include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / mtd / nand / omap2.c
blobec22a5aab038fd7750c3353137a3a64991ad1ec1
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/jiffies.h>
17 #include <linux/sched.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/nand.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
24 #include <plat/dma.h>
25 #include <plat/gpmc.h>
26 #include <plat/nand.h>
28 #define DRIVER_NAME "omap2-nand"
29 #define OMAP_NAND_TIMEOUT_MS 5000
31 #define NAND_Ecc_P1e (1 << 0)
32 #define NAND_Ecc_P2e (1 << 1)
33 #define NAND_Ecc_P4e (1 << 2)
34 #define NAND_Ecc_P8e (1 << 3)
35 #define NAND_Ecc_P16e (1 << 4)
36 #define NAND_Ecc_P32e (1 << 5)
37 #define NAND_Ecc_P64e (1 << 6)
38 #define NAND_Ecc_P128e (1 << 7)
39 #define NAND_Ecc_P256e (1 << 8)
40 #define NAND_Ecc_P512e (1 << 9)
41 #define NAND_Ecc_P1024e (1 << 10)
42 #define NAND_Ecc_P2048e (1 << 11)
44 #define NAND_Ecc_P1o (1 << 16)
45 #define NAND_Ecc_P2o (1 << 17)
46 #define NAND_Ecc_P4o (1 << 18)
47 #define NAND_Ecc_P8o (1 << 19)
48 #define NAND_Ecc_P16o (1 << 20)
49 #define NAND_Ecc_P32o (1 << 21)
50 #define NAND_Ecc_P64o (1 << 22)
51 #define NAND_Ecc_P128o (1 << 23)
52 #define NAND_Ecc_P256o (1 << 24)
53 #define NAND_Ecc_P512o (1 << 25)
54 #define NAND_Ecc_P1024o (1 << 26)
55 #define NAND_Ecc_P2048o (1 << 27)
57 #define TF(value) (value ? 1 : 0)
59 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
60 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
61 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
62 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
63 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
64 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
65 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
66 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
68 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
69 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
70 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
71 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
72 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
73 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
74 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
75 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
77 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
78 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
79 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
80 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
81 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
82 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
83 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
84 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
86 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
87 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
88 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
89 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
90 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
91 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
92 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
93 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
95 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
96 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
98 static const char *part_probes[] = { "cmdlinepart", NULL };
100 /* oob info generated runtime depending on ecc algorithm and layout selected */
101 static struct nand_ecclayout omap_oobinfo;
102 /* Define some generic bad / good block scan pattern which are used
103 * while scanning a device for factory marked good / bad blocks
105 static uint8_t scan_ff_pattern[] = { 0xff };
106 static struct nand_bbt_descr bb_descrip_flashbased = {
107 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
108 .offs = 0,
109 .len = 1,
110 .pattern = scan_ff_pattern,
114 struct omap_nand_info {
115 struct nand_hw_control controller;
116 struct omap_nand_platform_data *pdata;
117 struct mtd_info mtd;
118 struct mtd_partition *parts;
119 struct nand_chip nand;
120 struct platform_device *pdev;
122 int gpmc_cs;
123 unsigned long phys_base;
124 struct completion comp;
125 int dma_ch;
126 int gpmc_irq;
127 enum {
128 OMAP_NAND_IO_READ = 0, /* read */
129 OMAP_NAND_IO_WRITE, /* write */
130 } iomode;
131 u_char *buf;
132 int buf_len;
136 * omap_hwcontrol - hardware specific access to control-lines
137 * @mtd: MTD device structure
138 * @cmd: command to device
139 * @ctrl:
140 * NAND_NCE: bit 0 -> don't care
141 * NAND_CLE: bit 1 -> Command Latch
142 * NAND_ALE: bit 2 -> Address Latch
144 * NOTE: boards may use different bits for these!!
