key(root, path, min_key, level,
4032 cache_only, min_trans);
4033 if (sret == 0) {
4034 btrfs_release_path(path);
4035 goto again;
4036 } else {
4037 goto out;
4040 /* save our key for returning back */
4041 btrfs_node_key_to_cpu(cur, &found_key, slot);
4042 path->slots[level] = slot;
4043 if (level == path->lowest_level) {
4044 ret = 0;
4045 unlock_up(path, level, 1);
4046 goto out;
4048 btrfs_set_path_blocking(path);
4049 cur = read_node_slot(root, cur, slot);
4050 BUG_ON(!cur);
4052 btrfs_tree_read_lock(cur);
4054 path->locks[level - 1] = BTRFS_READ_LOCK;
4055 path->nodes[level - 1] = cur;
4056 unlock_up(path, level, 1);
4057 btrfs_clear_path_blocking(path, NULL, 0);
4059 out:
4060 if (ret == 0)
4061 memcpy(min_key, &found_key, sizeof(found_key));
4062 btrfs_set_path_blocking(path);
4063 return ret;
4067 * this is similar to btrfs_next_leaf, but does not try to preserve
4068 * and fixup the path. It looks for and returns the next key in the
4069 * tree based on the current path and the cache_only and min_trans
4070 * parameters.
4072 * 0 is returned if another key is found, < 0 if there are any errors
4073 * and 1 is returned if there are no higher keys in the tree
4075 * path->keep_locks should be set to 1 on the search made before
4076 * calling this function.
4078 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4079 struct btrfs_key *key, int level,
4080 int cache_only, u64 min_trans)
4082 int slot;
4083 struct extent_buffer *c;
4085 WARN_ON(!path->keep_locks);
4086 while (level < BTRFS_MAX_LEVEL) {
4087 if (!path->nodes[level])
4088 return 1;
4090 slot = path->slots[level] + 1;
4091 c = path->nodes[level];
4092 next:
4093 if (slot >= btrfs_header_nritems(c)) {
4094 int ret;
4095 int orig_lowest;
4096 struct btrfs_key cur_key;
4097 if (level + 1 >= BTRFS_MAX_LEVEL ||
4098 !path->nodes[level + 1])
4099 return 1;
4101 if (path->locks[level + 1]) {
4102 level++;
4103 continue;
4106 slot = btrfs_header_nritems(c) - 1;
4107 if (level == 0)
4108 btrfs_item_key_to_cpu(c, &cur_key, slot);
4109 else
4110 btrfs_node_key_to_cpu(c, &cur_key, slot);
4112 orig_lowest = path->lowest_level;
4113 btrfs_release_path(path);
4114 path->lowest_level = level;
4115 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4116 0, 0);
4117 path->lowest_level = orig_lowest;
4118 if (ret < 0)
4119 return ret;
4121 c = path->nodes[level];
4122 slot = path->slots[level];
4123 if (ret == 0)
4124 slot++;
4125 goto next;
4128 if (level == 0)
4129 btrfs_item_key_to_cpu(c, key, slot);
4130 else {
4131 u64 blockptr = btrfs_node_blockptr(c, slot);
4132 u64 gen = btrfs_node_ptr_generation(c, slot);
4134 if (cache_only) {
4135 struct extent_buffer *cur;
4136 cur = btrfs_find_tree_block(root, blockptr,
4137 btrfs_level_size(root, level - 1));
4138 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4139 slot++;
4140 if (cur)
4141 free_extent_buffer(cur);
4142 goto next;
4144 free_extent_buffer(cur);
4146 if (gen < min_trans) {
4147 slot++;
4148 goto next;
4150 btrfs_node_key_to_cpu(c, key, slot);
4152 return 0;
4154 return 1;
4158 * search the tree again to find a leaf with greater keys
4159 * returns 0 if it found something or 1 if there are no greater leaves.
4160 * returns < 0 on io errors.
4162 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4164 int slot;
4165 int level;
4166 struct extent_buffer *c;
4167 struct extent_buffer *next;
4168 struct btrfs_key key;
4169 u32 nritems;
4170 int ret;
4171 int old_spinning = path->leave_spinning;
4172 int next_rw_lock = 0;
4174 nritems = btrfs_header_nritems(path->nodes[0]);
4175 if (nritems == 0)
4176 return 1;
4178 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4179 again:
4180 level = 1;
4181 next = NULL;
4182 next_rw_lock = 0;
4183 btrfs_release_path(path);
4185 path->keep_locks = 1;
4186 path->leave_spinning = 1;
4188 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4189 path->keep_locks = 0;
4191 if (ret < 0)
4192 return ret;
4194 nritems = btrfs_header_nritems(path->nodes[0]);
4196 * by releasing the path above we dropped all our locks. A balance
4197 * could have added more items next to the key that used to be
4198 * at the very end of the block. So, check again here and
4199 * advance the path if there are now more items available.
