include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / media / video / gspca / ov519.c
blob0800433b209287c45c9f4672a41f20e99b43adfe
1 /**
2 * OV519 driver
4 * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
10 * Original copyright for the ov511 driver is:
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
19 * ov51x-jpeg original copyright is:
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 #define MODULE_NAME "ov519"
41 #include <linux/input.h>
42 #include "gspca.h"
44 /* The jpeg_hdr is used by w996Xcf only */
45 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
46 #define CONEX_CAM
47 #include "jpeg.h"
49 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
50 MODULE_DESCRIPTION("OV519 USB Camera Driver");
51 MODULE_LICENSE("GPL");
53 /* global parameters */
54 static int frame_rate;
56 /* Number of times to retry a failed I2C transaction. Increase this if you
57 * are getting "Failed to read sensor ID..." */
58 static int i2c_detect_tries = 10;
60 /* controls */
61 enum e_ctrl {
62 BRIGHTNESS,
63 CONTRAST,
64 EXPOSURE,
65 COLORS,
66 HFLIP,
67 VFLIP,
68 AUTOBRIGHT,
69 AUTOGAIN,
70 FREQ,
71 NCTRL /* number of controls */
74 /* ov519 device descriptor */
75 struct sd {
76 struct gspca_dev gspca_dev; /* !! must be the first item */
78 struct gspca_ctrl ctrls[NCTRL];
80 u8 packet_nr;
82 char bridge;
83 #define BRIDGE_OV511 0
84 #define BRIDGE_OV511PLUS 1
85 #define BRIDGE_OV518 2
86 #define BRIDGE_OV518PLUS 3
87 #define BRIDGE_OV519 4 /* = ov530 */
88 #define BRIDGE_OVFX2 5
89 #define BRIDGE_W9968CF 6
90 #define BRIDGE_MASK 7
92 char invert_led;
93 #define BRIDGE_INVERT_LED 8
95 char snapshot_pressed;
96 char snapshot_needs_reset;
98 /* Determined by sensor type */
99 u8 sif;
101 u8 quality;
102 #define QUALITY_MIN 50
103 #define QUALITY_MAX 70
104 #define QUALITY_DEF 50
106 u8 stopped; /* Streaming is temporarily paused */
107 u8 first_frame;
109 u8 frame_rate; /* current Framerate */
110 u8 clockdiv; /* clockdiv override */
112 s8 sensor; /* Type of image sensor chip (SEN_*) */
114 u8 sensor_addr;
115 u16 sensor_width;
116 u16 sensor_height;
117 s16 sensor_reg_cache[256];
119 u8 jpeg_hdr[JPEG_HDR_SZ];
121 enum sensors {
122 SEN_OV2610,
123 SEN_OV2610AE,
124 SEN_OV3610,
125 SEN_OV6620,
126 SEN_OV6630,
127 SEN_OV66308AF,
128 SEN_OV7610,
129 SEN_OV7620,
130 SEN_OV7620AE,
131 SEN_OV7640,
132 SEN_OV7648,
133 SEN_OV7660,
134 SEN_OV7670,
135 SEN_OV76BE,
136 SEN_OV8610,
137 SEN_OV9600,
140 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
141 the ov sensors which is already present here. When we have the time we
142 really should move the sensor drivers to v4l2 sub drivers. */
143 #include "w996Xcf.c"
145 /* V4L2 controls supported by the driver */
146 static void setbrightness(struct gspca_dev *gspca_dev);
147 static void setcontrast(struct gspca_dev *gspca_dev);
148 static void setexposure(struct gspca_dev *gspca_dev);
149 static void setcolors(struct gspca_dev *gspca_dev);
150 static void sethvflip(struct gspca_dev *gspca_dev);
151 static void setautobright(struct gspca_dev *gspca_dev);
152 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
153 static void setfreq(struct gspca_dev *gspca_dev);
154 static void setfreq_i(struct sd *sd);
156 static const struct ctrl sd_ctrls[] = {
157 [BRIGHTNESS] = {
159 .id = V4L2_CID_BRIGHTNESS,
160 .type = V4L2_CTRL_TYPE_INTEGER,
161 .name = "Brightness",
162 .minimum = 0,
163 .maximum = 255,
164 .step = 1,
165 .default_value = 127,
167 .set_control = setbrightness,
169 [CONTRAST] = {
171 .id = V4L2_CID_CONTRAST,
172 .type = V4L2_CTRL_TYPE_INTEGER,
173 .name = "Contrast",
174 .minimum = 0,
175 .maximum = 255,
176 .step = 1,
177 .default_value = 127,
179 .set_control = setcontrast,
181 [EXPOSURE] = {
183 .id = V4L2_CID_EXPOSURE,
184 .type = V4L2_CTRL_TYPE_INTEGER,
185 .name = "Exposure",
186 .minimum = 0,
187 .maximum = 255,
188 .step = 1,
189 .default_value = 127,
191 .set_control = setexposure,
193 [COLORS] = {
195 .id = V4L2_CID_SATURATION,
196 .type = V4L2_CTRL_TYPE_INTEGER,
197 .name = "Color",
198 .minimum = 0,
199 .maximum = 255,
200 .step = 1,
201 .default_value = 127,
203 .set_control = setcolors,
205 /* The flip controls work for sensors ov7660 and ov7670 only */
206 [HFLIP] = {
208 .id = V4L2_CID_HFLIP,
209 .type = V4L2_CTRL_TYPE_BOOLEAN,
210 .name = "Mirror",
211 .minimum = 0,
212 .maximum = 1,
213 .step = 1,
214 .default_value = 0,
216 .set_control = sethvflip,
218 [VFLIP] = {
220 .id = V4L2_CID_VFLIP,
221 .type = V4L2_CTRL_TYPE_BOOLEAN,
222 .name = "Vflip",
223 .minimum = 0,
224 .maximum = 1,
225 .step = 1,
226 .default_value = 0,
228 .set_control = sethvflip,
230 [AUTOBRIGHT] = {
232 .id = V4L2_CID_AUTOBRIGHTNESS,
233 .type = V4L2_CTRL_TYPE_BOOLEAN,
234 .name = "Auto Brightness",
235 .minimum = 0,
236 .maximum = 1,
237 .step = 1,
238 .default_value = 1,
240 .set_control = setautobright,
242 [AUTOGAIN] = {
244 .id = V4L2_CID_AUTOGAIN,
245 .type = V4L2_CTRL_TYPE_BOOLEAN,
246 .name = "Auto Gain",
247 .minimum = 0,
248 .maximum = 1,
249 .step = 1,
250 .default_value = 1,
251 .flags = V4L2_CTRL_FLAG_UPDATE
253 .set = sd_setautogain,
255 [FREQ] = {
257 .id = V4L2_CID_POWER_LINE_FREQUENCY,
258 .type = V4L2_CTRL_TYPE_MENU,
259 .name = "Light frequency filter",
260 .minimum = 0,
261 .maximum = 2, /* 0: no flicker, 1: 50Hz, 2:60Hz, 3: auto */
262 .step = 1,
263 .default_value = 0,
265 .set_control = setfreq,
269 /* table of the disabled controls */
270 static const unsigned ctrl_dis[] = {
271 [SEN_OV2610] = ((1 << NCTRL) - 1) /* no control */
272 ^ ((1 << EXPOSURE) /* but exposure */
273 | (1 << AUTOGAIN)), /* and autogain */
275 [SEN_OV2610AE] = ((1 << NCTRL) - 1) /* no control */
276 ^ ((1 << EXPOSURE) /* but exposure */
277 | (1 << AUTOGAIN)), /* and autogain */
279 [SEN_OV3610] = (1 << NCTRL) - 1, /* no control */
281 [SEN_OV6620] = (1 << HFLIP) |
282 (1 << VFLIP) |
283 (1 << EXPOSURE) |
284 (1 << AUTOGAIN),
286 [SEN_OV6630] = (1 << HFLIP) |
287 (1 << VFLIP) |
288 (1 << EXPOSURE) |
289 (1 << AUTOGAIN),
291 [SEN_OV66308AF] = (1 << HFLIP) |
292 (1 << VFLIP) |
293 (1 << EXPOSURE) |
294 (1 << AUTOGAIN),
296 [SEN_OV7610] = (1 << HFLIP) |
297 (1 << VFLIP) |
298 (1 << EXPOSURE) |
299 (1 << AUTOGAIN),
301 [SEN_OV7620] = (1 << HFLIP) |
302 (1 << VFLIP) |
303 (1 << EXPOSURE) |
304 (1 << AUTOGAIN),
306 [SEN_OV7620AE] = (1 << HFLIP) |
307 (1 << VFLIP) |
308 (1 << EXPOSURE) |
309 (1 << AUTOGAIN),
311 [SEN_OV7640] = (1 << HFLIP) |
312 (1 << VFLIP) |
313 (1 << AUTOBRIGHT) |
314 (1 << CONTRAST) |
315 (1 << EXPOSURE) |
316 (1 << AUTOGAIN),
318 [SEN_OV7648] = (1 << HFLIP) |
319 (1 << VFLIP) |
320 (1 << AUTOBRIGHT) |
321 (1 << CONTRAST) |
322 (1 << EXPOSURE) |
323 (1 << AUTOGAIN),
325 [SEN_OV7660] = (1 << AUTOBRIGHT) |
326 (1 << EXPOSURE) |
327 (1 << AUTOGAIN),
329 [SEN_OV7670] = (1 << COLORS) |
330 (1 << AUTOBRIGHT) |
331 (1 << EXPOSURE) |
332 (1 << AUTOGAIN),
334 [SEN_OV76BE] = (1 << HFLIP) |
335 (1 << VFLIP) |
336 (1 << EXPOSURE) |
337 (1 << AUTOGAIN),
339 [SEN_OV8610] = (1 << HFLIP) |
340 (1 << VFLIP) |
341 (1 << EXPOSURE) |
342 (1 << AUTOGAIN) |
343 (1 << FREQ),
344 [SEN_OV9600] = ((1 << NCTRL) - 1) /* no control */
345 ^ ((1 << EXPOSURE) /* but exposure */
346 | (1 << AUTOGAIN)), /* and autogain */
350 static const struct v4l2_pix_format ov519_vga_mode[] = {
351 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
352 .bytesperline = 320,
353 .sizeimage = 320 * 240 * 3 / 8 + 590,
354 .colorspace = V4L2_COLORSPACE_JPEG,
355 .priv = 1},
356 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
357 .bytesperline = 640,
358 .sizeimage = 640 * 480 * 3 / 8 + 590,
359 .colorspace = V4L2_COLORSPACE_JPEG,
360 .priv = 0},
362 static const struct v4l2_pix_format ov519_sif_mode[] = {
363 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
364 .bytesperline = 160,
365 .sizeimage = 160 * 120 * 3 / 8 + 590,
366 .colorspace = V4L2_COLORSPACE_JPEG,
367 .priv = 3},
368 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
369 .bytesperline = 176,
370 .sizeimage = 176 * 144 * 3 / 8 + 590,
371 .colorspace = V4L2_COLORSPACE_JPEG,
372 .priv = 1},
373 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
374 .bytesperline = 320,
375 .sizeimage = 320 * 240 * 3 / 8 + 590,
376 .colorspace = V4L2_COLORSPACE_JPEG,
377 .priv = 2},
378 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
379 .bytesperline = 352,
380 .sizeimage = 352 * 288 * 3 / 8 + 590,
381 .colorspace = V4L2_COLORSPACE_JPEG,
382 .priv = 0},
385 /* Note some of the sizeimage values for the ov511 / ov518 may seem
386 larger then necessary, however they need to be this big as the ov511 /
387 ov518 always fills the entire isoc frame, using 0 padding bytes when
388 it doesn't have any data. So with low framerates the amount of data
389 transferred can become quite large (libv4l will remove all the 0 padding
390 in userspace). */
391 static const struct v4l2_pix_format ov518_vga_mode[] = {
392 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
393 .bytesperline = 320,
394 .sizeimage = 320 * 240 * 3,
395 .colorspace = V4L2_COLORSPACE_JPEG,
396 .priv = 1},
397 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
398 .bytesperline = 640,
399 .sizeimage = 640 * 480 * 2,
400 .colorspace = V4L2_COLORSPACE_JPEG,
401 .priv = 0},
403 static const struct v4l2_pix_format ov518_sif_mode[] = {
404 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
405 .bytesperline = 160,
406 .sizeimage = 70000,
407 .colorspace = V4L2_COLORSPACE_JPEG,
408 .priv = 3},
409 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
410 .bytesperline = 176,
411 .sizeimage = 70000,
412 .colorspace = V4L2_COLORSPACE_JPEG,
413 .priv = 1},
414 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
415 .bytesperline = 320,
416 .sizeimage = 320 * 240 * 3,
417 .colorspace = V4L2_COLORSPACE_JPEG,
418 .priv = 2},
419 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
420 .bytesperline = 352,
421 .sizeimage = 352 * 288 * 3,
422 .colorspace = V4L2_COLORSPACE_JPEG,
423 .priv = 0},
426 static const struct v4l2_pix_format ov511_vga_mode[] = {
427 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
428 .bytesperline = 320,
429 .sizeimage = 320 * 240 * 3,
430 .colorspace = V4L2_COLORSPACE_JPEG,
431 .priv = 1},
432 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
433 .bytesperline = 640,
434 .sizeimage = 640 * 480 * 2,
435 .colorspace = V4L2_COLORSPACE_JPEG,
436 .priv = 0},
438 static const struct v4l2_pix_format ov511_sif_mode[] = {
439 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
440 .bytesperline = 160,
441 .sizeimage = 70000,
442 .colorspace = V4L2_COLORSPACE_JPEG,
443 .priv = 3},
444 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
445 .bytesperline = 176,
446 .sizeimage = 70000,
447 .colorspace = V4L2_COLORSPACE_JPEG,
448 .priv = 1},
449 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
450 .bytesperline = 320,
451 .sizeimage = 320 * 240 * 3,
452 .colorspace = V4L2_COLORSPACE_JPEG,
453 .priv = 2},
454 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
455 .bytesperline = 352,
456 .sizeimage = 352 * 288 * 3,
457 .colorspace = V4L2_COLORSPACE_JPEG,
458 .priv = 0},
461 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
462 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
463 .bytesperline = 320,
464 .sizeimage = 320 * 240,
465 .colorspace = V4L2_COLORSPACE_SRGB,
466 .priv = 1},
467 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
468 .bytesperline = 640,
469 .sizeimage = 640 * 480,
470 .colorspace = V4L2_COLORSPACE_SRGB,
471 .priv = 0},
473 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
474 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
475 .bytesperline = 160,
476 .sizeimage = 160 * 120,
477 .colorspace = V4L2_COLORSPACE_SRGB,
478 .priv = 3},
479 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
480 .bytesperline = 176,
481 .sizeimage = 176 * 144,
482 .colorspace = V4L2_COLORSPACE_SRGB,
483 .priv = 1},
484 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
485 .bytesperline = 320,
486 .sizeimage = 320 * 240,
487 .colorspace = V4L2_COLORSPACE_SRGB,
488 .priv = 2},
489 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
490 .bytesperline = 352,
491 .sizeimage = 352 * 288,
492 .colorspace = V4L2_COLORSPACE_SRGB,
493 .priv = 0},
495 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
496 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
497 .bytesperline = 800,
498 .sizeimage = 800 * 600,
499 .colorspace = V4L2_COLORSPACE_SRGB,
500 .priv = 1},
501 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
502 .bytesperline = 1600,
503 .sizeimage = 1600 * 1200,
504 .colorspace = V4L2_COLORSPACE_SRGB},
506 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
507 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
508 .bytesperline = 640,
509 .sizeimage = 640 * 480,
510 .colorspace = V4L2_COLORSPACE_SRGB,
511 .priv = 1},
512 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
513 .bytesperline = 800,
514 .sizeimage = 800 * 600,
515 .colorspace = V4L2_COLORSPACE_SRGB,
516 .priv = 1},
517 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
518 .bytesperline = 1024,
519 .sizeimage = 1024 * 768,
520 .colorspace = V4L2_COLORSPACE_SRGB,
521 .priv = 1},
522 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
523 .bytesperline = 1600,
524 .sizeimage = 1600 * 1200,
525 .colorspace = V4L2_COLORSPACE_SRGB,
526 .priv = 0},
527 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
528 .bytesperline = 2048,
529 .sizeimage = 2048 * 1536,
530 .colorspace = V4L2_COLORSPACE_SRGB,
531 .priv = 0},
533 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
534 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
535 .bytesperline = 640,
536 .sizeimage = 640 * 480,
537 .colorspace = V4L2_COLORSPACE_SRGB,
538 .priv = 1},
539 {1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
540 .bytesperline = 1280,
541 .sizeimage = 1280 * 1024,
542 .colorspace = V4L2_COLORSPACE_SRGB},
545 /* Registers common to OV511 / OV518 */
546 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
547 #define R51x_SYS_RESET 0x50
548 /* Reset type flags */
549 #define OV511_RESET_OMNICE 0x08
550 #define R51x_SYS_INIT 0x53
551 #define R51x_SYS_SNAP 0x52
552 #define R51x_SYS_CUST_ID 0x5f
553 #define R51x_COMP_LUT_BEGIN 0x80
555 /* OV511 Camera interface register numbers */
556 #define R511_CAM_DELAY 0x10
557 #define R511_CAM_EDGE 0x11
558 #define R511_CAM_PXCNT 0x12
559 #define R511_CAM_LNCNT 0x13
560 #define R511_CAM_PXDIV 0x14
561 #define R511_CAM_LNDIV 0x15
562 #define R511_CAM_UV_EN 0x16
563 #define R511_CAM_LINE_MODE 0x17
564 #define R511_CAM_OPTS 0x18
566 #define R511_SNAP_FRAME 0x19
567 #define R511_SNAP_PXCNT 0x1a
568 #define R511_SNAP_LNCNT 0x1b
569 #define R511_SNAP_PXDIV 0x1c
570 #define R511_SNAP_LNDIV 0x1d
571 #define R511_SNAP_UV_EN 0x1e
572 #define R511_SNAP_OPTS 0x1f
574 #define R511_DRAM_FLOW_CTL 0x20
575 #define R511_FIFO_OPTS 0x31
576 #define R511_I2C_CTL 0x40
577 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
578 #define R511_COMP_EN 0x78
579 #define R511_COMP_LUT_EN 0x79
581 /* OV518 Camera interface register numbers */
582 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
583 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
585 /* OV519 Camera interface register numbers */
586 #define OV519_R10_H_SIZE 0x10
587 #define OV519_R11_V_SIZE 0x11
588 #define OV519_R12_X_OFFSETL 0x12
589 #define OV519_R13_X_OFFSETH 0x13
590 #define OV519_R14_Y_OFFSETL 0x14
591 #define OV519_R15_Y_OFFSETH 0x15
592 #define OV519_R16_DIVIDER 0x16
593 #define OV519_R20_DFR 0x20
594 #define OV519_R25_FORMAT 0x25
596 /* OV519 System Controller register numbers */
597 #define OV519_R51_RESET1 0x51
598 #define OV519_R54_EN_CLK1 0x54
599 #define OV519_R57_SNAPSHOT 0x57
601 #define OV519_GPIO_DATA_OUT0 0x71
602 #define OV519_GPIO_IO_CTRL0 0x72
604 /*#define OV511_ENDPOINT_ADDRESS 1 * Isoc endpoint number */
607 * The FX2 chip does not give us a zero length read at end of frame.
608 * It does, however, give a short read at the end of a frame, if
609 * necessary, rather than run two frames together.
611 * By choosing the right bulk transfer size, we are guaranteed to always
612 * get a short read for the last read of each frame. Frame sizes are
613 * always a composite number (width * height, or a multiple) so if we
614 * choose a prime number, we are guaranteed that the last read of a
615 * frame will be short.
617 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
618 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
619 * to figure out why. [PMiller]
621 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
623 * It isn't enough to know the number of bytes per frame, in case we
624 * have data dropouts or buffer overruns (even though the FX2 double
625 * buffers, there are some pretty strict real time constraints for
626 * isochronous transfer for larger frame sizes).
