2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
42 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
55 trace_ext4_begin_ordered_truncate(inode
, new_size
);
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
62 if (!EXT4_I(inode
)->jinode
)
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
65 EXT4_I(inode
)->jinode
,
69 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
70 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
71 struct buffer_head
*bh_result
, int create
);
72 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
73 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
74 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
75 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
78 * Test whether an inode is a fast symlink.
80 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
82 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
83 (inode
->i_sb
->s_blocksize
>> 9) : 0;
85 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
93 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
104 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
105 jbd_debug(2, "restarting handle %p\n", handle
);
106 up_write(&EXT4_I(inode
)->i_data_sem
);
107 ret
= ext4_journal_restart(handle
, nblocks
);
108 down_write(&EXT4_I(inode
)->i_data_sem
);
109 ext4_discard_preallocations(inode
);
115 * Called at the last iput() if i_nlink is zero.
117 void ext4_evict_inode(struct inode
*inode
)
122 trace_ext4_evict_inode(inode
);
124 mutex_lock(&inode
->i_mutex
);
125 ext4_flush_completed_IO(inode
);
126 mutex_unlock(&inode
->i_mutex
);
127 ext4_ioend_wait(inode
);
129 if (inode
->i_nlink
) {
131 * When journalling data dirty buffers are tracked only in the
132 * journal. So although mm thinks everything is clean and
133 * ready for reaping the inode might still have some pages to
134 * write in the running transaction or waiting to be
135 * checkpointed. Thus calling jbd2_journal_invalidatepage()
136 * (via truncate_inode_pages()) to discard these buffers can
137 * cause data loss. Also even if we did not discard these
138 * buffers, we would have no way to find them after the inode
139 * is reaped and thus user could see stale data if he tries to
140 * read them before the transaction is checkpointed. So be
141 * careful and force everything to disk here... We use
142 * ei->i_datasync_tid to store the newest transaction
143 * containing inode's data.
145 * Note that directories do not have this problem because they
146 * don't use page cache.
148 if (ext4_should_journal_data(inode
) &&
149 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
150 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
151 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
153 jbd2_log_start_commit(journal
, commit_tid
);
154 jbd2_log_wait_commit(journal
, commit_tid
);
155 filemap_write_and_wait(&inode
->i_data
);
157 truncate_inode_pages(&inode
->i_data
, 0);
161 if (!is_bad_inode(inode
))
162 dquot_initialize(inode
);
164 if (ext4_should_order_data(inode
))
165 ext4_begin_ordered_truncate(inode
, 0);
166 truncate_inode_pages(&inode
->i_data
, 0);
168 if (is_bad_inode(inode
))
171 handle
= ext4_journal_start(inode
, ext4_blocks_for_truncate(inode
)+3);
172 if (IS_ERR(handle
)) {
173 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
175 * If we're going to skip the normal cleanup, we still need to
176 * make sure that the in-core orphan linked list is properly
179 ext4_orphan_del(NULL
, inode
);
184 ext4_handle_sync(handle
);
186 err
= ext4_mark_inode_dirty(handle
, inode
);
188 ext4_warning(inode
->i_sb
,
189 "couldn't mark inode dirty (err %d)", err
);
193 ext4_truncate(inode
);
196 * ext4_ext_truncate() doesn't reserve any slop when it
197 * restarts journal transactions; therefore there may not be
198 * enough credits left in the handle to remove the inode from
199 * the orphan list and set the dtime field.
201 if (!ext4_handle_has_enough_credits(handle
, 3)) {
202 err
= ext4_journal_extend(handle
, 3);
204 err
= ext4_journal_restart(handle
, 3);
206 ext4_warning(inode
->i_sb
,
207 "couldn't extend journal (err %d)", err
);
209 ext4_journal_stop(handle
);
210 ext4_orphan_del(NULL
, inode
);
216 * Kill off the orphan record which ext4_truncate created.
217 * AKPM: I think this can be inside the above `if'.
218 * Note that ext4_orphan_del() has to be able to cope with the
219 * deletion of a non-existent orphan - this is because we don't
220 * know if ext4_truncate() actually created an orphan record.
221 * (Well, we could do this if we need to, but heck - it works)
223 ext4_orphan_del(handle
, inode
);
224 EXT4_I(inode
)->i_dtime
= get_seconds();
227 * One subtle ordering requirement: if anything has gone wrong
228 * (transaction abort, IO errors, whatever), then we can still
229 * do these next steps (the fs will already have been marked as
230 * having errors), but we can't free the inode if the mark_dirty
233 if (ext4_mark_inode_dirty(handle
, inode
))
234 /* If that failed, just do the required in-core inode clear. */
235 ext4_clear_inode(inode
);
237 ext4_free_inode(handle
, inode
);
238 ext4_journal_stop(handle
);
241 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
245 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
247 return &EXT4_I(inode
)->i_reserved_quota
;
252 * Calculate the number of metadata blocks need to reserve
253 * to allocate a block located at @lblock
255 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
257 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
258 return ext4_ext_calc_metadata_amount(inode
, lblock
);
260 return ext4_ind_calc_metadata_amount(inode
, lblock
);
264 * Called with i_data_sem down, which is important since we can call
265 * ext4_discard_preallocations() from here.
267 void ext4_da_update_reserve_space(struct inode
*inode
,
268 int used
, int quota_claim
)
270 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
271 struct ext4_inode_info
*ei
= EXT4_I(inode
);
273 spin_lock(&ei
->i_block_reservation_lock
);
274 trace_ext4_da_update_reserve_space(inode
, used
);
275 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
276 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
277 "with only %d reserved data blocks\n",
278 __func__
, inode
->i_ino
, used
,
279 ei
->i_reserved_data_blocks
);
281 used
= ei
->i_reserved_data_blocks
;
284 /* Update per-inode reservations */
285 ei
->i_reserved_data_blocks
-= used
;
286 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
287 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
288 used
+ ei
->i_allocated_meta_blocks
);
289 ei
->i_allocated_meta_blocks
= 0;
291 if (ei
->i_reserved_data_blocks
== 0) {
293 * We can release all of the reserved metadata blocks
294 * only when we have written all of the delayed
297 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
298 ei
->i_reserved_meta_blocks
);
299 ei
->i_reserved_meta_blocks
= 0;
300 ei
->i_da_metadata_calc_len
= 0;
302 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
304 /* Update quota subsystem for data blocks */
306 dquot_claim_block(inode
, used
);
309 * We did fallocate with an offset that is already delayed
310 * allocated. So on delayed allocated writeback we should
311 * not re-claim the quota for fallocated blocks.
313 dquot_release_reservation_block(inode
, used
);
317 * If we have done all the pending block allocations and if
318 * there aren't any writers on the inode, we can discard the
319 * inode's preallocations.
321 if ((ei
->i_reserved_data_blocks
== 0) &&
322 (atomic_read(&inode
->i_writecount
) == 0))
323 ext4_discard_preallocations(inode
);
326 static int __check_block_validity(struct inode
*inode
, const char *func
,
328 struct ext4_map_blocks
*map
)
330 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
332 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
333 "lblock %lu mapped to illegal pblock "
334 "(length %d)", (unsigned long) map
->m_lblk
,
341 #define check_block_validity(inode, map) \
342 __check_block_validity((inode), __func__, __LINE__, (map))
345 * Return the number of contiguous dirty pages in a given inode
346 * starting at page frame idx.
348 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
349 unsigned int max_pages
)
351 struct address_space
*mapping
= inode
->i_mapping
;
355 int i
, nr_pages
, done
= 0;
359 pagevec_init(&pvec
, 0);
362 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
364 (pgoff_t
)PAGEVEC_SIZE
);
367 for (i
= 0; i
< nr_pages
; i
++) {
368 struct page
*page
= pvec
.pages
[i
];
369 struct buffer_head
*bh
, *head
;
372 if (unlikely(page
->mapping
!= mapping
) ||
374 PageWriteback(page
) ||
375 page
->index
!= idx
) {
380 if (page_has_buffers(page
)) {
381 bh
= head
= page_buffers(page
);
383 if (!buffer_delay(bh
) &&
384 !buffer_unwritten(bh
))
386 bh
= bh
->b_this_page
;
387 } while (!done
&& (bh
!= head
));
394 if (num
>= max_pages
) {
399 pagevec_release(&pvec
);
405 * The ext4_map_blocks() function tries to look up the requested blocks,
406 * and returns if the blocks are already mapped.
408 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
409 * and store the allocated blocks in the result buffer head and mark it
412 * If file type is extents based, it will call ext4_ext_map_blocks(),
413 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
416 * On success, it returns the number of blocks being mapped or allocate.
417 * if create==0 and the blocks are pre-allocated and uninitialized block,
418 * the result buffer head is unmapped. If the create ==1, it will make sure
419 * the buffer head is mapped.
421 * It returns 0 if plain look up failed (blocks have not been allocated), in
422 * that casem, buffer head is unmapped
424 * It returns the error in case of allocation failure.
426 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
427 struct ext4_map_blocks
*map
, int flags
)
432 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
433 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
434 (unsigned long) map
->m_lblk
);
436 * Try to see if we can get the block without requesting a new
439 down_read((&EXT4_I(inode
)->i_data_sem
));
440 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
441 retval
= ext4_ext_map_blocks(handle
, inode
, map
, 0);
443 retval
= ext4_ind_map_blocks(handle
, inode
, map
, 0);
445 up_read((&EXT4_I(inode
)->i_data_sem
));
447 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
448 int ret
= check_block_validity(inode
, map
);
453 /* If it is only a block(s) look up */
454 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
458 * Returns if the blocks have already allocated
460 * Note that if blocks have been preallocated
461 * ext4_ext_get_block() returns th create = 0
462 * with buffer head unmapped.
464 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
468 * When we call get_blocks without the create flag, the
469 * BH_Unwritten flag could have gotten set if the blocks
470 * requested were part of a uninitialized extent. We need to
471 * clear this flag now that we are committed to convert all or
472 * part of the uninitialized extent to be an initialized
473 * extent. This is because we need to avoid the combination
474 * of BH_Unwritten and BH_Mapped flags being simultaneously
475 * set on the buffer_head.
477 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
480 * New blocks allocate and/or writing to uninitialized extent
481 * will possibly result in updating i_data, so we take
482 * the write lock of i_data_sem, and call get_blocks()
483 * with create == 1 flag.
485 down_write((&EXT4_I(inode
)->i_data_sem
));
488 * if the caller is from delayed allocation writeout path
489 * we have already reserved fs blocks for allocation
490 * let the underlying get_block() function know to
491 * avoid double accounting
493 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
494 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
496 * We need to check for EXT4 here because migrate
497 * could have changed the inode type in between
499 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
500 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
502 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
504 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
506 * We allocated new blocks which will result in
507 * i_data's format changing. Force the migrate
508 * to fail by clearing migrate flags
510 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
514 * Update reserved blocks/metadata blocks after successful
515 * block allocation which had been deferred till now. We don't
516 * support fallocate for non extent files. So we can update
517 * reserve space here.
520 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
521 ext4_da_update_reserve_space(inode
, retval
, 1);
523 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
524 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
526 up_write((&EXT4_I(inode
)->i_data_sem
));
527 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
528 int ret
= check_block_validity(inode
, map
);
535 /* Maximum number of blocks we map for direct IO at once. */
536 #define DIO_MAX_BLOCKS 4096
538 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
539 struct buffer_head
*bh
, int flags
)
541 handle_t
*handle
= ext4_journal_current_handle();
542 struct ext4_map_blocks map
;
543 int ret
= 0, started
= 0;
547 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
549 if (flags
&& !handle
) {
550 /* Direct IO write... */
551 if (map
.m_len
> DIO_MAX_BLOCKS
)
552 map
.m_len
= DIO_MAX_BLOCKS
;
553 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
554 handle
= ext4_journal_start(inode
, dio_credits
);
555 if (IS_ERR(handle
)) {
556 ret
= PTR_ERR(handle
);
562 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
564 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
565 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
566 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
570 ext4_journal_stop(handle
);
574 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
575 struct buffer_head
*bh
, int create
)
577 return _ext4_get_block(inode
, iblock
, bh
,
578 create
? EXT4_GET_BLOCKS_CREATE
: 0);
582 * `handle' can be NULL if create is zero
584 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
585 ext4_lblk_t block
, int create
, int *errp
)
587 struct ext4_map_blocks map
;
588 struct buffer_head
*bh
;
591 J_ASSERT(handle
!= NULL
|| create
== 0);
595 err
= ext4_map_blocks(handle
, inode
, &map
,
596 create
? EXT4_GET_BLOCKS_CREATE
: 0);
604 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
609 if (map
.m_flags
& EXT4_MAP_NEW
) {
610 J_ASSERT(create
!= 0);
611 J_ASSERT(handle
!= NULL
);
614 * Now that we do not always journal data, we should
615 * keep in mind whether this should always journal the
616 * new buffer as metadata. For now, regular file
617 * writes use ext4_get_block instead, so it's not a
621 BUFFER_TRACE(bh
, "call get_create_access");
622 fatal
= ext4_journal_get_create_access(handle
, bh
);
623 if (!fatal
&& !buffer_uptodate(bh
)) {
624 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
625 set_buffer_uptodate(bh
);
628 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
629 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
633 BUFFER_TRACE(bh
, "not a new buffer");
643 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
644 ext4_lblk_t block
, int create
, int *err
)
646 struct buffer_head
*bh
;
648 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
651 if (buffer_uptodate(bh
))
653 ll_rw_block(READ_META
, 1, &bh
);
655 if (buffer_uptodate(bh
))
662 static int walk_page_buffers(handle_t
*handle
,
663 struct buffer_head
*head
,
667 int (*fn
)(handle_t
*handle
,
668 struct buffer_head
*bh
))
670 struct buffer_head
*bh
;
671 unsigned block_start
, block_end
;
672 unsigned blocksize
= head
->b_size
;
674 struct buffer_head
*next
;
676 for (bh
= head
, block_start
= 0;
677 ret
== 0 && (bh
!= head
|| !block_start
);
678 block_start
= block_end
, bh
= next
) {
679 next
= bh
->b_this_page
;
680 block_end
= block_start
+ blocksize
;
681 if (block_end
<= from
|| block_start
>= to
) {
682 if (partial
&& !buffer_uptodate(bh
))
686 err
= (*fn
)(handle
, bh
);
694 * To preserve ordering, it is essential that the hole instantiation and
695 * the data write be encapsulated in a single transaction. We cannot
696 * close off a transaction and start a new one between the ext4_get_block()
697 * and the commit_write(). So doing the jbd2_journal_start at the start of
698 * prepare_write() is the right place.
