1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
56 #define DRV_EXTRAVERSION "-k2"
58 #define DRV_VERSION "1.3.10" DRV_EXTRAVERSION
59 char e1000e_driver_name
[] = "e1000e";
60 const char e1000e_driver_version
[] = DRV_VERSION
;
62 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
);
64 static const struct e1000_info
*e1000_info_tbl
[] = {
65 [board_82571
] = &e1000_82571_info
,
66 [board_82572
] = &e1000_82572_info
,
67 [board_82573
] = &e1000_82573_info
,
68 [board_82574
] = &e1000_82574_info
,
69 [board_82583
] = &e1000_82583_info
,
70 [board_80003es2lan
] = &e1000_es2_info
,
71 [board_ich8lan
] = &e1000_ich8_info
,
72 [board_ich9lan
] = &e1000_ich9_info
,
73 [board_ich10lan
] = &e1000_ich10_info
,
74 [board_pchlan
] = &e1000_pch_info
,
75 [board_pch2lan
] = &e1000_pch2_info
,
78 struct e1000_reg_info
{
83 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
84 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
85 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
86 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
87 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
89 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
90 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
91 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
92 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
93 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
95 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
97 /* General Registers */
99 {E1000_STATUS
, "STATUS"},
100 {E1000_CTRL_EXT
, "CTRL_EXT"},
102 /* Interrupt Registers */
106 {E1000_RCTL
, "RCTL"},
107 {E1000_RDLEN
, "RDLEN"},
110 {E1000_RDTR
, "RDTR"},
111 {E1000_RXDCTL(0), "RXDCTL"},
113 {E1000_RDBAL
, "RDBAL"},
114 {E1000_RDBAH
, "RDBAH"},
115 {E1000_RDFH
, "RDFH"},
116 {E1000_RDFT
, "RDFT"},
117 {E1000_RDFHS
, "RDFHS"},
118 {E1000_RDFTS
, "RDFTS"},
119 {E1000_RDFPC
, "RDFPC"},
122 {E1000_TCTL
, "TCTL"},
123 {E1000_TDBAL
, "TDBAL"},
124 {E1000_TDBAH
, "TDBAH"},
125 {E1000_TDLEN
, "TDLEN"},
128 {E1000_TIDV
, "TIDV"},
129 {E1000_TXDCTL(0), "TXDCTL"},
130 {E1000_TADV
, "TADV"},
131 {E1000_TARC(0), "TARC"},
132 {E1000_TDFH
, "TDFH"},
133 {E1000_TDFT
, "TDFT"},
134 {E1000_TDFHS
, "TDFHS"},
135 {E1000_TDFTS
, "TDFTS"},
136 {E1000_TDFPC
, "TDFPC"},
138 /* List Terminator */
143 * e1000_regdump - register printout routine
145 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
151 switch (reginfo
->ofs
) {
152 case E1000_RXDCTL(0):
153 for (n
= 0; n
< 2; n
++)
154 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
156 case E1000_TXDCTL(0):
157 for (n
= 0; n
< 2; n
++)
158 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
161 for (n
= 0; n
< 2; n
++)
162 regs
[n
] = __er32(hw
, E1000_TARC(n
));
165 printk(KERN_INFO
"%-15s %08x\n",
166 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
170 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
171 printk(KERN_INFO
"%-15s ", rname
);
172 for (n
= 0; n
< 2; n
++)
173 printk(KERN_CONT
"%08x ", regs
[n
]);
174 printk(KERN_CONT
"\n");
178 * e1000e_dump - Print registers, Tx-ring and Rx-ring
180 static void e1000e_dump(struct e1000_adapter
*adapter
)
182 struct net_device
*netdev
= adapter
->netdev
;
183 struct e1000_hw
*hw
= &adapter
->hw
;
184 struct e1000_reg_info
*reginfo
;
185 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
186 struct e1000_tx_desc
*tx_desc
;
191 struct e1000_buffer
*buffer_info
;
192 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
193 union e1000_rx_desc_packet_split
*rx_desc_ps
;
194 struct e1000_rx_desc
*rx_desc
;
204 if (!netif_msg_hw(adapter
))
207 /* Print netdevice Info */
209 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
210 printk(KERN_INFO
"Device Name state "
211 "trans_start last_rx\n");
212 printk(KERN_INFO
"%-15s %016lX %016lX %016lX\n",
213 netdev
->name
, netdev
->state
, netdev
->trans_start
,
217 /* Print Registers */
218 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
219 printk(KERN_INFO
" Register Name Value\n");
220 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
221 reginfo
->name
; reginfo
++) {
222 e1000_regdump(hw
, reginfo
);
225 /* Print Tx Ring Summary */
226 if (!netdev
|| !netif_running(netdev
))
229 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
230 printk(KERN_INFO
"Queue [NTU] [NTC] [bi(ntc)->dma ]"
231 " leng ntw timestamp\n");
232 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
233 printk(KERN_INFO
" %5d %5X %5X %016llX %04X %3X %016llX\n",
234 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
235 (unsigned long long)buffer_info
->dma
,
237 buffer_info
->next_to_watch
,
238 (unsigned long long)buffer_info
->time_stamp
);
241 if (!netif_msg_tx_done(adapter
))
242 goto rx_ring_summary
;
244 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
246 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
248 * Legacy Transmit Descriptor
249 * +--------------------------------------------------------------+
250 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
251 * +--------------------------------------------------------------+
252 * 8 | Special | CSS | Status | CMD | CSO | Length |
253 * +--------------------------------------------------------------+
254 * 63 48 47 36 35 32 31 24 23 16 15 0
256 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
257 * 63 48 47 40 39 32 31 16 15 8 7 0
258 * +----------------------------------------------------------------+
259 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
260 * +----------------------------------------------------------------+
261 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
262 * +----------------------------------------------------------------+
263 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
265 * Extended Data Descriptor (DTYP=0x1)
266 * +----------------------------------------------------------------+
267 * 0 | Buffer Address [63:0] |
268 * +----------------------------------------------------------------+
269 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
270 * +----------------------------------------------------------------+
271 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
273 printk(KERN_INFO
"Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
274 " [bi->dma ] leng ntw timestamp bi->skb "
275 "<-- Legacy format\n");
276 printk(KERN_INFO
"Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
277 " [bi->dma ] leng ntw timestamp bi->skb "
278 "<-- Ext Context format\n");
279 printk(KERN_INFO
"Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
280 " [bi->dma ] leng ntw timestamp bi->skb "
281 "<-- Ext Data format\n");
282 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
283 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
284 buffer_info
= &tx_ring
->buffer_info
[i
];
285 u0
= (struct my_u0
*)tx_desc
;
286 printk(KERN_INFO
"T%c[0x%03X] %016llX %016llX %016llX "
287 "%04X %3X %016llX %p",
288 (!(le64_to_cpu(u0
->b
) & (1 << 29)) ? 'l' :
289 ((le64_to_cpu(u0
->b
) & (1 << 20)) ? 'd' : 'c')), i
,
290 (unsigned long long)le64_to_cpu(u0
->a
),
291 (unsigned long long)le64_to_cpu(u0
->b
),
292 (unsigned long long)buffer_info
->dma
,
293 buffer_info
->length
, buffer_info
->next_to_watch
,
294 (unsigned long long)buffer_info
->time_stamp
,
296 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
297 printk(KERN_CONT
" NTC/U\n");
298 else if (i
== tx_ring
->next_to_use
)
299 printk(KERN_CONT
" NTU\n");
300 else if (i
== tx_ring
->next_to_clean
)
301 printk(KERN_CONT
" NTC\n");
303 printk(KERN_CONT
"\n");
305 if (netif_msg_pktdata(adapter
) && buffer_info
->dma
!= 0)
306 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
307 16, 1, phys_to_virt(buffer_info
->dma
),
308 buffer_info
->length
, true);
311 /* Print Rx Ring Summary */
313 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
314 printk(KERN_INFO
"Queue [NTU] [NTC]\n");
315 printk(KERN_INFO
" %5d %5X %5X\n", 0,
316 rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
319 if (!netif_msg_rx_status(adapter
))
322 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
323 switch (adapter
->rx_ps_pages
) {
327 /* [Extended] Packet Split Receive Descriptor Format
329 * +-----------------------------------------------------+
330 * 0 | Buffer Address 0 [63:0] |
331 * +-----------------------------------------------------+
332 * 8 | Buffer Address 1 [63:0] |
333 * +-----------------------------------------------------+
334 * 16 | Buffer Address 2 [63:0] |
335 * +-----------------------------------------------------+
336 * 24 | Buffer Address 3 [63:0] |
337 * +-----------------------------------------------------+
339 printk(KERN_INFO
"R [desc] [buffer 0 63:0 ] "
341 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
342 "[bi->skb] <-- Ext Pkt Split format\n");
343 /* [Extended] Receive Descriptor (Write-Back) Format
345 * 63 48 47 32 31 13 12 8 7 4 3 0
346 * +------------------------------------------------------+
347 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
348 * | Checksum | Ident | | Queue | | Type |
349 * +------------------------------------------------------+
350 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
351 * +------------------------------------------------------+
352 * 63 48 47 32 31 20 19 0
354 printk(KERN_INFO
"RWB[desc] [ck ipid mrqhsh] "
356 "[ l3 l2 l1 hs] [reserved ] ---------------- "
357 "[bi->skb] <-- Ext Rx Write-Back format\n");
358 for (i
= 0; i
< rx_ring
->count
; i
++) {
359 buffer_info
= &rx_ring
->buffer_info
[i
];
360 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
361 u1
= (struct my_u1
*)rx_desc_ps
;
363 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
364 if (staterr
& E1000_RXD_STAT_DD
) {
365 /* Descriptor Done */
366 printk(KERN_INFO
"RWB[0x%03X] %016llX "
367 "%016llX %016llX %016llX "
368 "---------------- %p", i
,
369 (unsigned long long)le64_to_cpu(u1
->a
),
370 (unsigned long long)le64_to_cpu(u1
->b
),
371 (unsigned long long)le64_to_cpu(u1
->c
),
372 (unsigned long long)le64_to_cpu(u1
->d
),
375 printk(KERN_INFO
"R [0x%03X] %016llX "
376 "%016llX %016llX %016llX %016llX %p", i
,
377 (unsigned long long)le64_to_cpu(u1
->a
),
378 (unsigned long long)le64_to_cpu(u1
->b
),
379 (unsigned long long)le64_to_cpu(u1
->c
),
380 (unsigned long long)le64_to_cpu(u1
->d
),
381 (unsigned long long)buffer_info
->dma
,
384 if (netif_msg_pktdata(adapter
))
385 print_hex_dump(KERN_INFO
, "",
386 DUMP_PREFIX_ADDRESS
, 16, 1,
387 phys_to_virt(buffer_info
->dma
),
388 adapter
->rx_ps_bsize0
, true);
391 if (i
== rx_ring
->next_to_use
)
392 printk(KERN_CONT
" NTU\n");
393 else if (i
== rx_ring
->next_to_clean
)
394 printk(KERN_CONT
" NTC\n");
396 printk(KERN_CONT
"\n");
401 /* Legacy Receive Descriptor Format
403 * +-----------------------------------------------------+
404 * | Buffer Address [63:0] |
405 * +-----------------------------------------------------+
406 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
407 * +-----------------------------------------------------+
408 * 63 48 47 40 39 32 31 16 15 0
410 printk(KERN_INFO
"Rl[desc] [address 63:0 ] "
411 "[vl er S cks ln] [bi->dma ] [bi->skb] "
412 "<-- Legacy format\n");
413 for (i
= 0; rx_ring
->desc
&& (i
< rx_ring
->count
); i
++) {
414 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
415 buffer_info
= &rx_ring
->buffer_info
[i
];
416 u0
= (struct my_u0
*)rx_desc
;
417 printk(KERN_INFO
"Rl[0x%03X] %016llX %016llX "
419 (unsigned long long)le64_to_cpu(u0
->a
),
420 (unsigned long long)le64_to_cpu(u0
->b
),
421 (unsigned long long)buffer_info
->dma
,
423 if (i
== rx_ring
->next_to_use
)
424 printk(KERN_CONT
" NTU\n");
425 else if (i
== rx_ring
->next_to_clean
)
426 printk(KERN_CONT
" NTC\n");
428 printk(KERN_CONT
"\n");
430 if (netif_msg_pktdata(adapter
))
431 print_hex_dump(KERN_INFO
, "",
434 phys_to_virt(buffer_info
->dma
),
435 adapter
->rx_buffer_len
, true);
444 * e1000_desc_unused - calculate if we have unused descriptors
446 static int e1000_desc_unused(struct e1000_ring
*ring
)
448 if (ring
->next_to_clean
> ring
->next_to_use
)
449 return ring
->next_to_clean
- ring
->next_to_use
- 1;
451 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
455 * e1000_receive_skb - helper function to handle Rx indications
456 * @adapter: board private structure
457 * @status: descriptor status field as written by hardware
458 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
459 * @skb: pointer to sk_buff to be indicated to stack
461 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
462 struct net_device
*netdev
, struct sk_buff
*skb
,
463 u8 status
, __le16 vlan
)
465 u16 tag
= le16_to_cpu(vlan
);
466 skb
->protocol
= eth_type_trans(skb
, netdev
);
468 if (status
& E1000_RXD_STAT_VP
)
469 __vlan_hwaccel_put_tag(skb
, tag
);
471 napi_gro_receive(&adapter
->napi
, skb
);
475 * e1000_rx_checksum - Receive Checksum Offload
476 * @adapter: board private structure
477 * @status_err: receive descriptor status and error fields
478 * @csum: receive descriptor csum field
479 * @sk_buff: socket buffer with received data
481 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
482 u32 csum
, struct sk_buff
*skb
)
484 u16 status
= (u16
)status_err
;
485 u8 errors
= (u8
)(status_err
>> 24);
487 skb_checksum_none_assert(skb
);
489 /* Ignore Checksum bit is set */
490 if (status
& E1000_RXD_STAT_IXSM
)
492 /* TCP/UDP checksum error bit is set */
493 if (errors
& E1000_RXD_ERR_TCPE
) {
494 /* let the stack verify checksum errors */
495 adapter
->hw_csum_err
++;
499 /* TCP/UDP Checksum has not been calculated */
500 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
503 /* It must be a TCP or UDP packet with a valid checksum */
504 if (status
& E1000_RXD_STAT_TCPCS
) {
505 /* TCP checksum is good */
506 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
509 * IP fragment with UDP payload
510 * Hardware complements the payload checksum, so we undo it
511 * and then put the value in host order for further stack use.