628 /*jfm: this value does not work for 800x600 - see isoc_init */
629 #define OVFX2_BULK_SIZE (13 * 4096)
631 /* I2C registers */
632 #define R51x_I2C_W_SID 0x41
633 #define R51x_I2C_SADDR_3 0x42
634 #define R51x_I2C_SADDR_2 0x43
635 #define R51x_I2C_R_SID 0x44
636 #define R51x_I2C_DATA 0x45
637 #define R518_I2C_CTL 0x47 /* OV518(+) only */
638 #define OVFX2_I2C_ADDR 0x00
640 /* I2C ADDRESSES */
641 #define OV7xx0_SID 0x42
642 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
643 #define OV8xx0_SID 0xa0
644 #define OV6xx0_SID 0xc0
646 /* OV7610 registers */
647 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
648 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
649 #define OV7610_REG_RED 0x02 /* red channel balance */
650 #define OV7610_REG_SAT 0x03 /* saturation */
651 #define OV8610_REG_HUE 0x04 /* 04 reserved */
652 #define OV7610_REG_CNT 0x05 /* Y contrast */
653 #define OV7610_REG_BRT 0x06 /* Y brightness */
654 #define OV7610_REG_COM_C 0x14 /* misc common regs */
655 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
656 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
657 #define OV7610_REG_COM_I 0x29 /* misc settings */
659 /* OV7660 and OV7670 registers */
660 #define OV7670_R00_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
661 #define OV7670_R01_BLUE 0x01 /* blue gain */
662 #define OV7670_R02_RED 0x02 /* red gain */
663 #define OV7670_R03_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
664 #define OV7670_R04_COM1 0x04 /* Control 1 */
665 /*#define OV7670_R07_AECHH 0x07 * AEC MS 5 bits */
666 #define OV7670_R0C_COM3 0x0c /* Control 3 */
667 #define OV7670_R0D_COM4 0x0d /* Control 4 */
668 #define OV7670_R0E_COM5 0x0e /* All "reserved" */
669 #define OV7670_R0F_COM6 0x0f /* Control 6 */
670 #define OV7670_R10_AECH 0x10 /* More bits of AEC value */
671 #define OV7670_R11_CLKRC 0x11 /* Clock control */
672 #define OV7670_R12_COM7 0x12 /* Control 7 */
673 #define OV7670_COM7_FMT_VGA 0x00
674 /*#define OV7670_COM7_YUV 0x00 * YUV */
675 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
676 #define OV7670_COM7_FMT_MASK 0x38
677 #define OV7670_COM7_RESET 0x80 /* Register reset */
678 #define OV7670_R13_COM8 0x13 /* Control 8 */
679 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
680 #define OV7670_COM8_AWB 0x02 /* White balance enable */
681 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
682 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
683 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
684 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
685 #define OV7670_R14_COM9 0x14 /* Control 9 - gain ceiling */
686 #define OV7670_R15_COM10 0x15 /* Control 10 */
687 #define OV7670_R17_HSTART 0x17 /* Horiz start high bits */
688 #define OV7670_R18_HSTOP 0x18 /* Horiz stop high bits */
689 #define OV7670_R19_VSTART 0x19 /* Vert start high bits */
690 #define OV7670_R1A_VSTOP 0x1a /* Vert stop high bits */
691 #define OV7670_R1E_MVFP 0x1e /* Mirror / vflip */
692 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
693 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
694 #define OV7670_R24_AEW 0x24 /* AGC upper limit */
695 #define OV7670_R25_AEB 0x25 /* AGC lower limit */
696 #define OV7670_R26_VPT 0x26 /* AGC/AEC fast mode op region */
697 #define OV7670_R32_HREF 0x32 /* HREF pieces */
698 #define OV7670_R3A_TSLB 0x3a /* lots of stuff */
699 #define OV7670_R3B_COM11 0x3b /* Control 11 */
700 #define OV7670_COM11_EXP 0x02
701 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
702 #define OV7670_R3C_COM12 0x3c /* Control 12 */
703 #define OV7670_R3D_COM13 0x3d /* Control 13 */
704 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
705 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
706 #define OV7670_R3E_COM14 0x3e /* Control 14 */
707 #define OV7670_R3F_EDGE 0x3f /* Edge enhancement factor */
708 #define OV7670_R40_COM15 0x40 /* Control 15 */
709 /*#define OV7670_COM15_R00FF 0xc0 * 00 to FF */
710 #define OV7670_R41_COM16 0x41 /* Control 16 */
711 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
712 /* end of ov7660 common registers */
713 #define OV7670_R55_BRIGHT 0x55 /* Brightness */
714 #define OV7670_R56_CONTRAS 0x56 /* Contrast control */
715 #define OV7670_R69_GFIX 0x69 /* Fix gain control */
716 /*#define OV7670_R8C_RGB444 0x8c * RGB 444 control */
717 #define OV7670_R9F_HAECC1 0x9f /* Hist AEC/AGC control 1 */
718 #define OV7670_RA0_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
719 #define OV7670_RA5_BD50MAX 0xa5 /* 50hz banding step limit */
720 #define OV7670_RA6_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
721 #define OV7670_RA7_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
722 #define OV7670_RA8_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
723 #define OV7670_RA9_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
724 #define OV7670_RAA_HAECC7 0xaa /* Hist AEC/AGC control 7 */
725 #define OV7670_RAB_BD60MAX 0xab /* 60hz banding step limit */
727 struct ov_regvals {
728 u8 reg;
729 u8 val;
731 struct ov_i2c_regvals {
732 u8 reg;
733 u8 val;
736 /* Settings for OV2610 camera chip */
737 static const struct ov_i2c_regvals norm_2610[] = {
738 { 0x12, 0x80 }, /* reset */
741 static const struct ov_i2c_regvals norm_2610ae[] = {
742 {0x12, 0x80}, /* reset */
743 {0x13, 0xcd},
744 {0x09, 0x01},
745 {0x0d, 0x00},
746 {0x11, 0x80},
747 {0x12, 0x20}, /* 1600x1200 */
748 {0x33, 0x0c},
749 {0x35, 0x90},
750 {0x36, 0x37},
751 /* ms-win traces */
752 {0x11, 0x83}, /* clock / 3 ? */
753 {0x2d, 0x00}, /* 60 Hz filter */
754 {0x24, 0xb0}, /* normal colors */
755 {0x25, 0x90},
756 {0x10, 0x43},
759 static const struct ov_i2c_regvals norm_3620b[] = {
761 * From the datasheet: "Note that after writing to register COMH
762 * (0x12) to change the sensor mode, registers related to the
763 * sensor’s cropping window will be reset back to their default
764 * values."
766 * "wait 4096 external clock ... to make sure the sensor is
767 * stable and ready to access registers" i.e. 160us at 24MHz
769 { 0x12, 0x80 }, /* COMH reset */
770 { 0x12, 0x00 }, /* QXGA, master */
773 * 11 CLKRC "Clock Rate Control"
774 * [7] internal frequency doublers: on
775 * [6] video port mode: master
776 * [5:0] clock divider: 1
778 { 0x11, 0x80 },
781 * 13 COMI "Common Control I"
782 * = 192 (0xC0) 11000000
783 * COMI[7] "AEC speed selection"
784 * = 1 (0x01) 1....... "Faster AEC correction"
785 * COMI[6] "AEC speed step selection"
786 * = 1 (0x01) .1...... "Big steps, fast"
787 * COMI[5] "Banding filter on off"
788 * = 0 (0x00) ..0..... "Off"
789 * COMI[4] "Banding filter option"
790 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
791 * the PLL is ON"
792 * COMI[3] "Reserved"
793 * = 0 (0x00) ....0...
794 * COMI[2] "AGC auto manual control selection"
795 * = 0 (0x00) .....0.. "Manual"
796 * COMI[1] "AWB auto manual control selection"
797 * = 0 (0x00) ......0. "Manual"
798 * COMI[0] "Exposure control"
799 * = 0 (0x00) .......0 "Manual"
801 { 0x13, 0xc0 },
804 * 09 COMC "Common Control C"
805 * = 8 (0x08) 00001000
806 * COMC[7:5] "Reserved"
807 * = 0 (0x00) 000.....
808 * COMC[4] "Sleep Mode Enable"
809 * = 0 (0x00) ...0.... "Normal mode"
810 * COMC[3:2] "Sensor sampling reset timing selection"
811 * = 2 (0x02) ....10.. "Longer reset time"
812 * COMC[1:0] "Output drive current select"
813 * = 0 (0x00) ......00 "Weakest"
815 { 0x09, 0x08 },
818 * 0C COMD "Common Control D"
819 * = 8 (0x08) 00001000
820 * COMD[7] "Reserved"
821 * = 0 (0x00) 0.......
822 * COMD[6] "Swap MSB and LSB at the output port"
823 * = 0 (0x00) .0...... "False"
824 * COMD[5:3] "Reserved"
825 * = 1 (0x01) ..001...
826 * COMD[2] "Output Average On Off"
827 * = 0 (0x00) .....0.. "Output Normal"
828 * COMD[1] "Sensor precharge voltage selection"
829 * = 0 (0x00) ......0. "Selects internal
830 * reference precharge
831 * voltage"
832 * COMD[0] "Snapshot option"
833 * = 0 (0x00) .......0 "Enable live video output
834 * after snapshot sequence"
836 { 0x0c, 0x08 },
839 * 0D COME "Common Control E"
840 * = 161 (0xA1) 10100001
841 * COME[7] "Output average option"
842 * = 1 (0x01) 1....... "Output average of 4 pixels"
843 * COME[6] "Anti-blooming control"
844 * = 0 (0x00) .0...... "Off"
845 * COME[5:3] "Reserved"
846 * = 4 (0x04) ..100...
847 * COME[2] "Clock output power down pin status"
848 * = 0 (0x00) .....0.. "Tri-state data output pin
849 * on power down"
850 * COME[1] "Data output pin status selection at power down"
851 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
852 * HREF, and CHSYNC pins on
853 * power down"
854 * COME[0] "Auto zero circuit select"
855 * = 1 (0x01) .......1 "On"
857 { 0x0d, 0xa1 },
860 * 0E COMF "Common Control F"
861 * = 112 (0x70) 01110000
862 * COMF[7] "System clock selection"
863 * = 0 (0x00) 0....... "Use 24 MHz system clock"
864 * COMF[6:4] "Reserved"
865 * = 7 (0x07) .111....
866 * COMF[3] "Manual auto negative offset canceling selection"
867 * = 0 (0x00) ....0... "Auto detect negative
868 * offset and cancel it"
869 * COMF[2:0] "Reserved"
870 * = 0 (0x00) .....000
872 { 0x0e, 0x70 },
875 * 0F COMG "Common Control G"
876 * = 66 (0x42) 01000010
877 * COMG[7] "Optical black output selection"
878 * = 0 (0x00) 0....... "Disable"
879 * COMG[6] "Black level calibrate selection"
880 * = 1 (0x01) .1...... "Use optical black pixels
881 * to calibrate"
882 * COMG[5:4] "Reserved"
883 * = 0 (0x00) ..00....
884 * COMG[3] "Channel offset adjustment"
885 * = 0 (0x00) ....0... "Disable offset adjustment"
886 * COMG[2] "ADC black level calibration option"
887 * = 0 (0x00) .....0.. "Use B/G line and G/R
888 * line to calibrate each
889 * channel's black level"
890 * COMG[1] "Reserved"
891 * = 1 (0x01) ......1.
892 * COMG[0] "ADC black level calibration enable"
893 * = 0 (0x00) .......0 "Disable"
895 { 0x0f, 0x42 },
898 * 14 COMJ "Common Control J"
899 * = 198 (0xC6) 11000110
900 * COMJ[7:6] "AGC gain ceiling"
901 * = 3 (0x03) 11...... "8x"
902 * COMJ[5:4] "Reserved"
903 * = 0 (0x00) ..00....
904 * COMJ[3] "Auto banding filter"
905 * = 0 (0x00) ....0... "Banding filter is always
906 * on off depending on
907 * COMI[5] setting"
908 * COMJ[2] "VSYNC drop option"
909 * = 1 (0x01) .....1.. "SYNC is dropped if frame
910 * data is dropped"
911 * COMJ[1] "Frame data drop"
912 * = 1 (0x01) ......1. "Drop frame data if
913 * exposure is not within
914 * tolerance. In AEC mode,
915 * data is normally dropped
916 * when data is out of
917 * range."
918 * COMJ[0] "Reserved"
919 * = 0 (0x00) .......0
921 { 0x14, 0xc6 },
924 * 15 COMK "Common Control K"
925 * = 2 (0x02) 00000010
926 * COMK[7] "CHSYNC pin output swap"
927 * = 0 (0x00) 0....... "CHSYNC"
928 * COMK[6] "HREF pin output swap"
929 * = 0 (0x00) .0...... "HREF"
930 * COMK[5] "PCLK output selection"
931 * = 0 (0x00) ..0..... "PCLK always output"
932 * COMK[4] "PCLK edge selection"
933 * = 0 (0x00) ...0.... "Data valid on falling edge"
934 * COMK[3] "HREF output polarity"
935 * = 0 (0x00) ....0... "positive"
936 * COMK[2] "Reserved"
937 * = 0 (0x00) .....0..
938 * COMK[1] "VSYNC polarity"
939 * = 1 (0x01) ......1. "negative"
940 * COMK[0] "HSYNC polarity"
941 * = 0 (0x00) .......0 "positive"
943 { 0x15, 0x02 },
946 * 33 CHLF "Current Control"
947 * = 9 (0x09) 00001001
948 * CHLF[7:6] "Sensor current control"
949 * = 0 (0x00) 00......
950 * CHLF[5] "Sensor current range control"
951 * = 0 (0x00) ..0..... "normal range"
952 * CHLF[4] "Sensor current"
953 * = 0 (0x00) ...0.... "normal current"
954 * CHLF[3] "Sensor buffer current control"
955 * = 1 (0x01) ....1... "half current"
956 * CHLF[2] "Column buffer current control"
957 * = 0 (0x00) .....0.. "normal current"
958 * CHLF[1] "Analog DSP current control"
959 * = 0 (0x00) ......0. "normal current"
960 * CHLF[1] "ADC current control"
961 * = 0 (0x00) ......0. "normal current"
963 { 0x33, 0x09 },
966 * 34 VBLM "Blooming Control"
967 * = 80 (0x50) 01010000
968 * VBLM[7] "Hard soft reset switch"
969 * = 0 (0x00) 0....... "Hard reset"
970 * VBLM[6:4] "Blooming voltage selection"
971 * = 5 (0x05) .101....
972 * VBLM[3:0] "Sensor current control"
973 * = 0 (0x00) ....0000
975 { 0x34, 0x50 },
978 * 36 VCHG "Sensor Precharge Voltage Control"
979 * = 0 (0x00) 00000000
980 * VCHG[7] "Reserved"
981 * = 0 (0x00) 0.......
982 * VCHG[6:4] "Sensor precharge voltage control"
983 * = 0 (0x00) .000....
984 * VCHG[3:0] "Sensor array common reference"
985 * = 0 (0x00) ....0000
987 { 0x36, 0x00 },
990 * 37 ADC "ADC Reference Control"
991 * = 4 (0x04) 00000100
992 * ADC[7:4] "Reserved"
993 * = 0 (0x00) 0000....
994 * ADC[3] "ADC input signal range"
995 * = 0 (0x00) ....0... "Input signal 1.0x"
996 * ADC[2:0] "ADC range control"
997 * = 4 (0x04) .....100
999 { 0x37, 0x04 },
1002 * 38 ACOM "Analog Common Ground"
1003 * = 82 (0x52) 01010010
1004 * ACOM[7] "Analog gain control"
1005 * = 0 (0x00) 0....... "Gain 1x"
1006 * ACOM[6] "Analog black level calibration"
1007 * = 1 (0x01) .1...... "On"
1008 * ACOM[5:0] "Reserved"
1009 * = 18 (0x12) ..010010
1011 { 0x38, 0x52 },
1014 * 3A FREFA "Internal Reference Adjustment"
1015 * = 0 (0x00) 00000000
1016 * FREFA[7:0] "Range"
1017 * = 0 (0x00) 00000000
1019 { 0x3a, 0x00 },
1022 * 3C FVOPT "Internal Reference Adjustment"
1023 * = 31 (0x1F) 00011111
1024 * FVOPT[7:0] "Range"
1025 * = 31 (0x1F) 00011111
1027 { 0x3c, 0x1f },
1030 * 44 Undocumented = 0 (0x00) 00000000
1031 * 44[7:0] "It's a secret"
1032 * = 0 (0x00) 00000000
1034 { 0x44, 0x00 },
1037 * 40 Undocumented = 0 (0x00) 00000000
1038 * 40[7:0] "It's a secret"
1039 * = 0 (0x00) 00000000
1041 { 0x40, 0x00 },
1044 * 41 Undocumented = 0 (0x00) 00000000
1045 * 41[7:0] "It's a secret"
1046 * = 0 (0x00) 00000000
1048 { 0x41, 0x00 },
1051 * 42 Undocumented = 0 (0x00) 00000000
1052 * 42[7:0] "It's a secret"
1053 * = 0 (0x00) 00000000
1055 { 0x42, 0x00 },
1058 * 43 Undocumented = 0 (0x00) 00000000
1059 * 43[7:0] "It's a secret"
1060 * = 0 (0x00) 00000000
1062 { 0x43, 0x00 },
1065 * 45 Undocumented = 128 (0x80) 10000000
1066 * 45[7:0] "It's a secret"
1067 * = 128 (0x80) 10000000
1069 { 0x45, 0x80 },
1072 * 48 Undocumented = 192 (0xC0) 11000000
1073 * 48[7:0] "It's a secret"
1074 * = 192 (0xC0) 11000000
1076 { 0x48, 0xc0 },
1079 * 49 Undocumented = 25 (0x19) 00011001
1080 * 49[7:0] "It's a secret"
1081 * = 25 (0x19) 00011001
1083 { 0x49, 0x19 },
1086 * 4B Undocumented = 128 (0x80) 10000000
1087 * 4B[7:0] "It's a secret"
1088 * = 128 (0x80) 10000000
1090 { 0x4b, 0x80 },
1093 * 4D Undocumented = 196 (0xC4) 11000100
1094 * 4D[7:0] "It's a secret"
1095 * = 196 (0xC4) 11000100
1097 { 0x4d, 0xc4 },
1100 * 35 VREF "Reference Voltage Control"
1101 * = 76 (0x4c) 01001100
1102 * VREF[7:5] "Column high reference control"
1103 * = 2 (0x02) 010..... "higher voltage"
1104 * VREF[4:2] "Column low reference control"
1105 * = 3 (0x03) ...011.. "Highest voltage"
1106 * VREF[1:0] "Reserved"
1107 * = 0 (0x00) ......00
1109 { 0x35, 0x4c },
1112 * 3D Undocumented = 0 (0x00) 00000000
1113 * 3D[7:0] "It's a secret"
1114 * = 0 (0x00) 00000000
1116 { 0x3d, 0x00 },
1119 * 3E Undocumented = 0 (0x00) 00000000
1120 * 3E[7:0] "It's a secret"
1121 * = 0 (0x00) 00000000
1123 { 0x3e, 0x00 },
1126 * 3B FREFB "Internal Reference Adjustment"
1127 * = 24 (0x18) 00011000
1128 * FREFB[7:0] "Range"
1129 * = 24 (0x18) 00011000
1131 { 0x3b, 0x18 },
1134 * 33 CHLF "Current Control"
1135 * = 25 (0x19) 00011001
1136 * CHLF[7:6] "Sensor current control"
1137 * = 0 (0x00) 00......
1138 * CHLF[5] "Sensor current range control"
1139 * = 0 (0x00) ..0..... "normal range"
1140 * CHLF[4] "Sensor current"
1141 * = 1 (0x01) ...1.... "double current"
1142 * CHLF[3] "Sensor buffer current control"
1143 * = 1 (0x01) ....1... "half current"
1144 * CHLF[2] "Column buffer current control"
1145 * = 0 (0x00) .....0.. "normal current"
1146 * CHLF[1] "Analog DSP current control"
1147 * = 0 (0x00) ......0. "normal current"
1148 * CHLF[1] "ADC current control"
1149 * = 0 (0x00) ......0. "normal current"
1151 { 0x33, 0x19 },
1154 * 34 VBLM "Blooming Control"
1155 * = 90 (0x5A) 01011010
1156 * VBLM[7] "Hard soft reset switch"
1157 * = 0 (0x00) 0....... "Hard reset"
1158 * VBLM[6:4] "Blooming voltage selection"
1159 * = 5 (0x05) .101....
1160 * VBLM[3:0] "Sensor current control"
1161 * = 10 (0x0A) ....1010
1163 { 0x34, 0x5a },
1166 * 3B FREFB "Internal Reference Adjustment"
1167 * = 0 (0x00) 00000000
1168 * FREFB[7:0] "Range"
1169 * = 0 (0x00) 00000000
1171 { 0x3b, 0x00 },
1174 * 33 CHLF "Current Control"
1175 * = 9 (0x09) 00001001
1176 * CHLF[7:6] "Sensor current control"
1177 * = 0 (0x00) 00......