700 * Also, this function can nest inside ext4_writepage() ->
701 * block_write_full_page(). In that case, we *know* that ext4_writepage()
702 * has generated enough buffer credits to do the whole page. So we won't
703 * block on the journal in that case, which is good, because the caller may
706 * By accident, ext4 can be reentered when a transaction is open via
707 * quota file writes. If we were to commit the transaction while thus
708 * reentered, there can be a deadlock - we would be holding a quota
709 * lock, and the commit would never complete if another thread had a
710 * transaction open and was blocking on the quota lock - a ranking
713 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
714 * will _not_ run commit under these circumstances because handle->h_ref
715 * is elevated. We'll still have enough credits for the tiny quotafile
718 static int do_journal_get_write_access(handle_t
*handle
,
719 struct buffer_head
*bh
)
721 int dirty
= buffer_dirty(bh
);
724 if (!buffer_mapped(bh
) || buffer_freed(bh
))
727 * __block_write_begin() could have dirtied some buffers. Clean
728 * the dirty bit as jbd2_journal_get_write_access() could complain
729 * otherwise about fs integrity issues. Setting of the dirty bit
730 * by __block_write_begin() isn't a real problem here as we clear
731 * the bit before releasing a page lock and thus writeback cannot
732 * ever write the buffer.
735 clear_buffer_dirty(bh
);
736 ret
= ext4_journal_get_write_access(handle
, bh
);
738 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
742 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
743 struct buffer_head
*bh_result
, int create
);
744 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
745 loff_t pos
, unsigned len
, unsigned flags
,
746 struct page
**pagep
, void **fsdata
)
748 struct inode
*inode
= mapping
->host
;
749 int ret
, needed_blocks
;
756 trace_ext4_write_begin(inode
, pos
, len
, flags
);
758 * Reserve one block more for addition to orphan list in case
759 * we allocate blocks but write fails for some reason
761 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
762 index
= pos
>> PAGE_CACHE_SHIFT
;
763 from
= pos
& (PAGE_CACHE_SIZE
- 1);
767 handle
= ext4_journal_start(inode
, needed_blocks
);
768 if (IS_ERR(handle
)) {
769 ret
= PTR_ERR(handle
);
773 /* We cannot recurse into the filesystem as the transaction is already
775 flags
|= AOP_FLAG_NOFS
;
777 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
779 ext4_journal_stop(handle
);
785 if (ext4_should_dioread_nolock(inode
))
786 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
788 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
790 if (!ret
&& ext4_should_journal_data(inode
)) {
791 ret
= walk_page_buffers(handle
, page_buffers(page
),
792 from
, to
, NULL
, do_journal_get_write_access
);
797 page_cache_release(page
);
799 * __block_write_begin may have instantiated a few blocks
800 * outside i_size. Trim these off again. Don't need
801 * i_size_read because we hold i_mutex.
803 * Add inode to orphan list in case we crash before
806 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
807 ext4_orphan_add(handle
, inode
);
809 ext4_journal_stop(handle
);
810 if (pos
+ len
> inode
->i_size
) {
811 ext4_truncate_failed_write(inode
);
813 * If truncate failed early the inode might
814 * still be on the orphan list; we need to
815 * make sure the inode is removed from the
816 * orphan list in that case.
819 ext4_orphan_del(NULL
, inode
);
823 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
829 /* For write_end() in data=journal mode */
830 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
832 if (!buffer_mapped(bh
) || buffer_freed(bh
))
834 set_buffer_uptodate(bh
);
835 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
838 static int ext4_generic_write_end(struct file
*file
,
839 struct address_space
*mapping
,
840 loff_t pos
, unsigned len
, unsigned copied
,
841 struct page
*page
, void *fsdata
)
843 int i_size_changed
= 0;
844 struct inode
*inode
= mapping
->host
;
845 handle_t
*handle
= ext4_journal_current_handle();
847 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
850 * No need to use i_size_read() here, the i_size
851 * cannot change under us because we hold i_mutex.
853 * But it's important to update i_size while still holding page lock:
854 * page writeout could otherwise come in and zero beyond i_size.
856 if (pos
+ copied
> inode
->i_size
) {
857 i_size_write(inode
, pos
+ copied
);
861 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
862 /* We need to mark inode dirty even if
863 * new_i_size is less that inode->i_size
864 * bu greater than i_disksize.(hint delalloc)
866 ext4_update_i_disksize(inode
, (pos
+ copied
));
870 page_cache_release(page
);
873 * Don't mark the inode dirty under page lock. First, it unnecessarily
874 * makes the holding time of page lock longer. Second, it forces lock
875 * ordering of page lock and transaction start for journaling
879 ext4_mark_inode_dirty(handle
, inode
);
885 * We need to pick up the new inode size which generic_commit_write gave us
886 * `file' can be NULL - eg, when called from page_symlink().
888 * ext4 never places buffers on inode->i_mapping->private_list. metadata
889 * buffers are managed internally.
891 static int ext4_ordered_write_end(struct file
*file
,
892 struct address_space
*mapping
,
893 loff_t pos
, unsigned len
, unsigned copied
,
894 struct page
*page
, void *fsdata
)
896 handle_t
*handle
= ext4_journal_current_handle();
897 struct inode
*inode
= mapping
->host
;
900 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
901 ret
= ext4_jbd2_file_inode(handle
, inode
);
904 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
907 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
908 /* if we have allocated more blocks and copied
909 * less. We will have blocks allocated outside
910 * inode->i_size. So truncate them
912 ext4_orphan_add(handle
, inode
);
916 ret2
= ext4_journal_stop(handle
);
920 if (pos
+ len
> inode
->i_size
) {
921 ext4_truncate_failed_write(inode
);
923 * If truncate failed early the inode might still be
924 * on the orphan list; we need to make sure the inode
925 * is removed from the orphan list in that case.
928 ext4_orphan_del(NULL
, inode
);
932 return ret
? ret
: copied
;
935 static int ext4_writeback_write_end(struct file
*file
,
936 struct address_space
*mapping
,
937 loff_t pos
, unsigned len
, unsigned copied
,
938 struct page
*page
, void *fsdata
)
940 handle_t
*handle
= ext4_journal_current_handle();
941 struct inode
*inode
= mapping
->host
;
944 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
945 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
948 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
949 /* if we have allocated more blocks and copied
950 * less. We will have blocks allocated outside
951 * inode->i_size. So truncate them
953 ext4_orphan_add(handle
, inode
);
958 ret2
= ext4_journal_stop(handle
);
962 if (pos
+ len
> inode
->i_size
) {
963 ext4_truncate_failed_write(inode
);
965 * If truncate failed early the inode might still be
966 * on the orphan list; we need to make sure the inode
967 * is removed from the orphan list in that case.
970 ext4_orphan_del(NULL
, inode
);
973 return ret
? ret
: copied
;
976 static int ext4_journalled_write_end(struct file
*file
,
977 struct address_space
*mapping
,
978 loff_t pos
, unsigned len
, unsigned copied
,
979 struct page
*page
, void *fsdata
)
981 handle_t
*handle
= ext4_journal_current_handle();
982 struct inode
*inode
= mapping
->host
;
988 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
989 from
= pos
& (PAGE_CACHE_SIZE
- 1);
992 BUG_ON(!ext4_handle_valid(handle
));
995 if (!PageUptodate(page
))
997 page_zero_new_buffers(page
, from
+copied
, to
);
1000 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1001 to
, &partial
, write_end_fn
);
1003 SetPageUptodate(page
);
1004 new_i_size
= pos
+ copied
;
1005 if (new_i_size
> inode
->i_size
)
1006 i_size_write(inode
, pos
+copied
);
1007 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1008 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1009 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1010 ext4_update_i_disksize(inode
, new_i_size
);
1011 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1017 page_cache_release(page
);
1018 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1019 /* if we have allocated more blocks and copied
1020 * less. We will have blocks allocated outside
1021 * inode->i_size. So truncate them
1023 ext4_orphan_add(handle
, inode
);
1025 ret2
= ext4_journal_stop(handle
);
1028 if (pos
+ len
> inode
->i_size
) {
1029 ext4_truncate_failed_write(inode
);
1031 * If truncate failed early the inode might still be
1032 * on the orphan list; we need to make sure the inode
1033 * is removed from the orphan list in that case.
1036 ext4_orphan_del(NULL
, inode
);
1039 return ret
? ret
: copied
;
1043 * Reserve a single block located at lblock
1045 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1048 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1049 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1050 unsigned long md_needed
;
1054 * recalculate the amount of metadata blocks to reserve
1055 * in order to allocate nrblocks
1056 * worse case is one extent per block
1059 spin_lock(&ei
->i_block_reservation_lock
);
1060 md_needed
= ext4_calc_metadata_amount(inode
, lblock
);
1061 trace_ext4_da_reserve_space(inode
, md_needed
);
1062 spin_unlock(&ei
->i_block_reservation_lock
);
1065 * We will charge metadata quota at writeout time; this saves
1066 * us from metadata over-estimation, though we may go over by
1067 * a small amount in the end. Here we just reserve for data.
1069 ret
= dquot_reserve_block(inode
, 1);
1073 * We do still charge estimated metadata to the sb though;
1074 * we cannot afford to run out of free blocks.
1076 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1, 0)) {
1077 dquot_release_reservation_block(inode
, 1);
1078 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1084 spin_lock(&ei
->i_block_reservation_lock
);
1085 ei
->i_reserved_data_blocks
++;
1086 ei
->i_reserved_meta_blocks
+= md_needed
;
1087 spin_unlock(&ei
->i_block_reservation_lock
);
1089 return 0; /* success */
1092 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1094 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1095 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1098 return; /* Nothing to release, exit */
1100 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1102 trace_ext4_da_release_space(inode
, to_free
);
1103 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1105 * if there aren't enough reserved blocks, then the
1106 * counter is messed up somewhere. Since this
1107 * function is called from invalidate page, it's
1108 * harmless to return without any action.
1110 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1111 "ino %lu, to_free %d with only %d reserved "
1112 "data blocks\n", inode
->i_ino
, to_free
,
1113 ei
->i_reserved_data_blocks
);
1115 to_free
= ei
->i_reserved_data_blocks
;
1117 ei
->i_reserved_data_blocks
-= to_free
;
1119 if (ei
->i_reserved_data_blocks
== 0) {
1121 * We can release all of the reserved metadata blocks
1122 * only when we have written all of the delayed
1123 * allocation blocks.
1125 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1126 ei
->i_reserved_meta_blocks
);
1127 ei
->i_reserved_meta_blocks
= 0;
1128 ei
->i_da_metadata_calc_len
= 0;
1131 /* update fs dirty data blocks counter */
1132 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, to_free
);
1134 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1136 dquot_release_reservation_block(inode
, to_free
);
1139 static void ext4_da_page_release_reservation(struct page
*page
,
1140 unsigned long offset
)
1143 struct buffer_head
*head
, *bh
;
1144 unsigned int curr_off
= 0;
1146 head
= page_buffers(page
);
1149 unsigned int next_off
= curr_off
+ bh
->b_size
;
1151 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1153 clear_buffer_delay(bh
);
1155 curr_off
= next_off
;
1156 } while ((bh
= bh
->b_this_page
) != head
);
1157 ext4_da_release_space(page
->mapping
->host
, to_release
);
1161 * Delayed allocation stuff
1165 * mpage_da_submit_io - walks through extent of pages and try to write
1166 * them with writepage() call back
1168 * @mpd->inode: inode
1169 * @mpd->first_page: first page of the extent
1170 * @mpd->next_page: page after the last page of the extent
1172 * By the time mpage_da_submit_io() is called we expect all blocks
1173 * to be allocated. this may be wrong if allocation failed.
1175 * As pages are already locked by write_cache_pages(), we can't use it
1177 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
1178 struct ext4_map_blocks
*map
)
1180 struct pagevec pvec
;
1181 unsigned long index
, end
;
1182 int ret
= 0, err
, nr_pages
, i
;
1183 struct inode
*inode
= mpd
->inode
;
1184 struct address_space
*mapping
= inode
->i_mapping
;
1185 loff_t size
= i_size_read(inode
);
1186 unsigned int len
, block_start
;
1187 struct buffer_head
*bh
, *page_bufs
= NULL
;
1188 int journal_data
= ext4_should_journal_data(inode
);
1189 sector_t pblock
= 0, cur_logical
= 0;
1190 struct ext4_io_submit io_submit
;
1192 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1193 memset(&io_submit
, 0, sizeof(io_submit
));
1195 * We need to start from the first_page to the next_page - 1
1196 * to make sure we also write the mapped dirty buffer_heads.
1197 * If we look at mpd->b_blocknr we would only be looking
1198 * at the currently mapped buffer_heads.