513 __sum16 sum
= (__force __sum16
)htons(csum
);
514 skb
->csum
= csum_unfold(~sum
);
515 skb
->ip_summed
= CHECKSUM_COMPLETE
;
517 adapter
->hw_csum_good
++;
521 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
522 * @adapter: address of board private structure
524 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
527 struct net_device
*netdev
= adapter
->netdev
;
528 struct pci_dev
*pdev
= adapter
->pdev
;
529 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
530 struct e1000_rx_desc
*rx_desc
;
531 struct e1000_buffer
*buffer_info
;
534 unsigned int bufsz
= adapter
->rx_buffer_len
;
536 i
= rx_ring
->next_to_use
;
537 buffer_info
= &rx_ring
->buffer_info
[i
];
539 while (cleaned_count
--) {
540 skb
= buffer_info
->skb
;
546 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
548 /* Better luck next round */
549 adapter
->alloc_rx_buff_failed
++;
553 buffer_info
->skb
= skb
;
555 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
556 adapter
->rx_buffer_len
,
558 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
559 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
560 adapter
->rx_dma_failed
++;
564 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
565 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
567 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
569 * Force memory writes to complete before letting h/w
570 * know there are new descriptors to fetch. (Only
571 * applicable for weak-ordered memory model archs,
575 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
578 if (i
== rx_ring
->count
)
580 buffer_info
= &rx_ring
->buffer_info
[i
];
583 rx_ring
->next_to_use
= i
;
587 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
588 * @adapter: address of board private structure
590 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
593 struct net_device
*netdev
= adapter
->netdev
;
594 struct pci_dev
*pdev
= adapter
->pdev
;
595 union e1000_rx_desc_packet_split
*rx_desc
;
596 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
597 struct e1000_buffer
*buffer_info
;
598 struct e1000_ps_page
*ps_page
;
602 i
= rx_ring
->next_to_use
;
603 buffer_info
= &rx_ring
->buffer_info
[i
];
605 while (cleaned_count
--) {
606 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
608 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
609 ps_page
= &buffer_info
->ps_pages
[j
];
610 if (j
>= adapter
->rx_ps_pages
) {
611 /* all unused desc entries get hw null ptr */
612 rx_desc
->read
.buffer_addr
[j
+ 1] =
616 if (!ps_page
->page
) {
617 ps_page
->page
= alloc_page(GFP_ATOMIC
);
618 if (!ps_page
->page
) {
619 adapter
->alloc_rx_buff_failed
++;
622 ps_page
->dma
= dma_map_page(&pdev
->dev
,
626 if (dma_mapping_error(&pdev
->dev
,
628 dev_err(&adapter
->pdev
->dev
,
629 "Rx DMA page map failed\n");
630 adapter
->rx_dma_failed
++;
635 * Refresh the desc even if buffer_addrs
636 * didn't change because each write-back
639 rx_desc
->read
.buffer_addr
[j
+ 1] =
640 cpu_to_le64(ps_page
->dma
);
643 skb
= netdev_alloc_skb_ip_align(netdev
,
644 adapter
->rx_ps_bsize0
);
647 adapter
->alloc_rx_buff_failed
++;
651 buffer_info
->skb
= skb
;
652 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
653 adapter
->rx_ps_bsize0
,
655 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
656 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
657 adapter
->rx_dma_failed
++;
659 dev_kfree_skb_any(skb
);
660 buffer_info
->skb
= NULL
;
664 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
666 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
668 * Force memory writes to complete before letting h/w
669 * know there are new descriptors to fetch. (Only
670 * applicable for weak-ordered memory model archs,
674 writel(i
<< 1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
678 if (i
== rx_ring
->count
)
680 buffer_info
= &rx_ring
->buffer_info
[i
];
684 rx_ring
->next_to_use
= i
;
688 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
689 * @adapter: address of board private structure
690 * @cleaned_count: number of buffers to allocate this pass
693 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
696 struct net_device
*netdev
= adapter
->netdev
;
697 struct pci_dev
*pdev
= adapter
->pdev
;
698 struct e1000_rx_desc
*rx_desc
;
699 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
700 struct e1000_buffer
*buffer_info
;
703 unsigned int bufsz
= 256 - 16 /* for skb_reserve */;
705 i
= rx_ring
->next_to_use
;
706 buffer_info
= &rx_ring
->buffer_info
[i
];
708 while (cleaned_count
--) {
709 skb
= buffer_info
->skb
;
715 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
716 if (unlikely(!skb
)) {
717 /* Better luck next round */
718 adapter
->alloc_rx_buff_failed
++;
722 buffer_info
->skb
= skb
;
724 /* allocate a new page if necessary */
725 if (!buffer_info
->page
) {
726 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
727 if (unlikely(!buffer_info
->page
)) {
728 adapter
->alloc_rx_buff_failed
++;
733 if (!buffer_info
->dma
)
734 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
735 buffer_info
->page
, 0,
739 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
740 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
742 if (unlikely(++i
== rx_ring
->count
))
744 buffer_info
= &rx_ring
->buffer_info
[i
];
747 if (likely(rx_ring
->next_to_use
!= i
)) {
748 rx_ring
->next_to_use
= i
;
749 if (unlikely(i
-- == 0))
750 i
= (rx_ring
->count
- 1);
752 /* Force memory writes to complete before letting h/w
753 * know there are new descriptors to fetch. (Only
754 * applicable for weak-ordered memory model archs,
757 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
762 * e1000_clean_rx_irq - Send received data up the network stack; legacy
763 * @adapter: board private structure
765 * the return value indicates whether actual cleaning was done, there
766 * is no guarantee that everything was cleaned
768 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
769 int *work_done
, int work_to_do
)
771 struct net_device
*netdev
= adapter
->netdev
;
772 struct pci_dev
*pdev
= adapter
->pdev
;
773 struct e1000_hw
*hw
= &adapter
->hw
;
774 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
775 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
776 struct e1000_buffer
*buffer_info
, *next_buffer
;
779 int cleaned_count
= 0;
781 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
783 i
= rx_ring
->next_to_clean
;
784 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
785 buffer_info
= &rx_ring
->buffer_info
[i
];
787 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
791 if (*work_done
>= work_to_do
)
794 rmb(); /* read descriptor and rx_buffer_info after status DD */
796 status
= rx_desc
->status
;
797 skb
= buffer_info
->skb
;
798 buffer_info
->skb
= NULL
;
800 prefetch(skb
->data
- NET_IP_ALIGN
);
803 if (i
== rx_ring
->count
)
805 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
808 next_buffer
= &rx_ring
->buffer_info
[i
];
812 dma_unmap_single(&pdev
->dev
,
814 adapter
->rx_buffer_len
,
816 buffer_info
->dma
= 0;
818 length
= le16_to_cpu(rx_desc
->length
);
821 * !EOP means multiple descriptors were used to store a single
822 * packet, if that's the case we need to toss it. In fact, we
823 * need to toss every packet with the EOP bit clear and the
824 * next frame that _does_ have the EOP bit set, as it is by
825 * definition only a frame fragment
827 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
828 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
830 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
831 /* All receives must fit into a single buffer */
832 e_dbg("Receive packet consumed multiple buffers\n");
834 buffer_info
->skb
= skb
;
835 if (status
& E1000_RXD_STAT_EOP
)
836 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
840 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
842 buffer_info
->skb
= skb
;
846 /* adjust length to remove Ethernet CRC */
847 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
850 total_rx_bytes
+= length
;
854 * code added for copybreak, this should improve
855 * performance for small packets with large amounts
856 * of reassembly being done in the stack
858 if (length
< copybreak
) {
859 struct sk_buff
*new_skb
=
860 netdev_alloc_skb_ip_align(netdev
, length
);
862 skb_copy_to_linear_data_offset(new_skb
,
868 /* save the skb in buffer_info as good */
869 buffer_info
->skb
= skb
;
872 /* else just continue with the old one */
874 /* end copybreak code */
875 skb_put(skb
, length
);
877 /* Receive Checksum Offload */
878 e1000_rx_checksum(adapter
,
880 ((u32
)(rx_desc
->errors
) << 24),
881 le16_to_cpu(rx_desc
->csum
), skb
);
883 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
888 /* return some buffers to hardware, one at a time is too slow */
889 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
890 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
894 /* use prefetched values */
896 buffer_info
= next_buffer
;
898 rx_ring
->next_to_clean
= i
;
900 cleaned_count
= e1000_desc_unused(rx_ring
);
902 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
904 adapter
->total_rx_bytes
+= total_rx_bytes
;
905 adapter
->total_rx_packets
+= total_rx_packets
;
909 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
910 struct e1000_buffer
*buffer_info
)
912 if (buffer_info
->dma
) {
913 if (buffer_info
->mapped_as_page
)
914 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
915 buffer_info
->length
, DMA_TO_DEVICE
);
917 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
918 buffer_info
->length
, DMA_TO_DEVICE
);
919 buffer_info
->dma
= 0;
921 if (buffer_info
->skb
) {
922 dev_kfree_skb_any(buffer_info
->skb
);
923 buffer_info
->skb
= NULL
;
925 buffer_info
->time_stamp
= 0;
928 static void e1000_print_hw_hang(struct work_struct
*work
)
930 struct e1000_adapter
*adapter
= container_of(work
,
931 struct e1000_adapter
,
933 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
934 unsigned int i
= tx_ring
->next_to_clean
;
935 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
936 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
937 struct e1000_hw
*hw
= &adapter
->hw
;
938 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
941 if (test_bit(__E1000_DOWN
, &adapter
->state
))
944 e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
945 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_1000t_status
);
946 e1e_rphy(hw
, PHY_EXT_STATUS
, &phy_ext_status
);
948 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
950 /* detected Hardware unit hang */
951 e_err("Detected Hardware Unit Hang:\n"
954 " next_to_use <%x>\n"
955 " next_to_clean <%x>\n"
956 "buffer_info[next_to_clean]:\n"
957 " time_stamp <%lx>\n"
958 " next_to_watch <%x>\n"
960 " next_to_watch.status <%x>\n"
963 "PHY 1000BASE-T Status <%x>\n"
964 "PHY Extended Status <%x>\n"
966 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
967 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
968 tx_ring
->next_to_use
,
969 tx_ring
->next_to_clean
,
970 tx_ring
->buffer_info
[eop
].time_stamp
,
973 eop_desc
->upper
.fields
.status
,
982 * e1000_clean_tx_irq - Reclaim resources after transmit completes
983 * @adapter: board private structure
985 * the return value indicates whether actual cleaning was done, there
986 * is no guarantee that everything was cleaned
988 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
990 struct net_device
*netdev
= adapter
->netdev
;
991 struct e1000_hw
*hw
= &adapter
->hw
;
992 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
993 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
994 struct e1000_buffer
*buffer_info
;
996 unsigned int count
= 0;
997 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
999 i
= tx_ring
->next_to_clean
;
1000 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1001 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1003 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1004 (count
< tx_ring
->count
)) {
1005 bool cleaned
= false;
1006 rmb(); /* read buffer_info after eop_desc */
1007 for (; !cleaned
; count
++) {
1008 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1009 buffer_info
= &tx_ring
->buffer_info
[i
];
1010 cleaned
= (i
== eop
);
1013 total_tx_packets
+= buffer_info
->segs
;
1014 total_tx_bytes
+= buffer_info
->bytecount
;
1017 e1000_put_txbuf(adapter
, buffer_info
);
1018 tx_desc
->upper
.data
= 0;
1021 if (i
== tx_ring
->count
)
1025 if (i
== tx_ring
->next_to_use
)
1027 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1028 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1031 tx_ring
->next_to_clean
= i
;
1033 #define TX_WAKE_THRESHOLD 32
1034 if (count
&& netif_carrier_ok(netdev
) &&
1035 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1036 /* Make sure that anybody stopping the queue after this
1037 * sees the new next_to_clean.
1041 if (netif_queue_stopped(netdev
) &&
1042 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1043 netif_wake_queue(netdev
);
1044 ++adapter
->restart_queue
;
1048 if (adapter
->detect_tx_hung
) {
1050 * Detect a transmit hang in hardware, this serializes the
1051 * check with the clearing of time_stamp and movement of i
1053 adapter
->detect_tx_hung
= 0;
1054 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1055 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1056 + (adapter
->tx_timeout_factor
* HZ
)) &&
1057 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
1058 schedule_work(&adapter
->print_hang_task
);
1059 netif_stop_queue(netdev
);
1062 adapter
->total_tx_bytes
+= total_tx_bytes
;
1063 adapter
->total_tx_packets
+= total_tx_packets
;
1064 return count
< tx_ring
->count
;
1068 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1069 * @adapter: board private structure
1071 * the return value indicates whether actual cleaning was done, there
1072 * is no guarantee that everything was cleaned
1074 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
1075 int *work_done
, int work_to_do
)
1077 struct e1000_hw
*hw
= &adapter
->hw
;
1078 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1079 struct net_device
*netdev
= adapter
->netdev
;
1080 struct pci_dev
*pdev
= adapter
->pdev
;
1081 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1082 struct e1000_buffer
*buffer_info
, *next_buffer
;
1083 struct e1000_ps_page
*ps_page
;
1084 struct sk_buff
*skb
;
1086 u32 length
, staterr
;
1087 int cleaned_count
= 0;
1089 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1091 i
= rx_ring
->next_to_clean
;
1092 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1093 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1094 buffer_info
= &rx_ring
->buffer_info
[i
];
1096 while (staterr
& E1000_RXD_STAT_DD
) {
1097 if (*work_done
>= work_to_do
)
1100 skb
= buffer_info
->skb
;
1101 rmb(); /* read descriptor and rx_buffer_info after status DD */
1103 /* in the packet split case this is header only */
1104 prefetch(skb
->data
- NET_IP_ALIGN
);
1107 if (i
== rx_ring
->count
)
1109 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1112 next_buffer
= &rx_ring
->buffer_info
[i
];
1116 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1117 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1118 buffer_info
->dma
= 0;
1120 /* see !EOP comment in other Rx routine */
1121 if (!(staterr
& E1000_RXD_STAT_EOP
))
1122 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1124 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1125 e_dbg("Packet Split buffers didn't pick up the full "
1127 dev_kfree_skb_irq(skb
);
1128 if (staterr
& E1000_RXD_STAT_EOP
)
1129 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1133 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
1134 dev_kfree_skb_irq(skb
);
1138 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1141 e_dbg("Last part of the packet spanning multiple "
1143 dev_kfree_skb_irq(skb
);
1148 skb_put(skb
, length
);
1152 * this looks ugly, but it seems compiler issues make it
1153 * more efficient than reusing j
1155 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1158 * page alloc/put takes too long and effects small packet
1159 * throughput, so unsplit small packets and save the alloc/put
1160 * only valid in softirq (napi) context to call kmap_*
1162 if (l1
&& (l1
<= copybreak
) &&
1163 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1166 ps_page
= &buffer_info
->ps_pages
[0];
1169 * there is no documentation about how to call
1170 * kmap_atomic, so we can't hold the mapping
1173 dma_sync_single_for_cpu(&pdev
->dev
, ps_page
->dma
,
1174 PAGE_SIZE
, DMA_FROM_DEVICE
);
1175 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
1176 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1177 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
1178 dma_sync_single_for_device(&pdev
->dev
, ps_page
->dma
,
1179 PAGE_SIZE
, DMA_FROM_DEVICE
);
1181 /* remove the CRC */
1182 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1190 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1191 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1195 ps_page
= &buffer_info
->ps_pages
[j
];
1196 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1199 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1200 ps_page
->page
= NULL
;
1202 skb
->data_len
+= length
;
1203 skb
->truesize
+= length
;
1206 /* strip the ethernet crc, problem is we're using pages now so
1207 * this whole operation can get a little cpu intensive
1209 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1210 pskb_trim(skb
, skb
->len
- 4);
1213 total_rx_bytes
+= skb
->len
;
1216 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
1217 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
1219 if (rx_desc
->wb
.upper
.header_status
&
1220 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1221 adapter
->rx_hdr_split
++;
1223 e1000_receive_skb(adapter
, netdev
, skb
,
1224 staterr
, rx_desc
->wb
.middle
.vlan
);
1227 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1228 buffer_info
->skb
= NULL
;
1230 /* return some buffers to hardware, one at a time is too slow */
1231 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1232 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1236 /* use prefetched values */
1238 buffer_info
= next_buffer
;
1240 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1242 rx_ring
->next_to_clean
= i
;
1244 cleaned_count
= e1000_desc_unused(rx_ring
);
1246 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1248 adapter
->total_rx_bytes
+= total_rx_bytes
;
1249 adapter
->total_rx_packets
+= total_rx_packets
;
1254 * e1000_consume_page - helper function
1256 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1261 skb
->data_len
+= length
;
1262 skb
->truesize
+= length
;
1266 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1267 * @adapter: board private structure
1269 * the return value indicates whether actual cleaning was done, there
1270 * is no guarantee that everything was cleaned
1273 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
1274 int *work_done
, int work_to_do
)
1276 struct net_device
*netdev
= adapter
->netdev
;
1277 struct pci_dev
*pdev
= adapter
->pdev
;
1278 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1279 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
1280 struct e1000_buffer
*buffer_info
, *next_buffer
;
1283 int cleaned_count
= 0;
1284 bool cleaned
= false;
1285 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
1287 i
= rx_ring
->next_to_clean
;
1288 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1289 buffer_info
= &rx_ring
->buffer_info
[i
];
1291 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
1292 struct sk_buff
*skb
;
1295 if (*work_done
>= work_to_do
)
1298 rmb(); /* read descriptor and rx_buffer_info after status DD */
1300 status
= rx_desc
->status
;
1301 skb
= buffer_info
->skb
;
1302 buffer_info
->skb
= NULL
;
1305 if (i
== rx_ring
->count
)
1307 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
1310 next_buffer
= &rx_ring
->buffer_info
[i
];
1314 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1316 buffer_info
->dma
= 0;
1318 length
= le16_to_cpu(rx_desc
->length
);
1320 /* errors is only valid for DD + EOP descriptors */
1321 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
1322 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
1323 /* recycle both page and skb */
1324 buffer_info
->skb
= skb
;
1325 /* an error means any chain goes out the window
1327 if (rx_ring
->rx_skb_top
)
1328 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1329 rx_ring
->rx_skb_top
= NULL
;
1333 #define rxtop (rx_ring->rx_skb_top)
1334 if (!(status
& E1000_RXD_STAT_EOP
)) {
1335 /* this descriptor is only the beginning (or middle) */
1337 /* this is the beginning of a chain */
1339 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1342 /* this is the middle of a chain */
1343 skb_fill_page_desc(rxtop
,
1344 skb_shinfo(rxtop
)->nr_frags
,
1345 buffer_info
->page
, 0, length
);
1346 /* re-use the skb, only consumed the page */
1347 buffer_info
->skb
= skb
;
1349 e1000_consume_page(buffer_info
, rxtop
, length
);
1353 /* end of the chain */
1354 skb_fill_page_desc(rxtop
,
1355 skb_shinfo(rxtop
)->nr_frags
,
1356 buffer_info
->page
, 0, length
);
1357 /* re-use the current skb, we only consumed the
1359 buffer_info
->skb
= skb
;
1362 e1000_consume_page(buffer_info
, skb
, length
);
1364 /* no chain, got EOP, this buf is the packet
1365 * copybreak to save the put_page/alloc_page */
1366 if (length
<= copybreak
&&
1367 skb_tailroom(skb
) >= length
) {
1369 vaddr
= kmap_atomic(buffer_info
->page
,
1370 KM_SKB_DATA_SOFTIRQ
);
1371 memcpy(skb_tail_pointer(skb
), vaddr
,
1373 kunmap_atomic(vaddr
,
1374 KM_SKB_DATA_SOFTIRQ
);
1375 /* re-use the page, so don't erase
1376 * buffer_info->page */
1377 skb_put(skb
, length
);
1379 skb_fill_page_desc(skb
, 0,
1380 buffer_info
->page
, 0,
1382 e1000_consume_page(buffer_info
, skb
,
1388 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1389 e1000_rx_checksum(adapter
,
1391 ((u32
)(rx_desc
->errors
) << 24),
1392 le16_to_cpu(rx_desc
->csum
), skb
);
1394 /* probably a little skewed due to removing CRC */
1395 total_rx_bytes
+= skb
->len
;
1398 /* eth type trans needs skb->data to point to something */
1399 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1400 e_err("pskb_may_pull failed.\n");
1401 dev_kfree_skb_irq(skb
);
1405 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1409 rx_desc
->status
= 0;
1411 /* return some buffers to hardware, one at a time is too slow */
1412 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1413 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1417 /* use prefetched values */
1419 buffer_info
= next_buffer
;
1421 rx_ring
->next_to_clean
= i
;
1423 cleaned_count
= e1000_desc_unused(rx_ring
);
1425 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1427 adapter
->total_rx_bytes
+= total_rx_bytes
;
1428 adapter
->total_rx_packets
+= total_rx_packets
;
1433 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1434 * @adapter: board private structure
1436 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1438 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1439 struct e1000_buffer
*buffer_info
;
1440 struct e1000_ps_page
*ps_page
;
1441 struct pci_dev
*pdev
= adapter
->pdev
;
1444 /* Free all the Rx ring sk_buffs */
1445 for (i
= 0; i
< rx_ring
->count
; i
++) {
1446 buffer_info
= &rx_ring
->buffer_info
[i
];
1447 if (buffer_info
->dma
) {
1448 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1449 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1450 adapter
->rx_buffer_len
,
1452 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1453 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1456 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1457 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1458 adapter
->rx_ps_bsize0
,
1460 buffer_info
->dma
= 0;
1463 if (buffer_info
->page
) {
1464 put_page(buffer_info
->page
);
1465 buffer_info
->page
= NULL
;
1468 if (buffer_info
->skb
) {
1469 dev_kfree_skb(buffer_info
->skb
);
1470 buffer_info
->skb
= NULL
;
1473 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1474 ps_page
= &buffer_info
->ps_pages
[j
];
1477 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1480 put_page(ps_page
->page
);
1481 ps_page
->page
= NULL
;
1485 /* there also may be some cached data from a chained receive */
1486 if (rx_ring
->rx_skb_top
) {
1487 dev_kfree_skb(rx_ring
->rx_skb_top
);
1488 rx_ring
->rx_skb_top
= NULL
;
1491 /* Zero out the descriptor ring */
1492 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1494 rx_ring
->next_to_clean
= 0;
1495 rx_ring
->next_to_use
= 0;
1496 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1498 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1499 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1502 static void e1000e_downshift_workaround(struct work_struct
*work
)
1504 struct e1000_adapter
*adapter
= container_of(work
,
1505 struct e1000_adapter
, downshift_task
);
1507 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1510 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1514 * e1000_intr_msi - Interrupt Handler
1515 * @irq: interrupt number
1516 * @data: pointer to a network interface device structure
1518 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1520 struct net_device
*netdev
= data
;
1521 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1522 struct e1000_hw
*hw
= &adapter
->hw
;
1523 u32 icr
= er32(ICR
);
1526 * read ICR disables interrupts using IAM
1529 if (icr
& E1000_ICR_LSC
) {
1530 hw
->mac
.get_link_status
= 1;
1532 * ICH8 workaround-- Call gig speed drop workaround on cable
1533 * disconnect (LSC) before accessing any PHY registers
1535 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1536 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1537 schedule_work(&adapter
->downshift_task
);
1540 * 80003ES2LAN workaround-- For packet buffer work-around on
1541 * link down event; disable receives here in the ISR and reset
1542 * adapter in watchdog
1544 if (netif_carrier_ok(netdev
) &&
1545 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1546 /* disable receives */
1547 u32 rctl
= er32(RCTL
);
1548 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1549 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1551 /* guard against interrupt when we're going down */
1552 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1553 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1556 if (napi_schedule_prep(&adapter
->napi
)) {
1557 adapter
->total_tx_bytes
= 0;
1558 adapter
->total_tx_packets
= 0;
1559 adapter
->total_rx_bytes
= 0;
1560 adapter
->total_rx_packets
= 0;
1561 __napi_schedule(&adapter
->napi
);
1568 * e1000_intr - Interrupt Handler
1569 * @irq: interrupt number
1570 * @data: pointer to a network interface device structure
1572 static irqreturn_t
e1000_intr(int irq
, void *data
)
1574 struct net_device
*netdev
= data
;
1575 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1576 struct e1000_hw
*hw
= &adapter
->hw
;
1577 u32 rctl
, icr
= er32(ICR
);
1579 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1580 return IRQ_NONE
; /* Not our interrupt */
1583 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1584 * not set, then the adapter didn't send an interrupt
1586 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1590 * Interrupt Auto-Mask...upon reading ICR,
1591 * interrupts are masked. No need for the
1595 if (icr
& E1000_ICR_LSC
) {
1596 hw
->mac
.get_link_status
= 1;
1598 * ICH8 workaround-- Call gig speed drop workaround on cable
1599 * disconnect (LSC) before accessing any PHY registers
1601 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1602 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1603 schedule_work(&adapter
->downshift_task
);
1606 * 80003ES2LAN workaround--
1607 * For packet buffer work-around on link down event;
1608 * disable receives here in the ISR and
1609 * reset adapter in watchdog
1611 if (netif_carrier_ok(netdev
) &&
1612 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1613 /* disable receives */
1615 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1616 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1618 /* guard against interrupt when we're going down */
1619 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1620 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1623 if (napi_schedule_prep(&adapter
->napi
)) {
1624 adapter
->total_tx_bytes
= 0;
1625 adapter
->total_tx_packets
= 0;
1626 adapter
->total_rx_bytes
= 0;
1627 adapter
->total_rx_packets
= 0;
1628 __napi_schedule(&adapter
->napi
);
1634 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1636 struct net_device
*netdev
= data
;
1637 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1638 struct e1000_hw
*hw
= &adapter
->hw
;
1639 u32 icr
= er32(ICR
);
1641 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1642 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1643 ew32(IMS
, E1000_IMS_OTHER
);
1647 if (icr
& adapter
->eiac_mask
)
1648 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1650 if (icr
& E1000_ICR_OTHER
) {
1651 if (!(icr
& E1000_ICR_LSC
))
1652 goto no_link_interrupt
;
1653 hw
->mac
.get_link_status
= 1;
1654 /* guard against interrupt when we're going down */
1655 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1656 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1660 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1661 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1667 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1669 struct net_device
*netdev
= data
;
1670 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1671 struct e1000_hw
*hw
= &adapter
->hw
;
1672 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1675 adapter
->total_tx_bytes
= 0;
1676 adapter
->total_tx_packets
= 0;
1678 if (!e1000_clean_tx_irq(adapter
))
1679 /* Ring was not completely cleaned, so fire another interrupt */
1680 ew32(ICS
, tx_ring
->ims_val
);
1685 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1687 struct net_device
*netdev
= data
;
1688 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1690 /* Write the ITR value calculated at the end of the
1691 * previous interrupt.