1178 * CHLF[5] "Sensor current range control"
1179 * = 0 (0x00) ..0..... "normal range"
1180 * CHLF[4] "Sensor current"
1181 * = 0 (0x00) ...0.... "normal current"
1182 * CHLF[3] "Sensor buffer current control"
1183 * = 1 (0x01) ....1... "half current"
1184 * CHLF[2] "Column buffer current control"
1185 * = 0 (0x00) .....0.. "normal current"
1186 * CHLF[1] "Analog DSP current control"
1187 * = 0 (0x00) ......0. "normal current"
1188 * CHLF[1] "ADC current control"
1189 * = 0 (0x00) ......0. "normal current"
1191 { 0x33, 0x09 },
1194 * 34 VBLM "Blooming Control"
1195 * = 80 (0x50) 01010000
1196 * VBLM[7] "Hard soft reset switch"
1197 * = 0 (0x00) 0....... "Hard reset"
1198 * VBLM[6:4] "Blooming voltage selection"
1199 * = 5 (0x05) .101....
1200 * VBLM[3:0] "Sensor current control"
1201 * = 0 (0x00) ....0000
1203 { 0x34, 0x50 },
1206 * 12 COMH "Common Control H"
1207 * = 64 (0x40) 01000000
1208 * COMH[7] "SRST"
1209 * = 0 (0x00) 0....... "No-op"
1210 * COMH[6:4] "Resolution selection"
1211 * = 4 (0x04) .100.... "XGA"
1212 * COMH[3] "Master slave selection"
1213 * = 0 (0x00) ....0... "Master mode"
1214 * COMH[2] "Internal B/R channel option"
1215 * = 0 (0x00) .....0.. "B/R use same channel"
1216 * COMH[1] "Color bar test pattern"
1217 * = 0 (0x00) ......0. "Off"
1218 * COMH[0] "Reserved"
1219 * = 0 (0x00) .......0
1221 { 0x12, 0x40 },
1224 * 17 HREFST "Horizontal window start"
1225 * = 31 (0x1F) 00011111
1226 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1227 * = 31 (0x1F) 00011111
1229 { 0x17, 0x1f },
1232 * 18 HREFEND "Horizontal window end"
1233 * = 95 (0x5F) 01011111
1234 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1235 * = 95 (0x5F) 01011111
1237 { 0x18, 0x5f },
1240 * 19 VSTRT "Vertical window start"
1241 * = 0 (0x00) 00000000
1242 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1243 * = 0 (0x00) 00000000
1245 { 0x19, 0x00 },
1248 * 1A VEND "Vertical window end"
1249 * = 96 (0x60) 01100000
1250 * VEND[7:0] "Vertical Window End, 8 MSBs"
1251 * = 96 (0x60) 01100000
1253 { 0x1a, 0x60 },
1256 * 32 COMM "Common Control M"
1257 * = 18 (0x12) 00010010
1258 * COMM[7:6] "Pixel clock divide option"
1259 * = 0 (0x00) 00...... "/1"
1260 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1261 * = 2 (0x02) ..010...
1262 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1263 * = 2 (0x02) .....010
1265 { 0x32, 0x12 },
1268 * 03 COMA "Common Control A"
1269 * = 74 (0x4A) 01001010
1270 * COMA[7:4] "AWB Update Threshold"
1271 * = 4 (0x04) 0100....
1272 * COMA[3:2] "Vertical window end line control 2 LSBs"
1273 * = 2 (0x02) ....10..
1274 * COMA[1:0] "Vertical window start line control 2 LSBs"
1275 * = 2 (0x02) ......10
1277 { 0x03, 0x4a },
1280 * 11 CLKRC "Clock Rate Control"
1281 * = 128 (0x80) 10000000
1282 * CLKRC[7] "Internal frequency doublers on off seclection"
1283 * = 1 (0x01) 1....... "On"
1284 * CLKRC[6] "Digital video master slave selection"
1285 * = 0 (0x00) .0...... "Master mode, sensor
1286 * provides PCLK"
1287 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1288 * = 0 (0x00) ..000000
1290 { 0x11, 0x80 },
1293 * 12 COMH "Common Control H"
1294 * = 0 (0x00) 00000000
1295 * COMH[7] "SRST"
1296 * = 0 (0x00) 0....... "No-op"
1297 * COMH[6:4] "Resolution selection"
1298 * = 0 (0x00) .000.... "QXGA"
1299 * COMH[3] "Master slave selection"
1300 * = 0 (0x00) ....0... "Master mode"
1301 * COMH[2] "Internal B/R channel option"
1302 * = 0 (0x00) .....0.. "B/R use same channel"
1303 * COMH[1] "Color bar test pattern"
1304 * = 0 (0x00) ......0. "Off"
1305 * COMH[0] "Reserved"
1306 * = 0 (0x00) .......0
1308 { 0x12, 0x00 },
1311 * 12 COMH "Common Control H"
1312 * = 64 (0x40) 01000000
1313 * COMH[7] "SRST"
1314 * = 0 (0x00) 0....... "No-op"
1315 * COMH[6:4] "Resolution selection"
1316 * = 4 (0x04) .100.... "XGA"
1317 * COMH[3] "Master slave selection"
1318 * = 0 (0x00) ....0... "Master mode"
1319 * COMH[2] "Internal B/R channel option"
1320 * = 0 (0x00) .....0.. "B/R use same channel"
1321 * COMH[1] "Color bar test pattern"
1322 * = 0 (0x00) ......0. "Off"
1323 * COMH[0] "Reserved"
1324 * = 0 (0x00) .......0
1326 { 0x12, 0x40 },
1329 * 17 HREFST "Horizontal window start"
1330 * = 31 (0x1F) 00011111
1331 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1332 * = 31 (0x1F) 00011111
1334 { 0x17, 0x1f },
1337 * 18 HREFEND "Horizontal window end"
1338 * = 95 (0x5F) 01011111
1339 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1340 * = 95 (0x5F) 01011111
1342 { 0x18, 0x5f },
1345 * 19 VSTRT "Vertical window start"
1346 * = 0 (0x00) 00000000
1347 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1348 * = 0 (0x00) 00000000
1350 { 0x19, 0x00 },
1353 * 1A VEND "Vertical window end"
1354 * = 96 (0x60) 01100000
1355 * VEND[7:0] "Vertical Window End, 8 MSBs"
1356 * = 96 (0x60) 01100000
1358 { 0x1a, 0x60 },
1361 * 32 COMM "Common Control M"
1362 * = 18 (0x12) 00010010
1363 * COMM[7:6] "Pixel clock divide option"
1364 * = 0 (0x00) 00...... "/1"
1365 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1366 * = 2 (0x02) ..010...
1367 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1368 * = 2 (0x02) .....010
1370 { 0x32, 0x12 },
1373 * 03 COMA "Common Control A"
1374 * = 74 (0x4A) 01001010
1375 * COMA[7:4] "AWB Update Threshold"
1376 * = 4 (0x04) 0100....
1377 * COMA[3:2] "Vertical window end line control 2 LSBs"
1378 * = 2 (0x02) ....10..
1379 * COMA[1:0] "Vertical window start line control 2 LSBs"
1380 * = 2 (0x02) ......10
1382 { 0x03, 0x4a },
1385 * 02 RED "Red Gain Control"
1386 * = 175 (0xAF) 10101111
1387 * RED[7] "Action"
1388 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1389 * RED[6:0] "Value"
1390 * = 47 (0x2F) .0101111
1392 { 0x02, 0xaf },
1395 * 2D ADDVSL "VSYNC Pulse Width"
1396 * = 210 (0xD2) 11010010
1397 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1398 * = 210 (0xD2) 11010010
1400 { 0x2d, 0xd2 },
1403 * 00 GAIN = 24 (0x18) 00011000
1404 * GAIN[7:6] "Reserved"
1405 * = 0 (0x00) 00......
1406 * GAIN[5] "Double"
1407 * = 0 (0x00) ..0..... "False"
1408 * GAIN[4] "Double"
1409 * = 1 (0x01) ...1.... "True"
1410 * GAIN[3:0] "Range"
1411 * = 8 (0x08) ....1000
1413 { 0x00, 0x18 },
1416 * 01 BLUE "Blue Gain Control"
1417 * = 240 (0xF0) 11110000
1418 * BLUE[7] "Action"
1419 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1420 * BLUE[6:0] "Value"
1421 * = 112 (0x70) .1110000
1423 { 0x01, 0xf0 },
1426 * 10 AEC "Automatic Exposure Control"
1427 * = 10 (0x0A) 00001010
1428 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1429 * = 10 (0x0A) 00001010
1431 { 0x10, 0x0a },
1433 { 0xe1, 0x67 },
1434 { 0xe3, 0x03 },
1435 { 0xe4, 0x26 },
1436 { 0xe5, 0x3e },
1437 { 0xf8, 0x01 },
1438 { 0xff, 0x01 },
1441 static const struct ov_i2c_regvals norm_6x20[] = {
1442 { 0x12, 0x80 }, /* reset */
1443 { 0x11, 0x01 },
1444 { 0x03, 0x60 },
1445 { 0x05, 0x7f }, /* For when autoadjust is off */
1446 { 0x07, 0xa8 },
1447 /* The ratio of 0x0c and 0x0d controls the white point */
1448 { 0x0c, 0x24 },
1449 { 0x0d, 0x24 },
1450 { 0x0f, 0x15 }, /* COMS */
1451 { 0x10, 0x75 }, /* AEC Exposure time */
1452 { 0x12, 0x24 }, /* Enable AGC */
1453 { 0x14, 0x04 },
1454 /* 0x16: 0x06 helps frame stability with moving objects */
1455 { 0x16, 0x06 },
1456 /* { 0x20, 0x30 }, * Aperture correction enable */
1457 { 0x26, 0xb2 }, /* BLC enable */
1458 /* 0x28: 0x05 Selects RGB format if RGB on */
1459 { 0x28, 0x05 },
1460 { 0x2a, 0x04 }, /* Disable framerate adjust */
1461 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1462 { 0x2d, 0x85 },
1463 { 0x33, 0xa0 }, /* Color Processing Parameter */
1464 { 0x34, 0xd2 }, /* Max A/D range */
1465 { 0x38, 0x8b },
1466 { 0x39, 0x40 },
1468 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1469 { 0x3c, 0x3c }, /* Change AEC mode */
1470 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1472 { 0x3d, 0x80 },
1473 /* These next two registers (0x4a, 0x4b) are undocumented.
1474 * They control the color balance */
1475 { 0x4a, 0x80 },
1476 { 0x4b, 0x80 },
1477 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1478 { 0x4e, 0xc1 },
1479 { 0x4f, 0x04 },
1480 /* Do 50-53 have any effect? */
1481 /* Toggle 0x12[2] off and on here? */
1484 static const struct ov_i2c_regvals norm_6x30[] = {
1485 { 0x12, 0x80 }, /* Reset */
1486 { 0x00, 0x1f }, /* Gain */
1487 { 0x01, 0x99 }, /* Blue gain */
1488 { 0x02, 0x7c }, /* Red gain */
1489 { 0x03, 0xc0 }, /* Saturation */
1490 { 0x05, 0x0a }, /* Contrast */
1491 { 0x06, 0x95 }, /* Brightness */
1492 { 0x07, 0x2d }, /* Sharpness */
1493 { 0x0c, 0x20 },
1494 { 0x0d, 0x20 },
1495 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1496 { 0x0f, 0x05 },
1497 { 0x10, 0x9a },
1498 { 0x11, 0x00 }, /* Pixel clock = fastest */
1499 { 0x12, 0x24 }, /* Enable AGC and AWB */
1500 { 0x13, 0x21 },
1501 { 0x14, 0x80 },
1502 { 0x15, 0x01 },
1503 { 0x16, 0x03 },
1504 { 0x17, 0x38 },
1505 { 0x18, 0xea },
1506 { 0x19, 0x04 },
1507 { 0x1a, 0x93 },
1508 { 0x1b, 0x00 },
1509 { 0x1e, 0xc4 },
1510 { 0x1f, 0x04 },
1511 { 0x20, 0x20 },
1512 { 0x21, 0x10 },
1513 { 0x22, 0x88 },
1514 { 0x23, 0xc0 }, /* Crystal circuit power level */
1515 { 0x25, 0x9a }, /* Increase AEC black ratio */
1516 { 0x26, 0xb2 }, /* BLC enable */
1517 { 0x27, 0xa2 },
1518 { 0x28, 0x00 },
1519 { 0x29, 0x00 },
1520 { 0x2a, 0x84 }, /* 60 Hz power */
1521 { 0x2b, 0xa8 }, /* 60 Hz power */
1522 { 0x2c, 0xa0 },
1523 { 0x2d, 0x95 }, /* Enable auto-brightness */
1524 { 0x2e, 0x88 },
1525 { 0x33, 0x26 },
1526 { 0x34, 0x03 },
1527 { 0x36, 0x8f },
1528 { 0x37, 0x80 },
1529 { 0x38, 0x83 },
1530 { 0x39, 0x80 },
1531 { 0x3a, 0x0f },
1532 { 0x3b, 0x3c },
1533 { 0x3c, 0x1a },
1534 { 0x3d, 0x80 },
1535 { 0x3e, 0x80 },
1536 { 0x3f, 0x0e },
1537 { 0x40, 0x00 }, /* White bal */
1538 { 0x41, 0x00 }, /* White bal */
1539 { 0x42, 0x80 },
1540 { 0x43, 0x3f }, /* White bal */
1541 { 0x44, 0x80 },
1542 { 0x45, 0x20 },
1543 { 0x46, 0x20 },
1544 { 0x47, 0x80 },
1545 { 0x48, 0x7f },
1546 { 0x49, 0x00 },
1547 { 0x4a, 0x00 },
1548 { 0x4b, 0x80 },
1549 { 0x4c, 0xd0 },
1550 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1551 { 0x4e, 0x40 },
1552 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1553 { 0x50, 0xff },
1554 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1555 { 0x55, 0xff },
1556 { 0x56, 0x12 },
1557 { 0x57, 0x81 },
1558 { 0x58, 0x75 },
1559 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1560 { 0x5a, 0x2c },
1561 { 0x5b, 0x0f }, /* AWB chrominance levels */
1562 { 0x5c, 0x10 },
1563 { 0x3d, 0x80 },
1564 { 0x27, 0xa6 },
1565 { 0x12, 0x20 }, /* Toggle AWB */
1566 { 0x12, 0x24 },
1569 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1571 * Register 0x0f in the 7610 has the following effects:
1573 * 0x85 (AEC method 1): Best overall, good contrast range
1574 * 0x45 (AEC method 2): Very overexposed
1575 * 0xa5 (spec sheet default): Ok, but the black level is
1576 * shifted resulting in loss of contrast
1577 * 0x05 (old driver setting): very overexposed, too much
1578 * contrast
1580 static const struct ov_i2c_regvals norm_7610[] = {
1581 { 0x10, 0xff },
1582 { 0x16, 0x06 },
1583 { 0x28, 0x24 },
1584 { 0x2b, 0xac },
1585 { 0x12, 0x00 },
1586 { 0x38, 0x81 },
1587 { 0x28, 0x24 }, /* 0c */
1588 { 0x0f, 0x85 }, /* lg's setting */
1589 { 0x15, 0x01 },
1590 { 0x20, 0x1c },
1591 { 0x23, 0x2a },
1592 { 0x24, 0x10 },
1593 { 0x25, 0x8a },
1594 { 0x26, 0xa2 },
1595 { 0x27, 0xc2 },
1596 { 0x2a, 0x04 },
1597 { 0x2c, 0xfe },
1598 { 0x2d, 0x93 },
1599 { 0x30, 0x71 },
1600 { 0x31, 0x60 },
1601 { 0x32, 0x26 },
1602 { 0x33, 0x20 },
1603 { 0x34, 0x48 },
1604 { 0x12, 0x24 },
1605 { 0x11, 0x01 },
1606 { 0x0c, 0x24 },
1607 { 0x0d, 0x24 },
1610 static const struct ov_i2c_regvals norm_7620[] = {
1611 { 0x12, 0x80 }, /* reset */
1612 { 0x00, 0x00 }, /* gain */
1613 { 0x01, 0x80 }, /* blue gain */
1614 { 0x02, 0x80 }, /* red gain */
1615 { 0x03, 0xc0 }, /* OV7670_R03_VREF */
1616 { 0x06, 0x60 },
1617 { 0x07, 0x00 },
1618 { 0x0c, 0x24 },
1619 { 0x0c, 0x24 },
1620 { 0x0d, 0x24 },
1621 { 0x11, 0x01 },
1622 { 0x12, 0x24 },
1623 { 0x13, 0x01 },
1624 { 0x14, 0x84 },
1625 { 0x15, 0x01 },
1626 { 0x16, 0x03 },
1627 { 0x17, 0x2f },
1628 { 0x18, 0xcf },
1629 { 0x19, 0x06 },
1630 { 0x1a, 0xf5 },
1631 { 0x1b, 0x00 },
1632 { 0x20, 0x18 },
1633 { 0x21, 0x80 },
1634 { 0x22, 0x80 },
1635 { 0x23, 0x00 },
1636 { 0x26, 0xa2 },
1637 { 0x27, 0xea },
1638 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1639 { 0x29, 0x00 },
1640 { 0x2a, 0x10 },
1641 { 0x2b, 0x00 },
1642 { 0x2c, 0x88 },
1643 { 0x2d, 0x91 },
1644 { 0x2e, 0x80 },
1645 { 0x2f, 0x44 },
1646 { 0x60, 0x27 },
1647 { 0x61, 0x02 },
1648 { 0x62, 0x5f },
1649 { 0x63, 0xd5 },
1650 { 0x64, 0x57 },
1651 { 0x65, 0x83 },
1652 { 0x66, 0x55 },
1653 { 0x67, 0x92 },
1654 { 0x68, 0xcf },
1655 { 0x69, 0x76 },
1656 { 0x6a, 0x22 },
1657 { 0x6b, 0x00 },
1658 { 0x6c, 0x02 },
1659 { 0x6d, 0x44 },
1660 { 0x6e, 0x80 },
1661 { 0x6f, 0x1d },
1662 { 0x70, 0x8b },
1663 { 0x71, 0x00 },
1664 { 0x72, 0x14 },
1665 { 0x73, 0x54 },
1666 { 0x74, 0x00 },
1667 { 0x75, 0x8e },
1668 { 0x76, 0x00 },
1669 { 0x77, 0xff },
1670 { 0x78, 0x80 },
1671 { 0x79, 0x80 },
1672 { 0x7a, 0x80 },
1673 { 0x7b, 0xe2 },
1674 { 0x7c, 0x00 },
1677 /* 7640 and 7648. The defaults should be OK for most registers. */
1678 static const struct ov_i2c_regvals norm_7640[] = {
1679 { 0x12, 0x80 },
1680 { 0x12, 0x14 },
1683 static const struct ov_regvals init_519_ov7660[] = {
1684 { 0x5d, 0x03 }, /* Turn off suspend mode */
1685 { 0x53, 0x9b }, /* 0x9f enables the (unused) microcontroller */
1686 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1687 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1688 { 0xa3, 0x18 },
1689 { 0xa4, 0x04 },
1690 { 0xa5, 0x28 },
1691 { 0x37, 0x00 }, /* SetUsbInit */
1692 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1693 /* Enable both fields, YUV Input, disable defect comp (why?) */
1694 { 0x20, 0x0c }, /* 0x0d does U <-> V swap */
1695 { 0x21, 0x38 },
1696 { 0x22, 0x1d },
1697 { 0x17, 0x50 }, /* undocumented */
1698 { 0x37, 0x00 }, /* undocumented */
1699 { 0x40, 0xff }, /* I2C timeout counter */
1700 { 0x46, 0x00 }, /* I2C clock prescaler */
1702 static const struct ov_i2c_regvals norm_7660[] = {
1703 {OV7670_R12_COM7, OV7670_COM7_RESET},
1704 {OV7670_R11_CLKRC, 0x81},
1705 {0x92, 0x00}, /* DM_LNL */
1706 {0x93, 0x00}, /* DM_LNH */
1707 {0x9d, 0x4c}, /* BD50ST */
1708 {0x9e, 0x3f}, /* BD60ST */
1709 {OV7670_R3B_COM11, 0x02},
1710 {OV7670_R13_COM8, 0xf5},
1711 {OV7670_R10_AECH, 0x00},
1712 {OV7670_R00_GAIN, 0x00},
1713 {OV7670_R01_BLUE, 0x7c},
1714 {OV7670_R02_RED, 0x9d},
1715 {OV7670_R12_COM7, 0x00},
1716 {OV7670_R04_COM1, 00},
1717 {OV7670_R18_HSTOP, 0x01},
1718 {OV7670_R17_HSTART, 0x13},
1719 {OV7670_R32_HREF, 0x92},
1720 {OV7670_R19_VSTART, 0x02},
1721 {OV7670_R1A_VSTOP, 0x7a},
1722 {OV7670_R03_VREF, 0x00},
1723 {OV7670_R0E_COM5, 0x04},
1724 {OV7670_R0F_COM6, 0x62},
1725 {OV7670_R15_COM10, 0x00},
1726 {0x16, 0x02}, /* RSVD */
1727 {0x1b, 0x00}, /* PSHFT */
1728 {OV7670_R1E_MVFP, 0x01},
1729 {0x29, 0x3c}, /* RSVD */
1730 {0x33, 0x00}, /* CHLF */
1731 {0x34, 0x07}, /* ARBLM */
1732 {0x35, 0x84}, /* RSVD */
1733 {0x36, 0x00}, /* RSVD */
1734 {0x37, 0x04}, /* ADC */
1735 {0x39, 0x43}, /* OFON */
1736 {OV7670_R3A_TSLB, 0x00},
1737 {OV7670_R3C_COM12, 0x6c},
1738 {OV7670_R3D_COM13, 0x98},
1739 {OV7670_R3F_EDGE, 0x23},
1740 {OV7670_R40_COM15, 0xc1},
1741 {OV7670_R41_COM16, 0x22},
1742 {0x6b, 0x0a}, /* DBLV */
1743 {0xa1, 0x08}, /* RSVD */
1744 {0x69, 0x80}, /* HV */
1745 {0x43, 0xf0}, /* RSVD.. */
1746 {0x44, 0x10},
1747 {0x45, 0x78},
1748 {0x46, 0xa8},
1749 {0x47, 0x60},
1750 {0x48, 0x80},
1751 {0x59, 0xba},
1752 {0x5a, 0x9a},
1753 {0x5b, 0x22},
1754 {0x5c, 0xb9},
1755 {0x5d, 0x9b},
1756 {0x5e, 0x10},
1757 {0x5f, 0xe0},
1758 {0x60, 0x85},
1759 {0x61, 0x60},
1760 {0x9f, 0x9d}, /* RSVD */
1761 {0xa0, 0xa0}, /* DSPC2 */
1762 {0x4f, 0x60}, /* matrix */
1763 {0x50, 0x64},
1764 {0x51, 0x04},
1765 {0x52, 0x18},
1766 {0x53, 0x3c},
1767 {0x54, 0x54},
1768 {0x55, 0x40},
1769 {0x56, 0x40},
1770 {0x57, 0x40},
1771 {0x58, 0x0d}, /* matrix sign */
1772 {0x8b, 0xcc}, /* RSVD */
1773 {0x8c, 0xcc},
1774 {0x8d, 0xcf},
1775 {0x6c, 0x40}, /* gamma curve */
1776 {0x6d, 0xe0},
1777 {0x6e, 0xa0},
1778 {0x6f, 0x80},
1779 {0x70, 0x70},
1780 {0x71, 0x80},
1781 {0x72, 0x60},
1782 {0x73, 0x60},
1783 {0x74, 0x50},
1784 {0x75, 0x40},
1785 {0x76, 0x38},
1786 {0x77, 0x3c},
1787 {0x78, 0x32},
1788 {0x79, 0x1a},
1789 {0x7a, 0x28},
1790 {0x7b, 0x24},
1791 {0x7c, 0x04}, /* gamma curve */
1792 {0x7d, 0x12},
1793 {0x7e, 0x26},
1794 {0x7f, 0x46},
1795 {0x80, 0x54},
1796 {0x81, 0x64},
1797 {0x82, 0x70},
1798 {0x83, 0x7c},
1799 {0x84, 0x86},
1800 {0x85, 0x8e},
1801 {0x86, 0x9c},
1802 {0x87, 0xab},
1803 {0x88, 0xc4},
1804 {0x89, 0xd1},
1805 {0x8a, 0xe5},
1806 {OV7670_R14_COM9, 0x1e},
1807 {OV7670_R24_AEW, 0x80},
1808 {OV7670_R25_AEB, 0x72},
1809 {OV7670_R26_VPT, 0xb3},
1810 {0x62, 0x80}, /* LCC1 */
1811 {0x63, 0x80}, /* LCC2 */
1812 {0x64, 0x06}, /* LCC3 */
1813 {0x65, 0x00}, /* LCC4 */
1814 {0x66, 0x01}, /* LCC5 */
1815 {0x94, 0x0e}, /* RSVD.. */
1816 {0x95, 0x14},
1817 {OV7670_R13_COM8, OV7670_COM8_FASTAEC
1818 | OV7670_COM8_AECSTEP
1819 | OV7670_COM8_BFILT
1820 | 0x10
1821 | OV7670_COM8_AGC
1822 | OV7670_COM8_AWB
1823 | OV7670_COM8_AEC},
1824 {0xa1, 0xc8}
1826 static const struct ov_i2c_regvals norm_9600[] = {
1827 {0x12, 0x80},
1828 {0x0c, 0x28},
1829 {0x11, 0x80},
1830 {0x13, 0xb5},
1831 {0x14, 0x3e},
1832 {0x1b, 0x04},
1833 {0x24, 0xb0},
1834 {0x25, 0x90},
1835 {0x26, 0x94},
1836 {0x35, 0x90},
1837 {0x37, 0x07},
1838 {0x38, 0x08},
1839 {0x01, 0x8e},
1840 {0x02, 0x85}
1843 /* 7670. Defaults taken from OmniVision provided data,
1844 * as provided by Jonathan Corbet of OLPC */
1845 static const struct ov_i2c_regvals norm_7670[] = {
1846 { OV7670_R12_COM7, OV7670_COM7_RESET },
1847 { OV7670_R3A_TSLB, 0x04 }, /* OV */
1848 { OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1849 { OV7670_R11_CLKRC, 0x01 },
1851 * Set the hardware window. These values from OV don't entirely
1852 * make sense - hstop is less than hstart. But they work...