1200 index
= mpd
->first_page
;
1201 end
= mpd
->next_page
- 1;
1203 pagevec_init(&pvec
, 0);
1204 while (index
<= end
) {
1205 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1208 for (i
= 0; i
< nr_pages
; i
++) {
1209 int commit_write
= 0, skip_page
= 0;
1210 struct page
*page
= pvec
.pages
[i
];
1212 index
= page
->index
;
1216 if (index
== size
>> PAGE_CACHE_SHIFT
)
1217 len
= size
& ~PAGE_CACHE_MASK
;
1219 len
= PAGE_CACHE_SIZE
;
1221 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
1223 pblock
= map
->m_pblk
+ (cur_logical
-
1228 BUG_ON(!PageLocked(page
));
1229 BUG_ON(PageWriteback(page
));
1232 * If the page does not have buffers (for
1233 * whatever reason), try to create them using
1234 * __block_write_begin. If this fails,
1235 * skip the page and move on.
1237 if (!page_has_buffers(page
)) {
1238 if (__block_write_begin(page
, 0, len
,
1239 noalloc_get_block_write
)) {
1247 bh
= page_bufs
= page_buffers(page
);
1252 if (map
&& (cur_logical
>= map
->m_lblk
) &&
1253 (cur_logical
<= (map
->m_lblk
+
1254 (map
->m_len
- 1)))) {
1255 if (buffer_delay(bh
)) {
1256 clear_buffer_delay(bh
);
1257 bh
->b_blocknr
= pblock
;
1259 if (buffer_unwritten(bh
) ||
1261 BUG_ON(bh
->b_blocknr
!= pblock
);
1262 if (map
->m_flags
& EXT4_MAP_UNINIT
)
1263 set_buffer_uninit(bh
);
1264 clear_buffer_unwritten(bh
);
1267 /* skip page if block allocation undone */
1268 if (buffer_delay(bh
) || buffer_unwritten(bh
))
1270 bh
= bh
->b_this_page
;
1271 block_start
+= bh
->b_size
;
1274 } while (bh
!= page_bufs
);
1280 /* mark the buffer_heads as dirty & uptodate */
1281 block_commit_write(page
, 0, len
);
1283 clear_page_dirty_for_io(page
);
1285 * Delalloc doesn't support data journalling,
1286 * but eventually maybe we'll lift this
1289 if (unlikely(journal_data
&& PageChecked(page
)))
1290 err
= __ext4_journalled_writepage(page
, len
);
1291 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
1292 err
= ext4_bio_write_page(&io_submit
, page
,
1294 else if (buffer_uninit(page_bufs
)) {
1295 ext4_set_bh_endio(page_bufs
, inode
);
1296 err
= block_write_full_page_endio(page
,
1297 noalloc_get_block_write
,
1298 mpd
->wbc
, ext4_end_io_buffer_write
);
1300 err
= block_write_full_page(page
,
1301 noalloc_get_block_write
, mpd
->wbc
);
1304 mpd
->pages_written
++;
1306 * In error case, we have to continue because
1307 * remaining pages are still locked
1312 pagevec_release(&pvec
);
1314 ext4_io_submit(&io_submit
);
1318 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
1322 struct pagevec pvec
;
1323 struct inode
*inode
= mpd
->inode
;
1324 struct address_space
*mapping
= inode
->i_mapping
;
1326 index
= mpd
->first_page
;
1327 end
= mpd
->next_page
- 1;
1328 while (index
<= end
) {
1329 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1332 for (i
= 0; i
< nr_pages
; i
++) {
1333 struct page
*page
= pvec
.pages
[i
];
1334 if (page
->index
> end
)
1336 BUG_ON(!PageLocked(page
));
1337 BUG_ON(PageWriteback(page
));
1338 block_invalidatepage(page
, 0);
1339 ClearPageUptodate(page
);
1342 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1343 pagevec_release(&pvec
);
1348 static void ext4_print_free_blocks(struct inode
*inode
)
1350 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1351 printk(KERN_CRIT
"Total free blocks count %lld\n",
1352 ext4_count_free_blocks(inode
->i_sb
));
1353 printk(KERN_CRIT
"Free/Dirty block details\n");
1354 printk(KERN_CRIT
"free_blocks=%lld\n",
1355 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
1356 printk(KERN_CRIT
"dirty_blocks=%lld\n",
1357 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
1358 printk(KERN_CRIT
"Block reservation details\n");
1359 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
1360 EXT4_I(inode
)->i_reserved_data_blocks
);
1361 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
1362 EXT4_I(inode
)->i_reserved_meta_blocks
);
1367 * mpage_da_map_and_submit - go through given space, map them
1368 * if necessary, and then submit them for I/O
1370 * @mpd - bh describing space
1372 * The function skips space we know is already mapped to disk blocks.
1375 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
1377 int err
, blks
, get_blocks_flags
;
1378 struct ext4_map_blocks map
, *mapp
= NULL
;
1379 sector_t next
= mpd
->b_blocknr
;
1380 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1381 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
1382 handle_t
*handle
= NULL
;
1385 * If the blocks are mapped already, or we couldn't accumulate
1386 * any blocks, then proceed immediately to the submission stage.
1388 if ((mpd
->b_size
== 0) ||
1389 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
1390 !(mpd
->b_state
& (1 << BH_Delay
)) &&
1391 !(mpd
->b_state
& (1 << BH_Unwritten
))))
1394 handle
= ext4_journal_current_handle();
1398 * Call ext4_map_blocks() to allocate any delayed allocation
1399 * blocks, or to convert an uninitialized extent to be
1400 * initialized (in the case where we have written into
1401 * one or more preallocated blocks).
1403 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1404 * indicate that we are on the delayed allocation path. This
1405 * affects functions in many different parts of the allocation
1406 * call path. This flag exists primarily because we don't
1407 * want to change *many* call functions, so ext4_map_blocks()
1408 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1409 * inode's allocation semaphore is taken.
1411 * If the blocks in questions were delalloc blocks, set
1412 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1413 * variables are updated after the blocks have been allocated.
1416 map
.m_len
= max_blocks
;
1417 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
1418 if (ext4_should_dioread_nolock(mpd
->inode
))
1419 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
1420 if (mpd
->b_state
& (1 << BH_Delay
))
1421 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
1423 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
1425 struct super_block
*sb
= mpd
->inode
->i_sb
;
1429 * If get block returns EAGAIN or ENOSPC and there
1430 * appears to be free blocks we will just let
1431 * mpage_da_submit_io() unlock all of the pages.
1436 if (err
== -ENOSPC
&&
1437 ext4_count_free_blocks(sb
)) {
1443 * get block failure will cause us to loop in
1444 * writepages, because a_ops->writepage won't be able
1445 * to make progress. The page will be redirtied by
1446 * writepage and writepages will again try to write
1449 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
1450 ext4_msg(sb
, KERN_CRIT
,
1451 "delayed block allocation failed for inode %lu "
1452 "at logical offset %llu with max blocks %zd "
1453 "with error %d", mpd
->inode
->i_ino
,
1454 (unsigned long long) next
,
1455 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
1456 ext4_msg(sb
, KERN_CRIT
,
1457 "This should not happen!! Data will be lost\n");
1459 ext4_print_free_blocks(mpd
->inode
);
1461 /* invalidate all the pages */
1462 ext4_da_block_invalidatepages(mpd
);
1464 /* Mark this page range as having been completed */
1471 if (map
.m_flags
& EXT4_MAP_NEW
) {
1472 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
1475 for (i
= 0; i
< map
.m_len
; i
++)
1476 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
1479 if (ext4_should_order_data(mpd
->inode
)) {
1480 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
1482 /* This only happens if the journal is aborted */
1487 * Update on-disk size along with block allocation.
1489 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
1490 if (disksize
> i_size_read(mpd
->inode
))
1491 disksize
= i_size_read(mpd
->inode
);
1492 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
1493 ext4_update_i_disksize(mpd
->inode
, disksize
);
1494 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
1496 ext4_error(mpd
->inode
->i_sb
,
1497 "Failed to mark inode %lu dirty",
1502 mpage_da_submit_io(mpd
, mapp
);
1506 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1507 (1 << BH_Delay) | (1 << BH_Unwritten))
1510 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1512 * @mpd->lbh - extent of blocks
1513 * @logical - logical number of the block in the file
1514 * @bh - bh of the block (used to access block's state)
1516 * the function is used to collect contig. blocks in same state
1518 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
1519 sector_t logical
, size_t b_size
,
1520 unsigned long b_state
)
1523 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1526 * XXX Don't go larger than mballoc is willing to allocate
1527 * This is a stopgap solution. We eventually need to fold
1528 * mpage_da_submit_io() into this function and then call
1529 * ext4_map_blocks() multiple times in a loop
1531 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
1534 /* check if thereserved journal credits might overflow */
1535 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
1536 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
1538 * With non-extent format we are limited by the journal
1539 * credit available. Total credit needed to insert
1540 * nrblocks contiguous blocks is dependent on the
1541 * nrblocks. So limit nrblocks.
1544 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
1545 EXT4_MAX_TRANS_DATA
) {
1547 * Adding the new buffer_head would make it cross the
1548 * allowed limit for which we have journal credit
1549 * reserved. So limit the new bh->b_size
1551 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
1552 mpd
->inode
->i_blkbits
;
1553 /* we will do mpage_da_submit_io in the next loop */
1557 * First block in the extent
1559 if (mpd
->b_size
== 0) {
1560 mpd
->b_blocknr
= logical
;
1561 mpd
->b_size
= b_size
;
1562 mpd
->b_state
= b_state
& BH_FLAGS
;
1566 next
= mpd
->b_blocknr
+ nrblocks
;
1568 * Can we merge the block to our big extent?
1570 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
1571 mpd
->b_size
+= b_size
;
1577 * We couldn't merge the block to our extent, so we
1578 * need to flush current extent and start new one
1580 mpage_da_map_and_submit(mpd
);
1584 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1586 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1590 * This is a special get_blocks_t callback which is used by
1591 * ext4_da_write_begin(). It will either return mapped block or
1592 * reserve space for a single block.
1594 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1595 * We also have b_blocknr = -1 and b_bdev initialized properly
1597 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1598 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1599 * initialized properly.
1601 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1602 struct buffer_head
*bh
, int create
)
1604 struct ext4_map_blocks map
;
1606 sector_t invalid_block
= ~((sector_t
) 0xffff);
1608 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1611 BUG_ON(create
== 0);
1612 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1614 map
.m_lblk
= iblock
;
1618 * first, we need to know whether the block is allocated already
1619 * preallocated blocks are unmapped but should treated
1620 * the same as allocated blocks.
1622 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
1626 if (buffer_delay(bh
))
1627 return 0; /* Not sure this could or should happen */
1629 * XXX: __block_write_begin() unmaps passed block, is it OK?
1631 ret
= ext4_da_reserve_space(inode
, iblock
);
1633 /* not enough space to reserve */
1636 map_bh(bh
, inode
->i_sb
, invalid_block
);
1638 set_buffer_delay(bh
);
1642 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1643 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1645 if (buffer_unwritten(bh
)) {
1646 /* A delayed write to unwritten bh should be marked
1647 * new and mapped. Mapped ensures that we don't do
1648 * get_block multiple times when we write to the same
1649 * offset and new ensures that we do proper zero out
1650 * for partial write.
1653 set_buffer_mapped(bh
);
1659 * This function is used as a standard get_block_t calback function
1660 * when there is no desire to allocate any blocks. It is used as a
1661 * callback function for block_write_begin() and block_write_full_page().
1662 * These functions should only try to map a single block at a time.
1664 * Since this function doesn't do block allocations even if the caller
1665 * requests it by passing in create=1, it is critically important that
1666 * any caller checks to make sure that any buffer heads are returned
1667 * by this function are either all already mapped or marked for
1668 * delayed allocation before calling block_write_full_page(). Otherwise,
1669 * b_blocknr could be left unitialized, and the page write functions will
1670 * be taken by surprise.
1672 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
1673 struct buffer_head
*bh_result
, int create
)
1675 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
1676 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
1679 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1685 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1691 static int __ext4_journalled_writepage(struct page
*page
,
1694 struct address_space
*mapping
= page
->mapping
;
1695 struct inode
*inode
= mapping
->host
;
1696 struct buffer_head
*page_bufs
;
1697 handle_t
*handle
= NULL
;
1701 ClearPageChecked(page
);
1702 page_bufs
= page_buffers(page
);
1704 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
1705 /* As soon as we unlock the page, it can go away, but we have
1706 * references to buffers so we are safe */
1709 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1710 if (IS_ERR(handle
)) {
1711 ret
= PTR_ERR(handle
);
1715 BUG_ON(!ext4_handle_valid(handle
));
1717 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1718 do_journal_get_write_access
);
1720 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1724 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1725 err
= ext4_journal_stop(handle
);
1729 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
1730 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1735 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
1736 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
1739 * Note that we don't need to start a transaction unless we're journaling data
1740 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1741 * need to file the inode to the transaction's list in ordered mode because if
1742 * we are writing back data added by write(), the inode is already there and if
1743 * we are writing back data modified via mmap(), no one guarantees in which
1744 * transaction the data will hit the disk. In case we are journaling data, we
1745 * cannot start transaction directly because transaction start ranks above page
1746 * lock so we have to do some magic.
1748 * This function can get called via...