1693 if (adapter
->rx_ring
->set_itr
) {
1694 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1695 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1696 adapter
->rx_ring
->set_itr
= 0;
1699 if (napi_schedule_prep(&adapter
->napi
)) {
1700 adapter
->total_rx_bytes
= 0;
1701 adapter
->total_rx_packets
= 0;
1702 __napi_schedule(&adapter
->napi
);
1708 * e1000_configure_msix - Configure MSI-X hardware
1710 * e1000_configure_msix sets up the hardware to properly
1711 * generate MSI-X interrupts.
1713 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1715 struct e1000_hw
*hw
= &adapter
->hw
;
1716 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1717 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1719 u32 ctrl_ext
, ivar
= 0;
1721 adapter
->eiac_mask
= 0;
1723 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1724 if (hw
->mac
.type
== e1000_82574
) {
1725 u32 rfctl
= er32(RFCTL
);
1726 rfctl
|= E1000_RFCTL_ACK_DIS
;
1730 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1731 /* Configure Rx vector */
1732 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1733 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1734 if (rx_ring
->itr_val
)
1735 writel(1000000000 / (rx_ring
->itr_val
* 256),
1736 hw
->hw_addr
+ rx_ring
->itr_register
);
1738 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1739 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1741 /* Configure Tx vector */
1742 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1744 if (tx_ring
->itr_val
)
1745 writel(1000000000 / (tx_ring
->itr_val
* 256),
1746 hw
->hw_addr
+ tx_ring
->itr_register
);
1748 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1749 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1750 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1752 /* set vector for Other Causes, e.g. link changes */
1754 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1755 if (rx_ring
->itr_val
)
1756 writel(1000000000 / (rx_ring
->itr_val
* 256),
1757 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1759 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1761 /* Cause Tx interrupts on every write back */
1766 /* enable MSI-X PBA support */
1767 ctrl_ext
= er32(CTRL_EXT
);
1768 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1770 /* Auto-Mask Other interrupts upon ICR read */
1771 #define E1000_EIAC_MASK_82574 0x01F00000
1772 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1773 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1774 ew32(CTRL_EXT
, ctrl_ext
);
1778 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1780 if (adapter
->msix_entries
) {
1781 pci_disable_msix(adapter
->pdev
);
1782 kfree(adapter
->msix_entries
);
1783 adapter
->msix_entries
= NULL
;
1784 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1785 pci_disable_msi(adapter
->pdev
);
1786 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1791 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1793 * Attempt to configure interrupts using the best available
1794 * capabilities of the hardware and kernel.
1796 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1801 switch (adapter
->int_mode
) {
1802 case E1000E_INT_MODE_MSIX
:
1803 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1804 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
1805 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
1806 sizeof(struct msix_entry
),
1808 if (adapter
->msix_entries
) {
1809 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1810 adapter
->msix_entries
[i
].entry
= i
;
1812 err
= pci_enable_msix(adapter
->pdev
,
1813 adapter
->msix_entries
,
1814 adapter
->num_vectors
);
1818 /* MSI-X failed, so fall through and try MSI */
1819 e_err("Failed to initialize MSI-X interrupts. "
1820 "Falling back to MSI interrupts.\n");
1821 e1000e_reset_interrupt_capability(adapter
);
1823 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1825 case E1000E_INT_MODE_MSI
:
1826 if (!pci_enable_msi(adapter
->pdev
)) {
1827 adapter
->flags
|= FLAG_MSI_ENABLED
;
1829 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1830 e_err("Failed to initialize MSI interrupts. Falling "
1831 "back to legacy interrupts.\n");
1834 case E1000E_INT_MODE_LEGACY
:
1835 /* Don't do anything; this is the system default */
1839 /* store the number of vectors being used */
1840 adapter
->num_vectors
= 1;
1844 * e1000_request_msix - Initialize MSI-X interrupts
1846 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1849 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1851 struct net_device
*netdev
= adapter
->netdev
;
1852 int err
= 0, vector
= 0;
1854 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1855 snprintf(adapter
->rx_ring
->name
,
1856 sizeof(adapter
->rx_ring
->name
) - 1,
1857 "%s-rx-0", netdev
->name
);
1859 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1860 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1861 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1865 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1866 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1869 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1870 snprintf(adapter
->tx_ring
->name
,
1871 sizeof(adapter
->tx_ring
->name
) - 1,
1872 "%s-tx-0", netdev
->name
);
1874 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1875 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1876 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1880 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1881 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1884 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1885 e1000_msix_other
, 0, netdev
->name
, netdev
);
1889 e1000_configure_msix(adapter
);
1896 * e1000_request_irq - initialize interrupts
1898 * Attempts to configure interrupts using the best available
1899 * capabilities of the hardware and kernel.
1901 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1903 struct net_device
*netdev
= adapter
->netdev
;
1906 if (adapter
->msix_entries
) {
1907 err
= e1000_request_msix(adapter
);
1910 /* fall back to MSI */
1911 e1000e_reset_interrupt_capability(adapter
);
1912 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1913 e1000e_set_interrupt_capability(adapter
);
1915 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1916 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
1917 netdev
->name
, netdev
);
1921 /* fall back to legacy interrupt */
1922 e1000e_reset_interrupt_capability(adapter
);
1923 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1926 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
1927 netdev
->name
, netdev
);
1929 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1934 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1936 struct net_device
*netdev
= adapter
->netdev
;
1938 if (adapter
->msix_entries
) {
1941 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1944 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1947 /* Other Causes interrupt vector */
1948 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1952 free_irq(adapter
->pdev
->irq
, netdev
);
1956 * e1000_irq_disable - Mask off interrupt generation on the NIC
1958 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1960 struct e1000_hw
*hw
= &adapter
->hw
;
1963 if (adapter
->msix_entries
)
1964 ew32(EIAC_82574
, 0);
1967 if (adapter
->msix_entries
) {
1969 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1970 synchronize_irq(adapter
->msix_entries
[i
].vector
);
1972 synchronize_irq(adapter
->pdev
->irq
);
1977 * e1000_irq_enable - Enable default interrupt generation settings
1979 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1981 struct e1000_hw
*hw
= &adapter
->hw
;
1983 if (adapter
->msix_entries
) {
1984 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
1985 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
1987 ew32(IMS
, IMS_ENABLE_MASK
);
1993 * e1000e_get_hw_control - get control of the h/w from f/w
1994 * @adapter: address of board private structure
1996 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1997 * For ASF and Pass Through versions of f/w this means that
1998 * the driver is loaded. For AMT version (only with 82573)
1999 * of the f/w this means that the network i/f is open.
2001 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2003 struct e1000_hw
*hw
= &adapter
->hw
;
2007 /* Let firmware know the driver has taken over */
2008 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2010 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2011 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2012 ctrl_ext
= er32(CTRL_EXT
);
2013 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2018 * e1000e_release_hw_control - release control of the h/w to f/w
2019 * @adapter: address of board private structure
2021 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2022 * For ASF and Pass Through versions of f/w this means that the
2023 * driver is no longer loaded. For AMT version (only with 82573) i
2024 * of the f/w this means that the network i/f is closed.
2027 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2029 struct e1000_hw
*hw
= &adapter
->hw
;
2033 /* Let firmware taken over control of h/w */
2034 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2036 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2037 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2038 ctrl_ext
= er32(CTRL_EXT
);
2039 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2044 * @e1000_alloc_ring - allocate memory for a ring structure
2046 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2047 struct e1000_ring
*ring
)
2049 struct pci_dev
*pdev
= adapter
->pdev
;
2051 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2060 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2061 * @adapter: board private structure
2063 * Return 0 on success, negative on failure
2065 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
2067 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2068 int err
= -ENOMEM
, size
;
2070 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2071 tx_ring
->buffer_info
= vzalloc(size
);
2072 if (!tx_ring
->buffer_info
)
2075 /* round up to nearest 4K */
2076 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2077 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2079 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2083 tx_ring
->next_to_use
= 0;
2084 tx_ring
->next_to_clean
= 0;
2088 vfree(tx_ring
->buffer_info
);
2089 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2094 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2095 * @adapter: board private structure
2097 * Returns 0 on success, negative on failure
2099 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
2101 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2102 struct e1000_buffer
*buffer_info
;
2103 int i
, size
, desc_len
, err
= -ENOMEM
;
2105 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2106 rx_ring
->buffer_info
= vzalloc(size
);
2107 if (!rx_ring
->buffer_info
)
2110 for (i
= 0; i
< rx_ring
->count
; i
++) {
2111 buffer_info
= &rx_ring
->buffer_info
[i
];
2112 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2113 sizeof(struct e1000_ps_page
),
2115 if (!buffer_info
->ps_pages
)
2119 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2121 /* Round up to nearest 4K */
2122 rx_ring
->size
= rx_ring
->count
* desc_len
;
2123 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2125 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2129 rx_ring
->next_to_clean
= 0;
2130 rx_ring
->next_to_use
= 0;
2131 rx_ring
->rx_skb_top
= NULL
;
2136 for (i
= 0; i
< rx_ring
->count
; i
++) {
2137 buffer_info
= &rx_ring
->buffer_info
[i
];
2138 kfree(buffer_info
->ps_pages
);
2141 vfree(rx_ring
->buffer_info
);
2142 e_err("Unable to allocate memory for the receive descriptor ring\n");
2147 * e1000_clean_tx_ring - Free Tx Buffers
2148 * @adapter: board private structure
2150 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
2152 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2153 struct e1000_buffer
*buffer_info
;
2157 for (i
= 0; i
< tx_ring
->count
; i
++) {
2158 buffer_info
= &tx_ring
->buffer_info
[i
];
2159 e1000_put_txbuf(adapter
, buffer_info
);
2162 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2163 memset(tx_ring
->buffer_info
, 0, size
);
2165 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2167 tx_ring
->next_to_use
= 0;
2168 tx_ring
->next_to_clean
= 0;
2170 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2171 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2175 * e1000e_free_tx_resources - Free Tx Resources per Queue
2176 * @adapter: board private structure
2178 * Free all transmit software resources
2180 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
2182 struct pci_dev
*pdev
= adapter
->pdev
;
2183 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2185 e1000_clean_tx_ring(adapter
);
2187 vfree(tx_ring
->buffer_info
);
2188 tx_ring
->buffer_info
= NULL
;
2190 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2192 tx_ring
->desc
= NULL
;
2196 * e1000e_free_rx_resources - Free Rx Resources
2197 * @adapter: board private structure
2199 * Free all receive software resources
2202 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
2204 struct pci_dev
*pdev
= adapter
->pdev
;
2205 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2208 e1000_clean_rx_ring(adapter
);
2210 for (i
= 0; i
< rx_ring
->count
; i
++)
2211 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2213 vfree(rx_ring
->buffer_info
);
2214 rx_ring
->buffer_info
= NULL
;
2216 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2218 rx_ring
->desc
= NULL
;
2222 * e1000_update_itr - update the dynamic ITR value based on statistics
2223 * @adapter: pointer to adapter
2224 * @itr_setting: current adapter->itr
2225 * @packets: the number of packets during this measurement interval
2226 * @bytes: the number of bytes during this measurement interval
2228 * Stores a new ITR value based on packets and byte
2229 * counts during the last interrupt. The advantage of per interrupt
2230 * computation is faster updates and more accurate ITR for the current
2231 * traffic pattern. Constants in this function were computed
2232 * based on theoretical maximum wire speed and thresholds were set based
2233 * on testing data as well as attempting to minimize response time
2234 * while increasing bulk throughput. This functionality is controlled
2235 * by the InterruptThrottleRate module parameter.
2237 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2238 u16 itr_setting
, int packets
,
2241 unsigned int retval
= itr_setting
;
2244 goto update_itr_done
;
2246 switch (itr_setting
) {
2247 case lowest_latency
:
2248 /* handle TSO and jumbo frames */
2249 if (bytes
/packets
> 8000)
2250 retval
= bulk_latency
;
2251 else if ((packets
< 5) && (bytes
> 512))
2252 retval
= low_latency
;
2254 case low_latency
: /* 50 usec aka 20000 ints/s */
2255 if (bytes
> 10000) {
2256 /* this if handles the TSO accounting */
2257 if (bytes
/packets
> 8000)
2258 retval
= bulk_latency
;
2259 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2260 retval
= bulk_latency
;
2261 else if ((packets
> 35))
2262 retval
= lowest_latency
;
2263 } else if (bytes
/packets
> 2000) {
2264 retval
= bulk_latency
;
2265 } else if (packets
<= 2 && bytes
< 512) {
2266 retval
= lowest_latency
;
2269 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2270 if (bytes
> 25000) {
2272 retval
= low_latency
;
2273 } else if (bytes
< 6000) {
2274 retval
= low_latency
;
2283 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2285 struct e1000_hw
*hw
= &adapter
->hw
;
2287 u32 new_itr
= adapter
->itr
;
2289 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2290 if (adapter
->link_speed
!= SPEED_1000
) {
2296 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2301 adapter
->tx_itr
= e1000_update_itr(adapter
,
2303 adapter
->total_tx_packets
,
2304 adapter
->total_tx_bytes
);
2305 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2306 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2307 adapter
->tx_itr
= low_latency
;
2309 adapter
->rx_itr
= e1000_update_itr(adapter
,
2311 adapter
->total_rx_packets
,
2312 adapter
->total_rx_bytes
);
2313 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2314 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2315 adapter
->rx_itr
= low_latency
;
2317 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2319 switch (current_itr
) {
2320 /* counts and packets in update_itr are dependent on these numbers */
2321 case lowest_latency
:
2325 new_itr
= 20000; /* aka hwitr = ~200 */
2335 if (new_itr
!= adapter
->itr
) {
2337 * this attempts to bias the interrupt rate towards Bulk
2338 * by adding intermediate steps when interrupt rate is
2341 new_itr
= new_itr
> adapter
->itr
?