1854 { OV7670_R17_HSTART, 0x13 },
1855 { OV7670_R18_HSTOP, 0x01 },
1856 { OV7670_R32_HREF, 0xb6 },
1857 { OV7670_R19_VSTART, 0x02 },
1858 { OV7670_R1A_VSTOP, 0x7a },
1859 { OV7670_R03_VREF, 0x0a },
1861 { OV7670_R0C_COM3, 0x00 },
1862 { OV7670_R3E_COM14, 0x00 },
1863 /* Mystery scaling numbers */
1864 { 0x70, 0x3a },
1865 { 0x71, 0x35 },
1866 { 0x72, 0x11 },
1867 { 0x73, 0xf0 },
1868 { 0xa2, 0x02 },
1869 /* { OV7670_R15_COM10, 0x0 }, */
1871 /* Gamma curve values */
1872 { 0x7a, 0x20 },
1873 { 0x7b, 0x10 },
1874 { 0x7c, 0x1e },
1875 { 0x7d, 0x35 },
1876 { 0x7e, 0x5a },
1877 { 0x7f, 0x69 },
1878 { 0x80, 0x76 },
1879 { 0x81, 0x80 },
1880 { 0x82, 0x88 },
1881 { 0x83, 0x8f },
1882 { 0x84, 0x96 },
1883 { 0x85, 0xa3 },
1884 { 0x86, 0xaf },
1885 { 0x87, 0xc4 },
1886 { 0x88, 0xd7 },
1887 { 0x89, 0xe8 },
1889 /* AGC and AEC parameters. Note we start by disabling those features,
1890 then turn them only after tweaking the values. */
1891 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1892 | OV7670_COM8_AECSTEP
1893 | OV7670_COM8_BFILT },
1894 { OV7670_R00_GAIN, 0x00 },
1895 { OV7670_R10_AECH, 0x00 },
1896 { OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1897 { OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1898 { OV7670_RA5_BD50MAX, 0x05 },
1899 { OV7670_RAB_BD60MAX, 0x07 },
1900 { OV7670_R24_AEW, 0x95 },
1901 { OV7670_R25_AEB, 0x33 },
1902 { OV7670_R26_VPT, 0xe3 },
1903 { OV7670_R9F_HAECC1, 0x78 },
1904 { OV7670_RA0_HAECC2, 0x68 },
1905 { 0xa1, 0x03 }, /* magic */
1906 { OV7670_RA6_HAECC3, 0xd8 },
1907 { OV7670_RA7_HAECC4, 0xd8 },
1908 { OV7670_RA8_HAECC5, 0xf0 },
1909 { OV7670_RA9_HAECC6, 0x90 },
1910 { OV7670_RAA_HAECC7, 0x94 },
1911 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1912 | OV7670_COM8_AECSTEP
1913 | OV7670_COM8_BFILT
1914 | OV7670_COM8_AGC
1915 | OV7670_COM8_AEC },
1917 /* Almost all of these are magic "reserved" values. */
1918 { OV7670_R0E_COM5, 0x61 },
1919 { OV7670_R0F_COM6, 0x4b },
1920 { 0x16, 0x02 },
1921 { OV7670_R1E_MVFP, 0x07 },
1922 { 0x21, 0x02 },
1923 { 0x22, 0x91 },
1924 { 0x29, 0x07 },
1925 { 0x33, 0x0b },
1926 { 0x35, 0x0b },
1927 { 0x37, 0x1d },
1928 { 0x38, 0x71 },
1929 { 0x39, 0x2a },
1930 { OV7670_R3C_COM12, 0x78 },
1931 { 0x4d, 0x40 },
1932 { 0x4e, 0x20 },
1933 { OV7670_R69_GFIX, 0x00 },
1934 { 0x6b, 0x4a },
1935 { 0x74, 0x10 },
1936 { 0x8d, 0x4f },
1937 { 0x8e, 0x00 },
1938 { 0x8f, 0x00 },
1939 { 0x90, 0x00 },
1940 { 0x91, 0x00 },
1941 { 0x96, 0x00 },
1942 { 0x9a, 0x00 },
1943 { 0xb0, 0x84 },
1944 { 0xb1, 0x0c },
1945 { 0xb2, 0x0e },
1946 { 0xb3, 0x82 },
1947 { 0xb8, 0x0a },
1949 /* More reserved magic, some of which tweaks white balance */
1950 { 0x43, 0x0a },
1951 { 0x44, 0xf0 },
1952 { 0x45, 0x34 },
1953 { 0x46, 0x58 },
1954 { 0x47, 0x28 },
1955 { 0x48, 0x3a },
1956 { 0x59, 0x88 },
1957 { 0x5a, 0x88 },
1958 { 0x5b, 0x44 },
1959 { 0x5c, 0x67 },
1960 { 0x5d, 0x49 },
1961 { 0x5e, 0x0e },
1962 { 0x6c, 0x0a },
1963 { 0x6d, 0x55 },
1964 { 0x6e, 0x11 },
1965 { 0x6f, 0x9f }, /* "9e for advance AWB" */
1966 { 0x6a, 0x40 },
1967 { OV7670_R01_BLUE, 0x40 },
1968 { OV7670_R02_RED, 0x60 },
1969 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1970 | OV7670_COM8_AECSTEP
1971 | OV7670_COM8_BFILT
1972 | OV7670_COM8_AGC
1973 | OV7670_COM8_AEC
1974 | OV7670_COM8_AWB },
1976 /* Matrix coefficients */
1977 { 0x4f, 0x80 },
1978 { 0x50, 0x80 },
1979 { 0x51, 0x00 },
1980 { 0x52, 0x22 },
1981 { 0x53, 0x5e },
1982 { 0x54, 0x80 },
1983 { 0x58, 0x9e },
1985 { OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1986 { OV7670_R3F_EDGE, 0x00 },
1987 { 0x75, 0x05 },
1988 { 0x76, 0xe1 },
1989 { 0x4c, 0x00 },
1990 { 0x77, 0x01 },
1991 { OV7670_R3D_COM13, OV7670_COM13_GAMMA
1992 | OV7670_COM13_UVSAT
1993 | 2}, /* was 3 */
1994 { 0x4b, 0x09 },
1995 { 0xc9, 0x60 },
1996 { OV7670_R41_COM16, 0x38 },
1997 { 0x56, 0x40 },
1999 { 0x34, 0x11 },
2000 { OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
2001 { 0xa4, 0x88 },
2002 { 0x96, 0x00 },
2003 { 0x97, 0x30 },
2004 { 0x98, 0x20 },
2005 { 0x99, 0x30 },
2006 { 0x9a, 0x84 },
2007 { 0x9b, 0x29 },
2008 { 0x9c, 0x03 },
2009 { 0x9d, 0x4c },
2010 { 0x9e, 0x3f },
2011 { 0x78, 0x04 },
2013 /* Extra-weird stuff. Some sort of multiplexor register */
2014 { 0x79, 0x01 },
2015 { 0xc8, 0xf0 },
2016 { 0x79, 0x0f },
2017 { 0xc8, 0x00 },
2018 { 0x79, 0x10 },
2019 { 0xc8, 0x7e },
2020 { 0x79, 0x0a },
2021 { 0xc8, 0x80 },
2022 { 0x79, 0x0b },
2023 { 0xc8, 0x01 },
2024 { 0x79, 0x0c },
2025 { 0xc8, 0x0f },
2026 { 0x79, 0x0d },
2027 { 0xc8, 0x20 },
2028 { 0x79, 0x09 },
2029 { 0xc8, 0x80 },
2030 { 0x79, 0x02 },
2031 { 0xc8, 0xc0 },
2032 { 0x79, 0x03 },
2033 { 0xc8, 0x40 },
2034 { 0x79, 0x05 },
2035 { 0xc8, 0x30 },
2036 { 0x79, 0x26 },
2039 static const struct ov_i2c_regvals norm_8610[] = {
2040 { 0x12, 0x80 },
2041 { 0x00, 0x00 },
2042 { 0x01, 0x80 },
2043 { 0x02, 0x80 },
2044 { 0x03, 0xc0 },
2045 { 0x04, 0x30 },
2046 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
2047 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
2048 { 0x0a, 0x86 },
2049 { 0x0b, 0xb0 },
2050 { 0x0c, 0x20 },
2051 { 0x0d, 0x20 },
2052 { 0x11, 0x01 },
2053 { 0x12, 0x25 },
2054 { 0x13, 0x01 },
2055 { 0x14, 0x04 },
2056 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
2057 { 0x16, 0x03 },
2058 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
2059 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
2060 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
2061 { 0x1a, 0xf5 },
2062 { 0x1b, 0x00 },
2063 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
2064 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
2065 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
2066 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
2067 { 0x26, 0xa2 },
2068 { 0x27, 0xea },
2069 { 0x28, 0x00 },
2070 { 0x29, 0x00 },
2071 { 0x2a, 0x80 },
2072 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
2073 { 0x2c, 0xac },
2074 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
2075 { 0x2e, 0x80 },
2076 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
2077 { 0x4c, 0x00 },
2078 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
2079 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
2080 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
2081 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
2082 { 0x63, 0xff },
2083 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
2084 * maybe thats wrong */
2085 { 0x65, 0x00 },
2086 { 0x66, 0x55 },
2087 { 0x67, 0xb0 },
2088 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
2089 { 0x69, 0x02 },
2090 { 0x6a, 0x22 },
2091 { 0x6b, 0x00 },
2092 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
2093 * deleting bit7 colors the first images red */
2094 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
2095 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
2096 { 0x6f, 0x01 },
2097 { 0x70, 0x8b },
2098 { 0x71, 0x00 },
2099 { 0x72, 0x14 },
2100 { 0x73, 0x54 },
2101 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
2102 { 0x75, 0x0e },
2103 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
2104 { 0x77, 0xff },
2105 { 0x78, 0x80 },
2106 { 0x79, 0x80 },
2107 { 0x7a, 0x80 },
2108 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
2109 { 0x7c, 0x00 },
2110 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
2111 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
2112 { 0x7f, 0xfb },
2113 { 0x80, 0x28 },
2114 { 0x81, 0x00 },
2115 { 0x82, 0x23 },
2116 { 0x83, 0x0b },
2117 { 0x84, 0x00 },
2118 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
2119 { 0x86, 0xc9 },
2120 { 0x87, 0x00 },
2121 { 0x88, 0x00 },
2122 { 0x89, 0x01 },
2123 { 0x12, 0x20 },
2124 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
2127 static unsigned char ov7670_abs_to_sm(unsigned char v)
2129 if (v > 127)
2130 return v & 0x7f;
2131 return (128 - v) | 0x80;
2134 /* Write a OV519 register */
2135 static void reg_w(struct sd *sd, u16 index, u16 value)
2137 int ret, req = 0;
2139 if (sd->gspca_dev.usb_err < 0)
2140 return;
2142 switch (sd->bridge) {
2143 case BRIDGE_OV511:
2144 case BRIDGE_OV511PLUS:
2145 req = 2;
2146 break;
2147 case BRIDGE_OVFX2:
2148 req = 0x0a;
2149 /* fall through */
2150 case BRIDGE_W9968CF:
2151 PDEBUG(D_USBO, "SET %02x %04x %04x",
2152 req, value, index);
2153 ret = usb_control_msg(sd->gspca_dev.dev,
2154 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2155 req,
2156 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2157 value, index, NULL, 0, 500);
2158 goto leave;
2159 default:
2160 req = 1;
2163 PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2164 req, index, value);
2165 sd->gspca_dev.usb_buf[0] = value;
2166 ret = usb_control_msg(sd->gspca_dev.dev,
2167 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2168 req,
2169 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2170 0, index,
2171 sd->gspca_dev.usb_buf, 1, 500);
2172 leave:
2173 if (ret < 0) {
2174 err("reg_w %02x failed %d", index, ret);
2175 sd->gspca_dev.usb_err = ret;
2176 return;
2180 /* Read from a OV519 register, note not valid for the w9968cf!! */
2181 /* returns: negative is error, pos or zero is data */
2182 static int reg_r(struct sd *sd, u16 index)
2184 int ret;
2185 int req;
2187 if (sd->gspca_dev.usb_err < 0)
2188 return -1;
2190 switch (sd->bridge) {
2191 case BRIDGE_OV511:
2192 case BRIDGE_OV511PLUS:
2193 req = 3;
2194 break;
2195 case BRIDGE_OVFX2:
2196 req = 0x0b;
2197 break;
2198 default:
2199 req = 1;
2202 ret = usb_control_msg(sd->gspca_dev.dev,
2203 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2204 req,
2205 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2206 0, index, sd->gspca_dev.usb_buf, 1, 500);
2208 if (ret >= 0) {
2209 ret = sd->gspca_dev.usb_buf[0];
2210 PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2211 req, index, ret);
2212 } else {
2213 err("reg_r %02x failed %d", index, ret);
2214 sd->gspca_dev.usb_err = ret;
2217 return ret;
2220 /* Read 8 values from a OV519 register */
2221 static int reg_r8(struct sd *sd,
2222 u16 index)
2224 int ret;
2226 if (sd->gspca_dev.usb_err < 0)
2227 return -1;
2229 ret = usb_control_msg(sd->gspca_dev.dev,
2230 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2231 1, /* REQ_IO */
2232 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2233 0, index, sd->gspca_dev.usb_buf, 8, 500);
2235 if (ret >= 0) {
2236 ret = sd->gspca_dev.usb_buf[0];
2237 } else {
2238 err("reg_r8 %02x failed %d", index, ret);
2239 sd->gspca_dev.usb_err = ret;
2242 return ret;
2246 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2247 * the same position as 1's in "mask" are cleared and set to "value". Bits
2248 * that are in the same position as 0's in "mask" are preserved, regardless
2249 * of their respective state in "value".
2251 static void reg_w_mask(struct sd *sd,
2252 u16 index,
2253 u8 value,
2254 u8 mask)
2256 int ret;
2257 u8 oldval;
2259 if (mask != 0xff) {
2260 value &= mask; /* Enforce mask on value */
2261 ret = reg_r(sd, index);
2262 if (ret < 0)
2263 return;
2265 oldval = ret & ~mask; /* Clear the masked bits */
2266 value |= oldval; /* Set the desired bits */
2268 reg_w(sd, index, value);
2272 * Writes multiple (n) byte value to a single register. Only valid with certain
2273 * registers (0x30 and 0xc4 - 0xce).