146 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
148 struct omap_nand_info *info = container_of(mtd,
149 struct omap_nand_info, mtd);
151 if (cmd != NAND_CMD_NONE) {
152 if (ctrl & NAND_CLE)
153 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
155 else if (ctrl & NAND_ALE)
156 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
158 else /* NAND_NCE */
159 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
164 * omap_read_buf8 - read data from NAND controller into buffer
165 * @mtd: MTD device structure
166 * @buf: buffer to store date
167 * @len: number of bytes to read
169 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
171 struct nand_chip *nand = mtd->priv;
173 ioread8_rep(nand->IO_ADDR_R, buf, len);
177 * omap_write_buf8 - write buffer to NAND controller
178 * @mtd: MTD device structure
179 * @buf: data buffer
180 * @len: number of bytes to write
182 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
184 struct omap_nand_info *info = container_of(mtd,
185 struct omap_nand_info, mtd);
186 u_char *p = (u_char *)buf;
187 u32 status = 0;
189 while (len--) {
190 iowrite8(*p++, info->nand.IO_ADDR_W);
191 /* wait until buffer is available for write */
192 do {
193 status = gpmc_read_status(GPMC_STATUS_BUFFER);
194 } while (!status);
199 * omap_read_buf16 - read data from NAND controller into buffer
200 * @mtd: MTD device structure
201 * @buf: buffer to store date
202 * @len: number of bytes to read
204 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
206 struct nand_chip *nand = mtd->priv;
208 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
212 * omap_write_buf16 - write buffer to NAND controller
213 * @mtd: MTD device structure
214 * @buf: data buffer
215 * @len: number of bytes to write
217 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
219 struct omap_nand_info *info = container_of(mtd,
220 struct omap_nand_info, mtd);
221 u16 *p = (u16 *) buf;
222 u32 status = 0;
223 /* FIXME try bursts of writesw() or DMA ... */
224 len >>= 1;
226 while (len--) {
227 iowrite16(*p++, info->nand.IO_ADDR_W);
228 /* wait until buffer is available for write */
229 do {
230 status = gpmc_read_status(GPMC_STATUS_BUFFER);
231 } while (!status);
236 * omap_read_buf_pref - read data from NAND controller into buffer
237 * @mtd: MTD device structure
238 * @buf: buffer to store date
239 * @len: number of bytes to read
241 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
243 struct omap_nand_info *info = container_of(mtd,
244 struct omap_nand_info, mtd);
245 uint32_t r_count = 0;
246 int ret = 0;
247 u32 *p = (u32 *)buf;
249 /* take care of subpage reads */
250 if (len % 4) {
251 if (info->nand.options & NAND_BUSWIDTH_16)
252 omap_read_buf16(mtd, buf, len % 4);
253 else
254 omap_read_buf8(mtd, buf, len % 4);
255 p = (u32 *) (buf + len % 4);
256 len -= len % 4;
259 /* configure and start prefetch transfer */
260 ret = gpmc_prefetch_enable(info->gpmc_cs,
261 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
262 if (ret) {
263 /* PFPW engine is busy, use cpu copy method */
264 if (info->nand.options & NAND_BUSWIDTH_16)
265 omap_read_buf16(mtd, (u_char *)p, len);
266 else
267 omap_read_buf8(mtd, (u_char *)p, len);
268 } else {
269 do {
270 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
271 r_count = r_count >> 2;
272 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
273 p += r_count;
274 len -= r_count << 2;
275 } while (len);
276 /* disable and stop the PFPW engine */
277 gpmc_prefetch_reset(info->gpmc_cs);
282 * omap_write_buf_pref - write buffer to NAND controller
283 * @mtd: MTD device structure
284 * @buf: data buffer
285 * @len: number of bytes to write
287 static void omap_write_buf_pref(struct mtd_info *mtd,
288 const u_char *buf, int len)
290 struct omap_nand_info *info = container_of(mtd,
291 struct omap_nand_info, mtd);
292 uint32_t w_count = 0;
293 int i = 0, ret = 0;
294 u16 *p = (u16 *)buf;
295 unsigned long tim, limit;
297 /* take care of subpage writes */
298 if (len % 2 != 0) {
299 writeb(*buf, info->nand.IO_ADDR_W);
300 p = (u16 *)(buf + 1);