2342 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2344 adapter
->itr
= new_itr
;
2345 adapter
->rx_ring
->itr_val
= new_itr
;
2346 if (adapter
->msix_entries
)
2347 adapter
->rx_ring
->set_itr
= 1;
2350 ew32(ITR
, 1000000000 / (new_itr
* 256));
2357 * e1000_alloc_queues - Allocate memory for all rings
2358 * @adapter: board private structure to initialize
2360 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
2362 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2363 if (!adapter
->tx_ring
)
2366 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2367 if (!adapter
->rx_ring
)
2372 e_err("Unable to allocate memory for queues\n");
2373 kfree(adapter
->rx_ring
);
2374 kfree(adapter
->tx_ring
);
2379 * e1000_clean - NAPI Rx polling callback
2380 * @napi: struct associated with this polling callback
2381 * @budget: amount of packets driver is allowed to process this poll
2383 static int e1000_clean(struct napi_struct
*napi
, int budget
)
2385 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
2386 struct e1000_hw
*hw
= &adapter
->hw
;
2387 struct net_device
*poll_dev
= adapter
->netdev
;
2388 int tx_cleaned
= 1, work_done
= 0;
2390 adapter
= netdev_priv(poll_dev
);
2392 if (adapter
->msix_entries
&&
2393 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2396 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2399 adapter
->clean_rx(adapter
, &work_done
, budget
);
2404 /* If budget not fully consumed, exit the polling mode */
2405 if (work_done
< budget
) {
2406 if (adapter
->itr_setting
& 3)
2407 e1000_set_itr(adapter
);
2408 napi_complete(napi
);
2409 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2410 if (adapter
->msix_entries
)
2411 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2413 e1000_irq_enable(adapter
);
2420 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2422 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2423 struct e1000_hw
*hw
= &adapter
->hw
;
2426 /* don't update vlan cookie if already programmed */
2427 if ((adapter
->hw
.mng_cookie
.status
&
2428 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2429 (vid
== adapter
->mng_vlan_id
))
2432 /* add VID to filter table */
2433 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2434 index
= (vid
>> 5) & 0x7F;
2435 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2436 vfta
|= (1 << (vid
& 0x1F));
2437 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2440 set_bit(vid
, adapter
->active_vlans
);
2443 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2445 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2446 struct e1000_hw
*hw
= &adapter
->hw
;
2449 if ((adapter
->hw
.mng_cookie
.status
&
2450 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2451 (vid
== adapter
->mng_vlan_id
)) {
2452 /* release control to f/w */
2453 e1000e_release_hw_control(adapter
);
2457 /* remove VID from filter table */
2458 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2459 index
= (vid
>> 5) & 0x7F;
2460 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2461 vfta
&= ~(1 << (vid
& 0x1F));
2462 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2465 clear_bit(vid
, adapter
->active_vlans
);
2469 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2470 * @adapter: board private structure to initialize
2472 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2474 struct net_device
*netdev
= adapter
->netdev
;
2475 struct e1000_hw
*hw
= &adapter
->hw
;
2478 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2479 /* disable VLAN receive filtering */
2481 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2484 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2485 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2486 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2492 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2493 * @adapter: board private structure to initialize
2495 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2497 struct e1000_hw
*hw
= &adapter
->hw
;
2500 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2501 /* enable VLAN receive filtering */
2503 rctl
|= E1000_RCTL_VFE
;
2504 rctl
&= ~E1000_RCTL_CFIEN
;
2510 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2511 * @adapter: board private structure to initialize
2513 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2515 struct e1000_hw
*hw
= &adapter
->hw
;
2518 /* disable VLAN tag insert/strip */
2520 ctrl
&= ~E1000_CTRL_VME
;
2525 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2526 * @adapter: board private structure to initialize
2528 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2530 struct e1000_hw
*hw
= &adapter
->hw
;
2533 /* enable VLAN tag insert/strip */
2535 ctrl
|= E1000_CTRL_VME
;
2539 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2541 struct net_device
*netdev
= adapter
->netdev
;
2542 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2543 u16 old_vid
= adapter
->mng_vlan_id
;
2545 if (adapter
->hw
.mng_cookie
.status
&
2546 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2547 e1000_vlan_rx_add_vid(netdev
, vid
);
2548 adapter
->mng_vlan_id
= vid
;
2551 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2552 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2555 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2559 e1000_vlan_rx_add_vid(adapter
->netdev
, 0);
2561 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2562 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2565 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2567 struct e1000_hw
*hw
= &adapter
->hw
;
2568 u32 manc
, manc2h
, mdef
, i
, j
;
2570 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2576 * enable receiving management packets to the host. this will probably
2577 * generate destination unreachable messages from the host OS, but
2578 * the packets will be handled on SMBUS
2580 manc
|= E1000_MANC_EN_MNG2HOST
;
2581 manc2h
= er32(MANC2H
);
2583 switch (hw
->mac
.type
) {
2585 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2590 * Check if IPMI pass-through decision filter already exists;
2593 for (i
= 0, j
= 0; i
< 8; i
++) {
2594 mdef
= er32(MDEF(i
));
2596 /* Ignore filters with anything other than IPMI ports */
2597 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2600 /* Enable this decision filter in MANC2H */
2607 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2610 /* Create new decision filter in an empty filter */
2611 for (i
= 0, j
= 0; i
< 8; i
++)
2612 if (er32(MDEF(i
)) == 0) {
2613 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2614 E1000_MDEF_PORT_664
));
2621 e_warn("Unable to create IPMI pass-through filter\n");
2625 ew32(MANC2H
, manc2h
);
2630 * e1000_configure_tx - Configure Transmit Unit after Reset
2631 * @adapter: board private structure
2633 * Configure the Tx unit of the MAC after a reset.
2635 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2637 struct e1000_hw
*hw
= &adapter
->hw
;
2638 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2640 u32 tdlen
, tctl
, tipg
, tarc
;
2643 /* Setup the HW Tx Head and Tail descriptor pointers */
2644 tdba
= tx_ring
->dma
;
2645 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2646 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2647 ew32(TDBAH
, (tdba
>> 32));
2651 tx_ring
->head
= E1000_TDH
;
2652 tx_ring
->tail
= E1000_TDT
;
2654 /* Set the default values for the Tx Inter Packet Gap timer */
2655 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2656 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2657 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2659 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2660 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2662 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2663 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2666 /* Set the Tx Interrupt Delay register */
2667 ew32(TIDV
, adapter
->tx_int_delay
);
2668 /* Tx irq moderation */
2669 ew32(TADV
, adapter
->tx_abs_int_delay
);
2671 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2672 u32 txdctl
= er32(TXDCTL(0));
2673 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2674 E1000_TXDCTL_WTHRESH
);
2676 * set up some performance related parameters to encourage the
2677 * hardware to use the bus more efficiently in bursts, depends
2678 * on the tx_int_delay to be enabled,
2679 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2680 * hthresh = 1 ==> prefetch when one or more available
2681 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2682 * BEWARE: this seems to work but should be considered first if
2683 * there are Tx hangs or other Tx related bugs
2685 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2686 ew32(TXDCTL(0), txdctl
);
2687 /* erratum work around: set txdctl the same for both queues */
2688 ew32(TXDCTL(1), txdctl
);
2691 /* Program the Transmit Control Register */
2693 tctl
&= ~E1000_TCTL_CT
;
2694 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2695 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2697 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2698 tarc
= er32(TARC(0));
2700 * set the speed mode bit, we'll clear it if we're not at
2701 * gigabit link later
2703 #define SPEED_MODE_BIT (1 << 21)
2704 tarc
|= SPEED_MODE_BIT
;
2705 ew32(TARC(0), tarc
);
2708 /* errata: program both queues to unweighted RR */
2709 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2710 tarc
= er32(TARC(0));
2712 ew32(TARC(0), tarc
);
2713 tarc
= er32(TARC(1));
2715 ew32(TARC(1), tarc
);
2718 /* Setup Transmit Descriptor Settings for eop descriptor */
2719 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2721 /* only set IDE if we are delaying interrupts using the timers */
2722 if (adapter
->tx_int_delay
)
2723 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2725 /* enable Report Status bit */
2726 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2730 e1000e_config_collision_dist(hw
);
2734 * e1000_setup_rctl - configure the receive control registers
2735 * @adapter: Board private structure
2737 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2738 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2739 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2741 struct e1000_hw
*hw
= &adapter
->hw
;
2745 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2746 if (hw
->mac
.type
== e1000_pch2lan
) {
2749 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
2750 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
2752 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
2755 e_dbg("failed to enable jumbo frame workaround mode\n");
2758 /* Program MC offset vector base */
2760 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2761 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2762 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2763 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2765 /* Do not Store bad packets */
2766 rctl
&= ~E1000_RCTL_SBP
;
2768 /* Enable Long Packet receive */
2769 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2770 rctl
&= ~E1000_RCTL_LPE
;
2772 rctl
|= E1000_RCTL_LPE
;
2774 /* Some systems expect that the CRC is included in SMBUS traffic. The
2775 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2776 * host memory when this is enabled
2778 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2779 rctl
|= E1000_RCTL_SECRC
;
2781 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2782 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2785 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2787 phy_data
|= (1 << 2);
2788 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2790 e1e_rphy(hw
, 22, &phy_data
);
2792 phy_data
|= (1 << 14);
2793 e1e_wphy(hw
, 0x10, 0x2823);
2794 e1e_wphy(hw
, 0x11, 0x0003);
2795 e1e_wphy(hw
, 22, phy_data
);
2798 /* Setup buffer sizes */
2799 rctl
&= ~E1000_RCTL_SZ_4096
;
2800 rctl
|= E1000_RCTL_BSEX
;
2801 switch (adapter
->rx_buffer_len
) {
2804 rctl
|= E1000_RCTL_SZ_2048
;
2805 rctl
&= ~E1000_RCTL_BSEX
;
2808 rctl
|= E1000_RCTL_SZ_4096
;
2811 rctl
|= E1000_RCTL_SZ_8192
;
2814 rctl
|= E1000_RCTL_SZ_16384
;
2819 * 82571 and greater support packet-split where the protocol
2820 * header is placed in skb->data and the packet data is
2821 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2822 * In the case of a non-split, skb->data is linearly filled,
2823 * followed by the page buffers. Therefore, skb->data is
2824 * sized to hold the largest protocol header.
2826 * allocations using alloc_page take too long for regular MTU
2827 * so only enable packet split for jumbo frames
2829 * Using pages when the page size is greater than 16k wastes
2830 * a lot of memory, since we allocate 3 pages at all times
2833 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2834 if (!(adapter
->flags
& FLAG_HAS_ERT
) && (pages
<= 3) &&
2835 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2836 adapter
->rx_ps_pages
= pages
;
2838 adapter
->rx_ps_pages
= 0;
2840 if (adapter
->rx_ps_pages
) {
2843 /* Configure extra packet-split registers */
2844 rfctl
= er32(RFCTL
);
2845 rfctl
|= E1000_RFCTL_EXTEN
;
2847 * disable packet split support for IPv6 extension headers,
2848 * because some malformed IPv6 headers can hang the Rx
2850 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2851 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2855 /* Enable Packet split descriptors */
2856 rctl
|= E1000_RCTL_DTYP_PS
;
2858 psrctl
|= adapter
->rx_ps_bsize0
>>
2859 E1000_PSRCTL_BSIZE0_SHIFT
;
2861 switch (adapter
->rx_ps_pages
) {
2863 psrctl
|= PAGE_SIZE
<<
2864 E1000_PSRCTL_BSIZE3_SHIFT
;
2866 psrctl
|= PAGE_SIZE
<<
2867 E1000_PSRCTL_BSIZE2_SHIFT
;
2869 psrctl
|= PAGE_SIZE
>>
2870 E1000_PSRCTL_BSIZE1_SHIFT
;
2874 ew32(PSRCTL
, psrctl
);
2878 /* just started the receive unit, no need to restart */
2879 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2883 * e1000_configure_rx - Configure Receive Unit after Reset
2884 * @adapter: board private structure
2886 * Configure the Rx unit of the MAC after a reset.
2888 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2890 struct e1000_hw
*hw
= &adapter
->hw
;
2891 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2893 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2895 if (adapter
->rx_ps_pages
) {
2896 /* this is a 32 byte descriptor */
2897 rdlen
= rx_ring
->count
*
2898 sizeof(union e1000_rx_desc_packet_split
);
2899 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2900 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2901 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2902 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2903 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2904 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2906 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2907 adapter
->clean_rx
= e1000_clean_rx_irq
;
2908 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2911 /* disable receives while setting up the descriptors */
2913 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2915 usleep_range(10000, 20000);
2917 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2919 * set the writeback threshold (only takes effect if the RDTR
2920 * is set). set GRAN=1 and write back up to 0x4 worth, and
2921 * enable prefetching of 0x20 Rx descriptors
2927 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
2928 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
2931 * override the delay timers for enabling bursting, only if
2932 * the value was not set by the user via module options
2934 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
2935 adapter
->rx_int_delay
= BURST_RDTR
;
2936 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
2937 adapter
->rx_abs_int_delay
= BURST_RADV
;
2940 /* set the Receive Delay Timer Register */
2941 ew32(RDTR
, adapter
->rx_int_delay
);
2943 /* irq moderation */
2944 ew32(RADV
, adapter
->rx_abs_int_delay
);
2945 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
2946 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2948 ctrl_ext
= er32(CTRL_EXT
);
2949 /* Auto-Mask interrupts upon ICR access */
2950 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2951 ew32(IAM
, 0xffffffff);
2952 ew32(CTRL_EXT
, ctrl_ext
);
2956 * Setup the HW Rx Head and Tail Descriptor Pointers and
2957 * the Base and Length of the Rx Descriptor Ring
2959 rdba
= rx_ring
->dma
;
2960 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
2961 ew32(RDBAH
, (rdba
>> 32));
2965 rx_ring
->head
= E1000_RDH
;
2966 rx_ring
->tail
= E1000_RDT
;
2968 /* Enable Receive Checksum Offload for TCP and UDP */
2969 rxcsum
= er32(RXCSUM
);
2970 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2971 rxcsum
|= E1000_RXCSUM_TUOFL
;
2974 * IPv4 payload checksum for UDP fragments must be
2975 * used in conjunction with packet-split.
2977 if (adapter
->rx_ps_pages
)
2978 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2980 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2981 /* no need to clear IPPCSE as it defaults to 0 */
2983 ew32(RXCSUM
, rxcsum
);
2986 * Enable early receives on supported devices, only takes effect when
2987 * packet size is equal or larger than the specified value (in 8 byte
2988 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2990 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
2991 (adapter
->hw
.mac
.type
== e1000_pch2lan
)) {
2992 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2993 u32 rxdctl
= er32(RXDCTL(0));
2994 ew32(RXDCTL(0), rxdctl
| 0x3);
2995 if (adapter
->flags
& FLAG_HAS_ERT
)
2996 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2998 * With jumbo frames and early-receive enabled,
2999 * excessive C-state transition latencies result in
3000 * dropped transactions.
3002 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
, 55);
3004 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
,
3005 PM_QOS_DEFAULT_VALUE
);
3009 /* Enable Receives */
3014 * e1000_update_mc_addr_list - Update Multicast addresses
3015 * @hw: pointer to the HW structure
3016 * @mc_addr_list: array of multicast addresses to program
3017 * @mc_addr_count: number of multicast addresses to program
3019 * Updates the Multicast Table Array.
3020 * The caller must have a packed mc_addr_list of multicast addresses.
3022 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
3025 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
);
3029 * e1000_set_multi - Multicast and Promiscuous mode set
3030 * @netdev: network interface device structure
3032 * The set_multi entry point is called whenever the multicast address
3033 * list or the network interface flags are updated. This routine is
3034 * responsible for configuring the hardware for proper multicast,
3035 * promiscuous mode, and all-multi behavior.
3037 static void e1000_set_multi(struct net_device
*netdev
)
3039 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3040 struct e1000_hw
*hw
= &adapter
->hw
;
3041 struct netdev_hw_addr
*ha
;
3045 /* Check for Promiscuous and All Multicast modes */
3049 if (netdev
->flags
& IFF_PROMISC
) {
3050 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3051 rctl
&= ~E1000_RCTL_VFE
;
3052 /* Do not hardware filter VLANs in promisc mode */
3053 e1000e_vlan_filter_disable(adapter
);
3055 if (netdev
->flags
& IFF_ALLMULTI
) {
3056 rctl
|= E1000_RCTL_MPE
;
3057 rctl
&= ~E1000_RCTL_UPE
;
3059 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3061 e1000e_vlan_filter_enable(adapter
);
3066 if (!netdev_mc_empty(netdev
)) {
3069 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
3073 /* prepare a packed array of only addresses. */
3074 netdev_for_each_mc_addr(ha
, netdev
)
3075 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3077 e1000_update_mc_addr_list(hw
, mta_list
, i
);
3081 * if we're called from probe, we might not have
3082 * anything to do here, so clear out the list
3084 e1000_update_mc_addr_list(hw
, NULL
, 0);
3087 if (netdev
->features
& NETIF_F_HW_VLAN_RX
)
3088 e1000e_vlan_strip_enable(adapter
);
3090 e1000e_vlan_strip_disable(adapter
);
3094 * e1000_configure - configure the hardware for Rx and Tx
3095 * @adapter: private board structure
3097 static void e1000_configure(struct e1000_adapter
*adapter
)
3099 e1000_set_multi(adapter
->netdev
);
3101 e1000_restore_vlan(adapter
);
3102 e1000_init_manageability_pt(adapter
);
3104 e1000_configure_tx(adapter
);
3105 e1000_setup_rctl(adapter
);
3106 e1000_configure_rx(adapter
);
3107 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
3111 * e1000e_power_up_phy - restore link in case the phy was powered down
3112 * @adapter: address of board private structure
3114 * The phy may be powered down to save power and turn off link when the
3115 * driver is unloaded and wake on lan is not enabled (among others)
3116 * *** this routine MUST be followed by a call to e1000e_reset ***
3118 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3120 if (adapter
->hw
.phy
.ops
.power_up
)
3121 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3123 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3127 * e1000_power_down_phy - Power down the PHY
3129 * Power down the PHY so no link is implied when interface is down.
3130 * The PHY cannot be powered down if management or WoL is active.
3132 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3134 /* WoL is enabled */
3138 if (adapter
->hw
.phy
.ops
.power_down
)
3139 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3143 * e1000e_reset - bring the hardware into a known good state
3145 * This function boots the hardware and enables some settings that
3146 * require a configuration cycle of the hardware - those cannot be
3147 * set/changed during runtime. After reset the device needs to be
3148 * properly configured for Rx, Tx etc.
3150 void e1000e_reset(struct e1000_adapter
*adapter
)
3152 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3153 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3154 struct e1000_hw
*hw
= &adapter
->hw
;
3155 u32 tx_space
, min_tx_space
, min_rx_space
;
3156 u32 pba
= adapter
->pba
;
3159 /* reset Packet Buffer Allocation to default */
3162 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3164 * To maintain wire speed transmits, the Tx FIFO should be
3165 * large enough to accommodate two full transmit packets,
3166 * rounded up to the next 1KB and expressed in KB. Likewise,
3167 * the Rx FIFO should be large enough to accommodate at least
3168 * one full receive packet and is similarly rounded up and
3172 /* upper 16 bits has Tx packet buffer allocation size in KB */
3173 tx_space
= pba
>> 16;
3174 /* lower 16 bits has Rx packet buffer allocation size in KB */
3177 * the Tx fifo also stores 16 bytes of information about the Tx
3178 * but don't include ethernet FCS because hardware appends it
3180 min_tx_space
= (adapter
->max_frame_size
+
3181 sizeof(struct e1000_tx_desc
) -
3183 min_tx_space
= ALIGN(min_tx_space
, 1024);
3184 min_tx_space
>>= 10;
3185 /* software strips receive CRC, so leave room for it */
3186 min_rx_space
= adapter
->max_frame_size
;
3187 min_rx_space
= ALIGN(min_rx_space
, 1024);
3188 min_rx_space
>>= 10;
3191 * If current Tx allocation is less than the min Tx FIFO size,
3192 * and the min Tx FIFO size is less than the current Rx FIFO
3193 * allocation, take space away from current Rx allocation
3195 if ((tx_space
< min_tx_space
) &&
3196 ((min_tx_space
- tx_space
) < pba
)) {
3197 pba
-= min_tx_space
- tx_space
;
3200 * if short on Rx space, Rx wins and must trump Tx
3201 * adjustment or use Early Receive if available
3203 if ((pba
< min_rx_space
) &&
3204 (!(adapter
->flags
& FLAG_HAS_ERT
)))
3205 /* ERT enabled in e1000_configure_rx */
3213 * flow control settings
3215 * The high water mark must be low enough to fit one full frame
3216 * (or the size used for early receive) above it in the Rx FIFO.