2275 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2277 int ret;
2279 if (sd->gspca_dev.usb_err < 0)
2280 return;
2282 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2284 ret = usb_control_msg(sd->gspca_dev.dev,
2285 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2286 1 /* REG_IO */,
2287 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2288 0, index,
2289 sd->gspca_dev.usb_buf, n, 500);
2290 if (ret < 0) {
2291 err("reg_w32 %02x failed %d", index, ret);
2292 sd->gspca_dev.usb_err = ret;
2296 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2298 int rc, retries;
2300 PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2302 /* Three byte write cycle */
2303 for (retries = 6; ; ) {
2304 /* Select camera register */
2305 reg_w(sd, R51x_I2C_SADDR_3, reg);
2307 /* Write "value" to I2C data port of OV511 */
2308 reg_w(sd, R51x_I2C_DATA, value);
2310 /* Initiate 3-byte write cycle */
2311 reg_w(sd, R511_I2C_CTL, 0x01);
2313 do {
2314 rc = reg_r(sd, R511_I2C_CTL);
2315 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2317 if (rc < 0)
2318 return;
2320 if ((rc & 2) == 0) /* Ack? */
2321 break;
2322 if (--retries < 0) {
2323 PDEBUG(D_USBO, "i2c write retries exhausted");
2324 return;
2329 static int ov511_i2c_r(struct sd *sd, u8 reg)
2331 int rc, value, retries;
2333 /* Two byte write cycle */
2334 for (retries = 6; ; ) {
2335 /* Select camera register */
2336 reg_w(sd, R51x_I2C_SADDR_2, reg);
2338 /* Initiate 2-byte write cycle */
2339 reg_w(sd, R511_I2C_CTL, 0x03);
2341 do {
2342 rc = reg_r(sd, R511_I2C_CTL);
2343 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2345 if (rc < 0)
2346 return rc;
2348 if ((rc & 2) == 0) /* Ack? */
2349 break;
2351 /* I2C abort */
2352 reg_w(sd, R511_I2C_CTL, 0x10);
2354 if (--retries < 0) {
2355 PDEBUG(D_USBI, "i2c write retries exhausted");
2356 return -1;
2360 /* Two byte read cycle */
2361 for (retries = 6; ; ) {
2362 /* Initiate 2-byte read cycle */
2363 reg_w(sd, R511_I2C_CTL, 0x05);
2365 do {
2366 rc = reg_r(sd, R511_I2C_CTL);
2367 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2369 if (rc < 0)
2370 return rc;
2372 if ((rc & 2) == 0) /* Ack? */
2373 break;
2375 /* I2C abort */
2376 reg_w(sd, R511_I2C_CTL, 0x10);
2378 if (--retries < 0) {
2379 PDEBUG(D_USBI, "i2c read retries exhausted");
2380 return -1;
2384 value = reg_r(sd, R51x_I2C_DATA);
2386 PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2388 /* This is needed to make i2c_w() work */
2389 reg_w(sd, R511_I2C_CTL, 0x05);
2391 return value;
2395 * The OV518 I2C I/O procedure is different, hence, this function.
2396 * This is normally only called from i2c_w(). Note that this function
2397 * always succeeds regardless of whether the sensor is present and working.
2399 static void ov518_i2c_w(struct sd *sd,
2400 u8 reg,
2401 u8 value)
2403 PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2405 /* Select camera register */
2406 reg_w(sd, R51x_I2C_SADDR_3, reg);
2408 /* Write "value" to I2C data port of OV511 */
2409 reg_w(sd, R51x_I2C_DATA, value);
2411 /* Initiate 3-byte write cycle */
2412 reg_w(sd, R518_I2C_CTL, 0x01);
2414 /* wait for write complete */
2415 msleep(4);
2416 reg_r8(sd, R518_I2C_CTL);
2420 * returns: negative is error, pos or zero is data
2422 * The OV518 I2C I/O procedure is different, hence, this function.
2423 * This is normally only called from i2c_r(). Note that this function
2424 * always succeeds regardless of whether the sensor is present and working.
2426 static int ov518_i2c_r(struct sd *sd, u8 reg)
2428 int value;
2430 /* Select camera register */
2431 reg_w(sd, R51x_I2C_SADDR_2, reg);
2433 /* Initiate 2-byte write cycle */
2434 reg_w(sd, R518_I2C_CTL, 0x03);
2435 reg_r8(sd, R518_I2C_CTL);
2437 /* Initiate 2-byte read cycle */
2438 reg_w(sd, R518_I2C_CTL, 0x05);
2439 reg_r8(sd, R518_I2C_CTL);
2441 value = reg_r(sd, R51x_I2C_DATA);
2442 PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2443 return value;
2446 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2448 int ret;
2450 if (sd->gspca_dev.usb_err < 0)
2451 return;
2453 ret = usb_control_msg(sd->gspca_dev.dev,
2454 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2455 0x02,
2456 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2457 (u16) value, (u16) reg, NULL, 0, 500);
2459 if (ret < 0) {
2460 err("ovfx2_i2c_w %02x failed %d", reg, ret);
2461 sd->gspca_dev.usb_err = ret;
2464 PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2467 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2469 int ret;
2471 if (sd->gspca_dev.usb_err < 0)
2472 return -1;
2474 ret = usb_control_msg(sd->gspca_dev.dev,
2475 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2476 0x03,
2477 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2478 0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2480 if (ret >= 0) {
2481 ret = sd->gspca_dev.usb_buf[0];
2482 PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2483 } else {
2484 err("ovfx2_i2c_r %02x failed %d", reg, ret);
2485 sd->gspca_dev.usb_err = ret;
2488 return ret;
2491 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2493 if (sd->sensor_reg_cache[reg] == value)
2494 return;
2496 switch (sd->bridge) {
2497 case BRIDGE_OV511:
2498 case BRIDGE_OV511PLUS:
2499 ov511_i2c_w(sd, reg, value);
2500 break;
2501 case BRIDGE_OV518:
2502 case BRIDGE_OV518PLUS:
2503 case BRIDGE_OV519:
2504 ov518_i2c_w(sd, reg, value);
2505 break;
2506 case BRIDGE_OVFX2:
2507 ovfx2_i2c_w(sd, reg, value);
2508 break;
2509 case BRIDGE_W9968CF:
2510 w9968cf_i2c_w(sd, reg, value);
2511 break;
2514 if (sd->gspca_dev.usb_err >= 0) {
2515 /* Up on sensor reset empty the register cache */
2516 if (reg == 0x12 && (value & 0x80))
2517 memset(sd->sensor_reg_cache, -1,
2518 sizeof(sd->sensor_reg_cache));
2519 else
2520 sd->sensor_reg_cache[reg] = value;
2524 static int i2c_r(struct sd *sd, u8 reg)
2526 int ret = -1;
2528 if (sd->sensor_reg_cache[reg] != -1)
2529 return sd->sensor_reg_cache[reg];
2531 switch (sd->bridge) {
2532 case BRIDGE_OV511:
2533 case BRIDGE_OV511PLUS:
2534 ret = ov511_i2c_r(sd, reg);
2535 break;
2536 case BRIDGE_OV518:
2537 case BRIDGE_OV518PLUS:
2538 case BRIDGE_OV519:
2539 ret = ov518_i2c_r(sd, reg);
2540 break;
2541 case BRIDGE_OVFX2:
2542 ret = ovfx2_i2c_r(sd, reg);
2543 break;
2544 case BRIDGE_W9968CF:
2545 ret = w9968cf_i2c_r(sd, reg);
2546 break;
2549 if (ret >= 0)
2550 sd->sensor_reg_cache[reg] = ret;
2552 return ret;
2555 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2556 * the same position as 1's in "mask" are cleared and set to "value". Bits
2557 * that are in the same position as 0's in "mask" are preserved, regardless
2558 * of their respective state in "value".
2560 static void i2c_w_mask(struct sd *sd,
2561 u8 reg,
2562 u8 value,
2563 u8 mask)
2565 int rc;
2566 u8 oldval;
2568 value &= mask; /* Enforce mask on value */
2569 rc = i2c_r(sd, reg);
2570 if (rc < 0)
2571 return;
2572 oldval = rc & ~mask; /* Clear the masked bits */
2573 value |= oldval; /* Set the desired bits */
2574 i2c_w(sd, reg, value);
2577 /* Temporarily stops OV511 from functioning. Must do this before changing
2578 * registers while the camera is streaming */
2579 static inline void ov51x_stop(struct sd *sd)
2581 PDEBUG(D_STREAM, "stopping");
2582 sd->stopped = 1;
2583 switch (sd->bridge) {
2584 case BRIDGE_OV511:
2585 case BRIDGE_OV511PLUS:
2586 reg_w(sd, R51x_SYS_RESET, 0x3d);
2587 break;
2588 case BRIDGE_OV518:
2589 case BRIDGE_OV518PLUS:
2590 reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2591 break;
2592 case BRIDGE_OV519:
2593 reg_w(sd, OV519_R51_RESET1, 0x0f);
2594 reg_w(sd, OV519_R51_RESET1, 0x00);
2595 reg_w(sd, 0x22, 0x00); /* FRAR */
2596 break;
2597 case BRIDGE_OVFX2:
2598 reg_w_mask(sd, 0x0f, 0x00, 0x02);
2599 break;
2600 case BRIDGE_W9968CF:
2601 reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2602 break;
2606 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2607 * actually stopped (for performance). */
2608 static inline void ov51x_restart(struct sd *sd)
2610 PDEBUG(D_STREAM, "restarting");
2611 if (!sd->stopped)
2612 return;
2613 sd->stopped = 0;
2615 /* Reinitialize the stream */
2616 switch (sd->bridge) {
2617 case BRIDGE_OV511:
2618 case BRIDGE_OV511PLUS:
2619 reg_w(sd, R51x_SYS_RESET, 0x00);
2620 break;
2621 case BRIDGE_OV518:
2622 case BRIDGE_OV518PLUS:
2623 reg_w(sd, 0x2f, 0x80);
2624 reg_w(sd, R51x_SYS_RESET, 0x00);
2625 break;
2626 case BRIDGE_OV519:
2627 reg_w(sd, OV519_R51_RESET1, 0x0f);
2628 reg_w(sd, OV519_R51_RESET1, 0x00);
2629 reg_w(sd, 0x22, 0x1d); /* FRAR */
2630 break;
2631 case BRIDGE_OVFX2:
2632 reg_w_mask(sd, 0x0f, 0x02, 0x02);
2633 break;
2634 case BRIDGE_W9968CF:
2635 reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2636 break;
2640 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2642 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2643 * is synchronized. Returns <0 on failure.
2645 static int init_ov_sensor(struct sd *sd, u8 slave)
2647 int i;
2649 ov51x_set_slave_ids(sd, slave);
2651 /* Reset the sensor */
2652 i2c_w(sd, 0x12, 0x80);
2654 /* Wait for it to initialize */
2655 msleep(150);
2657 for (i = 0; i < i2c_detect_tries; i++) {
2658 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2659 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2660 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2661 return 0;
2664 /* Reset the sensor */
2665 i2c_w(sd, 0x12, 0x80);
2667 /* Wait for it to initialize */
2668 msleep(150);
2670 /* Dummy read to sync I2C */
2671 if (i2c_r(sd, 0x00) < 0)
2672 return -1;
2674 return -1;
2677 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2678 * and the read slave will be set to (slave + 1).
2679 * This should not be called from outside the i2c I/O functions.
2680 * Sets I2C read and write slave IDs. Returns <0 for error
2682 static void ov51x_set_slave_ids(struct sd *sd,
2683 u8 slave)
2685 switch (sd->bridge) {
2686 case BRIDGE_OVFX2:
2687 reg_w(sd, OVFX2_I2C_ADDR, slave);
2688 return;
2689 case BRIDGE_W9968CF:
2690 sd->sensor_addr = slave;
2691 return;
2694 reg_w(sd, R51x_I2C_W_SID, slave);
2695 reg_w(sd, R51x_I2C_R_SID, slave + 1);
2698 static void write_regvals(struct sd *sd,
2699 const struct ov_regvals *regvals,
2700 int n)
2702 while (--n >= 0) {
2703 reg_w(sd, regvals->reg, regvals->val);
2704 regvals++;
2708 static void write_i2c_regvals(struct sd *sd,
2709 const struct ov_i2c_regvals *regvals,
2710 int n)
2712 while (--n >= 0) {
2713 i2c_w(sd, regvals->reg, regvals->val);
2714 regvals++;
2718 /****************************************************************************
2720 * OV511 and sensor configuration
2722 ***************************************************************************/
2724 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2725 static void ov_hires_configure(struct sd *sd)
2727 int high, low;
2729 if (sd->bridge != BRIDGE_OVFX2) {
2730 err("error hires sensors only supported with ovfx2");
2731 return;
2734 PDEBUG(D_PROBE, "starting ov hires configuration");
2736 /* Detect sensor (sub)type */
2737 high = i2c_r(sd, 0x0a);
2738 low = i2c_r(sd, 0x0b);
2739 /* info("%x, %x", high, low); */
2740 switch (high) {
2741 case 0x96:
2742 switch (low) {
2743 case 0x40:
2744 PDEBUG(D_PROBE, "Sensor is a OV2610");
2745 sd->sensor = SEN_OV2610;
2746 return;
2747 case 0x41:
2748 PDEBUG(D_PROBE, "Sensor is a OV2610AE");
2749 sd->sensor = SEN_OV2610AE;
2750 return;
2751 case 0xb1:
2752 PDEBUG(D_PROBE, "Sensor is a OV9600");
2753 sd->sensor = SEN_OV9600;
2754 return;
2756 break;
2757 case 0x36:
2758 if ((low & 0x0f) == 0x00) {
2759 PDEBUG(D_PROBE, "Sensor is a OV3610");
2760 sd->sensor = SEN_OV3610;
2761 return;
2763 break;
2765 err("Error unknown sensor type: %02x%02x", high, low);
2768 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2769 * the same register settings as the OV8610, since they are very similar.
2771 static void ov8xx0_configure(struct sd *sd)
2773 int rc;
2775 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2777 /* Detect sensor (sub)type */
2778 rc = i2c_r(sd, OV7610_REG_COM_I);
2779 if (rc < 0) {
2780 PDEBUG(D_ERR, "Error detecting sensor type");
2781 return;
2783 if ((rc & 3) == 1)
2784 sd->sensor = SEN_OV8610;
2785 else
2786 err("Unknown image sensor version: %d", rc & 3);
2789 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2790 * the same register settings as the OV7610, since they are very similar.
2792 static void ov7xx0_configure(struct sd *sd)
2794 int rc, high, low;
2796 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2798 /* Detect sensor (sub)type */
2799 rc = i2c_r(sd, OV7610_REG_COM_I);
2801 /* add OV7670 here
2802 * it appears to be wrongly detected as a 7610 by default */
2803 if (rc < 0) {
2804 PDEBUG(D_ERR, "Error detecting sensor type");
2805 return;
2807 if ((rc & 3) == 3) {
2808 /* quick hack to make OV7670s work */
2809 high = i2c_r(sd, 0x0a);
2810 low = i2c_r(sd, 0x0b);
2811 /* info("%x, %x", high, low); */
2812 if (high == 0x76 && (low & 0xf0) == 0x70) {
2813 PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2814 sd->sensor = SEN_OV7670;
2815 } else {
2816 PDEBUG(D_PROBE, "Sensor is an OV7610");
2817 sd->sensor = SEN_OV7610;
2819 } else if ((rc & 3) == 1) {
2820 /* I don't know what's different about the 76BE yet. */
2821 if (i2c_r(sd, 0x15) & 1) {
2822 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2823 sd->sensor = SEN_OV7620AE;
2824 } else {
2825 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2826 sd->sensor = SEN_OV76BE;
2828 } else if ((rc & 3) == 0) {
2829 /* try to read product id registers */
2830 high = i2c_r(sd, 0x0a);
2831 if (high < 0) {
2832 PDEBUG(D_ERR, "Error detecting camera chip PID");
2833 return;
2835 low = i2c_r(sd, 0x0b);
2836 if (low < 0) {
2837 PDEBUG(D_ERR, "Error detecting camera chip VER");
2838 return;
2840 if (high == 0x76) {
2841 switch (low) {
2842 case 0x30:
2843 err("Sensor is an OV7630/OV7635");
2844 err("7630 is not supported by this driver");
2845 return;
2846 case 0x40:
2847 PDEBUG(D_PROBE, "Sensor is an OV7645");
2848 sd->sensor = SEN_OV7640; /* FIXME */
2849 break;
2850 case 0x45:
2851 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2852 sd->sensor = SEN_OV7640; /* FIXME */
2853 break;
2854 case 0x48:
2855 PDEBUG(D_PROBE, "Sensor is an OV7648");
2856 sd->sensor = SEN_OV7648;
2857 break;
2858 case 0x60:
2859 PDEBUG(D_PROBE, "Sensor is a OV7660");
2860 sd->sensor = SEN_OV7660;
2861 sd->invert_led = 0;
2862 break;
2863 default:
2864 PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2865 return;
2867 } else {
2868 PDEBUG(D_PROBE, "Sensor is an OV7620");
2869 sd->sensor = SEN_OV7620;
2871 } else {
2872 err("Unknown image sensor version: %d", rc & 3);
2876 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2877 static void ov6xx0_configure(struct sd *sd)
2879 int rc;
2880 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2882 /* Detect sensor (sub)type */
2883 rc = i2c_r(sd, OV7610_REG_COM_I);
2884 if (rc < 0) {
2885 PDEBUG(D_ERR, "Error detecting sensor type");
2886 return;
2889 /* Ugh. The first two bits are the version bits, but
2890 * the entire register value must be used. I guess OVT
2891 * underestimated how many variants they would make. */
2892 switch (rc) {
2893 case 0x00:
2894 sd->sensor = SEN_OV6630;
2895 warn("WARNING: Sensor is an OV66308. Your camera may have");
2896 warn("been misdetected in previous driver versions.");
2897 break;
2898 case 0x01:
2899 sd->sensor = SEN_OV6620;
2900 PDEBUG(D_PROBE, "Sensor is an OV6620");
2901 break;
2902 case 0x02:
2903 sd->sensor = SEN_OV6630;
2904 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2905 break;
2906 case 0x03:
2907 sd->sensor = SEN_OV66308AF;
2908 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2909 break;
2910 case 0x90:
2911 sd->sensor = SEN_OV6630;
2912 warn("WARNING: Sensor is an OV66307. Your camera may have");
2913 warn("been misdetected in previous driver versions.");
2914 break;
2915 default:
2916 err("FATAL: Unknown sensor version: 0x%02x", rc);
2917 return;
2920 /* Set sensor-specific vars */
2921 sd->sif = 1;
2924 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2925 static void ov51x_led_control(struct sd *sd, int on)
2927 if (sd->invert_led)
2928 on = !on;
2930 switch (sd->bridge) {
2931 /* OV511 has no LED control */
2932 case BRIDGE_OV511PLUS:
2933 reg_w(sd, R511_SYS_LED_CTL, on);
2934 break;
2935 case BRIDGE_OV518:
2936 case BRIDGE_OV518PLUS:
2937 reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2938 break;
2939 case BRIDGE_OV519:
2940 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2941 break;
2945 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2947 struct sd *sd = (struct sd *) gspca_dev;
2949 if (!sd->snapshot_needs_reset)
2950 return;
2952 /* Note it is important that we clear sd->snapshot_needs_reset,
2953 before actually clearing the snapshot state in the bridge
2954 otherwise we might race with the pkt_scan interrupt handler */
2955 sd->snapshot_needs_reset = 0;
2957 switch (sd->bridge) {
2958 case BRIDGE_OV511:
2959 case BRIDGE_OV511PLUS:
2960 reg_w(sd, R51x_SYS_SNAP, 0x02);
2961 reg_w(sd, R51x_SYS_SNAP, 0x00);
2962 break;
2963 case BRIDGE_OV518:
2964 case BRIDGE_OV518PLUS:
2965 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2966 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2967 break;
2968 case BRIDGE_OV519:
2969 reg_w(sd, R51x_SYS_RESET, 0x40);
2970 reg_w(sd, R51x_SYS_RESET, 0x00);
2971 break;
2975 static void ov51x_upload_quan_tables(struct sd *sd)
