1 /* bnx2x_main.c: Broadcom Everest network driver.
3 * Copyright (c) 2007-2011 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/kernel.h>
21 #include <linux/device.h> /* for dev_info() */
22 #include <linux/timer.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/init.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/bitops.h>
34 #include <linux/irq.h>
35 #include <linux/delay.h>
36 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
40 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <linux/workqueue.h>
47 #include <linux/crc32.h>
48 #include <linux/crc32c.h>
49 #include <linux/prefetch.h>
50 #include <linux/zlib.h>
52 #include <linux/stringify.h>
53 #include <linux/vmalloc.h>
56 #include "bnx2x_init.h"
57 #include "bnx2x_init_ops.h"
58 #include "bnx2x_cmn.h"
59 #include "bnx2x_dcb.h"
62 #include <linux/firmware.h>
63 #include "bnx2x_fw_file_hdr.h"
65 #define FW_FILE_VERSION \
66 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
67 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
68 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
69 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
70 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
71 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
72 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
74 /* Time in jiffies before concluding the transmitter is hung */
75 #define TX_TIMEOUT (5*HZ)
77 static char version
[] __devinitdata
=
78 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
79 DRV_MODULE_NAME
" " DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
81 MODULE_AUTHOR("Eliezer Tamir");
82 MODULE_DESCRIPTION("Broadcom NetXtreme II "
83 "BCM57710/57711/57711E/"
84 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
85 "57840/57840_MF Driver");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_MODULE_VERSION
);
88 MODULE_FIRMWARE(FW_FILE_NAME_E1
);
89 MODULE_FIRMWARE(FW_FILE_NAME_E1H
);
90 MODULE_FIRMWARE(FW_FILE_NAME_E2
);
92 static int multi_mode
= 1;
93 module_param(multi_mode
, int, 0);
94 MODULE_PARM_DESC(multi_mode
, " Multi queue mode "
95 "(0 Disable; 1 Enable (default))");
98 module_param(num_queues
, int, 0);
99 MODULE_PARM_DESC(num_queues
, " Number of queues for multi_mode=1"
100 " (default is as a number of CPUs)");
102 static int disable_tpa
;
103 module_param(disable_tpa
, int, 0);
104 MODULE_PARM_DESC(disable_tpa
, " Disable the TPA (LRO) feature");
106 #define INT_MODE_INTx 1
107 #define INT_MODE_MSI 2
109 module_param(int_mode
, int, 0);
110 MODULE_PARM_DESC(int_mode
, " Force interrupt mode other than MSI-X "
113 static int dropless_fc
;
114 module_param(dropless_fc
, int, 0);
115 MODULE_PARM_DESC(dropless_fc
, " Pause on exhausted host ring");
118 module_param(poll
, int, 0);
119 MODULE_PARM_DESC(poll
, " Use polling (for debug)");
121 static int mrrs
= -1;
122 module_param(mrrs
, int, 0);
123 MODULE_PARM_DESC(mrrs
, " Force Max Read Req Size (0..3) (for debug)");
126 module_param(debug
, int, 0);
127 MODULE_PARM_DESC(debug
, " Default debug msglevel");
131 struct workqueue_struct
*bnx2x_wq
;
133 enum bnx2x_board_type
{
147 /* indexed by board_type, above */
150 } board_info
[] __devinitdata
= {
151 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
152 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
153 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
154 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
155 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
156 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
157 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