3217 * Set it to the lower of:
3218 * - 90% of the Rx FIFO size, and
3219 * - the full Rx FIFO size minus the early receive size (for parts
3220 * with ERT support assuming ERT set to E1000_ERT_2048), or
3221 * - the full Rx FIFO size minus one full frame
3223 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3224 fc
->pause_time
= 0xFFFF;
3226 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3228 fc
->current_mode
= fc
->requested_mode
;
3230 switch (hw
->mac
.type
) {
3232 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
3233 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
3234 hwm
= min(((pba
<< 10) * 9 / 10),
3235 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
3237 hwm
= min(((pba
<< 10) * 9 / 10),
3238 ((pba
<< 10) - adapter
->max_frame_size
));
3240 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3241 fc
->low_water
= fc
->high_water
- 8;
3245 * Workaround PCH LOM adapter hangs with certain network
3246 * loads. If hangs persist, try disabling Tx flow control.
3248 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3249 fc
->high_water
= 0x3500;
3250 fc
->low_water
= 0x1500;
3252 fc
->high_water
= 0x5000;
3253 fc
->low_water
= 0x3000;
3255 fc
->refresh_time
= 0x1000;
3258 fc
->high_water
= 0x05C20;
3259 fc
->low_water
= 0x05048;
3260 fc
->pause_time
= 0x0650;
3261 fc
->refresh_time
= 0x0400;
3262 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3270 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3271 * fit in receive buffer and early-receive not supported.
3273 if (adapter
->itr_setting
& 0x3) {
3274 if (((adapter
->max_frame_size
* 2) > (pba
<< 10)) &&
3275 !(adapter
->flags
& FLAG_HAS_ERT
)) {
3276 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
3277 dev_info(&adapter
->pdev
->dev
,
3278 "Interrupt Throttle Rate turned off\n");
3279 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
3282 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
3283 dev_info(&adapter
->pdev
->dev
,
3284 "Interrupt Throttle Rate turned on\n");
3285 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
3286 adapter
->itr
= 20000;
3287 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
3291 /* Allow time for pending master requests to run */
3292 mac
->ops
.reset_hw(hw
);
3295 * For parts with AMT enabled, let the firmware know
3296 * that the network interface is in control
3298 if (adapter
->flags
& FLAG_HAS_AMT
)
3299 e1000e_get_hw_control(adapter
);
3303 if (mac
->ops
.init_hw(hw
))
3304 e_err("Hardware Error\n");
3306 e1000_update_mng_vlan(adapter
);
3308 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3309 ew32(VET
, ETH_P_8021Q
);
3311 e1000e_reset_adaptive(hw
);
3313 if (!netif_running(adapter
->netdev
) &&
3314 !test_bit(__E1000_TESTING
, &adapter
->state
)) {
3315 e1000_power_down_phy(adapter
);
3319 e1000_get_phy_info(hw
);
3321 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
3322 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
3325 * speed up time to link by disabling smart power down, ignore
3326 * the return value of this function because there is nothing
3327 * different we would do if it failed
3329 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
3330 phy_data
&= ~IGP02E1000_PM_SPD
;
3331 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
3335 int e1000e_up(struct e1000_adapter
*adapter
)
3337 struct e1000_hw
*hw
= &adapter
->hw
;
3339 /* hardware has been reset, we need to reload some things */
3340 e1000_configure(adapter
);
3342 clear_bit(__E1000_DOWN
, &adapter
->state
);
3344 napi_enable(&adapter
->napi
);
3345 if (adapter
->msix_entries
)
3346 e1000_configure_msix(adapter
);
3347 e1000_irq_enable(adapter
);
3349 netif_wake_queue(adapter
->netdev
);
3351 /* fire a link change interrupt to start the watchdog */
3352 if (adapter
->msix_entries
)
3353 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3355 ew32(ICS
, E1000_ICS_LSC
);
3360 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
3362 struct e1000_hw
*hw
= &adapter
->hw
;
3364 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
3367 /* flush pending descriptor writebacks to memory */
3368 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
3369 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
3371 /* execute the writes immediately */
3375 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
3377 void e1000e_down(struct e1000_adapter
*adapter
)
3379 struct net_device
*netdev
= adapter
->netdev
;
3380 struct e1000_hw
*hw
= &adapter
->hw
;
3384 * signal that we're down so the interrupt handler does not
3385 * reschedule our watchdog timer
3387 set_bit(__E1000_DOWN
, &adapter
->state
);
3389 /* disable receives in the hardware */
3391 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3392 /* flush and sleep below */
3394 netif_stop_queue(netdev
);
3396 /* disable transmits in the hardware */
3398 tctl
&= ~E1000_TCTL_EN
;
3400 /* flush both disables and wait for them to finish */
3402 usleep_range(10000, 20000);
3404 napi_disable(&adapter
->napi
);
3405 e1000_irq_disable(adapter
);
3407 del_timer_sync(&adapter
->watchdog_timer
);
3408 del_timer_sync(&adapter
->phy_info_timer
);
3410 netif_carrier_off(netdev
);
3412 spin_lock(&adapter
->stats64_lock
);
3413 e1000e_update_stats(adapter
);
3414 spin_unlock(&adapter
->stats64_lock
);
3416 adapter
->link_speed
= 0;
3417 adapter
->link_duplex
= 0;
3419 if (!pci_channel_offline(adapter
->pdev
))
3420 e1000e_reset(adapter
);
3422 e1000e_flush_descriptors(adapter
);
3424 e1000_clean_tx_ring(adapter
);
3425 e1000_clean_rx_ring(adapter
);
3428 * TODO: for power management, we could drop the link and
3429 * pci_disable_device here.
3433 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
3436 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3437 usleep_range(1000, 2000);
3438 e1000e_down(adapter
);
3440 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3444 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3445 * @adapter: board private structure to initialize
3447 * e1000_sw_init initializes the Adapter private data structure.
3448 * Fields are initialized based on PCI device information and
3449 * OS network device settings (MTU size).
3451 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
3453 struct net_device
*netdev
= adapter
->netdev
;
3455 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
3456 adapter
->rx_ps_bsize0
= 128;
3457 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3458 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
3460 spin_lock_init(&adapter
->stats64_lock
);
3462 e1000e_set_interrupt_capability(adapter
);
3464 if (e1000_alloc_queues(adapter
))
3467 /* Explicitly disable IRQ since the NIC can be in any state. */
3468 e1000_irq_disable(adapter
);
3470 set_bit(__E1000_DOWN
, &adapter
->state
);
3475 * e1000_intr_msi_test - Interrupt Handler
3476 * @irq: interrupt number
3477 * @data: pointer to a network interface device structure
3479 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
3481 struct net_device
*netdev
= data
;
3482 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3483 struct e1000_hw
*hw
= &adapter
->hw
;
3484 u32 icr
= er32(ICR
);
3486 e_dbg("icr is %08X\n", icr
);
3487 if (icr
& E1000_ICR_RXSEQ
) {
3488 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
3496 * e1000_test_msi_interrupt - Returns 0 for successful test
3497 * @adapter: board private struct
3499 * code flow taken from tg3.c
3501 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
3503 struct net_device
*netdev
= adapter
->netdev
;
3504 struct e1000_hw
*hw
= &adapter
->hw
;
3507 /* poll_enable hasn't been called yet, so don't need disable */
3508 /* clear any pending events */
3511 /* free the real vector and request a test handler */
3512 e1000_free_irq(adapter
);
3513 e1000e_reset_interrupt_capability(adapter
);
3515 /* Assume that the test fails, if it succeeds then the test
3516 * MSI irq handler will unset this flag */
3517 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
3519 err
= pci_enable_msi(adapter
->pdev
);
3521 goto msi_test_failed
;
3523 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
3524 netdev
->name
, netdev
);
3526 pci_disable_msi(adapter
->pdev
);
3527 goto msi_test_failed
;
3532 e1000_irq_enable(adapter
);
3534 /* fire an unusual interrupt on the test handler */
3535 ew32(ICS
, E1000_ICS_RXSEQ
);
3539 e1000_irq_disable(adapter
);
3543 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3544 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3545 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3547 e_dbg("MSI interrupt test succeeded!\n");
3549 free_irq(adapter
->pdev
->irq
, netdev
);
3550 pci_disable_msi(adapter
->pdev
);
3553 e1000e_set_interrupt_capability(adapter
);
3554 return e1000_request_irq(adapter
);
3558 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3559 * @adapter: board private struct
3561 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3563 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3568 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3571 /* disable SERR in case the MSI write causes a master abort */
3572 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3573 if (pci_cmd
& PCI_COMMAND_SERR
)
3574 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3575 pci_cmd
& ~PCI_COMMAND_SERR
);
3577 err
= e1000_test_msi_interrupt(adapter
);
3579 /* re-enable SERR */
3580 if (pci_cmd
& PCI_COMMAND_SERR
) {
3581 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3582 pci_cmd
|= PCI_COMMAND_SERR
;
3583 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3590 * e1000_open - Called when a network interface is made active
3591 * @netdev: network interface device structure
3593 * Returns 0 on success, negative value on failure
3595 * The open entry point is called when a network interface is made
3596 * active by the system (IFF_UP). At this point all resources needed
3597 * for transmit and receive operations are allocated, the interrupt
3598 * handler is registered with the OS, the watchdog timer is started,
3599 * and the stack is notified that the interface is ready.
3601 static int e1000_open(struct net_device
*netdev
)
3603 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3604 struct e1000_hw
*hw
= &adapter
->hw
;
3605 struct pci_dev
*pdev
= adapter
->pdev
;
3608 /* disallow open during test */
3609 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3612 pm_runtime_get_sync(&pdev
->dev
);
3614 netif_carrier_off(netdev
);
3616 /* allocate transmit descriptors */
3617 err
= e1000e_setup_tx_resources(adapter
);
3621 /* allocate receive descriptors */
3622 err
= e1000e_setup_rx_resources(adapter
);
3627 * If AMT is enabled, let the firmware know that the network
3628 * interface is now open and reset the part to a known state.
3630 if (adapter
->flags
& FLAG_HAS_AMT
) {
3631 e1000e_get_hw_control(adapter
);
3632 e1000e_reset(adapter
);
3635 e1000e_power_up_phy(adapter
);
3637 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3638 if ((adapter
->hw
.mng_cookie
.status
&
3639 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3640 e1000_update_mng_vlan(adapter
);
3642 /* DMA latency requirement to workaround early-receive/jumbo issue */
3643 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3644 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3645 pm_qos_add_request(&adapter
->netdev
->pm_qos_req
,
3646 PM_QOS_CPU_DMA_LATENCY
,
3647 PM_QOS_DEFAULT_VALUE
);
3650 * before we allocate an interrupt, we must be ready to handle it.
3651 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3652 * as soon as we call pci_request_irq, so we have to setup our
3653 * clean_rx handler before we do so.
3655 e1000_configure(adapter
);
3657 err
= e1000_request_irq(adapter
);
3662 * Work around PCIe errata with MSI interrupts causing some chipsets to
3663 * ignore e1000e MSI messages, which means we need to test our MSI
3666 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3667 err
= e1000_test_msi(adapter
);
3669 e_err("Interrupt allocation failed\n");
3674 /* From here on the code is the same as e1000e_up() */
3675 clear_bit(__E1000_DOWN
, &adapter
->state
);
3677 napi_enable(&adapter
->napi
);
3679 e1000_irq_enable(adapter
);
3681 netif_start_queue(netdev
);
3683 adapter
->idle_check
= true;
3684 pm_runtime_put(&pdev
->dev
);
3686 /* fire a link status change interrupt to start the watchdog */
3687 if (adapter
->msix_entries
)
3688 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3690 ew32(ICS
, E1000_ICS_LSC
);
3695 e1000e_release_hw_control(adapter
);
3696 e1000_power_down_phy(adapter
);
3697 e1000e_free_rx_resources(adapter
);
3699 e1000e_free_tx_resources(adapter
);
3701 e1000e_reset(adapter
);
3702 pm_runtime_put_sync(&pdev
->dev
);
3708 * e1000_close - Disables a network interface
3709 * @netdev: network interface device structure
3711 * Returns 0, this is not allowed to fail
3713 * The close entry point is called when an interface is de-activated
3714 * by the OS. The hardware is still under the drivers control, but
3715 * needs to be disabled. A global MAC reset is issued to stop the
3716 * hardware, and all transmit and receive resources are freed.
3718 static int e1000_close(struct net_device
*netdev
)
3720 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3721 struct pci_dev
*pdev
= adapter
->pdev
;
3723 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3725 pm_runtime_get_sync(&pdev
->dev
);
3727 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
3728 e1000e_down(adapter
);
3729 e1000_free_irq(adapter
);
3731 e1000_power_down_phy(adapter
);
3733 e1000e_free_tx_resources(adapter
);
3734 e1000e_free_rx_resources(adapter
);
3737 * kill manageability vlan ID if supported, but not if a vlan with
3738 * the same ID is registered on the host OS (let 8021q kill it)
3740 if (adapter
->hw
.mng_cookie
.status
&
3741 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
3742 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3745 * If AMT is enabled, let the firmware know that the network
3746 * interface is now closed
3748 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
3749 !test_bit(__E1000_TESTING
, &adapter
->state
))
3750 e1000e_release_hw_control(adapter
);
3752 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3753 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3754 pm_qos_remove_request(&adapter
->netdev
->pm_qos_req
);
3756 pm_runtime_put_sync(&pdev
->dev
);
3761 * e1000_set_mac - Change the Ethernet Address of the NIC
3762 * @netdev: network interface device structure
3763 * @p: pointer to an address structure
3765 * Returns 0 on success, negative on failure
3767 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3769 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3770 struct sockaddr
*addr
= p
;
3772 if (!is_valid_ether_addr(addr
->sa_data
))
3773 return -EADDRNOTAVAIL
;
3775 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3776 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3778 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3780 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3781 /* activate the work around */
3782 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3785 * Hold a copy of the LAA in RAR[14] This is done so that
3786 * between the time RAR[0] gets clobbered and the time it
3787 * gets fixed (in e1000_watchdog), the actual LAA is in one
3788 * of the RARs and no incoming packets directed to this port
3789 * are dropped. Eventually the LAA will be in RAR[0] and
3792 e1000e_rar_set(&adapter
->hw
,
3793 adapter
->hw
.mac
.addr
,
3794 adapter
->hw
.mac
.rar_entry_count
- 1);
3801 * e1000e_update_phy_task - work thread to update phy
3802 * @work: pointer to our work struct
3804 * this worker thread exists because we must acquire a
3805 * semaphore to read the phy, which we could msleep while
3806 * waiting for it, and we can't msleep in a timer.
3808 static void e1000e_update_phy_task(struct work_struct
*work
)
3810 struct e1000_adapter
*adapter
= container_of(work
,
3811 struct e1000_adapter
, update_phy_task
);
3813 if (test_bit(__E1000_DOWN
, &adapter
->state
))
3816 e1000_get_phy_info(&adapter
->hw
);
3820 * Need to wait a few seconds after link up to get diagnostic information from
3823 static void e1000_update_phy_info(unsigned long data
)
3825 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3827 if (test_bit(__E1000_DOWN
, &adapter
->state
))
3830 schedule_work(&adapter
->update_phy_task
);
3834 * e1000e_update_phy_stats - Update the PHY statistics counters
3835 * @adapter: board private structure
3837 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
3839 struct e1000_hw
*hw
= &adapter
->hw
;
3843 ret_val
= hw
->phy
.ops
.acquire(hw
);
3849 #define HV_PHY_STATS_PAGE 778
3851 * A page set is expensive so check if already on desired page.
3852 * If not, set to the page with the PHY status registers.
3854 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
3858 if (phy_data
!= (HV_PHY_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
3859 ret_val
= e1000e_write_phy_reg_mdic(hw
,
3860 IGP01E1000_PHY_PAGE_SELECT
,
3861 (HV_PHY_STATS_PAGE
<<
3867 /* Read/clear the upper 16-bit registers and read/accumulate lower */
3869 /* Single Collision Count */
3870 e1000e_read_phy_reg_mdic(hw
, HV_SCC_UPPER
& MAX_PHY_REG_ADDRESS
,
3872 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3873 HV_SCC_LOWER
& MAX_PHY_REG_ADDRESS
,
3876 adapter
->stats
.scc
+= phy_data
;
3878 /* Excessive Collision Count */
3879 e1000e_read_phy_reg_mdic(hw
, HV_ECOL_UPPER
& MAX_PHY_REG_ADDRESS
,
3881 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3882 HV_ECOL_LOWER
& MAX_PHY_REG_ADDRESS
,
3885 adapter
->stats
.ecol
+= phy_data
;
3887 /* Multiple Collision Count */
3888 e1000e_read_phy_reg_mdic(hw
, HV_MCC_UPPER
& MAX_PHY_REG_ADDRESS
,
3890 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3891 HV_MCC_LOWER
& MAX_PHY_REG_ADDRESS
,
3894 adapter
->stats
.mcc
+= phy_data
;
3896 /* Late Collision Count */
3897 e1000e_read_phy_reg_mdic(hw
, HV_LATECOL_UPPER
& MAX_PHY_REG_ADDRESS
,
3899 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3901 MAX_PHY_REG_ADDRESS
,
3904 adapter
->stats
.latecol
+= phy_data
;
3906 /* Collision Count - also used for adaptive IFS */
3907 e1000e_read_phy_reg_mdic(hw
, HV_COLC_UPPER
& MAX_PHY_REG_ADDRESS
,
3909 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3910 HV_COLC_LOWER
& MAX_PHY_REG_ADDRESS
,
3913 hw
->mac
.collision_delta
= phy_data
;
3916 e1000e_read_phy_reg_mdic(hw
, HV_DC_UPPER
& MAX_PHY_REG_ADDRESS
,
3918 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3919 HV_DC_LOWER
& MAX_PHY_REG_ADDRESS
,
3922 adapter
->stats
.dc
+= phy_data
;
3924 /* Transmit with no CRS */
3925 e1000e_read_phy_reg_mdic(hw
, HV_TNCRS_UPPER
& MAX_PHY_REG_ADDRESS
,
3927 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3928 HV_TNCRS_LOWER
& MAX_PHY_REG_ADDRESS
,
3931 adapter
->stats
.tncrs
+= phy_data
;
3934 hw
->phy
.ops
.release(hw
);
3938 * e1000e_update_stats - Update the board statistics counters
3939 * @adapter: board private structure
3941 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
3943 struct net_device
*netdev
= adapter
->netdev
;
3944 struct e1000_hw
*hw
= &adapter
->hw
;
3945 struct pci_dev
*pdev
= adapter
->pdev
;
3948 * Prevent stats update while adapter is being reset, or if the pci
3949 * connection is down.