301 len--;
304 /* configure and start prefetch transfer */
305 ret = gpmc_prefetch_enable(info->gpmc_cs,
306 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
307 if (ret) {
308 /* PFPW engine is busy, use cpu copy method */
309 if (info->nand.options & NAND_BUSWIDTH_16)
310 omap_write_buf16(mtd, (u_char *)p, len);
311 else
312 omap_write_buf8(mtd, (u_char *)p, len);
313 } else {
314 while (len) {
315 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
316 w_count = w_count >> 1;
317 for (i = 0; (i < w_count) && len; i++, len -= 2)
318 iowrite16(*p++, info->nand.IO_ADDR_W);
320 /* wait for data to flushed-out before reset the prefetch */
321 tim = 0;
322 limit = (loops_per_jiffy *
323 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
324 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
325 cpu_relax();
327 /* disable and stop the PFPW engine */
328 gpmc_prefetch_reset(info->gpmc_cs);
333 * omap_nand_dma_cb: callback on the completion of dma transfer
334 * @lch: logical channel
335 * @ch_satuts: channel status
336 * @data: pointer to completion data structure
338 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
340 complete((struct completion *) data);
344 * omap_nand_dma_transfer: configer and start dma transfer
345 * @mtd: MTD device structure
346 * @addr: virtual address in RAM of source/destination
347 * @len: number of data bytes to be transferred
348 * @is_write: flag for read/write operation
350 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
351 unsigned int len, int is_write)
353 struct omap_nand_info *info = container_of(mtd,
354 struct omap_nand_info, mtd);
355 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
356 DMA_FROM_DEVICE;
357 dma_addr_t dma_addr;
358 int ret;
359 unsigned long tim, limit;
361 /* The fifo depth is 64 bytes max.
362 * But configure the FIFO-threahold to 32 to get a sync at each frame
363 * and frame length is 32 bytes.
365 int buf_len = len >> 6;
367 if (addr >= high_memory) {
368 struct page *p1;
370 if (((size_t)addr & PAGE_MASK) !=
371 ((size_t)(addr + len - 1) & PAGE_MASK))
372 goto out_copy;
373 p1 = vmalloc_to_page(addr);
374 if (!p1)
375 goto out_copy;
376 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
379 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
380 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
381 dev_err(&info->pdev->dev,
382 "Couldn't DMA map a %d byte buffer\n", len);
383 goto out_copy;
386 if (is_write) {
387 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
388 info->phys_base, 0, 0);
389 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
390 dma_addr, 0, 0);
391 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
392 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
393 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
394 } else {
395 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
396 info->phys_base, 0, 0);
397 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
398 dma_addr, 0, 0);
399 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
400 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
401 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
403 /* configure and start prefetch transfer */
404 ret = gpmc_prefetch_enable(info->gpmc_cs,
405 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
406 if (ret)
407 /* PFPW engine is busy, use cpu copy method */
408 goto out_copy;
410 init_completion(&info->comp);
412 omap_start_dma(info->dma_ch);
414 /* setup and start DMA using dma_addr */
415 wait_for_completion(&info->comp);
416 tim = 0;
417 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
418 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
419 cpu_relax();
421 /* disable and stop the PFPW engine */
422 gpmc_prefetch_reset(info->gpmc_cs);
424 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
425 return 0;
427 out_copy:
428 if (info->nand.options & NAND_BUSWIDTH_16)
429 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
430 : omap_write_buf16(mtd, (u_char *) addr, len);
431 else
432 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