158 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
159 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
160 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
161 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
162 "Ethernet Multi Function"}
165 #ifndef PCI_DEVICE_ID_NX2_57710
166 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
168 #ifndef PCI_DEVICE_ID_NX2_57711
169 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
171 #ifndef PCI_DEVICE_ID_NX2_57711E
172 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
174 #ifndef PCI_DEVICE_ID_NX2_57712
175 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
177 #ifndef PCI_DEVICE_ID_NX2_57712_MF
178 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
180 #ifndef PCI_DEVICE_ID_NX2_57800
181 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
183 #ifndef PCI_DEVICE_ID_NX2_57800_MF
184 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
186 #ifndef PCI_DEVICE_ID_NX2_57810
187 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
189 #ifndef PCI_DEVICE_ID_NX2_57810_MF
190 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
192 #ifndef PCI_DEVICE_ID_NX2_57840
193 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
195 #ifndef PCI_DEVICE_ID_NX2_57840_MF
196 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
198 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl
) = {
199 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57710
), BCM57710
},
200 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57711
), BCM57711
},
201 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57711E
), BCM57711E
},
202 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712
), BCM57712
},
203 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712_MF
), BCM57712_MF
},
204 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800
), BCM57800
},
205 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800_MF
), BCM57800_MF
},
206 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810
), BCM57810
},
207 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810_MF
), BCM57810_MF
},
208 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840
), BCM57840
},
209 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_MF
), BCM57840_MF
},
213 MODULE_DEVICE_TABLE(pci
, bnx2x_pci_tbl
);
215 /****************************************************************************
216 * General service functions
217 ****************************************************************************/
219 static inline void __storm_memset_dma_mapping(struct bnx2x
*bp
,
220 u32 addr
, dma_addr_t mapping
)
222 REG_WR(bp
, addr
, U64_LO(mapping
));
223 REG_WR(bp
, addr
+ 4, U64_HI(mapping
));
226 static inline void storm_memset_spq_addr(struct bnx2x
*bp
,
227 dma_addr_t mapping
, u16 abs_fid
)
229 u32 addr
= XSEM_REG_FAST_MEMORY
+
230 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid
);
232 __storm_memset_dma_mapping(bp
, addr
, mapping
);
235 static inline void storm_memset_vf_to_pf(struct bnx2x
*bp
, u16 abs_fid
,
238 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_VF_TO_PF_OFFSET(abs_fid
),
240 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_VF_TO_PF_OFFSET(abs_fid
),
242 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_VF_TO_PF_OFFSET(abs_fid
),
244 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_VF_TO_PF_OFFSET(abs_fid
),
248 static inline void storm_memset_func_en(struct bnx2x
*bp
, u16 abs_fid
,
251 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(abs_fid
),
253 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(abs_fid
),