1749 * - ext4_da_writepages after taking page lock (have journal handle)
1750 * - journal_submit_inode_data_buffers (no journal handle)
1751 * - shrink_page_list via pdflush (no journal handle)
1752 * - grab_page_cache when doing write_begin (have journal handle)
1754 * We don't do any block allocation in this function. If we have page with
1755 * multiple blocks we need to write those buffer_heads that are mapped. This
1756 * is important for mmaped based write. So if we do with blocksize 1K
1757 * truncate(f, 1024);
1758 * a = mmap(f, 0, 4096);
1760 * truncate(f, 4096);
1761 * we have in the page first buffer_head mapped via page_mkwrite call back
1762 * but other bufer_heads would be unmapped but dirty(dirty done via the
1763 * do_wp_page). So writepage should write the first block. If we modify
1764 * the mmap area beyond 1024 we will again get a page_fault and the
1765 * page_mkwrite callback will do the block allocation and mark the
1766 * buffer_heads mapped.
1768 * We redirty the page if we have any buffer_heads that is either delay or
1769 * unwritten in the page.
1771 * We can get recursively called as show below.
1773 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1776 * But since we don't do any block allocation we should not deadlock.
1777 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1779 static int ext4_writepage(struct page
*page
,
1780 struct writeback_control
*wbc
)
1782 int ret
= 0, commit_write
= 0;
1785 struct buffer_head
*page_bufs
= NULL
;
1786 struct inode
*inode
= page
->mapping
->host
;
1788 trace_ext4_writepage(page
);
1789 size
= i_size_read(inode
);
1790 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1791 len
= size
& ~PAGE_CACHE_MASK
;
1793 len
= PAGE_CACHE_SIZE
;
1796 * If the page does not have buffers (for whatever reason),
1797 * try to create them using __block_write_begin. If this
1798 * fails, redirty the page and move on.
1800 if (!page_has_buffers(page
)) {
1801 if (__block_write_begin(page
, 0, len
,
1802 noalloc_get_block_write
)) {
1804 redirty_page_for_writepage(wbc
, page
);
1810 page_bufs
= page_buffers(page
);
1811 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1812 ext4_bh_delay_or_unwritten
)) {
1814 * We don't want to do block allocation, so redirty
1815 * the page and return. We may reach here when we do
1816 * a journal commit via journal_submit_inode_data_buffers.
1817 * We can also reach here via shrink_page_list
1822 /* now mark the buffer_heads as dirty and uptodate */
1823 block_commit_write(page
, 0, len
);
1825 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1827 * It's mmapped pagecache. Add buffers and journal it. There
1828 * doesn't seem much point in redirtying the page here.
1830 return __ext4_journalled_writepage(page
, len
);
1832 if (buffer_uninit(page_bufs
)) {
1833 ext4_set_bh_endio(page_bufs
, inode
);
1834 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
1835 wbc
, ext4_end_io_buffer_write
);
1837 ret
= block_write_full_page(page
, noalloc_get_block_write
,
1844 * This is called via ext4_da_writepages() to
1845 * calculate the total number of credits to reserve to fit
1846 * a single extent allocation into a single transaction,
1847 * ext4_da_writpeages() will loop calling this before
1848 * the block allocation.
1851 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
1853 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
1856 * With non-extent format the journal credit needed to
1857 * insert nrblocks contiguous block is dependent on
1858 * number of contiguous block. So we will limit
1859 * number of contiguous block to a sane value
1861 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
1862 (max_blocks
> EXT4_MAX_TRANS_DATA
))
1863 max_blocks
= EXT4_MAX_TRANS_DATA
;
1865 return ext4_chunk_trans_blocks(inode
, max_blocks
);
1869 * write_cache_pages_da - walk the list of dirty pages of the given
1870 * address space and accumulate pages that need writing, and call
1871 * mpage_da_map_and_submit to map a single contiguous memory region
1872 * and then write them.
1874 static int write_cache_pages_da(struct address_space
*mapping
,
1875 struct writeback_control
*wbc
,
1876 struct mpage_da_data
*mpd
,
1877 pgoff_t
*done_index
)
1879 struct buffer_head
*bh
, *head
;
1880 struct inode
*inode
= mapping
->host
;
1881 struct pagevec pvec
;
1882 unsigned int nr_pages
;
1885 long nr_to_write
= wbc
->nr_to_write
;
1886 int i
, tag
, ret
= 0;
1888 memset(mpd
, 0, sizeof(struct mpage_da_data
));
1891 pagevec_init(&pvec
, 0);
1892 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1893 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1895 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1896 tag
= PAGECACHE_TAG_TOWRITE
;
1898 tag
= PAGECACHE_TAG_DIRTY
;
1900 *done_index
= index
;
1901 while (index
<= end
) {
1902 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1903 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1907 for (i
= 0; i
< nr_pages
; i
++) {
1908 struct page
*page
= pvec
.pages
[i
];
1911 * At this point, the page may be truncated or
1912 * invalidated (changing page->mapping to NULL), or
1913 * even swizzled back from swapper_space to tmpfs file
1914 * mapping. However, page->index will not change
1915 * because we have a reference on the page.
1917 if (page
->index
> end
)
1920 *done_index
= page
->index
+ 1;
1923 * If we can't merge this page, and we have
1924 * accumulated an contiguous region, write it
1926 if ((mpd
->next_page
!= page
->index
) &&
1927 (mpd
->next_page
!= mpd
->first_page
)) {
1928 mpage_da_map_and_submit(mpd
);
1929 goto ret_extent_tail
;
1935 * If the page is no longer dirty, or its
1936 * mapping no longer corresponds to inode we
1937 * are writing (which means it has been
1938 * truncated or invalidated), or the page is
1939 * already under writeback and we are not
1940 * doing a data integrity writeback, skip the page
1942 if (!PageDirty(page
) ||
1943 (PageWriteback(page
) &&
1944 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
1945 unlikely(page
->mapping
!= mapping
)) {
1950 wait_on_page_writeback(page
);
1951 BUG_ON(PageWriteback(page
));
1953 if (mpd
->next_page
!= page
->index
)
1954 mpd
->first_page
= page
->index
;
1955 mpd
->next_page
= page
->index
+ 1;
1956 logical
= (sector_t
) page
->index
<<
1957 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1959 if (!page_has_buffers(page
)) {
1960 mpage_add_bh_to_extent(mpd
, logical
,
1962 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
1964 goto ret_extent_tail
;
1967 * Page with regular buffer heads,
1968 * just add all dirty ones
1970 head
= page_buffers(page
);
1973 BUG_ON(buffer_locked(bh
));
1975 * We need to try to allocate
1976 * unmapped blocks in the same page.
1977 * Otherwise we won't make progress
1978 * with the page in ext4_writepage
1980 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
1981 mpage_add_bh_to_extent(mpd
, logical
,
1985 goto ret_extent_tail
;
1986 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
1988 * mapped dirty buffer. We need
1989 * to update the b_state
1990 * because we look at b_state
1991 * in mpage_da_map_blocks. We
1992 * don't update b_size because
1993 * if we find an unmapped
1994 * buffer_head later we need to
1995 * use the b_state flag of that
1998 if (mpd
->b_size
== 0)
1999 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2002 } while ((bh
= bh
->b_this_page
) != head
);
2005 if (nr_to_write
> 0) {
2007 if (nr_to_write
== 0 &&
2008 wbc
->sync_mode
== WB_SYNC_NONE
)
2010 * We stop writing back only if we are
2011 * not doing integrity sync. In case of
2012 * integrity sync we have to keep going
2013 * because someone may be concurrently
2014 * dirtying pages, and we might have
2015 * synced a lot of newly appeared dirty
2016 * pages, but have not synced all of the
2022 pagevec_release(&pvec
);
2027 ret
= MPAGE_DA_EXTENT_TAIL
;
2029 pagevec_release(&pvec
);
2035 static int ext4_da_writepages(struct address_space
*mapping
,
2036 struct writeback_control
*wbc
)
2039 int range_whole
= 0;
2040 handle_t
*handle
= NULL
;
2041 struct mpage_da_data mpd
;
2042 struct inode
*inode
= mapping
->host
;
2043 int pages_written
= 0;
2044 unsigned int max_pages
;
2045 int range_cyclic
, cycled
= 1, io_done
= 0;
2046 int needed_blocks
, ret
= 0;
2047 long desired_nr_to_write
, nr_to_writebump
= 0;
2048 loff_t range_start
= wbc
->range_start
;
2049 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2050 pgoff_t done_index
= 0;
2053 trace_ext4_da_writepages(inode
, wbc
);
2056 * No pages to write? This is mainly a kludge to avoid starting
2057 * a transaction for special inodes like journal inode on last iput()
2058 * because that could violate lock ordering on umount
2060 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2064 * If the filesystem has aborted, it is read-only, so return
2065 * right away instead of dumping stack traces later on that
2066 * will obscure the real source of the problem. We test
2067 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2068 * the latter could be true if the filesystem is mounted
2069 * read-only, and in that case, ext4_da_writepages should
2070 * *never* be called, so if that ever happens, we would want
2073 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2076 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2079 range_cyclic
= wbc
->range_cyclic
;
2080 if (wbc
->range_cyclic
) {
2081 index
= mapping
->writeback_index
;
2084 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2085 wbc
->range_end
= LLONG_MAX
;
2086 wbc
->range_cyclic
= 0;
2089 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2090 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2094 * This works around two forms of stupidity. The first is in
2095 * the writeback code, which caps the maximum number of pages
2096 * written to be 1024 pages. This is wrong on multiple
2097 * levels; different architectues have a different page size,
2098 * which changes the maximum amount of data which gets
2099 * written. Secondly, 4 megabytes is way too small. XFS
2100 * forces this value to be 16 megabytes by multiplying
2101 * nr_to_write parameter by four, and then relies on its
2102 * allocator to allocate larger extents to make them
2103 * contiguous. Unfortunately this brings us to the second
2104 * stupidity, which is that ext4's mballoc code only allocates
2105 * at most 2048 blocks. So we force contiguous writes up to
2106 * the number of dirty blocks in the inode, or
2107 * sbi->max_writeback_mb_bump whichever is smaller.
2109 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2110 if (!range_cyclic
&& range_whole
) {
2111 if (wbc
->nr_to_write
== LONG_MAX
)
2112 desired_nr_to_write
= wbc
->nr_to_write
;
2114 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2116 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2118 if (desired_nr_to_write
> max_pages
)
2119 desired_nr_to_write
= max_pages
;
2121 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2122 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2123 wbc
->nr_to_write
= desired_nr_to_write
;
2127 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2128 tag_pages_for_writeback(mapping
, index
, end
);
2130 while (!ret
&& wbc
->nr_to_write
> 0) {
2133 * we insert one extent at a time. So we need
2134 * credit needed for single extent allocation.
2135 * journalled mode is currently not supported
2138 BUG_ON(ext4_should_journal_data(inode
));
2139 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2141 /* start a new transaction*/
2142 handle
= ext4_journal_start(inode
, needed_blocks
);
2143 if (IS_ERR(handle
)) {
2144 ret
= PTR_ERR(handle
);
2145 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2146 "%ld pages, ino %lu; err %d", __func__
,
2147 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2148 goto out_writepages
;
2152 * Now call write_cache_pages_da() to find the next
2153 * contiguous region of logical blocks that need
2154 * blocks to be allocated by ext4 and submit them.
2156 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
2158 * If we have a contiguous extent of pages and we
2159 * haven't done the I/O yet, map the blocks and submit
2162 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2163 mpage_da_map_and_submit(&mpd
);
2164 ret
= MPAGE_DA_EXTENT_TAIL
;
2166 trace_ext4_da_write_pages(inode
, &mpd
);
2167 wbc
->nr_to_write
-= mpd
.pages_written
;
2169 ext4_journal_stop(handle
);
2171 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2172 /* commit the transaction which would
2173 * free blocks released in the transaction
2176 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2178 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2180 * got one extent now try with
2183 pages_written
+= mpd
.pages_written
;
2186 } else if (wbc
->nr_to_write
)
2188 * There is no more writeout needed
2189 * or we requested for a noblocking writeout
2190 * and we found the device congested
2194 if (!io_done
&& !cycled
) {
2197 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2198 wbc
->range_end
= mapping
->writeback_index
- 1;
2203 wbc
->range_cyclic
= range_cyclic
;
2204 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2206 * set the writeback_index so that range_cyclic
2207 * mode will write it back later
2209 mapping
->writeback_index
= done_index
;
2212 wbc
->nr_to_write
-= nr_to_writebump
;
2213 wbc
->range_start
= range_start
;
2214 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2218 #define FALL_BACK_TO_NONDELALLOC 1
2219 static int ext4_nonda_switch(struct super_block
*sb
)
2221 s64 free_blocks
, dirty_blocks
;
2222 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2225 * switch to non delalloc mode if we are running low
2226 * on free block. The free block accounting via percpu
2227 * counters can get slightly wrong with percpu_counter_batch getting
2228 * accumulated on each CPU without updating global counters
2229 * Delalloc need an accurate free block accounting. So switch
2230 * to non delalloc when we are near to error range.
2232 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
2233 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
2234 if (2 * free_blocks
< 3 * dirty_blocks
||
2235 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
2237 * free block count is less than 150% of dirty blocks
2238 * or free blocks is less than watermark
2243 * Even if we don't switch but are nearing capacity,
2244 * start pushing delalloc when 1/2 of free blocks are dirty.
2246 if (free_blocks
< 2 * dirty_blocks
)
2247 writeback_inodes_sb_if_idle(sb
);
2252 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2253 loff_t pos
, unsigned len
, unsigned flags
,
2254 struct page
**pagep
, void **fsdata
)
2256 int ret
, retries
= 0;
2259 struct inode
*inode
= mapping
->host
;
2262 index
= pos
>> PAGE_CACHE_SHIFT
;
2264 if (ext4_nonda_switch(inode
->i_sb
)) {
2265 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2266 return ext4_write_begin(file
, mapping
, pos
,
2267 len
, flags
, pagep
, fsdata
);
2269 *fsdata
= (void *)0;
2270 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2273 * With delayed allocation, we don't log the i_disksize update
2274 * if there is delayed block allocation. But we still need
2275 * to journalling the i_disksize update if writes to the end
2276 * of file which has an already mapped buffer.