2977 const unsigned char yQuanTable511[] = {
2978 0, 1, 1, 2, 2, 3, 3, 4,
2979 1, 1, 1, 2, 2, 3, 4, 4,
2980 1, 1, 2, 2, 3, 4, 4, 4,
2981 2, 2, 2, 3, 4, 4, 4, 4,
2982 2, 2, 3, 4, 4, 5, 5, 5,
2983 3, 3, 4, 4, 5, 5, 5, 5,
2984 3, 4, 4, 4, 5, 5, 5, 5,
2985 4, 4, 4, 4, 5, 5, 5, 5
2988 const unsigned char uvQuanTable511[] = {
2989 0, 2, 2, 3, 4, 4, 4, 4,
2990 2, 2, 2, 4, 4, 4, 4, 4,
2991 2, 2, 3, 4, 4, 4, 4, 4,
2992 3, 4, 4, 4, 4, 4, 4, 4,
2993 4, 4, 4, 4, 4, 4, 4, 4,
2994 4, 4, 4, 4, 4, 4, 4, 4,
2995 4, 4, 4, 4, 4, 4, 4, 4,
2996 4, 4, 4, 4, 4, 4, 4, 4
2999 /* OV518 quantization tables are 8x4 (instead of 8x8) */
3000 const unsigned char yQuanTable518[] = {
3001 5, 4, 5, 6, 6, 7, 7, 7,
3002 5, 5, 5, 5, 6, 7, 7, 7,
3003 6, 6, 6, 6, 7, 7, 7, 8,
3004 7, 7, 6, 7, 7, 7, 8, 8
3006 const unsigned char uvQuanTable518[] = {
3007 6, 6, 6, 7, 7, 7, 7, 7,
3008 6, 6, 6, 7, 7, 7, 7, 7,
3009 6, 6, 6, 7, 7, 7, 7, 8,
3010 7, 7, 7, 7, 7, 7, 8, 8
3013 const unsigned char *pYTable, *pUVTable;
3014 unsigned char val0, val1;
3015 int i, size, reg = R51x_COMP_LUT_BEGIN;
3017 PDEBUG(D_PROBE, "Uploading quantization tables");
3019 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
3020 pYTable = yQuanTable511;
3021 pUVTable = uvQuanTable511;
3022 size = 32;
3023 } else {
3024 pYTable = yQuanTable518;
3025 pUVTable = uvQuanTable518;
3026 size = 16;
3029 for (i = 0; i < size; i++) {
3030 val0 = *pYTable++;
3031 val1 = *pYTable++;
3032 val0 &= 0x0f;
3033 val1 &= 0x0f;
3034 val0 |= val1 << 4;
3035 reg_w(sd, reg, val0);
3037 val0 = *pUVTable++;
3038 val1 = *pUVTable++;
3039 val0 &= 0x0f;
3040 val1 &= 0x0f;
3041 val0 |= val1 << 4;
3042 reg_w(sd, reg + size, val0);
3044 reg++;
3048 /* This initializes the OV511/OV511+ and the sensor */
3049 static void ov511_configure(struct gspca_dev *gspca_dev)
3051 struct sd *sd = (struct sd *) gspca_dev;
3053 /* For 511 and 511+ */
3054 const struct ov_regvals init_511[] = {
3055 { R51x_SYS_RESET, 0x7f },
3056 { R51x_SYS_INIT, 0x01 },
3057 { R51x_SYS_RESET, 0x7f },
3058 { R51x_SYS_INIT, 0x01 },
3059 { R51x_SYS_RESET, 0x3f },
3060 { R51x_SYS_INIT, 0x01 },
3061 { R51x_SYS_RESET, 0x3d },
3064 const struct ov_regvals norm_511[] = {
3065 { R511_DRAM_FLOW_CTL, 0x01 },
3066 { R51x_SYS_SNAP, 0x00 },
3067 { R51x_SYS_SNAP, 0x02 },
3068 { R51x_SYS_SNAP, 0x00 },
3069 { R511_FIFO_OPTS, 0x1f },
3070 { R511_COMP_EN, 0x00 },
3071 { R511_COMP_LUT_EN, 0x03 },
3074 const struct ov_regvals norm_511_p[] = {
3075 { R511_DRAM_FLOW_CTL, 0xff },
3076 { R51x_SYS_SNAP, 0x00 },
3077 { R51x_SYS_SNAP, 0x02 },
3078 { R51x_SYS_SNAP, 0x00 },
3079 { R511_FIFO_OPTS, 0xff },
3080 { R511_COMP_EN, 0x00 },
3081 { R511_COMP_LUT_EN, 0x03 },
3084 const struct ov_regvals compress_511[] = {
3085 { 0x70, 0x1f },
3086 { 0x71, 0x05 },
3087 { 0x72, 0x06 },
3088 { 0x73, 0x06 },
3089 { 0x74, 0x14 },
3090 { 0x75, 0x03 },
3091 { 0x76, 0x04 },
3092 { 0x77, 0x04 },
3095 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
3097 write_regvals(sd, init_511, ARRAY_SIZE(init_511));
3099 switch (sd->bridge) {
3100 case BRIDGE_OV511:
3101 write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
3102 break;
3103 case BRIDGE_OV511PLUS:
3104 write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3105 break;
3108 /* Init compression */
3109 write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3111 ov51x_upload_quan_tables(sd);
3114 /* This initializes the OV518/OV518+ and the sensor */
3115 static void ov518_configure(struct gspca_dev *gspca_dev)
3117 struct sd *sd = (struct sd *) gspca_dev;
3119 /* For 518 and 518+ */
3120 const struct ov_regvals init_518[] = {
3121 { R51x_SYS_RESET, 0x40 },
3122 { R51x_SYS_INIT, 0xe1 },
3123 { R51x_SYS_RESET, 0x3e },
3124 { R51x_SYS_INIT, 0xe1 },
3125 { R51x_SYS_RESET, 0x00 },
3126 { R51x_SYS_INIT, 0xe1 },
3127 { 0x46, 0x00 },
3128 { 0x5d, 0x03 },
3131 const struct ov_regvals norm_518[] = {
3132 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3133 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3134 { 0x31, 0x0f },
3135 { 0x5d, 0x03 },
3136 { 0x24, 0x9f },
3137 { 0x25, 0x90 },
3138 { 0x20, 0x00 },
3139 { 0x51, 0x04 },
3140 { 0x71, 0x19 },
3141 { 0x2f, 0x80 },
3144 const struct ov_regvals norm_518_p[] = {
3145 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3146 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3147 { 0x31, 0x0f },
3148 { 0x5d, 0x03 },
3149 { 0x24, 0x9f },
3150 { 0x25, 0x90 },
3151 { 0x20, 0x60 },
3152 { 0x51, 0x02 },
3153 { 0x71, 0x19 },
3154 { 0x40, 0xff },
3155 { 0x41, 0x42 },
3156 { 0x46, 0x00 },
3157 { 0x33, 0x04 },
3158 { 0x21, 0x19 },
3159 { 0x3f, 0x10 },
3160 { 0x2f, 0x80 },
3163 /* First 5 bits of custom ID reg are a revision ID on OV518 */
3164 PDEBUG(D_PROBE, "Device revision %d",
3165 0x1f & reg_r(sd, R51x_SYS_CUST_ID));
3167 write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3169 /* Set LED GPIO pin to output mode */
3170 reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3172 switch (sd->bridge) {
3173 case BRIDGE_OV518:
3174 write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3175 break;
3176 case BRIDGE_OV518PLUS:
3177 write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3178 break;
3181 ov51x_upload_quan_tables(sd);
3183 reg_w(sd, 0x2f, 0x80);
3186 static void ov519_configure(struct sd *sd)
3188 static const struct ov_regvals init_519[] = {
3189 { 0x5a, 0x6d }, /* EnableSystem */
3190 { 0x53, 0x9b }, /* don't enable the microcontroller */
3191 { OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3192 { 0x5d, 0x03 },
3193 { 0x49, 0x01 },
3194 { 0x48, 0x00 },
3195 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
3196 * detection will fail. This deserves further investigation. */
3197 { OV519_GPIO_IO_CTRL0, 0xee },
3198 { OV519_R51_RESET1, 0x0f },
3199 { OV519_R51_RESET1, 0x00 },
3200 { 0x22, 0x00 },
3201 /* windows reads 0x55 at this point*/
3204 write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3207 static void ovfx2_configure(struct sd *sd)
3209 static const struct ov_regvals init_fx2[] = {
3210 { 0x00, 0x60 },
3211 { 0x02, 0x01 },
3212 { 0x0f, 0x1d },
3213 { 0xe9, 0x82 },
3214 { 0xea, 0xc7 },
3215 { 0xeb, 0x10 },
3216 { 0xec, 0xf6 },
3219 sd->stopped = 1;
3221 write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3224 /* set the mode */
3225 /* This function works for ov7660 only */
3226 static void ov519_set_mode(struct sd *sd)
3228 static const struct ov_regvals bridge_ov7660[2][10] = {
3229 {{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3230 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3231 {0x25, 0x01}, {0x26, 0x00}},
3232 {{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3233 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3234 {0x25, 0x03}, {0x26, 0x00}}
3236 static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3237 {{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3238 {{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3240 static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3241 {OV7670_R17_HSTART, 0x13},
3242 {OV7670_R18_HSTOP, 0x01},
3243 {OV7670_R32_HREF, 0x92},
3244 {OV7670_R19_VSTART, 0x02},
3245 {OV7670_R1A_VSTOP, 0x7a},
3246 {OV7670_R03_VREF, 0x00},
3247 /* {0x33, 0x00}, */
3248 /* {0x34, 0x07}, */
3249 /* {0x36, 0x00}, */
3250 /* {0x6b, 0x0a}, */
3253 write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3254 ARRAY_SIZE(bridge_ov7660[0]));
3255 write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3256 ARRAY_SIZE(sensor_ov7660[0]));
3257 write_i2c_regvals(sd, sensor_ov7660_2,
3258 ARRAY_SIZE(sensor_ov7660_2));
3261 /* set the frame rate */
3262 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3263 static void ov519_set_fr(struct sd *sd)
3265 int fr;
3266 u8 clock;
3267 /* frame rate table with indices:
3268 * - mode = 0: 320x240, 1: 640x480
3269 * - fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3270 * - reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3272 static const u8 fr_tb[2][6][3] = {
3273 {{0x04, 0xff, 0x00},
3274 {0x04, 0x1f, 0x00},
3275 {0x04, 0x1b, 0x00},
3276 {0x04, 0x15, 0x00},
3277 {0x04, 0x09, 0x00},
3278 {0x04, 0x01, 0x00}},
3279 {{0x0c, 0xff, 0x00},
3280 {0x0c, 0x1f, 0x00},
3281 {0x0c, 0x1b, 0x00},
3282 {0x04, 0xff, 0x01},
3283 {0x04, 0x1f, 0x01},
3284 {0x04, 0x1b, 0x01}},
3287 if (frame_rate > 0)
3288 sd->frame_rate = frame_rate;
3289 if (sd->frame_rate >= 30)
3290 fr = 0;
3291 else if (sd->frame_rate >= 25)
3292 fr = 1;
3293 else if (sd->frame_rate >= 20)
3294 fr = 2;
3295 else if (sd->frame_rate >= 15)
3296 fr = 3;
3297 else if (sd->frame_rate >= 10)
3298 fr = 4;
3299 else
3300 fr = 5;
3301 reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3302 reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3303 clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3304 if (sd->sensor == SEN_OV7660)
3305 clock |= 0x80; /* enable double clock */
3306 ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3309 static void setautogain(struct gspca_dev *gspca_dev)
3311 struct sd *sd = (struct sd *) gspca_dev;
3313 i2c_w_mask(sd, 0x13, sd->ctrls[AUTOGAIN].val ? 0x05 : 0x00, 0x05);
3316 /* this function is called at probe time */
3317 static int sd_config(struct gspca_dev *gspca_dev,
3318 const struct usb_device_id *id)
3320 struct sd *sd = (struct sd *) gspca_dev;
3321 struct cam *cam = &gspca_dev->cam;
3323 sd->bridge = id->driver_info & BRIDGE_MASK;
3324 sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3326 switch (sd->bridge) {
3327 case BRIDGE_OV511:
3328 case BRIDGE_OV511PLUS:
3329 cam->cam_mode = ov511_vga_mode;
3330 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3331 break;
3332 case BRIDGE_OV518:
3333 case BRIDGE_OV518PLUS:
3334 cam->cam_mode = ov518_vga_mode;
3335 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3336 break;
3337 case BRIDGE_OV519:
3338 cam->cam_mode = ov519_vga_mode;
3339 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3340 sd->invert_led = !sd->invert_led;
3341 break;
3342 case BRIDGE_OVFX2:
3343 cam->cam_mode = ov519_vga_mode;
3344 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3345 cam->bulk_size = OVFX2_BULK_SIZE;
3346 cam->bulk_nurbs = MAX_NURBS;
3347 cam->bulk = 1;
3348 break;
3349 case BRIDGE_W9968CF:
3350 cam->cam_mode = w9968cf_vga_mode;
3351 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3352 cam->reverse_alts = 1;
3353 break;
3356 gspca_dev->cam.ctrls = sd->ctrls;
3357 sd->quality = QUALITY_DEF;
3358 sd->frame_rate = 15;
3360 return 0;
3363 /* this function is called at probe and resume time */
3364 static int sd_init(struct gspca_dev *gspca_dev)
3366 struct sd *sd = (struct sd *) gspca_dev;
3367 struct cam *cam = &gspca_dev->cam;
3369 switch (sd->bridge) {
3370 case BRIDGE_OV511:
3371 case BRIDGE_OV511PLUS:
3372 ov511_configure(gspca_dev);
3373 break;
3374 case BRIDGE_OV518:
3375 case BRIDGE_OV518PLUS:
3376 ov518_configure(gspca_dev);
3377 break;
3378 case BRIDGE_OV519:
3379 ov519_configure(sd);
3380 break;
3381 case BRIDGE_OVFX2:
3382 ovfx2_configure(sd);
3383 break;
3384 case BRIDGE_W9968CF:
3385 w9968cf_configure(sd);
3386 break;
3389 /* The OV519 must be more aggressive about sensor detection since
3390 * I2C write will never fail if the sensor is not present. We have
3391 * to try to initialize the sensor to detect its presence */
3392 sd->sensor = -1;
3394 /* Test for 76xx */
3395 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3396 ov7xx0_configure(sd);
3398 /* Test for 6xx0 */
3399 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3400 ov6xx0_configure(sd);
3402 /* Test for 8xx0 */
3403 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3404 ov8xx0_configure(sd);
3406 /* Test for 3xxx / 2xxx */
3407 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3408 ov_hires_configure(sd);
3409 } else {
3410 err("Can't determine sensor slave IDs");
3411 goto error;
3414 if (sd->sensor < 0)
3415 goto error;
3417 ov51x_led_control(sd, 0); /* turn LED off */
3419 switch (sd->bridge) {
3420 case BRIDGE_OV511:
3421 case BRIDGE_OV511PLUS:
3422 if (sd->sif) {
3423 cam->cam_mode = ov511_sif_mode;
3424 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3426 break;
3427 case BRIDGE_OV518:
3428 case BRIDGE_OV518PLUS:
3429 if (sd->sif) {
3430 cam->cam_mode = ov518_sif_mode;
3431 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3433 break;
3434 case BRIDGE_OV519:
3435 if (sd->sif) {
3436 cam->cam_mode = ov519_sif_mode;
3437 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3439 break;
3440 case BRIDGE_OVFX2:
3441 switch (sd->sensor) {
3442 case SEN_OV2610:
3443 case SEN_OV2610AE:
3444 cam->cam_mode = ovfx2_ov2610_mode;
3445 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3446 break;
3447 case SEN_OV3610:
3448 cam->cam_mode = ovfx2_ov3610_mode;
3449 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3450 break;
3451 case SEN_OV9600:
3452 cam->cam_mode = ovfx2_ov9600_mode;
3453 cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3454 break;
3455 default:
3456 if (sd->sif) {
3457 cam->cam_mode = ov519_sif_mode;
3458 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3460 break;
3462 break;
3463 case BRIDGE_W9968CF:
3464 if (sd->sif)
3465 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3467 /* w9968cf needs initialisation once the sensor is known */
3468 w9968cf_init(sd);
3469 break;
3472 gspca_dev->ctrl_dis = ctrl_dis[sd->sensor];
3474 /* initialize the sensor */
3475 switch (sd->sensor) {
3476 case SEN_OV2610:
3477 write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3479 /* Enable autogain, autoexpo, awb, bandfilter */
3480 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3481 break;
3482 case SEN_OV2610AE:
3483 write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3485 /* enable autoexpo */
3486 i2c_w_mask(sd, 0x13, 0x05, 0x05);
3487 break;
3488 case SEN_OV3610:
3489 write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3491 /* Enable autogain, autoexpo, awb, bandfilter */
3492 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3493 break;
3494 case SEN_OV6620:
3495 write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3496 break;
3497 case SEN_OV6630:
3498 case SEN_OV66308AF:
3499 sd->ctrls[CONTRAST].def = 200;
3500 /* The default is too low for the ov6630 */
3501 write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3502 break;
3503 default:
3504 /* case SEN_OV7610: */
3505 /* case SEN_OV76BE: */
3506 write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3507 i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3508 break;
3509 case SEN_OV7620:
3510 case SEN_OV7620AE:
3511 write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3512 break;
3513 case SEN_OV7640:
3514 case SEN_OV7648:
3515 write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3516 break;
3517 case SEN_OV7660:
3518 i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3519 msleep(14);
3520 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3521 write_regvals(sd, init_519_ov7660,
3522 ARRAY_SIZE(init_519_ov7660));
3523 write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3524 sd->gspca_dev.curr_mode = 1; /* 640x480 */
3525 ov519_set_mode(sd);
3526 ov519_set_fr(sd);
3527 sd->ctrls[COLORS].max = 4; /* 0..4 */
3528 sd->ctrls[COLORS].val =
3529 sd->ctrls[COLORS].def = 2;
3530 setcolors(gspca_dev);
3531 sd->ctrls[CONTRAST].max = 6; /* 0..6 */
3532 sd->ctrls[CONTRAST].val =
3533 sd->ctrls[CONTRAST].def = 3;
3534 setcontrast(gspca_dev);
3535 sd->ctrls[BRIGHTNESS].max = 6; /* 0..6 */
3536 sd->ctrls[BRIGHTNESS].val =
3537 sd->ctrls[BRIGHTNESS].def = 3;
3538 setbrightness(gspca_dev);
3539 sd_reset_snapshot(gspca_dev);
3540 ov51x_restart(sd);
3541 ov51x_stop(sd); /* not in win traces */
3542 ov51x_led_control(sd, 0);
3543 break;
3544 case SEN_OV7670:
3545 sd->ctrls[FREQ].max = 3; /* auto */
3546 sd->ctrls[FREQ].def = 3;
3547 write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3548 break;
3549 case SEN_OV8610:
3550 write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3551 break;
3552 case SEN_OV9600:
3553 write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3555 /* enable autoexpo */
3556 /* i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3557 break;
3559 return gspca_dev->usb_err;
3560 error:
3561 PDEBUG(D_ERR, "OV519 Config failed");
3562 return -EINVAL;
3565 /* function called at start time before URB creation */
3566 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3568 struct sd *sd = (struct sd *) gspca_dev;
3570 switch (sd->bridge) {
3571 case BRIDGE_OVFX2:
3572 if (gspca_dev->width != 800)
3573 gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3574 else
3575 gspca_dev->cam.bulk_size = 7 * 4096;
3576 break;
3578 return 0;
3581 /* Set up the OV511/OV511+ with the given image parameters.
3583 * Do not put any sensor-specific code in here (including I2C I/O functions)
3585 static void ov511_mode_init_regs(struct sd *sd)
3587 int hsegs, vsegs, packet_size, fps, needed;
3588 int interlaced = 0;
3589 struct usb_host_interface *alt;
3590 struct usb_interface *intf;
3592 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3593 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3594 if (!alt) {
3595 err("Couldn't get altsetting");
3596 sd->gspca_dev.usb_err = -EIO;
3597 return;
3600 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3601 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3603 reg_w(sd, R511_CAM_UV_EN, 0x01);
3604 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3605 reg_w(sd, R511_SNAP_OPTS, 0x03);
3607 /* Here I'm assuming that snapshot size == image size.