255 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(abs_fid
),
257 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(abs_fid
),
261 static inline void storm_memset_eq_data(struct bnx2x
*bp
,
262 struct event_ring_data
*eq_data
,
265 size_t size
= sizeof(struct event_ring_data
);
267 u32 addr
= BAR_CSTRORM_INTMEM
+ CSTORM_EVENT_RING_DATA_OFFSET(pfid
);
269 __storm_memset_struct(bp
, addr
, size
, (u32
*)eq_data
);
272 static inline void storm_memset_eq_prod(struct bnx2x
*bp
, u16 eq_prod
,
275 u32 addr
= BAR_CSTRORM_INTMEM
+ CSTORM_EVENT_RING_PROD_OFFSET(pfid
);
276 REG_WR16(bp
, addr
, eq_prod
);
280 * locking is done by mcp
282 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
)
284 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
, addr
);
285 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_DATA
, val
);
286 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
287 PCICFG_VENDOR_ID_OFFSET
);
290 static u32
bnx2x_reg_rd_ind(struct bnx2x
*bp
, u32 addr
)
294 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
, addr
);
295 pci_read_config_dword(bp
->pdev
, PCICFG_GRC_DATA
, &val
);
296 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
297 PCICFG_VENDOR_ID_OFFSET
);
302 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
303 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
304 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
305 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
306 #define DMAE_DP_DST_NONE "dst_addr [none]"
308 static void bnx2x_dp_dmae(struct bnx2x
*bp
, struct dmae_command
*dmae
,
311 u32 src_type
= dmae
->opcode
& DMAE_COMMAND_SRC
;
313 switch (dmae
->opcode
& DMAE_COMMAND_DST
) {
314 case DMAE_CMD_DST_PCI
:
315 if (src_type
== DMAE_CMD_SRC_PCI
)
316 DP(msglvl
, "DMAE: opcode 0x%08x\n"
317 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
318 "comp_addr [%x:%08x], comp_val 0x%08x\n",
319 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
320 dmae
->len
, dmae
->dst_addr_hi
, dmae
->dst_addr_lo
,
321 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
324 DP(msglvl
, "DMAE: opcode 0x%08x\n"
325 "src [%08x], len [%d*4], dst [%x:%08x]\n"
326 "comp_addr [%x:%08x], comp_val 0x%08x\n",
327 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
328 dmae
->len
, dmae
->dst_addr_hi
, dmae
->dst_addr_lo
,
329 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
332 case DMAE_CMD_DST_GRC
:
333 if (src_type
== DMAE_CMD_SRC_PCI
)
334 DP(msglvl
, "DMAE: opcode 0x%08x\n"
335 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
336 "comp_addr [%x:%08x], comp_val 0x%08x\n",
337 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
338 dmae
->len
, dmae
->dst_addr_lo
>> 2,
339 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
342 DP(msglvl
, "DMAE: opcode 0x%08x\n"
343 "src [%08x], len [%d*4], dst [%08x]\n"
344 "comp_addr [%x:%08x], comp_val 0x%08x\n",
345 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
346 dmae
->len
, dmae
->dst_addr_lo
>> 2,
347 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
351 if (src_type
== DMAE_CMD_SRC_PCI
)
352 DP(msglvl
, "DMAE: opcode 0x%08x\n"
353 DP_LEVEL
"src_addr [%x:%08x] len [%d * 4] "
355 DP_LEVEL
"comp_addr [%x:%08x] comp_val 0x%08x\n",
356 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
357 dmae
->len
, dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
360 DP(msglvl
, "DMAE: opcode 0x%08x\n"
361 DP_LEVEL
"src_addr [%08x] len [%d * 4] "
363 DP_LEVEL
"comp_addr [%x:%08x] comp_val 0x%08x\n",
364 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
365 dmae
->len
, dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