2278 handle
= ext4_journal_start(inode
, 1);
2279 if (IS_ERR(handle
)) {
2280 ret
= PTR_ERR(handle
);
2283 /* We cannot recurse into the filesystem as the transaction is already
2285 flags
|= AOP_FLAG_NOFS
;
2287 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2289 ext4_journal_stop(handle
);
2295 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2298 ext4_journal_stop(handle
);
2299 page_cache_release(page
);
2301 * block_write_begin may have instantiated a few blocks
2302 * outside i_size. Trim these off again. Don't need
2303 * i_size_read because we hold i_mutex.
2305 if (pos
+ len
> inode
->i_size
)
2306 ext4_truncate_failed_write(inode
);
2309 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2316 * Check if we should update i_disksize
2317 * when write to the end of file but not require block allocation
2319 static int ext4_da_should_update_i_disksize(struct page
*page
,
2320 unsigned long offset
)
2322 struct buffer_head
*bh
;
2323 struct inode
*inode
= page
->mapping
->host
;
2327 bh
= page_buffers(page
);
2328 idx
= offset
>> inode
->i_blkbits
;
2330 for (i
= 0; i
< idx
; i
++)
2331 bh
= bh
->b_this_page
;
2333 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2338 static int ext4_da_write_end(struct file
*file
,
2339 struct address_space
*mapping
,
2340 loff_t pos
, unsigned len
, unsigned copied
,
2341 struct page
*page
, void *fsdata
)
2343 struct inode
*inode
= mapping
->host
;
2345 handle_t
*handle
= ext4_journal_current_handle();
2347 unsigned long start
, end
;
2348 int write_mode
= (int)(unsigned long)fsdata
;
2350 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
2351 if (ext4_should_order_data(inode
)) {
2352 return ext4_ordered_write_end(file
, mapping
, pos
,
2353 len
, copied
, page
, fsdata
);
2354 } else if (ext4_should_writeback_data(inode
)) {
2355 return ext4_writeback_write_end(file
, mapping
, pos
,
2356 len
, copied
, page
, fsdata
);
2362 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2363 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2364 end
= start
+ copied
- 1;
2367 * generic_write_end() will run mark_inode_dirty() if i_size
2368 * changes. So let's piggyback the i_disksize mark_inode_dirty
2372 new_i_size
= pos
+ copied
;
2373 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2374 if (ext4_da_should_update_i_disksize(page
, end
)) {
2375 down_write(&EXT4_I(inode
)->i_data_sem
);
2376 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2378 * Updating i_disksize when extending file
2379 * without needing block allocation
2381 if (ext4_should_order_data(inode
))
2382 ret
= ext4_jbd2_file_inode(handle
,
2385 EXT4_I(inode
)->i_disksize
= new_i_size
;
2387 up_write(&EXT4_I(inode
)->i_data_sem
);
2388 /* We need to mark inode dirty even if
2389 * new_i_size is less that inode->i_size
2390 * bu greater than i_disksize.(hint delalloc)
2392 ext4_mark_inode_dirty(handle
, inode
);
2395 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2400 ret2
= ext4_journal_stop(handle
);
2404 return ret
? ret
: copied
;
2407 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
2410 * Drop reserved blocks
2412 BUG_ON(!PageLocked(page
));
2413 if (!page_has_buffers(page
))
2416 ext4_da_page_release_reservation(page
, offset
);
2419 ext4_invalidatepage(page
, offset
);
2425 * Force all delayed allocation blocks to be allocated for a given inode.
2427 int ext4_alloc_da_blocks(struct inode
*inode
)
2429 trace_ext4_alloc_da_blocks(inode
);
2431 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2432 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2436 * We do something simple for now. The filemap_flush() will
2437 * also start triggering a write of the data blocks, which is
2438 * not strictly speaking necessary (and for users of
2439 * laptop_mode, not even desirable). However, to do otherwise
2440 * would require replicating code paths in:
2442 * ext4_da_writepages() ->
2443 * write_cache_pages() ---> (via passed in callback function)
2444 * __mpage_da_writepage() -->
2445 * mpage_add_bh_to_extent()
2446 * mpage_da_map_blocks()
2448 * The problem is that write_cache_pages(), located in
2449 * mm/page-writeback.c, marks pages clean in preparation for
2450 * doing I/O, which is not desirable if we're not planning on
2453 * We could call write_cache_pages(), and then redirty all of
2454 * the pages by calling redirty_page_for_writepage() but that
2455 * would be ugly in the extreme. So instead we would need to
2456 * replicate parts of the code in the above functions,
2457 * simplifying them because we wouldn't actually intend to
2458 * write out the pages, but rather only collect contiguous
2459 * logical block extents, call the multi-block allocator, and
2460 * then update the buffer heads with the block allocations.
2462 * For now, though, we'll cheat by calling filemap_flush(),
2463 * which will map the blocks, and start the I/O, but not
2464 * actually wait for the I/O to complete.
2466 return filemap_flush(inode
->i_mapping
);
2470 * bmap() is special. It gets used by applications such as lilo and by
2471 * the swapper to find the on-disk block of a specific piece of data.
2473 * Naturally, this is dangerous if the block concerned is still in the
2474 * journal. If somebody makes a swapfile on an ext4 data-journaling
2475 * filesystem and enables swap, then they may get a nasty shock when the
2476 * data getting swapped to that swapfile suddenly gets overwritten by
2477 * the original zero's written out previously to the journal and
2478 * awaiting writeback in the kernel's buffer cache.
2480 * So, if we see any bmap calls here on a modified, data-journaled file,
2481 * take extra steps to flush any blocks which might be in the cache.
2483 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2485 struct inode
*inode
= mapping
->host
;
2489 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2490 test_opt(inode
->i_sb
, DELALLOC
)) {
2492 * With delalloc we want to sync the file
2493 * so that we can make sure we allocate
2496 filemap_write_and_wait(mapping
);
2499 if (EXT4_JOURNAL(inode
) &&
2500 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2502 * This is a REALLY heavyweight approach, but the use of
2503 * bmap on dirty files is expected to be extremely rare:
2504 * only if we run lilo or swapon on a freshly made file
2505 * do we expect this to happen.
2507 * (bmap requires CAP_SYS_RAWIO so this does not
2508 * represent an unprivileged user DOS attack --- we'd be
2509 * in trouble if mortal users could trigger this path at
2512 * NB. EXT4_STATE_JDATA is not set on files other than
2513 * regular files. If somebody wants to bmap a directory
2514 * or symlink and gets confused because the buffer
2515 * hasn't yet been flushed to disk, they deserve
2516 * everything they get.
2519 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2520 journal
= EXT4_JOURNAL(inode
);
2521 jbd2_journal_lock_updates(journal
);
2522 err
= jbd2_journal_flush(journal
);
2523 jbd2_journal_unlock_updates(journal
);
2529 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2532 static int ext4_readpage(struct file
*file
, struct page
*page
)
2534 trace_ext4_readpage(page
);
2535 return mpage_readpage(page
, ext4_get_block
);
2539 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2540 struct list_head
*pages
, unsigned nr_pages
)
2542 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2545 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
2547 struct buffer_head
*head
, *bh
;
2548 unsigned int curr_off
= 0;
2550 if (!page_has_buffers(page
))
2552 head
= bh
= page_buffers(page
);
2554 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
2556 ext4_free_io_end(bh
->b_private
);
2557 bh
->b_private
= NULL
;
2558 bh
->b_end_io
= NULL
;
2560 curr_off
= curr_off
+ bh
->b_size
;
2561 bh
= bh
->b_this_page
;
2562 } while (bh
!= head
);
2565 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
2567 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2569 trace_ext4_invalidatepage(page
, offset
);
2572 * free any io_end structure allocated for buffers to be discarded
2574 if (ext4_should_dioread_nolock(page
->mapping
->host
))
2575 ext4_invalidatepage_free_endio(page
, offset
);
2577 * If it's a full truncate we just forget about the pending dirtying
2580 ClearPageChecked(page
);
2583 jbd2_journal_invalidatepage(journal
, page
, offset
);
2585 block_invalidatepage(page
, offset
);
2588 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2590 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2592 trace_ext4_releasepage(page
);
2594 WARN_ON(PageChecked(page
));
2595 if (!page_has_buffers(page
))
2598 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2600 return try_to_free_buffers(page
);
2604 * ext4_get_block used when preparing for a DIO write or buffer write.
2605 * We allocate an uinitialized extent if blocks haven't been allocated.
2606 * The extent will be converted to initialized after the IO is complete.
2608 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
2609 struct buffer_head
*bh_result
, int create
)
2611 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2612 inode
->i_ino
, create
);
2613 return _ext4_get_block(inode
, iblock
, bh_result
,
2614 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
2617 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
2618 ssize_t size
, void *private, int ret
,
2621 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2622 ext4_io_end_t
*io_end
= iocb
->private;
2623 struct workqueue_struct
*wq
;
2624 unsigned long flags
;
2625 struct ext4_inode_info
*ei
;
2627 /* if not async direct IO or dio with 0 bytes write, just return */
2628 if (!io_end
|| !size
)
2631 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2632 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2633 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
2636 /* if not aio dio with unwritten extents, just free io and return */
2637 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
2638 ext4_free_io_end(io_end
);
2639 iocb
->private = NULL
;
2642 aio_complete(iocb
, ret
, 0);
2643 inode_dio_done(inode
);
2647 io_end
->offset
= offset
;
2648 io_end
->size
= size
;
2650 io_end
->iocb
= iocb
;
2651 io_end
->result
= ret
;
2653 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
2655 /* Add the io_end to per-inode completed aio dio list*/
2656 ei
= EXT4_I(io_end
->inode
);
2657 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
2658 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
2659 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
2661 /* queue the work to convert unwritten extents to written */
2662 queue_work(wq
, &io_end
->work
);
2663 iocb
->private = NULL
;
2665 /* XXX: probably should move into the real I/O completion handler */
2666 inode_dio_done(inode
);
2669 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
2671 ext4_io_end_t
*io_end
= bh
->b_private
;
2672 struct workqueue_struct
*wq
;
2673 struct inode
*inode
;
2674 unsigned long flags
;
2676 if (!test_clear_buffer_uninit(bh
) || !io_end
)
2679 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
2680 printk("sb umounted, discard end_io request for inode %lu\n",
2681 io_end
->inode
->i_ino
);
2682 ext4_free_io_end(io_end
);
2687 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2688 * but being more careful is always safe for the future change.
2690 inode
= io_end
->inode
;
2691 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
2692 io_end
->flag
|= EXT4_IO_END_UNWRITTEN
;
2693 atomic_inc(&EXT4_I(inode
)->i_aiodio_unwritten
);
2696 /* Add the io_end to per-inode completed io list*/
2697 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2698 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
2699 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2701 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
2702 /* queue the work to convert unwritten extents to written */
2703 queue_work(wq
, &io_end
->work
);
2705 bh
->b_private
= NULL
;
2706 bh
->b_end_io
= NULL
;
2707 clear_buffer_uninit(bh
);
2708 end_buffer_async_write(bh
, uptodate
);
2711 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
2713 ext4_io_end_t
*io_end
;
2714 struct page
*page
= bh
->b_page
;
2715 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2716 size_t size
= bh
->b_size
;
2719 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
2721 pr_warn_ratelimited("%s: allocation fail\n", __func__
);
2725 io_end
->offset
= offset
;
2726 io_end
->size
= size
;
2728 * We need to hold a reference to the page to make sure it
2729 * doesn't get evicted before ext4_end_io_work() has a chance
2730 * to convert the extent from written to unwritten.
2732 io_end
->page
= page
;
2733 get_page(io_end
->page
);
2735 bh
->b_private
= io_end
;
2736 bh
->b_end_io
= ext4_end_io_buffer_write
;
2741 * For ext4 extent files, ext4 will do direct-io write to holes,
2742 * preallocated extents, and those write extend the file, no need to
2743 * fall back to buffered IO.
2745 * For holes, we fallocate those blocks, mark them as uninitialized
2746 * If those blocks were preallocated, we mark sure they are splited, but
2747 * still keep the range to write as uninitialized.
2749 * The unwrritten extents will be converted to written when DIO is completed.
2750 * For async direct IO, since the IO may still pending when return, we
2751 * set up an end_io call back function, which will do the conversion
2752 * when async direct IO completed.
2754 * If the O_DIRECT write will extend the file then add this inode to the
2755 * orphan list. So recovery will truncate it back to the original size
2756 * if the machine crashes during the write.
2759 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
2760 const struct iovec
*iov
, loff_t offset
,
2761 unsigned long nr_segs
)
2763 struct file
*file
= iocb
->ki_filp
;
2764 struct inode
*inode
= file
->f_mapping
->host
;
2766 size_t count
= iov_length(iov
, nr_segs
);
2768 loff_t final_size
= offset
+ count
;
2769 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
2771 * We could direct write to holes and fallocate.
2773 * Allocated blocks to fill the hole are marked as uninitialized
2774 * to prevent parallel buffered read to expose the stale data
2775 * before DIO complete the data IO.
2777 * As to previously fallocated extents, ext4 get_block
2778 * will just simply mark the buffer mapped but still
2779 * keep the extents uninitialized.
2781 * for non AIO case, we will convert those unwritten extents
2782 * to written after return back from blockdev_direct_IO.
2784 * for async DIO, the conversion needs to be defered when
2785 * the IO is completed. The ext4 end_io callback function
2786 * will be called to take care of the conversion work.