433 : omap_write_buf8(mtd, (u_char *) addr, len);
434 return 0;
438 * omap_read_buf_dma_pref - read data from NAND controller into buffer
439 * @mtd: MTD device structure
440 * @buf: buffer to store date
441 * @len: number of bytes to read
443 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
445 if (len <= mtd->oobsize)
446 omap_read_buf_pref(mtd, buf, len);
447 else
448 /* start transfer in DMA mode */
449 omap_nand_dma_transfer(mtd, buf, len, 0x0);
453 * omap_write_buf_dma_pref - write buffer to NAND controller
454 * @mtd: MTD device structure
455 * @buf: data buffer
456 * @len: number of bytes to write
458 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
459 const u_char *buf, int len)
461 if (len <= mtd->oobsize)
462 omap_write_buf_pref(mtd, buf, len);
463 else
464 /* start transfer in DMA mode */
465 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
469 * omap_nand_irq - GMPC irq handler
470 * @this_irq: gpmc irq number
471 * @dev: omap_nand_info structure pointer is passed here
473 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
475 struct omap_nand_info *info = (struct omap_nand_info *) dev;
476 u32 bytes;
477 u32 irq_stat;
479 irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
480 bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
481 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
482 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
483 if (irq_stat & 0x2)
484 goto done;
486 if (info->buf_len && (info->buf_len < bytes))
487 bytes = info->buf_len;
488 else if (!info->buf_len)
489 bytes = 0;
490 iowrite32_rep(info->nand.IO_ADDR_W,
491 (u32 *)info->buf, bytes >> 2);
492 info->buf = info->buf + bytes;
493 info->buf_len -= bytes;
495 } else {
496 ioread32_rep(info->nand.IO_ADDR_R,
497 (u32 *)info->buf, bytes >> 2);
498 info->buf = info->buf + bytes;
500 if (irq_stat & 0x2)
501 goto done;
503 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
505 return IRQ_HANDLED;
507 done:
508 complete(&info->comp);
509 /* disable irq */
510 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
512 /* clear status */
513 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
515 return IRQ_HANDLED;
519 * omap_read_buf_irq_pref - read data from NAND controller into buffer
520 * @mtd: MTD device structure
521 * @buf: buffer to store date
522 * @len: number of bytes to read
524 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
526 struct omap_nand_info *info = container_of(mtd,
527 struct omap_nand_info, mtd);
528 int ret = 0;
530 if (len <= mtd->oobsize) {
531 omap_read_buf_pref(mtd, buf, len);
532 return;
535 info->iomode = OMAP_NAND_IO_READ;
536 info->buf = buf;
537 init_completion(&info->comp);
539 /* configure and start prefetch transfer */
540 ret = gpmc_prefetch_enable(info->gpmc_cs,
541 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
542 if (ret)
543 /* PFPW engine is busy, use cpu copy method */
544 goto out_copy;
546 info->buf_len = len;
547 /* enable irq */
548 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
549 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
551 /* waiting for read to complete */
552 wait_for_completion(&info->comp);
554 /* disable and stop the PFPW engine */
555 gpmc_prefetch_reset(info->gpmc_cs);
556 return;
558 out_copy:
559 if (info->nand.options & NAND_BUSWIDTH_16)
560 omap_read_buf16(mtd, buf, len);
561 else
562 omap_read_buf8(mtd, buf, len);
566 * omap_write_buf_irq_pref - write buffer to NAND controller
567 * @mtd: MTD device structure
568 * @buf: data buffer
569 * @len: number of bytes to write
571 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
572 const u_char *buf, int len)
574 struct omap_nand_info *info = container_of(mtd,
575 struct omap_nand_info, mtd);
576 int ret = 0;
577 unsigned long tim, limit;
579 if (len <= mtd->oobsize) {
580 omap_write_buf_pref(mtd, buf, len);
581 return;
584 info->iomode = OMAP_NAND_IO_WRITE;
585 info->buf = (u_char *) buf;
586 init_completion(&info->comp);
588 /* configure and start prefetch transfer : size=24 */
589 ret = gpmc_prefetch_enable(info->gpmc_cs,