3951 if (adapter
->link_speed
== 0)
3953 if (pci_channel_offline(pdev
))
3956 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3957 adapter
->stats
.gprc
+= er32(GPRC
);
3958 adapter
->stats
.gorc
+= er32(GORCL
);
3959 er32(GORCH
); /* Clear gorc */
3960 adapter
->stats
.bprc
+= er32(BPRC
);
3961 adapter
->stats
.mprc
+= er32(MPRC
);
3962 adapter
->stats
.roc
+= er32(ROC
);
3964 adapter
->stats
.mpc
+= er32(MPC
);
3966 /* Half-duplex statistics */
3967 if (adapter
->link_duplex
== HALF_DUPLEX
) {
3968 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
3969 e1000e_update_phy_stats(adapter
);
3971 adapter
->stats
.scc
+= er32(SCC
);
3972 adapter
->stats
.ecol
+= er32(ECOL
);
3973 adapter
->stats
.mcc
+= er32(MCC
);
3974 adapter
->stats
.latecol
+= er32(LATECOL
);
3975 adapter
->stats
.dc
+= er32(DC
);
3977 hw
->mac
.collision_delta
= er32(COLC
);
3979 if ((hw
->mac
.type
!= e1000_82574
) &&
3980 (hw
->mac
.type
!= e1000_82583
))
3981 adapter
->stats
.tncrs
+= er32(TNCRS
);
3983 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3986 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3987 adapter
->stats
.xontxc
+= er32(XONTXC
);
3988 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3989 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3990 adapter
->stats
.gptc
+= er32(GPTC
);
3991 adapter
->stats
.gotc
+= er32(GOTCL
);
3992 er32(GOTCH
); /* Clear gotc */
3993 adapter
->stats
.rnbc
+= er32(RNBC
);
3994 adapter
->stats
.ruc
+= er32(RUC
);
3996 adapter
->stats
.mptc
+= er32(MPTC
);
3997 adapter
->stats
.bptc
+= er32(BPTC
);
3999 /* used for adaptive IFS */
4001 hw
->mac
.tx_packet_delta
= er32(TPT
);
4002 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4004 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4005 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4006 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4007 adapter
->stats
.tsctc
+= er32(TSCTC
);
4008 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4010 /* Fill out the OS statistics structure */
4011 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
4012 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4017 * RLEC on some newer hardware can be incorrect so build
4018 * our own version based on RUC and ROC
4020 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4021 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4022 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4023 adapter
->stats
.cexterr
;
4024 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4026 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4027 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4028 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4031 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
4032 adapter
->stats
.latecol
;
4033 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4034 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4035 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4037 /* Tx Dropped needs to be maintained elsewhere */
4039 /* Management Stats */
4040 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4041 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4042 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4046 * e1000_phy_read_status - Update the PHY register status snapshot
4047 * @adapter: board private structure
4049 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4051 struct e1000_hw
*hw
= &adapter
->hw
;
4052 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4054 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
4055 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4058 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
4059 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
4060 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
4061 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
4062 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
4063 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
4064 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
4065 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
4067 e_warn("Error reading PHY register\n");
4070 * Do not read PHY registers if link is not up
4071 * Set values to typical power-on defaults
4073 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4074 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4075 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4077 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4078 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4080 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4081 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4083 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4087 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4089 struct e1000_hw
*hw
= &adapter
->hw
;
4090 u32 ctrl
= er32(CTRL
);
4092 /* Link status message must follow this format for user tools */
4093 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
4094 "Flow Control: %s\n",
4095 adapter
->netdev
->name
,
4096 adapter
->link_speed
,
4097 (adapter
->link_duplex
== FULL_DUPLEX
) ?
4098 "Full Duplex" : "Half Duplex",
4099 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
4101 ((ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
4102 ((ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None")));
4105 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
4107 struct e1000_hw
*hw
= &adapter
->hw
;
4108 bool link_active
= 0;
4112 * get_link_status is set on LSC (link status) interrupt or
4113 * Rx sequence error interrupt. get_link_status will stay
4114 * false until the check_for_link establishes link
4115 * for copper adapters ONLY
4117 switch (hw
->phy
.media_type
) {
4118 case e1000_media_type_copper
:
4119 if (hw
->mac
.get_link_status
) {
4120 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4121 link_active
= !hw
->mac
.get_link_status
;
4126 case e1000_media_type_fiber
:
4127 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4128 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
4130 case e1000_media_type_internal_serdes
:
4131 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4132 link_active
= adapter
->hw
.mac
.serdes_has_link
;
4135 case e1000_media_type_unknown
:
4139 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
4140 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
4141 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4142 e_info("Gigabit has been disabled, downgrading speed\n");
4148 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
4150 /* make sure the receive unit is started */
4151 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4152 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
4153 struct e1000_hw
*hw
= &adapter
->hw
;
4154 u32 rctl
= er32(RCTL
);
4155 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4156 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
4160 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
4162 struct e1000_hw
*hw
= &adapter
->hw
;
4165 * With 82574 controllers, PHY needs to be checked periodically
4166 * for hung state and reset, if two calls return true
4168 if (e1000_check_phy_82574(hw
))
4169 adapter
->phy_hang_count
++;
4171 adapter
->phy_hang_count
= 0;
4173 if (adapter
->phy_hang_count
> 1) {
4174 adapter
->phy_hang_count
= 0;
4175 schedule_work(&adapter
->reset_task
);
4180 * e1000_watchdog - Timer Call-back
4181 * @data: pointer to adapter cast into an unsigned long
4183 static void e1000_watchdog(unsigned long data
)
4185 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
4187 /* Do the rest outside of interrupt context */
4188 schedule_work(&adapter
->watchdog_task
);
4190 /* TODO: make this use queue_delayed_work() */
4193 static void e1000_watchdog_task(struct work_struct
*work
)
4195 struct e1000_adapter
*adapter
= container_of(work
,
4196 struct e1000_adapter
, watchdog_task
);
4197 struct net_device
*netdev
= adapter
->netdev
;
4198 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4199 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
4200 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4201 struct e1000_hw
*hw
= &adapter
->hw
;
4204 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4207 link
= e1000e_has_link(adapter
);
4208 if ((netif_carrier_ok(netdev
)) && link
) {
4209 /* Cancel scheduled suspend requests. */
4210 pm_runtime_resume(netdev
->dev
.parent
);
4212 e1000e_enable_receives(adapter
);
4216 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
4217 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
4218 e1000_update_mng_vlan(adapter
);
4221 if (!netif_carrier_ok(netdev
)) {
4224 /* Cancel scheduled suspend requests. */
4225 pm_runtime_resume(netdev
->dev
.parent
);
4227 /* update snapshot of PHY registers on LSC */
4228 e1000_phy_read_status(adapter
);
4229 mac
->ops
.get_link_up_info(&adapter
->hw
,
4230 &adapter
->link_speed
,
4231 &adapter
->link_duplex
);
4232 e1000_print_link_info(adapter
);
4234 * On supported PHYs, check for duplex mismatch only
4235 * if link has autonegotiated at 10/100 half
4237 if ((hw
->phy
.type
== e1000_phy_igp_3
||
4238 hw
->phy
.type
== e1000_phy_bm
) &&
4239 (hw
->mac
.autoneg
== true) &&
4240 (adapter
->link_speed
== SPEED_10
||
4241 adapter
->link_speed
== SPEED_100
) &&
4242 (adapter
->link_duplex
== HALF_DUPLEX
)) {
4245 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
4247 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
4248 e_info("Autonegotiated half duplex but"
4249 " link partner cannot autoneg. "
4250 " Try forcing full duplex if "
4251 "link gets many collisions.\n");
4254 /* adjust timeout factor according to speed/duplex */
4255 adapter
->tx_timeout_factor
= 1;
4256 switch (adapter
->link_speed
) {
4259 adapter
->tx_timeout_factor
= 16;
4263 adapter
->tx_timeout_factor
= 10;
4268 * workaround: re-program speed mode bit after
4271 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
4274 tarc0
= er32(TARC(0));
4275 tarc0
&= ~SPEED_MODE_BIT
;
4276 ew32(TARC(0), tarc0
);
4280 * disable TSO for pcie and 10/100 speeds, to avoid
4281 * some hardware issues
4283 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
4284 switch (adapter
->link_speed
) {
4287 e_info("10/100 speed: disabling TSO\n");
4288 netdev
->features
&= ~NETIF_F_TSO
;
4289 netdev
->features
&= ~NETIF_F_TSO6
;
4292 netdev
->features
|= NETIF_F_TSO
;
4293 netdev
->features
|= NETIF_F_TSO6
;
4302 * enable transmits in the hardware, need to do this
4303 * after setting TARC(0)
4306 tctl
|= E1000_TCTL_EN
;
4310 * Perform any post-link-up configuration before
4311 * reporting link up.
4313 if (phy
->ops
.cfg_on_link_up
)
4314 phy
->ops
.cfg_on_link_up(hw
);
4316 netif_carrier_on(netdev
);
4318 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4319 mod_timer(&adapter
->phy_info_timer
,
4320 round_jiffies(jiffies
+ 2 * HZ
));
4323 if (netif_carrier_ok(netdev
)) {
4324 adapter
->link_speed
= 0;
4325 adapter
->link_duplex
= 0;
4326 /* Link status message must follow this format */
4327 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
4328 adapter
->netdev
->name
);
4329 netif_carrier_off(netdev
);
4330 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4331 mod_timer(&adapter
->phy_info_timer
,
4332 round_jiffies(jiffies
+ 2 * HZ
));
4334 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
4335 schedule_work(&adapter
->reset_task
);
4337 pm_schedule_suspend(netdev
->dev
.parent
,
4343 spin_lock(&adapter
->stats64_lock
);
4344 e1000e_update_stats(adapter
);
4346 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
4347 adapter
->tpt_old
= adapter
->stats
.tpt
;
4348 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
4349 adapter
->colc_old
= adapter
->stats
.colc
;
4351 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
4352 adapter
->gorc_old
= adapter
->stats
.gorc
;
4353 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
4354 adapter
->gotc_old
= adapter
->stats
.gotc
;
4355 spin_unlock(&adapter
->stats64_lock
);
4357 e1000e_update_adaptive(&adapter
->hw
);
4359 if (!netif_carrier_ok(netdev
) &&
4360 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
)) {
4362 * We've lost link, so the controller stops DMA,
4363 * but we've got queued Tx work that's never going
4364 * to get done, so reset controller to flush Tx.
4365 * (Do the reset outside of interrupt context).
4367 schedule_work(&adapter
->reset_task
);
4368 /* return immediately since reset is imminent */
4372 /* Simple mode for Interrupt Throttle Rate (ITR) */
4373 if (adapter
->itr_setting
== 4) {
4375 * Symmetric Tx/Rx gets a reduced ITR=2000;
4376 * Total asymmetrical Tx or Rx gets ITR=8000;
4377 * everyone else is between 2000-8000.
4379 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
4380 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
4381 adapter
->gotc
- adapter
->gorc
:
4382 adapter
->gorc
- adapter
->gotc
) / 10000;
4383 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
4385 ew32(ITR
, 1000000000 / (itr
* 256));
4388 /* Cause software interrupt to ensure Rx ring is cleaned */
4389 if (adapter
->msix_entries
)
4390 ew32(ICS
, adapter
->rx_ring
->ims_val
);
4392 ew32(ICS
, E1000_ICS_RXDMT0
);
4394 /* flush pending descriptors to memory before detecting Tx hang */
4395 e1000e_flush_descriptors(adapter
);
4397 /* Force detection of hung controller every watchdog period */
4398 adapter
->detect_tx_hung
= 1;
4401 * With 82571 controllers, LAA may be overwritten due to controller
4402 * reset from the other port. Set the appropriate LAA in RAR[0]
4404 if (e1000e_get_laa_state_82571(hw
))
4405 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
4407 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
4408 e1000e_check_82574_phy_workaround(adapter
);
4410 /* Reset the timer */
4411 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4412 mod_timer(&adapter
->watchdog_timer
,
4413 round_jiffies(jiffies
+ 2 * HZ
));
4416 #define E1000_TX_FLAGS_CSUM 0x00000001
4417 #define E1000_TX_FLAGS_VLAN 0x00000002
4418 #define E1000_TX_FLAGS_TSO 0x00000004
4419 #define E1000_TX_FLAGS_IPV4 0x00000008
4420 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4421 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4423 static int e1000_tso(struct e1000_adapter
*adapter
,
4424 struct sk_buff
*skb
)
4426 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4427 struct e1000_context_desc
*context_desc
;
4428 struct e1000_buffer
*buffer_info
;
4431 u16 ipcse
= 0, tucse
, mss
;
4432 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
4434 if (!skb_is_gso(skb
))
4437 if (skb_header_cloned(skb
)) {
4438 int err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4444 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4445 mss
= skb_shinfo(skb
)->gso_size
;
4446 if (skb
->protocol
== htons(ETH_P_IP
)) {
4447 struct iphdr
*iph
= ip_hdr(skb
);
4450 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
4452 cmd_length
= E1000_TXD_CMD_IP
;
4453 ipcse
= skb_transport_offset(skb
) - 1;
4454 } else if (skb_is_gso_v6(skb
)) {
4455 ipv6_hdr(skb
)->payload_len
= 0;
4456 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4457 &ipv6_hdr(skb
)->daddr
,
4461 ipcss
= skb_network_offset(skb
);
4462 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
4463 tucss
= skb_transport_offset(skb
);
4464 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
4467 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
4468 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
4470 i
= tx_ring
->next_to_use
;
4471 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4472 buffer_info
= &tx_ring
->buffer_info
[i
];
4474 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
4475 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
4476 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
4477 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
4478 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
4479 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
4480 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
4481 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
4482 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
4484 buffer_info
->time_stamp
= jiffies
;
4485 buffer_info
->next_to_watch
= i
;
4488 if (i
== tx_ring
->count
)
4490 tx_ring
->next_to_use
= i
;
4495 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
4497 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4498 struct e1000_context_desc
*context_desc
;
4499 struct e1000_buffer
*buffer_info
;
4502 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
4505 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
4508 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
4509 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
4511 protocol
= skb
->protocol
;
4514 case cpu_to_be16(ETH_P_IP
):
4515 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
4516 cmd_len
|= E1000_TXD_CMD_TCP
;
4518 case cpu_to_be16(ETH_P_IPV6
):
4519 /* XXX not handling all IPV6 headers */
4520 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
4521 cmd_len
|= E1000_TXD_CMD_TCP
;
4524 if (unlikely(net_ratelimit()))
4525 e_warn("checksum_partial proto=%x!\n",
4526 be16_to_cpu(protocol
));
4530 css
= skb_checksum_start_offset(skb
);
4532 i
= tx_ring
->next_to_use
;
4533 buffer_info
= &tx_ring
->buffer_info
[i
];
4534 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4536 context_desc
->lower_setup
.ip_config
= 0;
4537 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
4538 context_desc
->upper_setup
.tcp_fields
.tucso
=
4539 css
+ skb
->csum_offset
;
4540 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
4541 context_desc
->tcp_seg_setup
.data
= 0;
4542 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
4544 buffer_info
->time_stamp
= jiffies
;
4545 buffer_info
->next_to_watch
= i
;
4548 if (i
== tx_ring
->count
)
4550 tx_ring
->next_to_use
= i
;
4555 #define E1000_MAX_PER_TXD 8192
4556 #define E1000_MAX_TXD_PWR 12
4558 static int e1000_tx_map(struct e1000_adapter
*adapter
,
4559 struct sk_buff
*skb
, unsigned int first
,
4560 unsigned int max_per_txd
, unsigned int nr_frags
,
4563 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4564 struct pci_dev
*pdev
= adapter
->pdev
;
4565 struct e1000_buffer
*buffer_info
;
4566 unsigned int len
= skb_headlen(skb
);
4567 unsigned int offset
= 0, size
, count
= 0, i
;
4568 unsigned int f
, bytecount
, segs
;
4570 i
= tx_ring
->next_to_use
;
4573 buffer_info
= &tx_ring
->buffer_info
[i
];
4574 size
= min(len
, max_per_txd
);
4576 buffer_info
->length
= size
;
4577 buffer_info
->time_stamp
= jiffies
;
4578 buffer_info
->next_to_watch
= i
;
4579 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4581 size
, DMA_TO_DEVICE
);
4582 buffer_info
->mapped_as_page
= false;
4583 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4592 if (i
== tx_ring
->count
)
4597 for (f
= 0; f
< nr_frags
; f
++) {
4598 struct skb_frag_struct
*frag
;
4600 frag
= &skb_shinfo(skb
)->frags
[f
];
4602 offset
= frag
->page_offset
;
4606 if (i
== tx_ring
->count
)
4609 buffer_info
= &tx_ring
->buffer_info
[i
];
4610 size
= min(len
, max_per_txd
);
4612 buffer_info
->length
= size
;
4613 buffer_info
->time_stamp
= jiffies
;
4614 buffer_info
->next_to_watch
= i
;
4615 buffer_info
->dma
= dma_map_page(&pdev
->dev
, frag
->page
,
4618 buffer_info
->mapped_as_page
= true;
4619 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4628 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
4629 /* multiply data chunks by size of headers */
4630 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
4632 tx_ring
->buffer_info
[i
].skb
= skb
;
4633 tx_ring
->buffer_info
[i
].segs
= segs
;
4634 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
4635 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
4640 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
4641 buffer_info
->dma
= 0;
4647 i
+= tx_ring
->count
;
4649 buffer_info
= &tx_ring
->buffer_info
[i
];
4650 e1000_put_txbuf(adapter
, buffer_info
);
4656 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
4657 int tx_flags
, int count
)
4659 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4660 struct e1000_tx_desc
*tx_desc
= NULL
;
4661 struct e1000_buffer
*buffer_info
;
4662 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
4665 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
4666 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
4668 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4670 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
4671 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
4674 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
4675 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
4676 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4679 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
4680 txd_lower
|= E1000_TXD_CMD_VLE
;
4681 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
4684 i
= tx_ring
->next_to_use
;
4687 buffer_info
= &tx_ring
->buffer_info
[i
];
4688 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4689 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4690 tx_desc
->lower
.data
=
4691 cpu_to_le32(txd_lower
| buffer_info
->length
);
4692 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4695 if (i
== tx_ring
->count
)
4697 } while (--count
> 0);
4699 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4702 * Force memory writes to complete before letting h/w
4703 * know there are new descriptors to fetch. (Only
4704 * applicable for weak-ordered memory model archs,
4709 tx_ring
->next_to_use
= i
;
4710 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4712 * we need this if more than one processor can write to our tail
4713 * at a time, it synchronizes IO on IA64/Altix systems
4718 #define MINIMUM_DHCP_PACKET_SIZE 282
4719 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4720 struct sk_buff
*skb
)
4722 struct e1000_hw
*hw
= &adapter
->hw
;
4725 if (vlan_tx_tag_present(skb
)) {
4726 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
4727 (adapter
->hw
.mng_cookie
.status
&
4728 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4732 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4735 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4739 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4742 if (ip
->protocol
!= IPPROTO_UDP
)
4745 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4746 if (ntohs(udp
->dest
) != 67)
4749 offset
= (u8
*)udp
+ 8 - skb
->data
;
4750 length
= skb
->len
- offset
;
4751 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4757 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4759 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4761 netif_stop_queue(netdev
);
4763 * Herbert's original patch had:
4764 * smp_mb__after_netif_stop_queue();
4765 * but since that doesn't exist yet, just open code it.