2787 * Here for async case, we allocate an io_end structure to
2790 iocb
->private = NULL
;
2791 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2792 if (!is_sync_kiocb(iocb
)) {
2793 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
2797 * we save the io structure for current async
2798 * direct IO, so that later ext4_map_blocks()
2799 * could flag the io structure whether there
2800 * is a unwritten extents needs to be converted
2801 * when IO is completed.
2803 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
2806 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
2807 inode
->i_sb
->s_bdev
, iov
,
2809 ext4_get_block_write
,
2812 DIO_LOCKING
| DIO_SKIP_HOLES
);
2814 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2816 * The io_end structure takes a reference to the inode,
2817 * that structure needs to be destroyed and the
2818 * reference to the inode need to be dropped, when IO is
2819 * complete, even with 0 byte write, or failed.
2821 * In the successful AIO DIO case, the io_end structure will be
2822 * desctroyed and the reference to the inode will be dropped
2823 * after the end_io call back function is called.
2825 * In the case there is 0 byte write, or error case, since
2826 * VFS direct IO won't invoke the end_io call back function,
2827 * we need to free the end_io structure here.
2829 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
2830 ext4_free_io_end(iocb
->private);
2831 iocb
->private = NULL
;
2832 } else if (ret
> 0 && ext4_test_inode_state(inode
,
2833 EXT4_STATE_DIO_UNWRITTEN
)) {
2836 * for non AIO case, since the IO is already
2837 * completed, we could do the conversion right here
2839 err
= ext4_convert_unwritten_extents(inode
,
2843 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
2848 /* for write the the end of file case, we fall back to old way */
2849 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2852 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
2853 const struct iovec
*iov
, loff_t offset
,
2854 unsigned long nr_segs
)
2856 struct file
*file
= iocb
->ki_filp
;
2857 struct inode
*inode
= file
->f_mapping
->host
;
2860 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
2861 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
2862 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2864 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2865 trace_ext4_direct_IO_exit(inode
, offset
,
2866 iov_length(iov
, nr_segs
), rw
, ret
);
2871 * Pages can be marked dirty completely asynchronously from ext4's journalling
2872 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2873 * much here because ->set_page_dirty is called under VFS locks. The page is
2874 * not necessarily locked.
2876 * We cannot just dirty the page and leave attached buffers clean, because the
2877 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2878 * or jbddirty because all the journalling code will explode.
2880 * So what we do is to mark the page "pending dirty" and next time writepage
2881 * is called, propagate that into the buffers appropriately.
2883 static int ext4_journalled_set_page_dirty(struct page
*page
)
2885 SetPageChecked(page
);
2886 return __set_page_dirty_nobuffers(page
);
2889 static const struct address_space_operations ext4_ordered_aops
= {
2890 .readpage
= ext4_readpage
,
2891 .readpages
= ext4_readpages
,
2892 .writepage
= ext4_writepage
,
2893 .write_begin
= ext4_write_begin
,
2894 .write_end
= ext4_ordered_write_end
,
2896 .invalidatepage
= ext4_invalidatepage
,
2897 .releasepage
= ext4_releasepage
,
2898 .direct_IO
= ext4_direct_IO
,
2899 .migratepage
= buffer_migrate_page
,
2900 .is_partially_uptodate
= block_is_partially_uptodate
,
2901 .error_remove_page
= generic_error_remove_page
,
2904 static const struct address_space_operations ext4_writeback_aops
= {
2905 .readpage
= ext4_readpage
,
2906 .readpages
= ext4_readpages
,
2907 .writepage
= ext4_writepage
,
2908 .write_begin
= ext4_write_begin
,
2909 .write_end
= ext4_writeback_write_end
,
2911 .invalidatepage
= ext4_invalidatepage
,
2912 .releasepage
= ext4_releasepage
,
2913 .direct_IO
= ext4_direct_IO
,
2914 .migratepage
= buffer_migrate_page
,
2915 .is_partially_uptodate
= block_is_partially_uptodate
,
2916 .error_remove_page
= generic_error_remove_page
,
2919 static const struct address_space_operations ext4_journalled_aops
= {
2920 .readpage
= ext4_readpage
,
2921 .readpages
= ext4_readpages
,
2922 .writepage
= ext4_writepage
,
2923 .write_begin
= ext4_write_begin
,
2924 .write_end
= ext4_journalled_write_end
,
2925 .set_page_dirty
= ext4_journalled_set_page_dirty
,
2927 .invalidatepage
= ext4_invalidatepage
,
2928 .releasepage
= ext4_releasepage
,
2929 .is_partially_uptodate
= block_is_partially_uptodate
,
2930 .error_remove_page
= generic_error_remove_page
,
2933 static const struct address_space_operations ext4_da_aops
= {
2934 .readpage
= ext4_readpage
,
2935 .readpages
= ext4_readpages
,
2936 .writepage
= ext4_writepage
,
2937 .writepages
= ext4_da_writepages
,
2938 .write_begin
= ext4_da_write_begin
,
2939 .write_end
= ext4_da_write_end
,
2941 .invalidatepage
= ext4_da_invalidatepage
,
2942 .releasepage
= ext4_releasepage
,
2943 .direct_IO
= ext4_direct_IO
,
2944 .migratepage
= buffer_migrate_page
,
2945 .is_partially_uptodate
= block_is_partially_uptodate
,
2946 .error_remove_page
= generic_error_remove_page
,
2949 void ext4_set_aops(struct inode
*inode
)
2951 if (ext4_should_order_data(inode
) &&
2952 test_opt(inode
->i_sb
, DELALLOC
))
2953 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
2954 else if (ext4_should_order_data(inode
))
2955 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
2956 else if (ext4_should_writeback_data(inode
) &&
2957 test_opt(inode
->i_sb
, DELALLOC
))
2958 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
2959 else if (ext4_should_writeback_data(inode
))
2960 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
2962 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
2966 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2967 * up to the end of the block which corresponds to `from'.
2968 * This required during truncate. We need to physically zero the tail end
2969 * of that block so it doesn't yield old data if the file is later grown.
2971 int ext4_block_truncate_page(handle_t
*handle
,
2972 struct address_space
*mapping
, loff_t from
)
2974 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2977 struct inode
*inode
= mapping
->host
;
2979 blocksize
= inode
->i_sb
->s_blocksize
;
2980 length
= blocksize
- (offset
& (blocksize
- 1));
2982 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
2986 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2987 * starting from file offset 'from'. The range to be zero'd must
2988 * be contained with in one block. If the specified range exceeds
2989 * the end of the block it will be shortened to end of the block
2990 * that cooresponds to 'from'
2992 int ext4_block_zero_page_range(handle_t
*handle
,
2993 struct address_space
*mapping
, loff_t from
, loff_t length
)
2995 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
2996 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2997 unsigned blocksize
, max
, pos
;
2999 struct inode
*inode
= mapping
->host
;
3000 struct buffer_head
*bh
;
3004 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3005 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3009 blocksize
= inode
->i_sb
->s_blocksize
;
3010 max
= blocksize
- (offset
& (blocksize
- 1));
3013 * correct length if it does not fall between
3014 * 'from' and the end of the block
3016 if (length
> max
|| length
< 0)
3019 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3021 if (!page_has_buffers(page
))
3022 create_empty_buffers(page
, blocksize
, 0);
3024 /* Find the buffer that contains "offset" */
3025 bh
= page_buffers(page
);
3027 while (offset
>= pos
) {
3028 bh
= bh
->b_this_page
;
3034 if (buffer_freed(bh
)) {
3035 BUFFER_TRACE(bh
, "freed: skip");
3039 if (!buffer_mapped(bh
)) {
3040 BUFFER_TRACE(bh
, "unmapped");
3041 ext4_get_block(inode
, iblock
, bh
, 0);
3042 /* unmapped? It's a hole - nothing to do */
3043 if (!buffer_mapped(bh
)) {
3044 BUFFER_TRACE(bh
, "still unmapped");
3049 /* Ok, it's mapped. Make sure it's up-to-date */
3050 if (PageUptodate(page
))
3051 set_buffer_uptodate(bh
);
3053 if (!buffer_uptodate(bh
)) {
3055 ll_rw_block(READ
, 1, &bh
);
3057 /* Uhhuh. Read error. Complain and punt. */
3058 if (!buffer_uptodate(bh
))
3062 if (ext4_should_journal_data(inode
)) {
3063 BUFFER_TRACE(bh
, "get write access");
3064 err
= ext4_journal_get_write_access(handle
, bh
);
3069 zero_user(page
, offset
, length
);
3071 BUFFER_TRACE(bh
, "zeroed end of block");
3074 if (ext4_should_journal_data(inode
)) {
3075 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3077 if (ext4_should_order_data(inode
) && EXT4_I(inode
)->jinode
)
3078 err
= ext4_jbd2_file_inode(handle
, inode
);
3079 mark_buffer_dirty(bh
);
3084 page_cache_release(page
);
3088 int ext4_can_truncate(struct inode
*inode
)
3090 if (S_ISREG(inode
->i_mode
))
3092 if (S_ISDIR(inode
->i_mode
))
3094 if (S_ISLNK(inode
->i_mode
))
3095 return !ext4_inode_is_fast_symlink(inode
);
3100 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3101 * associated with the given offset and length
3103 * @inode: File inode
3104 * @offset: The offset where the hole will begin
3105 * @len: The length of the hole
3107 * Returns: 0 on sucess or negative on failure
3110 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
3112 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
3113 if (!S_ISREG(inode
->i_mode
))
3116 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3117 /* TODO: Add support for non extent hole punching */
3121 return ext4_ext_punch_hole(file
, offset
, length
);
3127 * We block out ext4_get_block() block instantiations across the entire
3128 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3129 * simultaneously on behalf of the same inode.
3131 * As we work through the truncate and commmit bits of it to the journal there
3132 * is one core, guiding principle: the file's tree must always be consistent on
3133 * disk. We must be able to restart the truncate after a crash.
3135 * The file's tree may be transiently inconsistent in memory (although it
3136 * probably isn't), but whenever we close off and commit a journal transaction,
3137 * the contents of (the filesystem + the journal) must be consistent and
3138 * restartable. It's pretty simple, really: bottom up, right to left (although
3139 * left-to-right works OK too).
3141 * Note that at recovery time, journal replay occurs *before* the restart of
3142 * truncate against the orphan inode list.
3144 * The committed inode has the new, desired i_size (which is the same as
3145 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3146 * that this inode's truncate did not complete and it will again call
3147 * ext4_truncate() to have another go. So there will be instantiated blocks
3148 * to the right of the truncation point in a crashed ext4 filesystem. But
3149 * that's fine - as long as they are linked from the inode, the post-crash
3150 * ext4_truncate() run will find them and release them.
3152 void ext4_truncate(struct inode
*inode
)
3154 trace_ext4_truncate_enter(inode
);
3156 if (!ext4_can_truncate(inode
))
3159 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3161 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3162 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3164 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3165 ext4_ext_truncate(inode
);
3167 ext4_ind_truncate(inode
);
3169 trace_ext4_truncate_exit(inode
);
3173 * ext4_get_inode_loc returns with an extra refcount against the inode's
3174 * underlying buffer_head on success. If 'in_mem' is true, we have all
3175 * data in memory that is needed to recreate the on-disk version of this
3178 static int __ext4_get_inode_loc(struct inode
*inode
,
3179 struct ext4_iloc
*iloc
, int in_mem
)
3181 struct ext4_group_desc
*gdp
;
3182 struct buffer_head
*bh
;
3183 struct super_block
*sb
= inode
->i_sb
;
3185 int inodes_per_block
, inode_offset
;
3188 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3191 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3192 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3197 * Figure out the offset within the block group inode table
3199 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3200 inode_offset
= ((inode
->i_ino
- 1) %
3201 EXT4_INODES_PER_GROUP(sb
));
3202 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3203 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3205 bh
= sb_getblk(sb
, block
);
3207 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3208 "unable to read itable block");
3211 if (!buffer_uptodate(bh
)) {
3215 * If the buffer has the write error flag, we have failed
3216 * to write out another inode in the same block. In this
3217 * case, we don't have to read the block because we may
3218 * read the old inode data successfully.
3220 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3221 set_buffer_uptodate(bh
);
3223 if (buffer_uptodate(bh
)) {
3224 /* someone brought it uptodate while we waited */
3230 * If we have all information of the inode in memory and this
3231 * is the only valid inode in the block, we need not read the
3235 struct buffer_head
*bitmap_bh
;
3238 start
= inode_offset
& ~(inodes_per_block
- 1);
3240 /* Is the inode bitmap in cache? */
3241 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3246 * If the inode bitmap isn't in cache then the
3247 * optimisation may end up performing two reads instead
3248 * of one, so skip it.
3250 if (!buffer_uptodate(bitmap_bh
)) {
3254 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3255 if (i
== inode_offset
)
3257 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3261 if (i
== start
+ inodes_per_block
) {
3262 /* all other inodes are free, so skip I/O */
3263 memset(bh
->b_data
, 0, bh
->b_size
);
3264 set_buffer_uptodate(bh
);
3272 * If we need to do any I/O, try to pre-readahead extra
3273 * blocks from the inode table.
3275 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3276 ext4_fsblk_t b
, end
, table
;
3279 table
= ext4_inode_table(sb
, gdp
);
3280 /* s_inode_readahead_blks is always a power of 2 */
3281 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
3284 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
3285 num
= EXT4_INODES_PER_GROUP(sb
);
3286 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3287 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
3288 num
-= ext4_itable_unused_count(sb
, gdp
);
3289 table
+= num
/ inodes_per_block
;
3293 sb_breadahead(sb
, b
++);
3297 * There are other valid inodes in the buffer, this inode
3298 * has in-inode xattrs, or we don't have this inode in memory.
3299 * Read the block from disk.