590 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
591 if (ret)
592 /* PFPW engine is busy, use cpu copy method */
593 goto out_copy;
595 info->buf_len = len;
596 /* enable irq */
597 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
598 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
600 /* waiting for write to complete */
601 wait_for_completion(&info->comp);
602 /* wait for data to flushed-out before reset the prefetch */
603 tim = 0;
604 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
605 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
606 cpu_relax();
608 /* disable and stop the PFPW engine */
609 gpmc_prefetch_reset(info->gpmc_cs);
610 return;
612 out_copy:
613 if (info->nand.options & NAND_BUSWIDTH_16)
614 omap_write_buf16(mtd, buf, len);
615 else
616 omap_write_buf8(mtd, buf, len);
620 * omap_verify_buf - Verify chip data against buffer
621 * @mtd: MTD device structure
622 * @buf: buffer containing the data to compare
623 * @len: number of bytes to compare
625 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
627 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
628 mtd);
629 u16 *p = (u16 *) buf;
631 len >>= 1;
632 while (len--) {
633 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
634 return -EFAULT;
637 return 0;
641 * gen_true_ecc - This function will generate true ECC value
642 * @ecc_buf: buffer to store ecc code
644 * This generated true ECC value can be used when correcting
645 * data read from NAND flash memory core
647 static void gen_true_ecc(u8 *ecc_buf)
649 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
650 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
652 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
653 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
654 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
655 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
656 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
657 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
661 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
662 * @ecc_data1: ecc code from nand spare area
663 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
664 * @page_data: page data
666 * This function compares two ECC's and indicates if there is an error.
667 * If the error can be corrected it will be corrected to the buffer.
668 * If there is no error, %0 is returned. If there is an error but it
669 * was corrected, %1 is returned. Otherwise, %-1 is returned.
671 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
672 u8 *ecc_data2, /* read from register */
673 u8 *page_data)
675 uint i;
676 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
677 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
678 u8 ecc_bit[24];
679 u8 ecc_sum = 0;
680 u8 find_bit = 0;
681 uint find_byte = 0;
682 int isEccFF;
684 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
686 gen_true_ecc(ecc_data1);
687 gen_true_ecc(ecc_data2);
689 for (i = 0; i <= 2; i++) {
690 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
691 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
694 for (i = 0; i < 8; i++) {
695 tmp0_bit[i] = *ecc_data1 % 2;
696 *ecc_data1 = *ecc_data1 / 2;
699 for (i = 0; i < 8; i++) {
700 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
701 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
704 for (i = 0; i < 8; i++) {
705 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
706 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
709 for (i = 0; i < 8; i++) {
710 comp0_bit[i] = *ecc_data2 % 2;
711 *ecc_data2 = *ecc_data2 / 2;
714 for (i = 0; i < 8; i++) {
715 comp1_bit[i] = *(ecc_data2 + 1) % 2;
716 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
719 for (i = 0; i < 8; i++) {
720 comp2_bit[i] = *(ecc_data2 + 2) % 2;
721 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
724 for (i = 0; i < 6; i++)
725 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
727 for (i = 0; i < 8; i++)
728 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
730 for (i = 0; i < 8; i++)