4770 * We need to check again in a case another CPU has just
4771 * made room available.
4773 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4777 netif_start_queue(netdev
);
4778 ++adapter
->restart_queue
;
4782 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4784 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4786 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4788 return __e1000_maybe_stop_tx(netdev
, size
);
4791 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4792 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4793 struct net_device
*netdev
)
4795 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4796 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4798 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4799 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4800 unsigned int tx_flags
= 0;
4801 unsigned int len
= skb_headlen(skb
);
4802 unsigned int nr_frags
;
4808 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4809 dev_kfree_skb_any(skb
);
4810 return NETDEV_TX_OK
;
4813 if (skb
->len
<= 0) {
4814 dev_kfree_skb_any(skb
);
4815 return NETDEV_TX_OK
;
4818 mss
= skb_shinfo(skb
)->gso_size
;
4820 * The controller does a simple calculation to
4821 * make sure there is enough room in the FIFO before
4822 * initiating the DMA for each buffer. The calc is:
4823 * 4 = ceil(buffer len/mss). To make sure we don't
4824 * overrun the FIFO, adjust the max buffer len if mss
4829 max_per_txd
= min(mss
<< 2, max_per_txd
);
4830 max_txd_pwr
= fls(max_per_txd
) - 1;
4833 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4834 * points to just header, pull a few bytes of payload from
4835 * frags into skb->data
4837 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4839 * we do this workaround for ES2LAN, but it is un-necessary,
4840 * avoiding it could save a lot of cycles
4842 if (skb
->data_len
&& (hdr_len
== len
)) {
4843 unsigned int pull_size
;
4845 pull_size
= min((unsigned int)4, skb
->data_len
);
4846 if (!__pskb_pull_tail(skb
, pull_size
)) {
4847 e_err("__pskb_pull_tail failed.\n");
4848 dev_kfree_skb_any(skb
);
4849 return NETDEV_TX_OK
;
4851 len
= skb_headlen(skb
);
4855 /* reserve a descriptor for the offload context */
4856 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4860 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4862 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4863 for (f
= 0; f
< nr_frags
; f
++)
4864 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
4867 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4868 e1000_transfer_dhcp_info(adapter
, skb
);
4871 * need: count + 2 desc gap to keep tail from touching
4872 * head, otherwise try next time
4874 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4875 return NETDEV_TX_BUSY
;
4877 if (vlan_tx_tag_present(skb
)) {
4878 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4879 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4882 first
= tx_ring
->next_to_use
;
4884 tso
= e1000_tso(adapter
, skb
);
4886 dev_kfree_skb_any(skb
);
4887 return NETDEV_TX_OK
;
4891 tx_flags
|= E1000_TX_FLAGS_TSO
;
4892 else if (e1000_tx_csum(adapter
, skb
))
4893 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4896 * Old method was to assume IPv4 packet by default if TSO was enabled.
4897 * 82571 hardware supports TSO capabilities for IPv6 as well...
4898 * no longer assume, we must.
4900 if (skb
->protocol
== htons(ETH_P_IP
))
4901 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4903 /* if count is 0 then mapping error has occurred */
4904 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4906 e1000_tx_queue(adapter
, tx_flags
, count
);
4907 /* Make sure there is space in the ring for the next send. */
4908 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4911 dev_kfree_skb_any(skb
);
4912 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4913 tx_ring
->next_to_use
= first
;
4916 return NETDEV_TX_OK
;
4920 * e1000_tx_timeout - Respond to a Tx Hang
4921 * @netdev: network interface device structure
4923 static void e1000_tx_timeout(struct net_device
*netdev
)
4925 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4927 /* Do the reset outside of interrupt context */
4928 adapter
->tx_timeout_count
++;
4929 schedule_work(&adapter
->reset_task
);
4932 static void e1000_reset_task(struct work_struct
*work
)
4934 struct e1000_adapter
*adapter
;
4935 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
4937 /* don't run the task if already down */
4938 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4941 if (!((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4942 (adapter
->flags
& FLAG_RX_RESTART_NOW
))) {
4943 e1000e_dump(adapter
);
4944 e_err("Reset adapter\n");
4946 e1000e_reinit_locked(adapter
);
4950 * e1000_get_stats64 - Get System Network Statistics
4951 * @netdev: network interface device structure
4952 * @stats: rtnl_link_stats64 pointer
4954 * Returns the address of the device statistics structure.
4956 struct rtnl_link_stats64
*e1000e_get_stats64(struct net_device
*netdev
,
4957 struct rtnl_link_stats64
*stats
)
4959 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4961 memset(stats
, 0, sizeof(struct rtnl_link_stats64
));
4962 spin_lock(&adapter
->stats64_lock
);
4963 e1000e_update_stats(adapter
);
4964 /* Fill out the OS statistics structure */
4965 stats
->rx_bytes
= adapter
->stats
.gorc
;
4966 stats
->rx_packets
= adapter
->stats
.gprc
;
4967 stats
->tx_bytes
= adapter
->stats
.gotc
;
4968 stats
->tx_packets
= adapter
->stats
.gptc
;
4969 stats
->multicast
= adapter
->stats
.mprc
;
4970 stats
->collisions
= adapter
->stats
.colc
;
4975 * RLEC on some newer hardware can be incorrect so build
4976 * our own version based on RUC and ROC
4978 stats
->rx_errors
= adapter
->stats
.rxerrc
+
4979 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4980 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4981 adapter
->stats
.cexterr
;
4982 stats
->rx_length_errors
= adapter
->stats
.ruc
+
4984 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
4985 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
4986 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
4989 stats
->tx_errors
= adapter
->stats
.ecol
+
4990 adapter
->stats
.latecol
;
4991 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
4992 stats
->tx_window_errors
= adapter
->stats
.latecol
;
4993 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
4995 /* Tx Dropped needs to be maintained elsewhere */
4997 spin_unlock(&adapter
->stats64_lock
);
5002 * e1000_change_mtu - Change the Maximum Transfer Unit
5003 * @netdev: network interface device structure
5004 * @new_mtu: new value for maximum frame size
5006 * Returns 0 on success, negative on failure
5008 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
5010 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5011 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
5013 /* Jumbo frame support */
5014 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
5015 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
5016 e_err("Jumbo Frames not supported.\n");
5020 /* Supported frame sizes */
5021 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
5022 (max_frame
> adapter
->max_hw_frame_size
)) {
5023 e_err("Unsupported MTU setting\n");
5027 /* Jumbo frame workaround on 82579 requires CRC be stripped */
5028 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
5029 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5030 (new_mtu
> ETH_DATA_LEN
)) {
5031 e_err("Jumbo Frames not supported on 82579 when CRC "
5032 "stripping is disabled.\n");
5036 /* 82573 Errata 17 */
5037 if (((adapter
->hw
.mac
.type
== e1000_82573
) ||
5038 (adapter
->hw
.mac
.type
== e1000_82574
)) &&
5039 (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
5040 adapter
->flags2
|= FLAG2_DISABLE_ASPM_L1
;
5041 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L1
);
5044 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5045 usleep_range(1000, 2000);
5046 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5047 adapter
->max_frame_size
= max_frame
;
5048 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5049 netdev
->mtu
= new_mtu
;
5050 if (netif_running(netdev
))
5051 e1000e_down(adapter
);
5054 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5055 * means we reserve 2 more, this pushes us to allocate from the next
5057 * i.e. RXBUFFER_2048 --> size-4096 slab
5058 * However with the new *_jumbo_rx* routines, jumbo receives will use
5062 if (max_frame
<= 2048)
5063 adapter
->rx_buffer_len
= 2048;
5065 adapter
->rx_buffer_len
= 4096;
5067 /* adjust allocation if LPE protects us, and we aren't using SBP */
5068 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
5069 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
5070 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
5073 if (netif_running(netdev
))
5076 e1000e_reset(adapter
);
5078 clear_bit(__E1000_RESETTING
, &adapter
->state
);
5083 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
5086 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5087 struct mii_ioctl_data
*data
= if_mii(ifr
);
5089 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
5094 data
->phy_id
= adapter
->hw
.phy
.addr
;
5097 e1000_phy_read_status(adapter
);
5099 switch (data
->reg_num
& 0x1F) {
5101 data
->val_out
= adapter
->phy_regs
.bmcr
;
5104 data
->val_out
= adapter
->phy_regs
.bmsr
;
5107 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
5110 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
5113 data
->val_out
= adapter
->phy_regs
.advertise
;
5116 data
->val_out
= adapter
->phy_regs
.lpa
;
5119 data
->val_out
= adapter
->phy_regs
.expansion
;
5122 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
5125 data
->val_out
= adapter
->phy_regs
.stat1000
;
5128 data
->val_out
= adapter
->phy_regs
.estatus
;
5141 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5147 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
5153 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
5155 struct e1000_hw
*hw
= &adapter
->hw
;
5160 /* copy MAC RARs to PHY RARs */
5161 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
5163 /* copy MAC MTA to PHY MTA */
5164 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
5165 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
5166 e1e_wphy(hw
, BM_MTA(i
), (u16
)(mac_reg
& 0xFFFF));
5167 e1e_wphy(hw
, BM_MTA(i
) + 1, (u16
)((mac_reg
>> 16) & 0xFFFF));
5170 /* configure PHY Rx Control register */
5171 e1e_rphy(&adapter
->hw
, BM_RCTL
, &phy_reg
);
5172 mac_reg
= er32(RCTL
);
5173 if (mac_reg
& E1000_RCTL_UPE
)
5174 phy_reg
|= BM_RCTL_UPE
;
5175 if (mac_reg
& E1000_RCTL_MPE
)
5176 phy_reg
|= BM_RCTL_MPE
;
5177 phy_reg
&= ~(BM_RCTL_MO_MASK
);
5178 if (mac_reg
& E1000_RCTL_MO_3
)
5179 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
5180 << BM_RCTL_MO_SHIFT
);
5181 if (mac_reg
& E1000_RCTL_BAM
)
5182 phy_reg
|= BM_RCTL_BAM
;
5183 if (mac_reg
& E1000_RCTL_PMCF
)
5184 phy_reg
|= BM_RCTL_PMCF
;
5185 mac_reg
= er32(CTRL
);
5186 if (mac_reg
& E1000_CTRL_RFCE
)
5187 phy_reg
|= BM_RCTL_RFCE
;
5188 e1e_wphy(&adapter
->hw
, BM_RCTL
, phy_reg
);
5190 /* enable PHY wakeup in MAC register */
5192 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
5194 /* configure and enable PHY wakeup in PHY registers */
5195 e1e_wphy(&adapter
->hw
, BM_WUFC
, wufc
);
5196 e1e_wphy(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
5198 /* activate PHY wakeup */
5199 retval
= hw
->phy
.ops
.acquire(hw
);
5201 e_err("Could not acquire PHY\n");
5204 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
5205 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
5206 retval
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, &phy_reg
);
5208 e_err("Could not read PHY page 769\n");
5211 phy_reg
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
5212 retval
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
5214 e_err("Could not set PHY Host Wakeup bit\n");
5216 hw
->phy
.ops
.release(hw
);
5221 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
5224 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5225 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5226 struct e1000_hw
*hw
= &adapter
->hw
;
5227 u32 ctrl
, ctrl_ext
, rctl
, status
;
5228 /* Runtime suspend should only enable wakeup for link changes */
5229 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
5232 netif_device_detach(netdev
);
5234 if (netif_running(netdev
)) {
5235 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
5236 e1000e_down(adapter
);
5237 e1000_free_irq(adapter
);
5239 e1000e_reset_interrupt_capability(adapter
);
5241 retval
= pci_save_state(pdev
);
5245 status
= er32(STATUS
);
5246 if (status
& E1000_STATUS_LU
)
5247 wufc
&= ~E1000_WUFC_LNKC
;
5250 e1000_setup_rctl(adapter
);
5251 e1000_set_multi(netdev
);
5253 /* turn on all-multi mode if wake on multicast is enabled */
5254 if (wufc
& E1000_WUFC_MC
) {
5256 rctl
|= E1000_RCTL_MPE
;
5261 /* advertise wake from D3Cold */
5262 #define E1000_CTRL_ADVD3WUC 0x00100000
5263 /* phy power management enable */
5264 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5265 ctrl
|= E1000_CTRL_ADVD3WUC
;
5266 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
5267 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
5270 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
5271 adapter
->hw
.phy
.media_type
==
5272 e1000_media_type_internal_serdes
) {
5273 /* keep the laser running in D3 */
5274 ctrl_ext
= er32(CTRL_EXT
);
5275 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
5276 ew32(CTRL_EXT
, ctrl_ext
);
5279 if (adapter
->flags
& FLAG_IS_ICH
)
5280 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
5282 /* Allow time for pending master requests to run */
5283 e1000e_disable_pcie_master(&adapter
->hw
);
5285 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5286 /* enable wakeup by the PHY */
5287 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
5291 /* enable wakeup by the MAC */
5293 ew32(WUC
, E1000_WUC_PME_EN
);
5300 *enable_wake
= !!wufc
;
5302 /* make sure adapter isn't asleep if manageability is enabled */
5303 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
5304 (hw
->mac
.ops
.check_mng_mode(hw
)))
5305 *enable_wake
= true;
5307 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
5308 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
5311 * Release control of h/w to f/w. If f/w is AMT enabled, this
5312 * would have already happened in close and is redundant.
5314 e1000e_release_hw_control(adapter
);
5316 pci_disable_device(pdev
);
5321 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
5323 if (sleep
&& wake
) {
5324 pci_prepare_to_sleep(pdev
);
5328 pci_wake_from_d3(pdev
, wake
);
5329 pci_set_power_state(pdev
, PCI_D3hot
);
5332 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
5335 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5336 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5339 * The pci-e switch on some quad port adapters will report a
5340 * correctable error when the MAC transitions from D0 to D3. To
5341 * prevent this we need to mask off the correctable errors on the
5342 * downstream port of the pci-e switch.
5344 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
5345 struct pci_dev
*us_dev
= pdev
->bus
->self
;
5346 int pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
5349 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
5350 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
5351 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
5353 e1000_power_off(pdev
, sleep
, wake
);
5355 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
5357 e1000_power_off(pdev
, sleep
, wake
);
5361 #ifdef CONFIG_PCIEASPM
5362 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5364 pci_disable_link_state_locked(pdev
, state
);
5367 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5373 * Both device and parent should have the same ASPM setting.
5374 * Disable ASPM in downstream component first and then upstream.
5376 pos
= pci_pcie_cap(pdev
);
5377 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5379 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5381 if (!pdev
->bus
->self
)
5384 pos
= pci_pcie_cap(pdev
->bus
->self
);
5385 pci_read_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5387 pci_write_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5390 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5392 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
5393 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
5394 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
5396 __e1000e_disable_aspm(pdev
, state
);
5400 static bool e1000e_pm_ready(struct e1000_adapter
*adapter
)
5402 return !!adapter
->tx_ring
->buffer_info
;
5405 static int __e1000_resume(struct pci_dev
*pdev
)
5407 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5408 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5409 struct e1000_hw
*hw
= &adapter
->hw
;
5410 u16 aspm_disable_flag
= 0;
5413 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5414 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5415 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5416 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5417 if (aspm_disable_flag
)
5418 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5420 pci_set_power_state(pdev
, PCI_D0
);
5421 pci_restore_state(pdev
);
5422 pci_save_state(pdev
);
5424 e1000e_set_interrupt_capability(adapter
);
5425 if (netif_running(netdev
)) {
5426 err
= e1000_request_irq(adapter
);
5431 e1000e_power_up_phy(adapter
);
5433 /* report the system wakeup cause from S3/S4 */
5434 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5437 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
5439 e_info("PHY Wakeup cause - %s\n",
5440 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
5441 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
5442 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
5443 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
5444 phy_data
& E1000_WUS_LNKC
? "Link Status "
5445 " Change" : "other");
5447 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
5449 u32 wus
= er32(WUS
);
5451 e_info("MAC Wakeup cause - %s\n",
5452 wus
& E1000_WUS_EX
? "Unicast Packet" :
5453 wus
& E1000_WUS_MC
? "Multicast Packet" :
5454 wus
& E1000_WUS_BC
? "Broadcast Packet" :
5455 wus
& E1000_WUS_MAG
? "Magic Packet" :
5456 wus
& E1000_WUS_LNKC
? "Link Status Change" :
5462 e1000e_reset(adapter
);
5464 e1000_init_manageability_pt(adapter
);
5466 if (netif_running(netdev
))
5469 netif_device_attach(netdev
);
5472 * If the controller has AMT, do not set DRV_LOAD until the interface
5473 * is up. For all other cases, let the f/w know that the h/w is now
5474 * under the control of the driver.
5476 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5477 e1000e_get_hw_control(adapter
);
5482 #ifdef CONFIG_PM_SLEEP
5483 static int e1000_suspend(struct device
*dev
)
5485 struct pci_dev
*pdev
= to_pci_dev(dev
);
5489 retval
= __e1000_shutdown(pdev
, &wake
, false);
5491 e1000_complete_shutdown(pdev
, true, wake
);
5496 static int e1000_resume(struct device
*dev
)
5498 struct pci_dev
*pdev
= to_pci_dev(dev
);
5499 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5500 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5502 if (e1000e_pm_ready(adapter
))
5503 adapter
->idle_check
= true;
5505 return __e1000_resume(pdev
);
5507 #endif /* CONFIG_PM_SLEEP */
5509 #ifdef CONFIG_PM_RUNTIME
5510 static int e1000_runtime_suspend(struct device
*dev
)
5512 struct pci_dev
*pdev
= to_pci_dev(dev
);
5513 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5514 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5516 if (e1000e_pm_ready(adapter
)) {
5519 __e1000_shutdown(pdev
, &wake
, true);
5525 static int e1000_idle(struct device
*dev
)
5527 struct pci_dev
*pdev
= to_pci_dev(dev
);
5528 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5529 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5531 if (!e1000e_pm_ready(adapter
))
5534 if (adapter
->idle_check
) {
5535 adapter
->idle_check
= false;
5536 if (!e1000e_has_link(adapter
))
5537 pm_schedule_suspend(dev
, MSEC_PER_SEC
);
5543 static int e1000_runtime_resume(struct device
*dev
)
5545 struct pci_dev
*pdev
= to_pci_dev(dev
);
5546 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5547 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5549 if (!e1000e_pm_ready(adapter
))
5552 adapter
->idle_check
= !dev
->power
.runtime_auto
;
5553 return __e1000_resume(pdev
);
5555 #endif /* CONFIG_PM_RUNTIME */
5556 #endif /* CONFIG_PM */
5558 static void e1000_shutdown(struct pci_dev
*pdev
)
5562 __e1000_shutdown(pdev
, &wake
, false);
5564 if (system_state
== SYSTEM_POWER_OFF
)
5565 e1000_complete_shutdown(pdev
, false, wake
);
5568 #ifdef CONFIG_NET_POLL_CONTROLLER
5570 static irqreturn_t
e1000_intr_msix(int irq
, void *data
)
5572 struct net_device
*netdev
= data
;
5573 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5575 if (adapter
->msix_entries
) {
5576 int vector
, msix_irq
;
5579 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5580 disable_irq(msix_irq
);
5581 e1000_intr_msix_rx(msix_irq
, netdev
);
5582 enable_irq(msix_irq
);
5585 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5586 disable_irq(msix_irq
);
5587 e1000_intr_msix_tx(msix_irq
, netdev
);
5588 enable_irq(msix_irq
);
5591 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5592 disable_irq(msix_irq
);
5593 e1000_msix_other(msix_irq
, netdev
);
5594 enable_irq(msix_irq
);
5601 * Polling 'interrupt' - used by things like netconsole to send skbs
5602 * without having to re-enable interrupts. It's not called while
5603 * the interrupt routine is executing.