3301 trace_ext4_load_inode(inode
);
3303 bh
->b_end_io
= end_buffer_read_sync
;
3304 submit_bh(READ_META
, bh
);
3306 if (!buffer_uptodate(bh
)) {
3307 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3308 "unable to read itable block");
3318 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3320 /* We have all inode data except xattrs in memory here. */
3321 return __ext4_get_inode_loc(inode
, iloc
,
3322 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3325 void ext4_set_inode_flags(struct inode
*inode
)
3327 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3329 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3330 if (flags
& EXT4_SYNC_FL
)
3331 inode
->i_flags
|= S_SYNC
;
3332 if (flags
& EXT4_APPEND_FL
)
3333 inode
->i_flags
|= S_APPEND
;
3334 if (flags
& EXT4_IMMUTABLE_FL
)
3335 inode
->i_flags
|= S_IMMUTABLE
;
3336 if (flags
& EXT4_NOATIME_FL
)
3337 inode
->i_flags
|= S_NOATIME
;
3338 if (flags
& EXT4_DIRSYNC_FL
)
3339 inode
->i_flags
|= S_DIRSYNC
;
3342 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3343 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3345 unsigned int vfs_fl
;
3346 unsigned long old_fl
, new_fl
;
3349 vfs_fl
= ei
->vfs_inode
.i_flags
;
3350 old_fl
= ei
->i_flags
;
3351 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3352 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3354 if (vfs_fl
& S_SYNC
)
3355 new_fl
|= EXT4_SYNC_FL
;
3356 if (vfs_fl
& S_APPEND
)
3357 new_fl
|= EXT4_APPEND_FL
;
3358 if (vfs_fl
& S_IMMUTABLE
)
3359 new_fl
|= EXT4_IMMUTABLE_FL
;
3360 if (vfs_fl
& S_NOATIME
)
3361 new_fl
|= EXT4_NOATIME_FL
;
3362 if (vfs_fl
& S_DIRSYNC
)
3363 new_fl
|= EXT4_DIRSYNC_FL
;
3364 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3367 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3368 struct ext4_inode_info
*ei
)
3371 struct inode
*inode
= &(ei
->vfs_inode
);
3372 struct super_block
*sb
= inode
->i_sb
;
3374 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3375 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3376 /* we are using combined 48 bit field */
3377 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3378 le32_to_cpu(raw_inode
->i_blocks_lo
);
3379 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3380 /* i_blocks represent file system block size */
3381 return i_blocks
<< (inode
->i_blkbits
- 9);
3386 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3390 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
3392 struct ext4_iloc iloc
;
3393 struct ext4_inode
*raw_inode
;
3394 struct ext4_inode_info
*ei
;
3395 struct inode
*inode
;
3396 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
3400 inode
= iget_locked(sb
, ino
);
3402 return ERR_PTR(-ENOMEM
);
3403 if (!(inode
->i_state
& I_NEW
))
3409 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3412 raw_inode
= ext4_raw_inode(&iloc
);
3413 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
3414 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
3415 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
3416 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3417 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
3418 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
3420 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
3422 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
3423 ei
->i_dir_start_lookup
= 0;
3424 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
3425 /* We now have enough fields to check if the inode was active or not.
3426 * This is needed because nfsd might try to access dead inodes
3427 * the test is that same one that e2fsck uses
3428 * NeilBrown 1999oct15
3430 if (inode
->i_nlink
== 0) {
3431 if (inode
->i_mode
== 0 ||
3432 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
3433 /* this inode is deleted */
3437 /* The only unlinked inodes we let through here have
3438 * valid i_mode and are being read by the orphan
3439 * recovery code: that's fine, we're about to complete
3440 * the process of deleting those. */
3442 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
3443 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
3444 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
3445 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
3447 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
3448 inode
->i_size
= ext4_isize(raw_inode
);
3449 ei
->i_disksize
= inode
->i_size
;
3451 ei
->i_reserved_quota
= 0;
3453 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
3454 ei
->i_block_group
= iloc
.block_group
;
3455 ei
->i_last_alloc_group
= ~0;
3457 * NOTE! The in-memory inode i_data array is in little-endian order
3458 * even on big-endian machines: we do NOT byteswap the block numbers!
3460 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3461 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
3462 INIT_LIST_HEAD(&ei
->i_orphan
);
3465 * Set transaction id's of transactions that have to be committed
3466 * to finish f[data]sync. We set them to currently running transaction
3467 * as we cannot be sure that the inode or some of its metadata isn't
3468 * part of the transaction - the inode could have been reclaimed and
3469 * now it is reread from disk.
3472 transaction_t
*transaction
;
3475 read_lock(&journal
->j_state_lock
);
3476 if (journal
->j_running_transaction
)
3477 transaction
= journal
->j_running_transaction
;
3479 transaction
= journal
->j_committing_transaction
;
3481 tid
= transaction
->t_tid
;
3483 tid
= journal
->j_commit_sequence
;
3484 read_unlock(&journal
->j_state_lock
);
3485 ei
->i_sync_tid
= tid
;
3486 ei
->i_datasync_tid
= tid
;
3489 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3490 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3491 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3492 EXT4_INODE_SIZE(inode
->i_sb
)) {
3496 if (ei
->i_extra_isize
== 0) {
3497 /* The extra space is currently unused. Use it. */
3498 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
3499 EXT4_GOOD_OLD_INODE_SIZE
;
3501 __le32
*magic
= (void *)raw_inode
+
3502 EXT4_GOOD_OLD_INODE_SIZE
+
3504 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
3505 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
3508 ei
->i_extra_isize
= 0;
3510 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
3511 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
3512 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
3513 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
3515 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
3516 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3517 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3519 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
3523 if (ei
->i_file_acl
&&
3524 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
3525 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
3529 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3530 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3531 (S_ISLNK(inode
->i_mode
) &&
3532 !ext4_inode_is_fast_symlink(inode
)))
3533 /* Validate extent which is part of inode */
3534 ret
= ext4_ext_check_inode(inode
);
3535 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3536 (S_ISLNK(inode
->i_mode
) &&
3537 !ext4_inode_is_fast_symlink(inode
))) {
3538 /* Validate block references which are part of inode */
3539 ret
= ext4_ind_check_inode(inode
);
3544 if (S_ISREG(inode
->i_mode
)) {
3545 inode
->i_op
= &ext4_file_inode_operations
;
3546 inode
->i_fop
= &ext4_file_operations
;
3547 ext4_set_aops(inode
);
3548 } else if (S_ISDIR(inode
->i_mode
)) {
3549 inode
->i_op
= &ext4_dir_inode_operations
;
3550 inode
->i_fop
= &ext4_dir_operations
;
3551 } else if (S_ISLNK(inode
->i_mode
)) {
3552 if (ext4_inode_is_fast_symlink(inode
)) {
3553 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
3554 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3555 sizeof(ei
->i_data
) - 1);
3557 inode
->i_op
= &ext4_symlink_inode_operations
;
3558 ext4_set_aops(inode
);
3560 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
3561 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
3562 inode
->i_op
= &ext4_special_inode_operations
;
3563 if (raw_inode
->i_block
[0])
3564 init_special_inode(inode
, inode
->i_mode
,
3565 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3567 init_special_inode(inode
, inode
->i_mode
,
3568 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3571 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
3575 ext4_set_inode_flags(inode
);
3576 unlock_new_inode(inode
);
3582 return ERR_PTR(ret
);
3585 static int ext4_inode_blocks_set(handle_t
*handle
,
3586 struct ext4_inode
*raw_inode
,
3587 struct ext4_inode_info
*ei
)
3589 struct inode
*inode
= &(ei
->vfs_inode
);
3590 u64 i_blocks
= inode
->i_blocks
;
3591 struct super_block
*sb
= inode
->i_sb
;
3593 if (i_blocks
<= ~0U) {
3595 * i_blocks can be represnted in a 32 bit variable
3596 * as multiple of 512 bytes
3598 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3599 raw_inode
->i_blocks_high
= 0;
3600 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3603 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
3606 if (i_blocks
<= 0xffffffffffffULL
) {
3608 * i_blocks can be represented in a 48 bit variable
3609 * as multiple of 512 bytes
3611 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3612 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3613 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3615 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3616 /* i_block is stored in file system block size */
3617 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
3618 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3619 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3625 * Post the struct inode info into an on-disk inode location in the
3626 * buffer-cache. This gobbles the caller's reference to the
3627 * buffer_head in the inode location struct.
3629 * The caller must have write access to iloc->bh.
3631 static int ext4_do_update_inode(handle_t
*handle
,
3632 struct inode
*inode
,
3633 struct ext4_iloc
*iloc
)
3635 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
3636 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3637 struct buffer_head
*bh
= iloc
->bh
;
3638 int err
= 0, rc
, block
;
3640 /* For fields not not tracking in the in-memory inode,
3641 * initialise them to zero for new inodes. */
3642 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
3643 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
3645 ext4_get_inode_flags(ei
);
3646 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3647 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3648 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
3649 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
3651 * Fix up interoperability with old kernels. Otherwise, old inodes get
3652 * re-used with the upper 16 bits of the uid/gid intact
3655 raw_inode
->i_uid_high
=
3656 cpu_to_le16(high_16_bits(inode
->i_uid
));
3657 raw_inode
->i_gid_high
=
3658 cpu_to_le16(high_16_bits(inode
->i_gid
));
3660 raw_inode
->i_uid_high
= 0;
3661 raw_inode
->i_gid_high
= 0;
3664 raw_inode
->i_uid_low
=
3665 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
3666 raw_inode
->i_gid_low
=
3667 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
3668 raw_inode
->i_uid_high
= 0;
3669 raw_inode
->i_gid_high
= 0;
3671 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3673 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
3674 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
3675 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
3676 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
3678 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
3680 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3681 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
3682 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
3683 cpu_to_le32(EXT4_OS_HURD
))
3684 raw_inode
->i_file_acl_high
=
3685 cpu_to_le16(ei
->i_file_acl
>> 32);
3686 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
3687 ext4_isize_set(raw_inode
, ei
->i_disksize
);
3688 if (ei
->i_disksize
> 0x7fffffffULL
) {
3689 struct super_block
*sb
= inode
->i_sb
;
3690 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3691 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3692 EXT4_SB(sb
)->s_es
->s_rev_level
==
3693 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
3694 /* If this is the first large file
3695 * created, add a flag to the superblock.
3697 err
= ext4_journal_get_write_access(handle
,
3698 EXT4_SB(sb
)->s_sbh
);
3701 ext4_update_dynamic_rev(sb
);
3702 EXT4_SET_RO_COMPAT_FEATURE(sb
,
3703 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
3705 ext4_handle_sync(handle
);
3706 err
= ext4_handle_dirty_metadata(handle
, NULL
,
3707 EXT4_SB(sb
)->s_sbh
);
3710 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3711 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3712 if (old_valid_dev(inode
->i_rdev
)) {
3713 raw_inode
->i_block
[0] =
3714 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3715 raw_inode
->i_block
[1] = 0;
3717 raw_inode
->i_block
[0] = 0;
3718 raw_inode
->i_block
[1] =
3719 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3720 raw_inode
->i_block
[2] = 0;
3723 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3724 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3726 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
3727 if (ei
->i_extra_isize
) {
3728 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3729 raw_inode
->i_version_hi
=
3730 cpu_to_le32(inode
->i_version
>> 32);
3731 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3734 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
3735 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
3738 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
3740 ext4_update_inode_fsync_trans(handle
, inode
, 0);
3743 ext4_std_error(inode
->i_sb
, err
);
3748 * ext4_write_inode()
3750 * We are called from a few places:
3752 * - Within generic_file_write() for O_SYNC files.
3753 * Here, there will be no transaction running. We wait for any running
3754 * trasnaction to commit.
3756 * - Within sys_sync(), kupdate and such.
3757 * We wait on commit, if tol to.
3759 * - Within prune_icache() (PF_MEMALLOC == true)
3760 * Here we simply return. We can't afford to block kswapd on the
3763 * In all cases it is actually safe for us to return without doing anything,
3764 * because the inode has been copied into a raw inode buffer in
3765 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3768 * Note that we are absolutely dependent upon all inode dirtiers doing the
3769 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3770 * which we are interested.
3772 * It would be a bug for them to not do this. The code:
3774 * mark_inode_dirty(inode)
3776 * inode->i_size = expr;
3778 * is in error because a kswapd-driven write_inode() could occur while
3779 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3780 * will no longer be on the superblock's dirty inode list.
3782 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
3786 if (current
->flags
& PF_MEMALLOC
)
3789 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
3790 if (ext4_journal_current_handle()) {
3791 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3796 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
3799 err
= ext4_force_commit(inode
->i_sb
);
3801 struct ext4_iloc iloc
;
3803 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3806 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3807 sync_dirty_buffer(iloc
.bh
);
3808 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
3809 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
3810 "IO error syncing inode");
3821 * Called from notify_change.
3823 * We want to trap VFS attempts to truncate the file as soon as
3824 * possible. In particular, we want to make sure that when the VFS
3825 * shrinks i_size, we put the inode on the orphan list and modify
3826 * i_disksize immediately, so that during the subsequent flushing of
3827 * dirty pages and freeing of disk blocks, we can guarantee that any
3828 * commit will leave the blocks being flushed in an unused state on
3829 * disk. (On recovery, the inode will get truncated and the blocks will
3830 * be freed, so we have a strong guarantee that no future commit will
3831 * leave these blocks visible to the user.)
3833 * Another thing we have to assure is that if we are in ordered mode
3834 * and inode is still attached to the committing transaction, we must
3835 * we start writeout of all the dirty pages which are being truncated.