731 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
733 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
734 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
736 for (i = 0; i < 24; i++)
737 ecc_sum += ecc_bit[i];
739 switch (ecc_sum) {
740 case 0:
741 /* Not reached because this function is not called if
742 * ECC values are equal
744 return 0;
746 case 1:
747 /* Uncorrectable error */
748 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
749 return -1;
751 case 11:
752 /* UN-Correctable error */
753 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
754 return -1;
756 case 12:
757 /* Correctable error */
758 find_byte = (ecc_bit[23] << 8) +
759 (ecc_bit[21] << 7) +
760 (ecc_bit[19] << 6) +
761 (ecc_bit[17] << 5) +
762 (ecc_bit[15] << 4) +
763 (ecc_bit[13] << 3) +
764 (ecc_bit[11] << 2) +
765 (ecc_bit[9] << 1) +
766 ecc_bit[7];
768 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
770 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
771 "offset: %d, bit: %d\n", find_byte, find_bit);
773 page_data[find_byte] ^= (1 << find_bit);
775 return 1;
776 default:
777 if (isEccFF) {
778 if (ecc_data2[0] == 0 &&
779 ecc_data2[1] == 0 &&
780 ecc_data2[2] == 0)
781 return 0;
783 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
784 return -1;
789 * omap_correct_data - Compares the ECC read with HW generated ECC
790 * @mtd: MTD device structure
791 * @dat: page data
792 * @read_ecc: ecc read from nand flash
793 * @calc_ecc: ecc read from HW ECC registers
795 * Compares the ecc read from nand spare area with ECC registers values
796 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
797 * detection and correction. If there are no errors, %0 is returned. If
798 * there were errors and all of the errors were corrected, the number of
799 * corrected errors is returned. If uncorrectable errors exist, %-1 is
800 * returned.
802 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
803 u_char *read_ecc, u_char *calc_ecc)
805 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
806 mtd);
807 int blockCnt = 0, i = 0, ret = 0;
808 int stat = 0;
810 /* Ex NAND_ECC_HW12_2048 */
811 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
812 (info->nand.ecc.size == 2048))
813 blockCnt = 4;
814 else
815 blockCnt = 1;
817 for (i = 0; i < blockCnt; i++) {
818 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
819 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
820 if (ret < 0)
821 return ret;
822 /* keep track of the number of corrected errors */
823 stat += ret;
825 read_ecc += 3;
826 calc_ecc += 3;
827 dat += 512;
829 return stat;
833 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
834 * @mtd: MTD device structure
835 * @dat: The pointer to data on which ecc is computed
836 * @ecc_code: The ecc_code buffer
838 * Using noninverted ECC can be considered ugly since writing a blank
839 * page ie. padding will clear the ECC bytes. This is no problem as long
840 * nobody is trying to write data on the seemingly unused page. Reading
841 * an erased page will produce an ECC mismatch between generated and read
842 * ECC bytes that has to be dealt with separately.
844 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
845 u_char *ecc_code)
847 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
848 mtd);
849 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
853 * omap_enable_hwecc - This function enables the hardware ecc functionality
854 * @mtd: MTD device structure
855 * @mode: Read/Write mode
857 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
859 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
860 mtd);
861 struct nand_chip *chip = mtd->priv;
862 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
864 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
868 * omap_wait - wait until the command is done
869 * @mtd: MTD device structure
870 * @chip: NAND Chip structure
872 * Wait function is called during Program and erase operations and
873 * the way it is called from MTD layer, we should wait till the NAND
874 * chip is ready after the programming/erase operation has completed.