4201 if (nritems > 0 && path->slots[0] < nritems - 1) {
4202 if (ret == 0)
4203 path->slots[0]++;
4204 ret = 0;
4205 goto done;
4208 while (level < BTRFS_MAX_LEVEL) {
4209 if (!path->nodes[level]) {
4210 ret = 1;
4211 goto done;
4214 slot = path->slots[level] + 1;
4215 c = path->nodes[level];
4216 if (slot >= btrfs_header_nritems(c)) {
4217 level++;
4218 if (level == BTRFS_MAX_LEVEL) {
4219 ret = 1;
4220 goto done;
4222 continue;
4225 if (next) {
4226 btrfs_tree_unlock_rw(next, next_rw_lock);
4227 free_extent_buffer(next);
4230 next = c;
4231 next_rw_lock = path->locks[level];
4232 ret = read_block_for_search(NULL, root, path, &next, level,
4233 slot, &key);
4234 if (ret == -EAGAIN)
4235 goto again;
4237 if (ret < 0) {
4238 btrfs_release_path(path);
4239 goto done;
4242 if (!path->skip_locking) {
4243 ret = btrfs_try_tree_read_lock(next);
4244 if (!ret) {
4245 btrfs_set_path_blocking(path);
4246 btrfs_tree_read_lock(next);
4247 btrfs_clear_path_blocking(path, next,
4248 BTRFS_READ_LOCK);
4250 next_rw_lock = BTRFS_READ_LOCK;
4252 break;
4254 path->slots[level] = slot;
4255 while (1) {
4256 level--;
4257 c = path->nodes[level];
4258 if (path->locks[level])
4259 btrfs_tree_unlock_rw(c, path->locks[level]);
4261 free_extent_buffer(c);
4262 path->nodes[level] = next;
4263 path->slots[level] = 0;
4264 if (!path->skip_locking)
4265 path->locks[level] = next_rw_lock;
4266 if (!level)
4267 break;
4269 ret = read_block_for_search(NULL, root, path, &next, level,
4270 0, &key);
4271 if (ret == -EAGAIN)
4272 goto again;
4274 if (ret < 0) {
4275 btrfs_release_path(path);
4276 goto done;
4279 if (!path->skip_locking) {
4280 ret = btrfs_try_tree_read_lock(next);
4281 if (!ret) {
4282 btrfs_set_path_blocking(path);
4283 btrfs_tree_read_lock(next);
4284 btrfs_clear_path_blocking(path, next,
4285 BTRFS_READ_LOCK);
4287 next_rw_lock = BTRFS_READ_LOCK;
4290 ret = 0;
4291 done:
4292 unlock_up(path, 0, 1);
4293 path->leave_spinning = old_spinning;
4294 if (!old_spinning)
4295 btrfs_set_path_blocking(path);
4297 return ret;
4301 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4302 * searching until it gets past min_objectid or finds an item of 'type'
4304 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4306 int btrfs_previous_item(struct btrfs_root *root,
4307 struct btrfs_path *path, u64 min_objectid,
4308 int type)
4310 struct btrfs_key found_key;
4311 struct extent_buffer *leaf;
4312 u32 nritems;
4313 int ret;
4315 while (1) {
4316 if (path->slots[0] == 0) {
4317 btrfs_set_path_blocking(path);
4318 ret = btrfs_prev_leaf(root, path);
4319 if (ret != 0)
4320 return ret;
4321 } else {
4322 path->slots[0]--;
4324 leaf = path->nodes[0];
4325 nritems = btrfs_header_nritems(leaf);
4326 if (nritems == 0)
4327 return 1;
4328 if (path->slots[0] == nritems)
4329 path->slots[0]--;
4331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4332 if (found_key.objectid < min_objectid)
4333 break;
4334 if (found_key.type == type)
4335 return 0;
4336 if (found_key.objectid == min_objectid &&
4337 found_key.type < type)
4338 break;
4340 return 1;