3836 * This way we are sure that all the data written in the previous
3837 * transaction are already on disk (truncate waits for pages under
3840 * Called with inode->i_mutex down.
3842 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3844 struct inode
*inode
= dentry
->d_inode
;
3847 const unsigned int ia_valid
= attr
->ia_valid
;
3849 error
= inode_change_ok(inode
, attr
);
3853 if (is_quota_modification(inode
, attr
))
3854 dquot_initialize(inode
);
3855 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3856 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3859 /* (user+group)*(old+new) structure, inode write (sb,
3860 * inode block, ? - but truncate inode update has it) */
3861 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
3862 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
3863 if (IS_ERR(handle
)) {
3864 error
= PTR_ERR(handle
);
3867 error
= dquot_transfer(inode
, attr
);
3869 ext4_journal_stop(handle
);
3872 /* Update corresponding info in inode so that everything is in
3873 * one transaction */
3874 if (attr
->ia_valid
& ATTR_UID
)
3875 inode
->i_uid
= attr
->ia_uid
;
3876 if (attr
->ia_valid
& ATTR_GID
)
3877 inode
->i_gid
= attr
->ia_gid
;
3878 error
= ext4_mark_inode_dirty(handle
, inode
);
3879 ext4_journal_stop(handle
);
3882 if (attr
->ia_valid
& ATTR_SIZE
) {
3883 inode_dio_wait(inode
);
3885 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
3886 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3888 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
3893 if (S_ISREG(inode
->i_mode
) &&
3894 attr
->ia_valid
& ATTR_SIZE
&&
3895 (attr
->ia_size
< inode
->i_size
)) {
3898 handle
= ext4_journal_start(inode
, 3);
3899 if (IS_ERR(handle
)) {
3900 error
= PTR_ERR(handle
);
3903 if (ext4_handle_valid(handle
)) {
3904 error
= ext4_orphan_add(handle
, inode
);
3907 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
3908 rc
= ext4_mark_inode_dirty(handle
, inode
);
3911 ext4_journal_stop(handle
);
3913 if (ext4_should_order_data(inode
)) {
3914 error
= ext4_begin_ordered_truncate(inode
,
3917 /* Do as much error cleanup as possible */
3918 handle
= ext4_journal_start(inode
, 3);
3919 if (IS_ERR(handle
)) {
3920 ext4_orphan_del(NULL
, inode
);
3923 ext4_orphan_del(handle
, inode
);
3925 ext4_journal_stop(handle
);
3931 if (attr
->ia_valid
& ATTR_SIZE
) {
3932 if (attr
->ia_size
!= i_size_read(inode
)) {
3933 truncate_setsize(inode
, attr
->ia_size
);
3934 ext4_truncate(inode
);
3935 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
3936 ext4_truncate(inode
);
3940 setattr_copy(inode
, attr
);
3941 mark_inode_dirty(inode
);
3945 * If the call to ext4_truncate failed to get a transaction handle at
3946 * all, we need to clean up the in-core orphan list manually.
3948 if (orphan
&& inode
->i_nlink
)
3949 ext4_orphan_del(NULL
, inode
);
3951 if (!rc
&& (ia_valid
& ATTR_MODE
))
3952 rc
= ext4_acl_chmod(inode
);
3955 ext4_std_error(inode
->i_sb
, error
);
3961 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
3964 struct inode
*inode
;
3965 unsigned long delalloc_blocks
;
3967 inode
= dentry
->d_inode
;
3968 generic_fillattr(inode
, stat
);
3971 * We can't update i_blocks if the block allocation is delayed
3972 * otherwise in the case of system crash before the real block
3973 * allocation is done, we will have i_blocks inconsistent with
3974 * on-disk file blocks.
3975 * We always keep i_blocks updated together with real
3976 * allocation. But to not confuse with user, stat
3977 * will return the blocks that include the delayed allocation
3978 * blocks for this file.
3980 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
3982 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
3986 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
3988 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
3989 return ext4_ind_trans_blocks(inode
, nrblocks
, chunk
);
3990 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
3994 * Account for index blocks, block groups bitmaps and block group
3995 * descriptor blocks if modify datablocks and index blocks
3996 * worse case, the indexs blocks spread over different block groups
3998 * If datablocks are discontiguous, they are possible to spread over
3999 * different block groups too. If they are contiuguous, with flexbg,
4000 * they could still across block group boundary.
4002 * Also account for superblock, inode, quota and xattr blocks
4004 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4006 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4012 * How many index blocks need to touch to modify nrblocks?
4013 * The "Chunk" flag indicating whether the nrblocks is
4014 * physically contiguous on disk
4016 * For Direct IO and fallocate, they calls get_block to allocate
4017 * one single extent at a time, so they could set the "Chunk" flag
4019 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4024 * Now let's see how many group bitmaps and group descriptors need
4034 if (groups
> ngroups
)
4036 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4037 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4039 /* bitmaps and block group descriptor blocks */
4040 ret
+= groups
+ gdpblocks
;
4042 /* Blocks for super block, inode, quota and xattr blocks */
4043 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4049 * Calculate the total number of credits to reserve to fit
4050 * the modification of a single pages into a single transaction,
4051 * which may include multiple chunks of block allocations.
4053 * This could be called via ext4_write_begin()
4055 * We need to consider the worse case, when
4056 * one new block per extent.
4058 int ext4_writepage_trans_blocks(struct inode
*inode
)
4060 int bpp
= ext4_journal_blocks_per_page(inode
);
4063 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4065 /* Account for data blocks for journalled mode */
4066 if (ext4_should_journal_data(inode
))
4072 * Calculate the journal credits for a chunk of data modification.
4074 * This is called from DIO, fallocate or whoever calling
4075 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4077 * journal buffers for data blocks are not included here, as DIO
4078 * and fallocate do no need to journal data buffers.
4080 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4082 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4086 * The caller must have previously called ext4_reserve_inode_write().
4087 * Give this, we know that the caller already has write access to iloc->bh.
4089 int ext4_mark_iloc_dirty(handle_t
*handle
,
4090 struct inode
*inode
, struct ext4_iloc
*iloc
)
4094 if (test_opt(inode
->i_sb
, I_VERSION
))
4095 inode_inc_iversion(inode
);
4097 /* the do_update_inode consumes one bh->b_count */
4100 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4101 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4107 * On success, We end up with an outstanding reference count against
4108 * iloc->bh. This _must_ be cleaned up later.
4112 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4113 struct ext4_iloc
*iloc
)
4117 err
= ext4_get_inode_loc(inode
, iloc
);
4119 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4120 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4126 ext4_std_error(inode
->i_sb
, err
);
4131 * Expand an inode by new_extra_isize bytes.
4132 * Returns 0 on success or negative error number on failure.
4134 static int ext4_expand_extra_isize(struct inode
*inode
,
4135 unsigned int new_extra_isize
,
4136 struct ext4_iloc iloc
,
4139 struct ext4_inode
*raw_inode
;
4140 struct ext4_xattr_ibody_header
*header
;
4142 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4145 raw_inode
= ext4_raw_inode(&iloc
);
4147 header
= IHDR(inode
, raw_inode
);
4149 /* No extended attributes present */
4150 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4151 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4152 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4154 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4158 /* try to expand with EAs present */
4159 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4164 * What we do here is to mark the in-core inode as clean with respect to inode
4165 * dirtiness (it may still be data-dirty).
4166 * This means that the in-core inode may be reaped by prune_icache
4167 * without having to perform any I/O. This is a very good thing,
4168 * because *any* task may call prune_icache - even ones which
4169 * have a transaction open against a different journal.
4171 * Is this cheating? Not really. Sure, we haven't written the
4172 * inode out, but prune_icache isn't a user-visible syncing function.
4173 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4174 * we start and wait on commits.
4176 * Is this efficient/effective? Well, we're being nice to the system
4177 * by cleaning up our inodes proactively so they can be reaped
4178 * without I/O. But we are potentially leaving up to five seconds'
4179 * worth of inodes floating about which prune_icache wants us to
4180 * write out. One way to fix that would be to get prune_icache()
4181 * to do a write_super() to free up some memory. It has the desired
4184 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4186 struct ext4_iloc iloc
;
4187 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4188 static unsigned int mnt_count
;
4192 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4193 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4194 if (ext4_handle_valid(handle
) &&
4195 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4196 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4198 * We need extra buffer credits since we may write into EA block
4199 * with this same handle. If journal_extend fails, then it will
4200 * only result in a minor loss of functionality for that inode.
4201 * If this is felt to be critical, then e2fsck should be run to
4202 * force a large enough s_min_extra_isize.
4204 if ((jbd2_journal_extend(handle
,
4205 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4206 ret
= ext4_expand_extra_isize(inode
,
4207 sbi
->s_want_extra_isize
,
4210 ext4_set_inode_state(inode
,
4211 EXT4_STATE_NO_EXPAND
);
4213 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4214 ext4_warning(inode
->i_sb
,
4215 "Unable to expand inode %lu. Delete"
4216 " some EAs or run e2fsck.",
4219 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4225 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4230 * ext4_dirty_inode() is called from __mark_inode_dirty()
4232 * We're really interested in the case where a file is being extended.
4233 * i_size has been changed by generic_commit_write() and we thus need
4234 * to include the updated inode in the current transaction.
4236 * Also, dquot_alloc_block() will always dirty the inode when blocks
4237 * are allocated to the file.
4239 * If the inode is marked synchronous, we don't honour that here - doing
4240 * so would cause a commit on atime updates, which we don't bother doing.
4241 * We handle synchronous inodes at the highest possible level.
4243 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4247 handle
= ext4_journal_start(inode
, 2);
4251 ext4_mark_inode_dirty(handle
, inode
);
4253 ext4_journal_stop(handle
);
4260 * Bind an inode's backing buffer_head into this transaction, to prevent
4261 * it from being flushed to disk early. Unlike
4262 * ext4_reserve_inode_write, this leaves behind no bh reference and
4263 * returns no iloc structure, so the caller needs to repeat the iloc
4264 * lookup to mark the inode dirty later.
4266 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4268 struct ext4_iloc iloc
;
4272 err
= ext4_get_inode_loc(inode
, &iloc
);
4274 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4275 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4277 err
= ext4_handle_dirty_metadata(handle
,
4283 ext4_std_error(inode
->i_sb
, err
);
4288 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
4295 * We have to be very careful here: changing a data block's
4296 * journaling status dynamically is dangerous. If we write a
4297 * data block to the journal, change the status and then delete
4298 * that block, we risk forgetting to revoke the old log record
4299 * from the journal and so a subsequent replay can corrupt data.
4300 * So, first we make sure that the journal is empty and that
4301 * nobody is changing anything.
4304 journal
= EXT4_JOURNAL(inode
);
4307 if (is_journal_aborted(journal
))
4310 jbd2_journal_lock_updates(journal
);
4311 jbd2_journal_flush(journal
);
4314 * OK, there are no updates running now, and all cached data is
4315 * synced to disk. We are now in a completely consistent state
4316 * which doesn't have anything in the journal, and we know that
4317 * no filesystem updates are running, so it is safe to modify
4318 * the inode's in-core data-journaling state flag now.
4322 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4324 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4325 ext4_set_aops(inode
);
4327 jbd2_journal_unlock_updates(journal
);
4329 /* Finally we can mark the inode as dirty. */
4331 handle
= ext4_journal_start(inode
, 1);
4333 return PTR_ERR(handle
);
4335 err
= ext4_mark_inode_dirty(handle
, inode
);
4336 ext4_handle_sync(handle
);
4337 ext4_journal_stop(handle
);
4338 ext4_std_error(inode
->i_sb
, err
);
4343 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
4345 return !buffer_mapped(bh
);
4348 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4350 struct page
*page
= vmf
->page
;
4354 struct file
*file
= vma
->vm_file
;
4355 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4356 struct address_space
*mapping
= inode
->i_mapping
;
4358 get_block_t
*get_block
;
4362 * This check is racy but catches the common case. We rely on
4363 * __block_page_mkwrite() to do a reliable check.
4365 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
4366 /* Delalloc case is easy... */
4367 if (test_opt(inode
->i_sb
, DELALLOC
) &&
4368 !ext4_should_journal_data(inode
) &&
4369 !ext4_nonda_switch(inode
->i_sb
)) {
4371 ret
= __block_page_mkwrite(vma
, vmf
,
4372 ext4_da_get_block_prep
);
4373 } while (ret
== -ENOSPC
&&
4374 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
4379 size
= i_size_read(inode
);
4380 /* Page got truncated from under us? */
4381 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
4383 ret
= VM_FAULT_NOPAGE
;
4387 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
4388 len
= size
& ~PAGE_CACHE_MASK
;
4390 len
= PAGE_CACHE_SIZE
;
4392 * Return if we have all the buffers mapped. This avoids the need to do
4393 * journal_start/journal_stop which can block and take a long time
4395 if (page_has_buffers(page
)) {
4396 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
4397 ext4_bh_unmapped
)) {
4398 /* Wait so that we don't change page under IO */
4399 wait_on_page_writeback(page
);
4400 ret
= VM_FAULT_LOCKED
;
4405 /* OK, we need to fill the hole... */
4406 if (ext4_should_dioread_nolock(inode
))
4407 get_block
= ext4_get_block_write
;
4409 get_block
= ext4_get_block
;
4411 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
4412 if (IS_ERR(handle
)) {
4413 ret
= VM_FAULT_SIGBUS
;
4416 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
4417 if (!ret
&& ext4_should_journal_data(inode
)) {
4418 if (walk_page_buffers(handle
, page_buffers(page
), 0,
4419 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
4421 ret
= VM_FAULT_SIGBUS
;
4424 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
4426 ext4_journal_stop(handle
);
4427 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
4430 ret
= block_page_mkwrite_return(ret
);