876 * Erase can take up to 400ms and program up to 20ms according to
877 * general NAND and SmartMedia specs
879 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
881 struct nand_chip *this = mtd->priv;
882 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
883 mtd);
884 unsigned long timeo = jiffies;
885 int status = NAND_STATUS_FAIL, state = this->state;
887 if (state == FL_ERASING)
888 timeo += (HZ * 400) / 1000;
889 else
890 timeo += (HZ * 20) / 1000;
892 gpmc_nand_write(info->gpmc_cs,
893 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
894 while (time_before(jiffies, timeo)) {
895 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
896 if (status & NAND_STATUS_READY)
897 break;
898 cond_resched();
900 return status;
904 * omap_dev_ready - calls the platform specific dev_ready function
905 * @mtd: MTD device structure
907 static int omap_dev_ready(struct mtd_info *mtd)
909 unsigned int val = 0;
910 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
911 mtd);
913 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
914 if ((val & 0x100) == 0x100) {
915 /* Clear IRQ Interrupt */
916 val |= 0x100;
917 val &= ~(0x0);
918 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
919 } else {
920 unsigned int cnt = 0;
921 while (cnt++ < 0x1FF) {
922 if ((val & 0x100) == 0x100)
923 return 0;
924 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
928 return 1;
931 static int __devinit omap_nand_probe(struct platform_device *pdev)
933 struct omap_nand_info *info;
934 struct omap_nand_platform_data *pdata;
935 int err;
936 int i, offset;
938 pdata = pdev->dev.platform_data;
939 if (pdata == NULL) {
940 dev_err(&pdev->dev, "platform data missing\n");
941 return -ENODEV;
944 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
945 if (!info)
946 return -ENOMEM;
948 platform_set_drvdata(pdev, info);
950 spin_lock_init(&info->controller.lock);
951 init_waitqueue_head(&info->controller.wq);
953 info->pdev = pdev;
955 info->gpmc_cs = pdata->cs;
956 info->phys_base = pdata->phys_base;
958 info->mtd.priv = &info->nand;
959 info->mtd.name = dev_name(&pdev->dev);
960 info->mtd.owner = THIS_MODULE;
962 info->nand.options = pdata->devsize;
963 info->nand.options |= NAND_SKIP_BBTSCAN;
965 /* NAND write protect off */
966 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
968 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
969 pdev->dev.driver->name)) {
970 err = -EBUSY;
971 goto out_free_info;
974 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
975 if (!info->nand.IO_ADDR_R) {
976 err = -ENOMEM;
977 goto out_release_mem_region;
980 info->nand.controller = &info->controller;
982 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
983 info->nand.cmd_ctrl = omap_hwcontrol;
986 * If RDY/BSY line is connected to OMAP then use the omap ready
987 * funcrtion and the generic nand_wait function which reads the status
988 * register after monitoring the RDY/BSY line.Otherwise use a standard
989 * chip delay which is slightly more than tR (AC Timing) of the NAND
990 * device and read status register until you get a failure or success
992 if (pdata->dev_ready) {
993 info->nand.dev_ready = omap_dev_ready;
994 info->nand.chip_delay = 0;
995 } else {
996 info->nand.waitfunc = omap_wait;
997 info->nand.chip_delay = 50;
1000 switch (pdata->xfer_type) {
1001 case NAND_OMAP_PREFETCH_POLLED:
1002 info->nand.read_buf = omap_read_buf_pref;
1003 info->nand.write_buf = omap_write_buf_pref;
1004 break;
1006 case NAND_OMAP_POLLED:
1007 if (info->nand.options & NAND_BUSWIDTH_16) {
1008 info->nand.read_buf = omap_read_buf16;
1009 info->nand.write_buf = omap_write_buf16;
1010 } else {
1011 info->nand.read_buf = omap_read_buf8;
1012 info->nand.write_buf = omap_write_buf8;
1014 break;
1016 case NAND_OMAP_PREFETCH_DMA:
1017 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1018 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1019 if (err < 0) {
1020 info->dma_ch = -1;
1021 dev_err(&pdev->dev, "DMA request failed!\n");
1022 goto out_release_mem_region;
1023 } else {
1024 omap_set_dma_dest_burst_mode(info->dma_ch,
1025 OMAP_DMA_DATA_BURST_16);
1026 omap_set_dma_src_burst_mode(info->dma_ch,
1027 OMAP_DMA_DATA_BURST_16);
1029 info->nand.read_buf = omap_read_buf_dma_pref;
1030 info->nand.write_buf = omap_write_buf_dma_pref;
1032 break;
1034 case NAND_OMAP_PREFETCH_IRQ:
1035 err = request_irq(pdata->gpmc_irq,
1036 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1037 if (err) {
1038 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1039 pdata->gpmc_irq, err);
1040 goto out_release_mem_region;
1041 } else {
1042 info->gpmc_irq = pdata->gpmc_irq;
1043 info->nand.read_buf = omap_read_buf_irq_pref;
1044 info->nand.write_buf = omap_write_buf_irq_pref;
1046 break;
1048 default:
1049 dev_err(&pdev->dev,
1050 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1051 err = -EINVAL;
1052 goto out_release_mem_region;
1055 info->nand.verify_buf = omap_verify_buf;
1057 /* selsect the ecc type */
1058 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1059 info->nand.ecc.mode = NAND_ECC_SOFT;
1060 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1061 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1062 info->nand.ecc.bytes = 3;
1063 info->nand.ecc.size = 512;
1064 info->nand.ecc.calculate = omap_calculate_ecc;
1065 info->nand.ecc.hwctl = omap_enable_hwecc;
1066 info->nand.ecc.correct = omap_correct_data;
1067 info->nand.ecc.mode = NAND_ECC_HW;
1070 /* DIP switches on some boards change between 8 and 16 bit
1071 * bus widths for flash. Try the other width if the first try fails.