5605 static void e1000_netpoll(struct net_device
*netdev
)
5607 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5609 switch (adapter
->int_mode
) {
5610 case E1000E_INT_MODE_MSIX
:
5611 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
5613 case E1000E_INT_MODE_MSI
:
5614 disable_irq(adapter
->pdev
->irq
);
5615 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
5616 enable_irq(adapter
->pdev
->irq
);
5618 default: /* E1000E_INT_MODE_LEGACY */
5619 disable_irq(adapter
->pdev
->irq
);
5620 e1000_intr(adapter
->pdev
->irq
, netdev
);
5621 enable_irq(adapter
->pdev
->irq
);
5628 * e1000_io_error_detected - called when PCI error is detected
5629 * @pdev: Pointer to PCI device
5630 * @state: The current pci connection state
5632 * This function is called after a PCI bus error affecting
5633 * this device has been detected.
5635 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5636 pci_channel_state_t state
)
5638 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5639 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5641 netif_device_detach(netdev
);
5643 if (state
== pci_channel_io_perm_failure
)
5644 return PCI_ERS_RESULT_DISCONNECT
;
5646 if (netif_running(netdev
))
5647 e1000e_down(adapter
);
5648 pci_disable_device(pdev
);
5650 /* Request a slot slot reset. */
5651 return PCI_ERS_RESULT_NEED_RESET
;
5655 * e1000_io_slot_reset - called after the pci bus has been reset.
5656 * @pdev: Pointer to PCI device
5658 * Restart the card from scratch, as if from a cold-boot. Implementation
5659 * resembles the first-half of the e1000_resume routine.
5661 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5663 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5664 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5665 struct e1000_hw
*hw
= &adapter
->hw
;
5666 u16 aspm_disable_flag
= 0;
5668 pci_ers_result_t result
;
5670 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5671 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5672 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5673 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5674 if (aspm_disable_flag
)
5675 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5677 err
= pci_enable_device_mem(pdev
);
5680 "Cannot re-enable PCI device after reset.\n");
5681 result
= PCI_ERS_RESULT_DISCONNECT
;
5683 pci_set_master(pdev
);
5684 pdev
->state_saved
= true;
5685 pci_restore_state(pdev
);
5687 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5688 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5690 e1000e_reset(adapter
);
5692 result
= PCI_ERS_RESULT_RECOVERED
;
5695 pci_cleanup_aer_uncorrect_error_status(pdev
);
5701 * e1000_io_resume - called when traffic can start flowing again.
5702 * @pdev: Pointer to PCI device
5704 * This callback is called when the error recovery driver tells us that
5705 * its OK to resume normal operation. Implementation resembles the
5706 * second-half of the e1000_resume routine.
5708 static void e1000_io_resume(struct pci_dev
*pdev
)
5710 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5711 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5713 e1000_init_manageability_pt(adapter
);
5715 if (netif_running(netdev
)) {
5716 if (e1000e_up(adapter
)) {
5718 "can't bring device back up after reset\n");
5723 netif_device_attach(netdev
);
5726 * If the controller has AMT, do not set DRV_LOAD until the interface
5727 * is up. For all other cases, let the f/w know that the h/w is now
5728 * under the control of the driver.
5730 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5731 e1000e_get_hw_control(adapter
);
5735 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
5737 struct e1000_hw
*hw
= &adapter
->hw
;
5738 struct net_device
*netdev
= adapter
->netdev
;
5740 u8 pba_str
[E1000_PBANUM_LENGTH
];
5742 /* print bus type/speed/width info */
5743 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5745 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
5749 e_info("Intel(R) PRO/%s Network Connection\n",
5750 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
5751 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
5752 E1000_PBANUM_LENGTH
);
5754 strncpy((char *)pba_str
, "Unknown", sizeof(pba_str
) - 1);
5755 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5756 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
5759 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
5761 struct e1000_hw
*hw
= &adapter
->hw
;
5765 if (hw
->mac
.type
!= e1000_82573
)
5768 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
5769 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
5770 /* Deep Smart Power Down (DSPD) */
5771 dev_warn(&adapter
->pdev
->dev
,
5772 "Warning: detected DSPD enabled in EEPROM\n");
5776 static const struct net_device_ops e1000e_netdev_ops
= {
5777 .ndo_open
= e1000_open
,
5778 .ndo_stop
= e1000_close
,
5779 .ndo_start_xmit
= e1000_xmit_frame
,
5780 .ndo_get_stats64
= e1000e_get_stats64
,
5781 .ndo_set_multicast_list
= e1000_set_multi
,
5782 .ndo_set_mac_address
= e1000_set_mac
,
5783 .ndo_change_mtu
= e1000_change_mtu
,
5784 .ndo_do_ioctl
= e1000_ioctl
,
5785 .ndo_tx_timeout
= e1000_tx_timeout
,
5786 .ndo_validate_addr
= eth_validate_addr
,
5788 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
5789 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
5790 #ifdef CONFIG_NET_POLL_CONTROLLER
5791 .ndo_poll_controller
= e1000_netpoll
,
5796 * e1000_probe - Device Initialization Routine
5797 * @pdev: PCI device information struct
5798 * @ent: entry in e1000_pci_tbl
5800 * Returns 0 on success, negative on failure
5802 * e1000_probe initializes an adapter identified by a pci_dev structure.
5803 * The OS initialization, configuring of the adapter private structure,
5804 * and a hardware reset occur.
5806 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
5807 const struct pci_device_id
*ent
)
5809 struct net_device
*netdev
;
5810 struct e1000_adapter
*adapter
;
5811 struct e1000_hw
*hw
;
5812 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
5813 resource_size_t mmio_start
, mmio_len
;
5814 resource_size_t flash_start
, flash_len
;
5816 static int cards_found
;
5817 u16 aspm_disable_flag
= 0;
5818 int i
, err
, pci_using_dac
;
5819 u16 eeprom_data
= 0;
5820 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
5822 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5823 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5824 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5825 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5826 if (aspm_disable_flag
)
5827 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5829 err
= pci_enable_device_mem(pdev
);
5834 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5836 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5840 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
5842 err
= dma_set_coherent_mask(&pdev
->dev
,
5845 dev_err(&pdev
->dev
, "No usable DMA "
5846 "configuration, aborting\n");
5852 err
= pci_request_selected_regions_exclusive(pdev
,
5853 pci_select_bars(pdev
, IORESOURCE_MEM
),
5854 e1000e_driver_name
);
5858 /* AER (Advanced Error Reporting) hooks */
5859 pci_enable_pcie_error_reporting(pdev
);
5861 pci_set_master(pdev
);
5862 /* PCI config space info */
5863 err
= pci_save_state(pdev
);
5865 goto err_alloc_etherdev
;
5868 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5870 goto err_alloc_etherdev
;
5872 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5874 netdev
->irq
= pdev
->irq
;
5876 pci_set_drvdata(pdev
, netdev
);
5877 adapter
= netdev_priv(netdev
);
5879 adapter
->netdev
= netdev
;
5880 adapter
->pdev
= pdev
;
5882 adapter
->pba
= ei
->pba
;
5883 adapter
->flags
= ei
->flags
;
5884 adapter
->flags2
= ei
->flags2
;
5885 adapter
->hw
.adapter
= adapter
;
5886 adapter
->hw
.mac
.type
= ei
->mac
;
5887 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5888 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5890 mmio_start
= pci_resource_start(pdev
, 0);
5891 mmio_len
= pci_resource_len(pdev
, 0);
5894 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
5895 if (!adapter
->hw
.hw_addr
)
5898 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
5899 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
5900 flash_start
= pci_resource_start(pdev
, 1);
5901 flash_len
= pci_resource_len(pdev
, 1);
5902 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
5903 if (!adapter
->hw
.flash_address
)
5907 /* construct the net_device struct */
5908 netdev
->netdev_ops
= &e1000e_netdev_ops
;
5909 e1000e_set_ethtool_ops(netdev
);
5910 netdev
->watchdog_timeo
= 5 * HZ
;
5911 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
5912 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
5914 netdev
->mem_start
= mmio_start
;
5915 netdev
->mem_end
= mmio_start
+ mmio_len
;
5917 adapter
->bd_number
= cards_found
++;
5919 e1000e_check_options(adapter
);
5921 /* setup adapter struct */
5922 err
= e1000_sw_init(adapter
);
5926 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
5927 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
5928 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
5930 err
= ei
->get_variants(adapter
);
5934 if ((adapter
->flags
& FLAG_IS_ICH
) &&
5935 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
5936 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
5938 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
5940 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
5942 /* Copper options */
5943 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
5944 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
5945 adapter
->hw
.phy
.disable_polarity_correction
= 0;
5946 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
5949 if (e1000_check_reset_block(&adapter
->hw
))
5950 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5952 netdev
->features
= NETIF_F_SG
|
5954 NETIF_F_HW_VLAN_TX
|
5957 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
5958 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
5960 netdev
->features
|= NETIF_F_TSO
;
5961 netdev
->features
|= NETIF_F_TSO6
;
5963 netdev
->vlan_features
|= NETIF_F_TSO
;
5964 netdev
->vlan_features
|= NETIF_F_TSO6
;
5965 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
5966 netdev
->vlan_features
|= NETIF_F_SG
;
5968 if (pci_using_dac
) {
5969 netdev
->features
|= NETIF_F_HIGHDMA
;
5970 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
5973 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
5974 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
5977 * before reading the NVM, reset the controller to
5978 * put the device in a known good starting state
5980 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
5983 * systems with ASPM and others may see the checksum fail on the first
5984 * attempt. Let's give it a few tries
5987 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
5990 e_err("The NVM Checksum Is Not Valid\n");
5996 e1000_eeprom_checks(adapter
);
5998 /* copy the MAC address */
5999 if (e1000e_read_mac_addr(&adapter
->hw
))
6000 e_err("NVM Read Error while reading MAC address\n");
6002 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
6003 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
6005 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
6006 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
6011 init_timer(&adapter
->watchdog_timer
);
6012 adapter
->watchdog_timer
.function
= e1000_watchdog
;
6013 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
6015 init_timer(&adapter
->phy_info_timer
);
6016 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
6017 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
6019 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
6020 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
6021 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
6022 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
6023 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
6025 /* Initialize link parameters. User can change them with ethtool */
6026 adapter
->hw
.mac
.autoneg
= 1;
6027 adapter
->fc_autoneg
= 1;
6028 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
6029 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
6030 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
6032 /* ring size defaults */
6033 adapter
->rx_ring
->count
= 256;
6034 adapter
->tx_ring
->count
= 256;
6037 * Initial Wake on LAN setting - If APM wake is enabled in
6038 * the EEPROM, enable the ACPI Magic Packet filter
6040 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
6041 /* APME bit in EEPROM is mapped to WUC.APME */
6042 eeprom_data
= er32(WUC
);
6043 eeprom_apme_mask
= E1000_WUC_APME
;
6044 if ((hw
->mac
.type
> e1000_ich10lan
) &&
6045 (eeprom_data
& E1000_WUC_PHY_WAKE
))
6046 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
6047 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
6048 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
6049 (adapter
->hw
.bus
.func
== 1))
6050 e1000_read_nvm(&adapter
->hw
,
6051 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
6053 e1000_read_nvm(&adapter
->hw
,
6054 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
6057 /* fetch WoL from EEPROM */
6058 if (eeprom_data
& eeprom_apme_mask
)
6059 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
6062 * now that we have the eeprom settings, apply the special cases
6063 * where the eeprom may be wrong or the board simply won't support
6064 * wake on lan on a particular port
6066 if (!(adapter
->flags
& FLAG_HAS_WOL
))
6067 adapter
->eeprom_wol
= 0;
6069 /* initialize the wol settings based on the eeprom settings */
6070 adapter
->wol
= adapter
->eeprom_wol
;
6071 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
6073 /* save off EEPROM version number */
6074 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
6076 /* reset the hardware with the new settings */
6077 e1000e_reset(adapter
);
6080 * If the controller has AMT, do not set DRV_LOAD until the interface
6081 * is up. For all other cases, let the f/w know that the h/w is now
6082 * under the control of the driver.
6084 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6085 e1000e_get_hw_control(adapter
);
6087 strncpy(netdev
->name
, "eth%d", sizeof(netdev
->name
) - 1);
6088 err
= register_netdev(netdev
);
6092 /* carrier off reporting is important to ethtool even BEFORE open */
6093 netif_carrier_off(netdev
);
6095 e1000_print_device_info(adapter
);
6097 if (pci_dev_run_wake(pdev
))
6098 pm_runtime_put_noidle(&pdev
->dev
);
6103 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6104 e1000e_release_hw_control(adapter
);
6106 if (!e1000_check_reset_block(&adapter
->hw
))
6107 e1000_phy_hw_reset(&adapter
->hw
);
6109 kfree(adapter
->tx_ring
);
6110 kfree(adapter
->rx_ring
);
6112 if (adapter
->hw
.flash_address
)
6113 iounmap(adapter
->hw
.flash_address
);
6114 e1000e_reset_interrupt_capability(adapter
);
6116 iounmap(adapter
->hw
.hw_addr
);
6118 free_netdev(netdev
);
6120 pci_release_selected_regions(pdev
,
6121 pci_select_bars(pdev
, IORESOURCE_MEM
));
6124 pci_disable_device(pdev
);
6129 * e1000_remove - Device Removal Routine
6130 * @pdev: PCI device information struct
6132 * e1000_remove is called by the PCI subsystem to alert the driver
6133 * that it should release a PCI device. The could be caused by a
6134 * Hot-Plug event, or because the driver is going to be removed from
6137 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
6139 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6140 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6141 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
6144 * The timers may be rescheduled, so explicitly disable them
6145 * from being rescheduled.
6148 set_bit(__E1000_DOWN
, &adapter
->state
);
6149 del_timer_sync(&adapter
->watchdog_timer
);
6150 del_timer_sync(&adapter
->phy_info_timer
);
6152 cancel_work_sync(&adapter
->reset_task
);
6153 cancel_work_sync(&adapter
->watchdog_task
);
6154 cancel_work_sync(&adapter
->downshift_task
);
6155 cancel_work_sync(&adapter
->update_phy_task
);
6156 cancel_work_sync(&adapter
->print_hang_task
);
6158 if (!(netdev
->flags
& IFF_UP
))
6159 e1000_power_down_phy(adapter
);
6161 /* Don't lie to e1000_close() down the road. */
6163 clear_bit(__E1000_DOWN
, &adapter
->state
);
6164 unregister_netdev(netdev
);
6166 if (pci_dev_run_wake(pdev
))
6167 pm_runtime_get_noresume(&pdev
->dev
);
6170 * Release control of h/w to f/w. If f/w is AMT enabled, this
6171 * would have already happened in close and is redundant.
6173 e1000e_release_hw_control(adapter
);
6175 e1000e_reset_interrupt_capability(adapter
);
6176 kfree(adapter
->tx_ring
);
6177 kfree(adapter
->rx_ring
);
6179 iounmap(adapter
->hw
.hw_addr
);
6180 if (adapter
->hw
.flash_address
)
6181 iounmap(adapter
->hw
.flash_address
);
6182 pci_release_selected_regions(pdev
,
6183 pci_select_bars(pdev
, IORESOURCE_MEM
));
6185 free_netdev(netdev
);
6188 pci_disable_pcie_error_reporting(pdev
);
6190 pci_disable_device(pdev
);
6193 /* PCI Error Recovery (ERS) */
6194 static struct pci_error_handlers e1000_err_handler
= {
6195 .error_detected
= e1000_io_error_detected
,
6196 .slot_reset
= e1000_io_slot_reset
,
6197 .resume
= e1000_io_resume
,
6200 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
6201 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
6202 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
6203 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
6204 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
6205 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
6206 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
6207 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
6208 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
6209 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
6211 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
6212 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
6213 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
6214 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
6216 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
6217 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
6218 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
6220 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
6221 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
6222 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
6224 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
6225 board_80003es2lan
},
6226 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
6227 board_80003es2lan
},
6228 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
6229 board_80003es2lan
},
6230 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
6231 board_80003es2lan
},
6233 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
6234 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
6235 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
6236 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
6237 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
6238 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
6239 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
6240 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
6242 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
6243 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
6244 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
6245 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
6246 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
6247 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
6248 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
6249 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
6250 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
6252 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
6253 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
6254 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
6256 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
6257 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
6258 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
6260 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
6261 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
6262 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
6263 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
6265 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
6266 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
6268 { } /* terminate list */
6270 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
6273 static const struct dev_pm_ops e1000_pm_ops
= {
6274 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend
, e1000_resume
)
6275 SET_RUNTIME_PM_OPS(e1000_runtime_suspend
,
6276 e1000_runtime_resume
, e1000_idle
)
6280 /* PCI Device API Driver */
6281 static struct pci_driver e1000_driver
= {
6282 .name
= e1000e_driver_name
,
6283 .id_table
= e1000_pci_tbl
,
6284 .probe
= e1000_probe
,
6285 .remove
= __devexit_p(e1000_remove
),
6287 .driver
.pm
= &e1000_pm_ops
,
6289 .shutdown
= e1000_shutdown
,
6290 .err_handler
= &e1000_err_handler
6294 * e1000_init_module - Driver Registration Routine
6296 * e1000_init_module is the first routine called when the driver is
6297 * loaded. All it does is register with the PCI subsystem.
6299 static int __init
e1000_init_module(void)
6302 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6303 e1000e_driver_version
);
6304 pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6305 ret
= pci_register_driver(&e1000_driver
);
6309 module_init(e1000_init_module
);
6312 * e1000_exit_module - Driver Exit Cleanup Routine
6314 * e1000_exit_module is called just before the driver is removed
6317 static void __exit
e1000_exit_module(void)
6319 pci_unregister_driver(&e1000_driver
);
6321 module_exit(e1000_exit_module
);
6324 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6325 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6326 MODULE_LICENSE("GPL");
6327 MODULE_VERSION(DRV_VERSION
);