3608 * I hope that's always true. --claudio
3610 hsegs = (sd->gspca_dev.width >> 3) - 1;
3611 vsegs = (sd->gspca_dev.height >> 3) - 1;
3613 reg_w(sd, R511_CAM_PXCNT, hsegs);
3614 reg_w(sd, R511_CAM_LNCNT, vsegs);
3615 reg_w(sd, R511_CAM_PXDIV, 0x00);
3616 reg_w(sd, R511_CAM_LNDIV, 0x00);
3618 /* YUV420, low pass filter on */
3619 reg_w(sd, R511_CAM_OPTS, 0x03);
3621 /* Snapshot additions */
3622 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3623 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3624 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3625 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3627 /******** Set the framerate ********/
3628 if (frame_rate > 0)
3629 sd->frame_rate = frame_rate;
3631 switch (sd->sensor) {
3632 case SEN_OV6620:
3633 /* No framerate control, doesn't like higher rates yet */
3634 sd->clockdiv = 3;
3635 break;
3637 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3638 for more sensors we need to do this for them too */
3639 case SEN_OV7620:
3640 case SEN_OV7620AE:
3641 case SEN_OV7640:
3642 case SEN_OV7648:
3643 case SEN_OV76BE:
3644 if (sd->gspca_dev.width == 320)
3645 interlaced = 1;
3646 /* Fall through */
3647 case SEN_OV6630:
3648 case SEN_OV7610:
3649 case SEN_OV7670:
3650 switch (sd->frame_rate) {
3651 case 30:
3652 case 25:
3653 /* Not enough bandwidth to do 640x480 @ 30 fps */
3654 if (sd->gspca_dev.width != 640) {
3655 sd->clockdiv = 0;
3656 break;
3658 /* Fall through for 640x480 case */
3659 default:
3660 /* case 20: */
3661 /* case 15: */
3662 sd->clockdiv = 1;
3663 break;
3664 case 10:
3665 sd->clockdiv = 2;
3666 break;
3667 case 5:
3668 sd->clockdiv = 5;
3669 break;
3671 if (interlaced) {
3672 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3673 /* Higher then 10 does not work */
3674 if (sd->clockdiv > 10)
3675 sd->clockdiv = 10;
3677 break;
3679 case SEN_OV8610:
3680 /* No framerate control ?? */
3681 sd->clockdiv = 0;
3682 break;
3685 /* Check if we have enough bandwidth to disable compression */
3686 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3687 needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3688 /* 1400 is a conservative estimate of the max nr of isoc packets/sec */
3689 if (needed > 1400 * packet_size) {
3690 /* Enable Y and UV quantization and compression */
3691 reg_w(sd, R511_COMP_EN, 0x07);
3692 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3693 } else {
3694 reg_w(sd, R511_COMP_EN, 0x06);
3695 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3698 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3699 reg_w(sd, R51x_SYS_RESET, 0);
3702 /* Sets up the OV518/OV518+ with the given image parameters
3704 * OV518 needs a completely different approach, until we can figure out what
3705 * the individual registers do. Also, only 15 FPS is supported now.
3707 * Do not put any sensor-specific code in here (including I2C I/O functions)
3709 static void ov518_mode_init_regs(struct sd *sd)
3711 int hsegs, vsegs, packet_size;
3712 struct usb_host_interface *alt;
3713 struct usb_interface *intf;
3715 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3716 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3717 if (!alt) {
3718 err("Couldn't get altsetting");
3719 sd->gspca_dev.usb_err = -EIO;
3720 return;
3723 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3724 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3726 /******** Set the mode ********/
3727 reg_w(sd, 0x2b, 0);
3728 reg_w(sd, 0x2c, 0);
3729 reg_w(sd, 0x2d, 0);
3730 reg_w(sd, 0x2e, 0);
3731 reg_w(sd, 0x3b, 0);
3732 reg_w(sd, 0x3c, 0);
3733 reg_w(sd, 0x3d, 0);
3734 reg_w(sd, 0x3e, 0);
3736 if (sd->bridge == BRIDGE_OV518) {
3737 /* Set 8-bit (YVYU) input format */
3738 reg_w_mask(sd, 0x20, 0x08, 0x08);
3740 /* Set 12-bit (4:2:0) output format */
3741 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3742 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3743 } else {
3744 reg_w(sd, 0x28, 0x80);
3745 reg_w(sd, 0x38, 0x80);
3748 hsegs = sd->gspca_dev.width / 16;
3749 vsegs = sd->gspca_dev.height / 4;
3751 reg_w(sd, 0x29, hsegs);
3752 reg_w(sd, 0x2a, vsegs);
3754 reg_w(sd, 0x39, hsegs);
3755 reg_w(sd, 0x3a, vsegs);
3757 /* Windows driver does this here; who knows why */
3758 reg_w(sd, 0x2f, 0x80);
3760 /******** Set the framerate ********/
3761 sd->clockdiv = 1;
3763 /* Mode independent, but framerate dependent, regs */
3764 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3765 reg_w(sd, 0x51, 0x04);
3766 reg_w(sd, 0x22, 0x18);
3767 reg_w(sd, 0x23, 0xff);
3769 if (sd->bridge == BRIDGE_OV518PLUS) {
3770 switch (sd->sensor) {
3771 case SEN_OV7620AE:
3772 if (sd->gspca_dev.width == 320) {
3773 reg_w(sd, 0x20, 0x00);
3774 reg_w(sd, 0x21, 0x19);
3775 } else {
3776 reg_w(sd, 0x20, 0x60);
3777 reg_w(sd, 0x21, 0x1f);
3779 break;
3780 case SEN_OV7620:
3781 reg_w(sd, 0x20, 0x00);
3782 reg_w(sd, 0x21, 0x19);
3783 break;
3784 default:
3785 reg_w(sd, 0x21, 0x19);
3787 } else
3788 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3790 /* FIXME: Sensor-specific */
3791 /* Bit 5 is what matters here. Of course, it is "reserved" */
3792 i2c_w(sd, 0x54, 0x23);
3794 reg_w(sd, 0x2f, 0x80);
3796 if (sd->bridge == BRIDGE_OV518PLUS) {
3797 reg_w(sd, 0x24, 0x94);
3798 reg_w(sd, 0x25, 0x90);
3799 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3800 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3801 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3802 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3803 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3804 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3805 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3806 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3807 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3808 } else {
3809 reg_w(sd, 0x24, 0x9f);
3810 reg_w(sd, 0x25, 0x90);
3811 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3812 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3813 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3814 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3815 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3816 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3817 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3818 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3819 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3822 reg_w(sd, 0x2f, 0x80);
3825 /* Sets up the OV519 with the given image parameters
3827 * OV519 needs a completely different approach, until we can figure out what
3828 * the individual registers do.
3830 * Do not put any sensor-specific code in here (including I2C I/O functions)
3832 static void ov519_mode_init_regs(struct sd *sd)
3834 static const struct ov_regvals mode_init_519_ov7670[] = {
3835 { 0x5d, 0x03 }, /* Turn off suspend mode */
3836 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3837 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3838 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3839 { 0xa3, 0x18 },
3840 { 0xa4, 0x04 },
3841 { 0xa5, 0x28 },
3842 { 0x37, 0x00 }, /* SetUsbInit */
3843 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3844 /* Enable both fields, YUV Input, disable defect comp (why?) */
3845 { 0x20, 0x0c },
3846 { 0x21, 0x38 },
3847 { 0x22, 0x1d },
3848 { 0x17, 0x50 }, /* undocumented */
3849 { 0x37, 0x00 }, /* undocumented */
3850 { 0x40, 0xff }, /* I2C timeout counter */
3851 { 0x46, 0x00 }, /* I2C clock prescaler */
3852 { 0x59, 0x04 }, /* new from windrv 090403 */
3853 { 0xff, 0x00 }, /* undocumented */
3854 /* windows reads 0x55 at this point, why? */
3857 static const struct ov_regvals mode_init_519[] = {
3858 { 0x5d, 0x03 }, /* Turn off suspend mode */
3859 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3860 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3861 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3862 { 0xa3, 0x18 },
3863 { 0xa4, 0x04 },
3864 { 0xa5, 0x28 },
3865 { 0x37, 0x00 }, /* SetUsbInit */
3866 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3867 /* Enable both fields, YUV Input, disable defect comp (why?) */
3868 { 0x22, 0x1d },
3869 { 0x17, 0x50 }, /* undocumented */
3870 { 0x37, 0x00 }, /* undocumented */
3871 { 0x40, 0xff }, /* I2C timeout counter */
3872 { 0x46, 0x00 }, /* I2C clock prescaler */
3873 { 0x59, 0x04 }, /* new from windrv 090403 */
3874 { 0xff, 0x00 }, /* undocumented */
3875 /* windows reads 0x55 at this point, why? */
3878 /******** Set the mode ********/
3879 switch (sd->sensor) {
3880 default:
3881 write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3882 if (sd->sensor == SEN_OV7640 ||
3883 sd->sensor == SEN_OV7648) {
3884 /* Select 8-bit input mode */
3885 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3887 break;
3888 case SEN_OV7660:
3889 return; /* done by ov519_set_mode/fr() */
3890 case SEN_OV7670:
3891 write_regvals(sd, mode_init_519_ov7670,
3892 ARRAY_SIZE(mode_init_519_ov7670));
3893 break;
3896 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
3897 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
3898 if (sd->sensor == SEN_OV7670 &&
3899 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3900 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3901 else if (sd->sensor == SEN_OV7648 &&
3902 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3903 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3904 else
3905 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3906 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3907 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3908 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3909 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3910 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3911 reg_w(sd, 0x26, 0x00); /* Undocumented */
3913 /******** Set the framerate ********/
3914 if (frame_rate > 0)
3915 sd->frame_rate = frame_rate;
3917 /* FIXME: These are only valid at the max resolution. */
3918 sd->clockdiv = 0;
3919 switch (sd->sensor) {
3920 case SEN_OV7640:
3921 case SEN_OV7648:
3922 switch (sd->frame_rate) {
3923 default:
3924 /* case 30: */
3925 reg_w(sd, 0xa4, 0x0c);
3926 reg_w(sd, 0x23, 0xff);
3927 break;
3928 case 25:
3929 reg_w(sd, 0xa4, 0x0c);
3930 reg_w(sd, 0x23, 0x1f);
3931 break;
3932 case 20:
3933 reg_w(sd, 0xa4, 0x0c);
3934 reg_w(sd, 0x23, 0x1b);
3935 break;
3936 case 15:
3937 reg_w(sd, 0xa4, 0x04);
3938 reg_w(sd, 0x23, 0xff);
3939 sd->clockdiv = 1;
3940 break;
3941 case 10:
3942 reg_w(sd, 0xa4, 0x04);
3943 reg_w(sd, 0x23, 0x1f);
3944 sd->clockdiv = 1;
3945 break;
3946 case 5:
3947 reg_w(sd, 0xa4, 0x04);
3948 reg_w(sd, 0x23, 0x1b);
3949 sd->clockdiv = 1;
3950 break;
3952 break;
3953 case SEN_OV8610:
3954 switch (sd->frame_rate) {
3955 default: /* 15 fps */
3956 /* case 15: */
3957 reg_w(sd, 0xa4, 0x06);
3958 reg_w(sd, 0x23, 0xff);
3959 break;
3960 case 10:
3961 reg_w(sd, 0xa4, 0x06);
3962 reg_w(sd, 0x23, 0x1f);
3963 break;
3964 case 5:
3965 reg_w(sd, 0xa4, 0x06);
3966 reg_w(sd, 0x23, 0x1b);
3967 break;
3969 break;
3970 case SEN_OV7670: /* guesses, based on 7640 */
3971 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3972 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3973 reg_w(sd, 0xa4, 0x10);
3974 switch (sd->frame_rate) {
3975 case 30:
3976 reg_w(sd, 0x23, 0xff);
3977 break;
3978 case 20:
3979 reg_w(sd, 0x23, 0x1b);
3980 break;
3981 default:
3982 /* case 15: */
3983 reg_w(sd, 0x23, 0xff);
3984 sd->clockdiv = 1;
3985 break;
3987 break;
3991 static void mode_init_ov_sensor_regs(struct sd *sd)
3993 struct gspca_dev *gspca_dev;
3994 int qvga, xstart, xend, ystart, yend;
3995 u8 v;
3997 gspca_dev = &sd->gspca_dev;
3998 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4000 /******** Mode (VGA/QVGA) and sensor specific regs ********/
4001 switch (sd->sensor) {
4002 case SEN_OV2610:
4003 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4004 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4005 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
4006 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
4007 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4008 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4009 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4010 return;
4011 case SEN_OV2610AE: {
4012 u8 v;
4014 /* frame rates:
4015 * 10fps / 5 fps for 1600x1200
4016 * 40fps / 20fps for 800x600
4018 v = 80;
4019 if (qvga) {
4020 if (sd->frame_rate < 25)
4021 v = 0x81;
4022 } else {
4023 if (sd->frame_rate < 10)
4024 v = 0x81;
4026 i2c_w(sd, 0x11, v);
4027 i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
4028 return;
4030 case SEN_OV3610:
4031 if (qvga) {
4032 xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
4033 ystart = (776 - gspca_dev->height) / 2;
4034 } else {
4035 xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
4036 ystart = (1544 - gspca_dev->height) / 2;
4038 xend = xstart + gspca_dev->width;
4039 yend = ystart + gspca_dev->height;
4040 /* Writing to the COMH register resets the other windowing regs
4041 to their default values, so we must do this first. */
4042 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
4043 i2c_w_mask(sd, 0x32,
4044 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
4045 0x3f);
4046 i2c_w_mask(sd, 0x03,
4047 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
4048 0x0f);
4049 i2c_w(sd, 0x17, xstart >> 4);
4050 i2c_w(sd, 0x18, xend >> 4);
4051 i2c_w(sd, 0x19, ystart >> 3);
4052 i2c_w(sd, 0x1a, yend >> 3);
4053 return;
4054 case SEN_OV8610:
4055 /* For OV8610 qvga means qsvga */
4056 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
4057 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4058 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4059 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
4060 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
4061 break;
4062 case SEN_OV7610:
4063 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4064 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4065 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4066 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4067 break;
4068 case SEN_OV7620:
4069 case SEN_OV7620AE:
4070 case SEN_OV76BE:
4071 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4072 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4073 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
4074 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
4075 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4076 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
4077 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4078 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4079 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4080 if (sd->sensor == SEN_OV76BE)
4081 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4082 break;
4083 case SEN_OV7640:
4084 case SEN_OV7648:
4085 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4086 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4087 /* Setting this undocumented bit in qvga mode removes a very
4088 annoying vertical shaking of the image */
4089 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4090 /* Unknown */
4091 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4092 /* Allow higher automatic gain (to allow higher framerates) */
4093 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4094 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
4095 break;
4096 case SEN_OV7670:
4097 /* set COM7_FMT_VGA or COM7_FMT_QVGA
4098 * do we need to set anything else?
4099 * HSTART etc are set in set_ov_sensor_window itself */
4100 i2c_w_mask(sd, OV7670_R12_COM7,
4101 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
4102 OV7670_COM7_FMT_MASK);
4103 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4104 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4105 OV7670_COM8_AWB);
4106 if (qvga) { /* QVGA from ov7670.c by
4107 * Jonathan Corbet */
4108 xstart = 164;
4109 xend = 28;
4110 ystart = 14;
4111 yend = 494;
4112 } else { /* VGA */
4113 xstart = 158;
4114 xend = 14;
4115 ystart = 10;
4116 yend = 490;
4118 /* OV7670 hardware window registers are split across
4119 * multiple locations */
4120 i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4121 i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4122 v = i2c_r(sd, OV7670_R32_HREF);
4123 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4124 msleep(10); /* need to sleep between read and write to
4125 * same reg! */
4126 i2c_w(sd, OV7670_R32_HREF, v);
4128 i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4129 i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4130 v = i2c_r(sd, OV7670_R03_VREF);
4131 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4132 msleep(10); /* need to sleep between read and write to
4133 * same reg! */
4134 i2c_w(sd, OV7670_R03_VREF, v);
4135 break;
4136 case SEN_OV6620:
4137 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4138 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4139 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4140 break;
4141 case SEN_OV6630:
4142 case SEN_OV66308AF:
4143 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4144 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4145 break;
4146 case SEN_OV9600: {
4147 const struct ov_i2c_regvals *vals;
4148 static const struct ov_i2c_regvals sxga_15[] = {
4149 {0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4151 static const struct ov_i2c_regvals sxga_7_5[] = {
4152 {0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4154 static const struct ov_i2c_regvals vga_30[] = {
4155 {0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4157 static const struct ov_i2c_regvals vga_15[] = {
4158 {0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4161 /* frame rates:
4162 * 15fps / 7.5 fps for 1280x1024
4163 * 30fps / 15fps for 640x480
4165 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4166 if (qvga)
4167 vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4168 else
4169 vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4170 write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4171 return;
4173 default:
4174 return;
4177 /******** Clock programming ********/
4178 i2c_w(sd, 0x11, sd->clockdiv);
4181 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4182 static void sethvflip(struct gspca_dev *gspca_dev)
4184 struct sd *sd = (struct sd *) gspca_dev;
4186 if (sd->gspca_dev.streaming)
4187 reg_w(sd, OV519_R51_RESET1, 0x0f); /* block stream */
4188 i2c_w_mask(sd, OV7670_R1E_MVFP,
4189 OV7670_MVFP_MIRROR * sd->ctrls[HFLIP].val
4190 | OV7670_MVFP_VFLIP * sd->ctrls[VFLIP].val,
4191 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4192 if (sd->gspca_dev.streaming)
4193 reg_w(sd, OV519_R51_RESET1, 0x00); /* restart stream */
4196 static void set_ov_sensor_window(struct sd *sd)
4198 struct gspca_dev *gspca_dev;
4199 int qvga, crop;
4200 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4202 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4203 switch (sd->sensor) {
4204 case SEN_OV2610:
4205 case SEN_OV2610AE:
4206 case SEN_OV3610:
4207 case SEN_OV7670:
4208 case SEN_OV9600:
4209 mode_init_ov_sensor_regs(sd);
4210 return;
4211 case SEN_OV7660:
4212 ov519_set_mode(sd);
4213 ov519_set_fr(sd);
4214 return;
4217 gspca_dev = &sd->gspca_dev;
4218 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4219 crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4221 /* The different sensor ICs handle setting up of window differently.