1073 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1074 info->nand.options ^= NAND_BUSWIDTH_16;
1075 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1076 err = -ENXIO;
1077 goto out_release_mem_region;
1081 /* rom code layout */
1082 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1084 if (info->nand.options & NAND_BUSWIDTH_16)
1085 offset = 2;
1086 else {
1087 offset = 1;
1088 info->nand.badblock_pattern = &bb_descrip_flashbased;
1090 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1091 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1092 omap_oobinfo.eccpos[i] = i+offset;
1094 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1095 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1096 (offset + omap_oobinfo.eccbytes);
1098 info->nand.ecc.layout = &omap_oobinfo;
1101 /* second phase scan */
1102 if (nand_scan_tail(&info->mtd)) {
1103 err = -ENXIO;
1104 goto out_release_mem_region;
1107 err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
1108 if (err > 0)
1109 mtd_device_register(&info->mtd, info->parts, err);
1110 else if (pdata->parts)
1111 mtd_device_register(&info->mtd, pdata->parts, pdata->nr_parts);
1112 else
1113 mtd_device_register(&info->mtd, NULL, 0);
1115 platform_set_drvdata(pdev, &info->mtd);
1117 return 0;
1119 out_release_mem_region:
1120 release_mem_region(info->phys_base, NAND_IO_SIZE);
1121 out_free_info:
1122 kfree(info);
1124 return err;
1127 static int omap_nand_remove(struct platform_device *pdev)
1129 struct mtd_info *mtd = platform_get_drvdata(pdev);
1130 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1131 mtd);
1133 platform_set_drvdata(pdev, NULL);
1134 if (info->dma_ch != -1)
1135 omap_free_dma(info->dma_ch);
1137 if (info->gpmc_irq)
1138 free_irq(info->gpmc_irq, info);
1140 /* Release NAND device, its internal structures and partitions */
1141 nand_release(&info->mtd);
1142 iounmap(info->nand.IO_ADDR_R);
1143 kfree(&info->mtd);
1144 return 0;
1147 static struct platform_driver omap_nand_driver = {
1148 .probe = omap_nand_probe,
1149 .remove = omap_nand_remove,
1150 .driver = {
1151 .name = DRIVER_NAME,
1152 .owner = THIS_MODULE,
1156 static int __init omap_nand_init(void)
1158 pr_info("%s driver initializing\n", DRIVER_NAME);
1160 return platform_driver_register(&omap_nand_driver);
1163 static void __exit omap_nand_exit(void)
1165 platform_driver_unregister(&omap_nand_driver);
1168 module_init(omap_nand_init);
1169 module_exit(omap_nand_exit);
1171 MODULE_ALIAS("platform:" DRIVER_NAME);
1172 MODULE_LICENSE("GPL");
1173 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");