4222 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4223 switch (sd->sensor) {
4224 case SEN_OV8610:
4225 hwsbase = 0x1e;
4226 hwebase = 0x1e;
4227 vwsbase = 0x02;
4228 vwebase = 0x02;
4229 break;
4230 case SEN_OV7610:
4231 case SEN_OV76BE:
4232 hwsbase = 0x38;
4233 hwebase = 0x3a;
4234 vwsbase = vwebase = 0x05;
4235 break;
4236 case SEN_OV6620:
4237 case SEN_OV6630:
4238 case SEN_OV66308AF:
4239 hwsbase = 0x38;
4240 hwebase = 0x3a;
4241 vwsbase = 0x05;
4242 vwebase = 0x06;
4243 if (sd->sensor == SEN_OV66308AF && qvga)
4244 /* HDG: this fixes U and V getting swapped */
4245 hwsbase++;
4246 if (crop) {
4247 hwsbase += 8;
4248 hwebase += 8;
4249 vwsbase += 11;
4250 vwebase += 11;
4252 break;
4253 case SEN_OV7620:
4254 case SEN_OV7620AE:
4255 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
4256 hwebase = 0x2f;
4257 vwsbase = vwebase = 0x05;
4258 break;
4259 case SEN_OV7640:
4260 case SEN_OV7648:
4261 hwsbase = 0x1a;
4262 hwebase = 0x1a;
4263 vwsbase = vwebase = 0x03;
4264 break;
4265 default:
4266 return;
4269 switch (sd->sensor) {
4270 case SEN_OV6620:
4271 case SEN_OV6630:
4272 case SEN_OV66308AF:
4273 if (qvga) { /* QCIF */
4274 hwscale = 0;
4275 vwscale = 0;
4276 } else { /* CIF */
4277 hwscale = 1;
4278 vwscale = 1; /* The datasheet says 0;
4279 * it's wrong */
4281 break;
4282 case SEN_OV8610:
4283 if (qvga) { /* QSVGA */
4284 hwscale = 1;
4285 vwscale = 1;
4286 } else { /* SVGA */
4287 hwscale = 2;
4288 vwscale = 2;
4290 break;
4291 default: /* SEN_OV7xx0 */
4292 if (qvga) { /* QVGA */
4293 hwscale = 1;
4294 vwscale = 0;
4295 } else { /* VGA */
4296 hwscale = 2;
4297 vwscale = 1;
4301 mode_init_ov_sensor_regs(sd);
4303 i2c_w(sd, 0x17, hwsbase);
4304 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4305 i2c_w(sd, 0x19, vwsbase);
4306 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4309 /* -- start the camera -- */
4310 static int sd_start(struct gspca_dev *gspca_dev)
4312 struct sd *sd = (struct sd *) gspca_dev;
4314 /* Default for most bridges, allow bridge_mode_init_regs to override */
4315 sd->sensor_width = sd->gspca_dev.width;
4316 sd->sensor_height = sd->gspca_dev.height;
4318 switch (sd->bridge) {
4319 case BRIDGE_OV511:
4320 case BRIDGE_OV511PLUS:
4321 ov511_mode_init_regs(sd);
4322 break;
4323 case BRIDGE_OV518:
4324 case BRIDGE_OV518PLUS:
4325 ov518_mode_init_regs(sd);
4326 break;
4327 case BRIDGE_OV519:
4328 ov519_mode_init_regs(sd);
4329 break;
4330 /* case BRIDGE_OVFX2: nothing to do */
4331 case BRIDGE_W9968CF:
4332 w9968cf_mode_init_regs(sd);
4333 break;
4336 set_ov_sensor_window(sd);
4338 if (!(sd->gspca_dev.ctrl_dis & (1 << CONTRAST)))
4339 setcontrast(gspca_dev);
4340 if (!(sd->gspca_dev.ctrl_dis & (1 << BRIGHTNESS)))
4341 setbrightness(gspca_dev);
4342 if (!(sd->gspca_dev.ctrl_dis & (1 << EXPOSURE)))
4343 setexposure(gspca_dev);
4344 if (!(sd->gspca_dev.ctrl_dis & (1 << COLORS)))
4345 setcolors(gspca_dev);
4346 if (!(sd->gspca_dev.ctrl_dis & ((1 << HFLIP) | (1 << VFLIP))))
4347 sethvflip(gspca_dev);
4348 if (!(sd->gspca_dev.ctrl_dis & (1 << AUTOBRIGHT)))
4349 setautobright(gspca_dev);
4350 if (!(sd->gspca_dev.ctrl_dis & (1 << AUTOGAIN)))
4351 setautogain(gspca_dev);
4352 if (!(sd->gspca_dev.ctrl_dis & (1 << FREQ)))
4353 setfreq_i(sd);
4355 /* Force clear snapshot state in case the snapshot button was
4356 pressed while we weren't streaming */
4357 sd->snapshot_needs_reset = 1;
4358 sd_reset_snapshot(gspca_dev);
4360 sd->first_frame = 3;
4362 ov51x_restart(sd);
4363 ov51x_led_control(sd, 1);
4364 return gspca_dev->usb_err;
4367 static void sd_stopN(struct gspca_dev *gspca_dev)
4369 struct sd *sd = (struct sd *) gspca_dev;
4371 ov51x_stop(sd);
4372 ov51x_led_control(sd, 0);
4375 static void sd_stop0(struct gspca_dev *gspca_dev)
4377 struct sd *sd = (struct sd *) gspca_dev;
4379 if (!sd->gspca_dev.present)
4380 return;
4381 if (sd->bridge == BRIDGE_W9968CF)
4382 w9968cf_stop0(sd);
4384 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4385 /* If the last button state is pressed, release it now! */
4386 if (sd->snapshot_pressed) {
4387 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4388 input_sync(gspca_dev->input_dev);
4389 sd->snapshot_pressed = 0;
4391 #endif
4392 if (sd->bridge == BRIDGE_OV519)
4393 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4396 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4398 struct sd *sd = (struct sd *) gspca_dev;
4400 if (sd->snapshot_pressed != state) {
4401 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4402 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4403 input_sync(gspca_dev->input_dev);
4404 #endif
4405 if (state)
4406 sd->snapshot_needs_reset = 1;
4408 sd->snapshot_pressed = state;
4409 } else {
4410 /* On the ov511 / ov519 we need to reset the button state
4411 multiple times, as resetting does not work as long as the
4412 button stays pressed */
4413 switch (sd->bridge) {
4414 case BRIDGE_OV511:
4415 case BRIDGE_OV511PLUS:
4416 case BRIDGE_OV519:
4417 if (state)
4418 sd->snapshot_needs_reset = 1;
4419 break;
4424 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4425 u8 *in, /* isoc packet */
4426 int len) /* iso packet length */
4428 struct sd *sd = (struct sd *) gspca_dev;
4430 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4431 * byte non-zero. The EOF packet has image width/height in the
4432 * 10th and 11th bytes. The 9th byte is given as follows:
4434 * bit 7: EOF
4435 * 6: compression enabled
4436 * 5: 422/420/400 modes
4437 * 4: 422/420/400 modes
4438 * 3: 1
4439 * 2: snapshot button on
4440 * 1: snapshot frame
4441 * 0: even/odd field
4443 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4444 (in[8] & 0x08)) {
4445 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4446 if (in[8] & 0x80) {
4447 /* Frame end */
4448 if ((in[9] + 1) * 8 != gspca_dev->width ||
4449 (in[10] + 1) * 8 != gspca_dev->height) {
4450 PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
4451 " requested: %dx%d\n",
4452 (in[9] + 1) * 8, (in[10] + 1) * 8,
4453 gspca_dev->width, gspca_dev->height);
4454 gspca_dev->last_packet_type = DISCARD_PACKET;
4455 return;
4457 /* Add 11 byte footer to frame, might be useful */
4458 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4459 return;
4460 } else {
4461 /* Frame start */
4462 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4463 sd->packet_nr = 0;
4467 /* Ignore the packet number */
4468 len--;
4470 /* intermediate packet */
4471 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4474 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4475 u8 *data, /* isoc packet */
4476 int len) /* iso packet length */
4478 struct sd *sd = (struct sd *) gspca_dev;
4480 /* A false positive here is likely, until OVT gives me
4481 * the definitive SOF/EOF format */
4482 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4483 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4484 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4485 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4486 sd->packet_nr = 0;
4489 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4490 return;
4492 /* Does this device use packet numbers ? */
4493 if (len & 7) {
4494 len--;
4495 if (sd->packet_nr == data[len])
4496 sd->packet_nr++;
4497 /* The last few packets of the frame (which are all 0's
4498 except that they may contain part of the footer), are
4499 numbered 0 */
4500 else if (sd->packet_nr == 0 || data[len]) {
4501 PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
4502 (int)data[len], (int)sd->packet_nr);
4503 gspca_dev->last_packet_type = DISCARD_PACKET;
4504 return;
4508 /* intermediate packet */
4509 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4512 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4513 u8 *data, /* isoc packet */
4514 int len) /* iso packet length */
4516 /* Header of ov519 is 16 bytes:
4517 * Byte Value Description
4518 * 0 0xff magic
4519 * 1 0xff magic
4520 * 2 0xff magic
4521 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4522 * 9 0xXX 0x01 initial frame without data,
4523 * 0x00 standard frame with image
4524 * 14 Lo in EOF: length of image data / 8
4525 * 15 Hi
4528 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4529 switch (data[3]) {
4530 case 0x50: /* start of frame */
4531 /* Don't check the button state here, as the state
4532 usually (always ?) changes at EOF and checking it
4533 here leads to unnecessary snapshot state resets. */
4534 #define HDRSZ 16
4535 data += HDRSZ;
4536 len -= HDRSZ;
4537 #undef HDRSZ
4538 if (data[0] == 0xff || data[1] == 0xd8)
4539 gspca_frame_add(gspca_dev, FIRST_PACKET,
4540 data, len);
4541 else
4542 gspca_dev->last_packet_type = DISCARD_PACKET;
4543 return;
4544 case 0x51: /* end of frame */
4545 ov51x_handle_button(gspca_dev, data[11] & 1);
4546 if (data[9] != 0)
4547 gspca_dev->last_packet_type = DISCARD_PACKET;
4548 gspca_frame_add(gspca_dev, LAST_PACKET,
4549 NULL, 0);
4550 return;
4554 /* intermediate packet */
4555 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4558 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4559 u8 *data, /* isoc packet */
4560 int len) /* iso packet length */
4562 struct sd *sd = (struct sd *) gspca_dev;
4564 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4566 /* A short read signals EOF */
4567 if (len < gspca_dev->cam.bulk_size) {
4568 /* If the frame is short, and it is one of the first ones
4569 the sensor and bridge are still syncing, so drop it. */
4570 if (sd->first_frame) {
4571 sd->first_frame--;
4572 if (gspca_dev->image_len <
4573 sd->gspca_dev.width * sd->gspca_dev.height)
4574 gspca_dev->last_packet_type = DISCARD_PACKET;
4576 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4577 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4581 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4582 u8 *data, /* isoc packet */
4583 int len) /* iso packet length */
4585 struct sd *sd = (struct sd *) gspca_dev;
4587 switch (sd->bridge) {
4588 case BRIDGE_OV511:
4589 case BRIDGE_OV511PLUS:
4590 ov511_pkt_scan(gspca_dev, data, len);
4591 break;
4592 case BRIDGE_OV518:
4593 case BRIDGE_OV518PLUS:
4594 ov518_pkt_scan(gspca_dev, data, len);
4595 break;
4596 case BRIDGE_OV519:
4597 ov519_pkt_scan(gspca_dev, data, len);
4598 break;
4599 case BRIDGE_OVFX2:
4600 ovfx2_pkt_scan(gspca_dev, data, len);
4601 break;
4602 case BRIDGE_W9968CF:
4603 w9968cf_pkt_scan(gspca_dev, data, len);
4604 break;
4608 /* -- management routines -- */
4610 static void setbrightness(struct gspca_dev *gspca_dev)
4612 struct sd *sd = (struct sd *) gspca_dev;
4613 int val;
4614 static const struct ov_i2c_regvals brit_7660[][7] = {
4615 {{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4616 {0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4617 {{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4618 {0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4619 {{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4620 {0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4621 {{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4622 {0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4623 {{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4624 {0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4625 {{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4626 {0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4627 {{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4628 {0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4631 val = sd->ctrls[BRIGHTNESS].val;
4632 switch (sd->sensor) {
4633 case SEN_OV8610:
4634 case SEN_OV7610:
4635 case SEN_OV76BE:
4636 case SEN_OV6620:
4637 case SEN_OV6630:
4638 case SEN_OV66308AF:
4639 case SEN_OV7640:
4640 case SEN_OV7648:
4641 i2c_w(sd, OV7610_REG_BRT, val);
4642 break;
4643 case SEN_OV7620:
4644 case SEN_OV7620AE:
4645 /* 7620 doesn't like manual changes when in auto mode */
4646 if (!sd->ctrls[AUTOBRIGHT].val)
4647 i2c_w(sd, OV7610_REG_BRT, val);
4648 break;
4649 case SEN_OV7660:
4650 write_i2c_regvals(sd, brit_7660[val],
4651 ARRAY_SIZE(brit_7660[0]));
4652 break;
4653 case SEN_OV7670:
4654 /*win trace
4655 * i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4656 i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4657 break;
4661 static void setcontrast(struct gspca_dev *gspca_dev)
4663 struct sd *sd = (struct sd *) gspca_dev;
4664 int val;
4665 static const struct ov_i2c_regvals contrast_7660[][31] = {
4666 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4667 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4668 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4669 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4670 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4671 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4672 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4673 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4674 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4675 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4676 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4677 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4678 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4679 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4680 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4681 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4682 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4683 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4684 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4685 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4686 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4687 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4688 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4689 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4690 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4691 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4692 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4693 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4694 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4695 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4696 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4697 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4698 {{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4699 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4700 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4701 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4702 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4703 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4704 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4705 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4706 {{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4707 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4708 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4709 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4710 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4711 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4712 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4713 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4714 {{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4715 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4716 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4717 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4718 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4719 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4720 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4721 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4724 val = sd->ctrls[CONTRAST].val;
4725 switch (sd->sensor) {
4726 case SEN_OV7610:
4727 case SEN_OV6620:
4728 i2c_w(sd, OV7610_REG_CNT, val);
4729 break;
4730 case SEN_OV6630:
4731 case SEN_OV66308AF:
4732 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4733 break;
4734 case SEN_OV8610: {
4735 static const u8 ctab[] = {
4736 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4739 /* Use Y gamma control instead. Bit 0 enables it. */
4740 i2c_w(sd, 0x64, ctab[val >> 5]);
4741 break;
4743 case SEN_OV7620:
4744 case SEN_OV7620AE: {
4745 static const u8 ctab[] = {
4746 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4747 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4750 /* Use Y gamma control instead. Bit 0 enables it. */
4751 i2c_w(sd, 0x64, ctab[val >> 4]);
4752 break;
4754 case SEN_OV7660:
4755 write_i2c_regvals(sd, contrast_7660[val],
4756 ARRAY_SIZE(contrast_7660[0]));
4757 break;
4758 case SEN_OV7670:
4759 /* check that this isn't just the same as ov7610 */
4760 i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4761 break;
4765 static void setexposure(struct gspca_dev *gspca_dev)
4767 struct sd *sd = (struct sd *) gspca_dev;
4769 if (!sd->ctrls[AUTOGAIN].val)
4770 i2c_w(sd, 0x10, sd->ctrls[EXPOSURE].val);
4773 static void setcolors(struct gspca_dev *gspca_dev)
4775 struct sd *sd = (struct sd *) gspca_dev;
4776 int val;
4777 static const struct ov_i2c_regvals colors_7660[][6] = {
4778 {{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4779 {0x53, 0x19}, {0x54, 0x23}},
4780 {{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4781 {0x53, 0x2c}, {0x54, 0x3e}},
4782 {{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4783 {0x53, 0x40}, {0x54, 0x59}},
4784 {{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4785 {0x53, 0x53}, {0x54, 0x73}},
4786 {{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4787 {0x53, 0x66}, {0x54, 0x8e}},
4790 val = sd->ctrls[COLORS].val;
4791 switch (sd->sensor) {
4792 case SEN_OV8610:
4793 case SEN_OV7610:
4794 case SEN_OV76BE:
4795 case SEN_OV6620:
4796 case SEN_OV6630:
4797 case SEN_OV66308AF:
4798 i2c_w(sd, OV7610_REG_SAT, val);
4799 break;
4800 case SEN_OV7620:
4801 case SEN_OV7620AE:
4802 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4803 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4804 if (rc < 0)
4805 goto out; */
4806 i2c_w(sd, OV7610_REG_SAT, val);
4807 break;
4808 case SEN_OV7640:
4809 case SEN_OV7648:
4810 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4811 break;
4812 case SEN_OV7660:
4813 write_i2c_regvals(sd, colors_7660[val],
4814 ARRAY_SIZE(colors_7660[0]));
4815 break;
4816 case SEN_OV7670:
4817 /* supported later once I work out how to do it
4818 * transparently fail now! */
4819 /* set REG_COM13 values for UV sat auto mode */
4820 break;
4824 static void setautobright(struct gspca_dev *gspca_dev)
4826 struct sd *sd = (struct sd *) gspca_dev;
4828 i2c_w_mask(sd, 0x2d, sd->ctrls[AUTOBRIGHT].val ? 0x10 : 0x00, 0x10);
4831 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
4833 struct sd *sd = (struct sd *) gspca_dev;
4835 sd->ctrls[AUTOGAIN].val = val;
4836 if (val) {
4837 gspca_dev->ctrl_inac |= (1 << EXPOSURE);
4838 } else {
4839 gspca_dev->ctrl_inac &= ~(1 << EXPOSURE);
4840 sd->ctrls[EXPOSURE].val = i2c_r(sd, 0x10);
4842 if (gspca_dev->streaming)
4843 setautogain(gspca_dev);
4844 return gspca_dev->usb_err;
4847 static void setfreq_i(struct sd *sd)
4849 if (sd->sensor == SEN_OV7660
4850 || sd->sensor == SEN_OV7670) {
4851 switch (sd->ctrls[FREQ].val) {
4852 case 0: /* Banding filter disabled */
4853 i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4854 break;
4855 case 1: /* 50 hz */
4856 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4857 OV7670_COM8_BFILT);
4858 i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4859 break;
4860 case 2: /* 60 hz */
4861 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4862 OV7670_COM8_BFILT);
4863 i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4864 break;
4865 case 3: /* Auto hz - ov7670 only */
4866 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4867 OV7670_COM8_BFILT);
4868 i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4869 0x18);
4870 break;
4872 } else {
4873 switch (sd->ctrls[FREQ].val) {
4874 case 0: /* Banding filter disabled */
4875 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4876 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4877 break;
4878 case 1: /* 50 hz (filter on and framerate adj) */
4879 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4880 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4881 /* 20 fps -> 16.667 fps */
4882 if (sd->sensor == SEN_OV6620 ||
4883 sd->sensor == SEN_OV6630 ||
4884 sd->sensor == SEN_OV66308AF)
4885 i2c_w(sd, 0x2b, 0x5e);
4886 else
4887 i2c_w(sd, 0x2b, 0xac);
4888 break;
4889 case 2: /* 60 hz (filter on, ...) */
4890 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4891 if (sd->sensor == SEN_OV6620 ||
4892 sd->sensor == SEN_OV6630 ||
4893 sd->sensor == SEN_OV66308AF) {
4894 /* 20 fps -> 15 fps */
4895 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4896 i2c_w(sd, 0x2b, 0xa8);
4897 } else {
4898 /* no framerate adj. */
4899 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4901 break;
4905 static void setfreq(struct gspca_dev *gspca_dev)
4907 struct sd *sd = (struct sd *) gspca_dev;
4909 setfreq_i(sd);
4911 /* Ugly but necessary */
4912 if (sd->bridge == BRIDGE_W9968CF)
4913 w9968cf_set_crop_window(sd);
4916 static int sd_querymenu(struct gspca_dev *gspca_dev,
4917 struct v4l2_querymenu *menu)
4919 struct sd *sd = (struct sd *) gspca_dev;
4921 switch (menu->id) {
4922 case V4L2_CID_POWER_LINE_FREQUENCY:
4923 switch (menu->index) {
4924 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
4925 strcpy((char *) menu->name, "NoFliker");
4926 return 0;
4927 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
4928 strcpy((char *) menu->name, "50 Hz");
4929 return 0;
4930 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
4931 strcpy((char *) menu->name, "60 Hz");
4932 return 0;
4933 case 3:
4934 if (sd->sensor != SEN_OV7670)
4935 return -EINVAL;
4937 strcpy((char *) menu->name, "Automatic");
4938 return 0;
4940 break;
4942 return -EINVAL;
4945 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4946 struct v4l2_jpegcompression *jcomp)
4948 struct sd *sd = (struct sd *) gspca_dev;
4950 if (sd->bridge != BRIDGE_W9968CF)
4951 return -EINVAL;
4953 memset(jcomp, 0, sizeof *jcomp);
4954 jcomp->quality = sd->quality;
4955 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4956 V4L2_JPEG_MARKER_DRI;
4957 return 0;
4960 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4961 struct v4l2_jpegcompression *jcomp)
4963 struct sd *sd = (struct sd *) gspca_dev;
4965 if (sd->bridge != BRIDGE_W9968CF)
4966 return -EINVAL;
4968 if (gspca_dev->streaming)
4969 return -EBUSY;
4971 if (jcomp->quality < QUALITY_MIN)
4972 sd->quality = QUALITY_MIN;
4973 else if (jcomp->quality > QUALITY_MAX)
4974 sd->quality = QUALITY_MAX;
4975 else
4976 sd->quality = jcomp->quality;
4978 /* Return resulting jcomp params to app */
4979 sd_get_jcomp(gspca_dev, jcomp);
4981 return 0;
4984 /* sub-driver description */
4985 static const struct sd_desc sd_desc = {
4986 .name = MODULE_NAME,
4987 .ctrls = sd_ctrls,
4988 .nctrls = ARRAY_SIZE(sd_ctrls),
4989 .config = sd_config,
4990 .init = sd_init,
4991 .isoc_init = sd_isoc_init,
4992 .start = sd_start,
4993 .stopN = sd_stopN,
4994 .stop0 = sd_stop0,
4995 .pkt_scan = sd_pkt_scan,
4996 .dq_callback = sd_reset_snapshot,
4997 .querymenu = sd_querymenu,
4998 .get_jcomp = sd_get_jcomp,
4999 .set_jcomp = sd_set_jcomp,
5000 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
5001 .other_input = 1,
5002 #endif
5005 /* -- module initialisation -- */
5006 static const struct usb_device_id device_table[] = {
5007 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
5008 {USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 },
5009 {USB_DEVICE(0x041e, 0x405f),
5010 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5011 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
5012 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
5013 {USB_DEVICE(0x041e, 0x4064),
5014 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5015 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
5016 {USB_DEVICE(0x041e, 0x4068),
5017 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5018 {USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 },
5019 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
5020 {USB_DEVICE(0x054c, 0x0155),
5021 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5022 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
5023 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
5024 {USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 },
5025 {USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 },
5026 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
5027 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
5028 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
5029 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
5030 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
5031 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
5032 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
5033 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
5034 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
5035 {USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
5039 MODULE_DEVICE_TABLE(usb, device_table);
5041 /* -- device connect -- */
5042 static int sd_probe(struct usb_interface *intf,
5043 const struct usb_device_id *id)
5045 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
5046 THIS_MODULE);
5049 static struct usb_driver sd_driver = {
5050 .name = MODULE_NAME,
5051 .id_table = device_table,
5052 .probe = sd_probe,
5053 .disconnect = gspca_disconnect,
5054 #ifdef CONFIG_PM
5055 .suspend = gspca_suspend,
5056 .resume = gspca_resume,
5057 #endif
5060 /* -- module insert / remove -- */
5061 static int __init sd_mod_init(void)
5063 return usb_register(&sd_driver);
5065 static void __exit sd_mod_exit(void)
5067 usb_deregister(&sd_driver);
5070 module_init(sd_mod_init);
5071 module_exit(sd_mod_exit);
5073 module_param(frame_rate, int, 0644);
5074 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");