372 /* copy command into DMAE command memory and set DMAE command go */
373 void bnx2x_post_dmae(struct bnx2x
*bp
, struct dmae_command
*dmae
, int idx
)
378 cmd_offset
= (DMAE_REG_CMD_MEM
+ sizeof(struct dmae_command
) * idx
);
379 for (i
= 0; i
< (sizeof(struct dmae_command
)/4); i
++) {
380 REG_WR(bp
, cmd_offset
+ i
*4, *(((u32
*)dmae
) + i
));
382 DP(BNX2X_MSG_OFF
, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
383 idx
, i
, cmd_offset
+ i
*4, *(((u32
*)dmae
) + i
));
385 REG_WR(bp
, dmae_reg_go_c
[idx
], 1);
388 u32
bnx2x_dmae_opcode_add_comp(u32 opcode
, u8 comp_type
)
390 return opcode
| ((comp_type
<< DMAE_COMMAND_C_DST_SHIFT
) |
394 u32
bnx2x_dmae_opcode_clr_src_reset(u32 opcode
)
396 return opcode
& ~DMAE_CMD_SRC_RESET
;
399 u32
bnx2x_dmae_opcode(struct bnx2x
*bp
, u8 src_type
, u8 dst_type
,
400 bool with_comp
, u8 comp_type
)
404 opcode
|= ((src_type
<< DMAE_COMMAND_SRC_SHIFT
) |
405 (dst_type
<< DMAE_COMMAND_DST_SHIFT
));
407 opcode
|= (DMAE_CMD_SRC_RESET
| DMAE_CMD_DST_RESET
);
409 opcode
|= (BP_PORT(bp
) ? DMAE_CMD_PORT_1
: DMAE_CMD_PORT_0
);
410 opcode
|= ((BP_E1HVN(bp
) << DMAE_CMD_E1HVN_SHIFT
) |
411 (BP_E1HVN(bp
) << DMAE_COMMAND_DST_VN_SHIFT
));
412 opcode
|= (DMAE_COM_SET_ERR
<< DMAE_COMMAND_ERR_POLICY_SHIFT
);
415 opcode
|= DMAE_CMD_ENDIANITY_B_DW_SWAP
;
417 opcode
|= DMAE_CMD_ENDIANITY_DW_SWAP
;
420 opcode
= bnx2x_dmae_opcode_add_comp(opcode
, comp_type
);
424 static void bnx2x_prep_dmae_with_comp(struct bnx2x
*bp
,
425 struct dmae_command
*dmae
,
426 u8 src_type
, u8 dst_type
)
428 memset(dmae
, 0, sizeof(struct dmae_command
));
431 dmae
->opcode
= bnx2x_dmae_opcode(bp
, src_type
, dst_type
,
432 true, DMAE_COMP_PCI
);
434 /* fill in the completion parameters */
435 dmae
->comp_addr_lo
= U64_LO(bnx2x_sp_mapping(bp
, wb_comp
));
436 dmae
->comp_addr_hi
= U64_HI(bnx2x_sp_mapping(bp
, wb_comp
));
437 dmae
->comp_val
= DMAE_COMP_VAL
;
440 /* issue a dmae command over the init-channel and wailt for completion */
441 static int bnx2x_issue_dmae_with_comp(struct bnx2x
*bp
,
442 struct dmae_command
*dmae
)
444 u32
*wb_comp
= bnx2x_sp(bp
, wb_comp
);
445 int cnt
= CHIP_REV_IS_SLOW(bp
) ? (400000) : 4000;
448 DP(BNX2X_MSG_OFF
, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
449 bp
->slowpath
->wb_data
[0], bp
->slowpath
->wb_data
[1],
450 bp
->slowpath
->wb_data
[2], bp
->slowpath
->wb_data
[3]);
453 * Lock the dmae channel. Disable BHs to prevent a dead-lock
454 * as long as this code is called both from syscall context and
455 * from ndo_set_rx_mode() flow that may be called from BH.
457 spin_lock_bh(&bp
->dmae_lock
);
459 /* reset completion */
462 /* post the command on the channel used for initializations */
463 bnx2x_post_dmae(bp
, dmae
, INIT_DMAE_C(bp
));
465 /* wait for completion */
467 while ((*wb_comp
& ~DMAE_PCI_ERR_FLAG
) != DMAE_COMP_VAL
) {
468 DP(BNX2X_MSG_OFF
, "wb_comp 0x%08x\n", *wb_comp
);
471 BNX2X_ERR("DMAE timeout!\n");
478 if (*wb_comp
& DMAE_PCI_ERR_FLAG
) {
479 BNX2X_ERR("DMAE PCI error!\n");
483 DP(BNX2X_MSG_OFF
, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
484 bp
->slowpath
->wb_data
[0], bp
->slowpath
->wb_data
[1],
485 bp
->slowpath
->wb_data
[2], bp
->slowpath
->wb_data
[3]);
488 spin_unlock_bh(&bp
->dmae_lock
);
492 void bnx2x_write_dmae(struct bnx2x
*bp
, dma_addr_t dma_addr
, u32 dst_addr
,
495 struct dmae_command dmae
;
497 if (!bp
->dmae_ready
) {
498 u32
*data
= bnx2x_sp(bp
, wb_data
[0]);
500 DP(BNX2X_MSG_OFF
, "DMAE is not ready (dst_addr %08x len32 %d)"
501 " using indirect\n", dst_addr
, len32
);
502 bnx2x_init_ind_wr(bp
, dst_addr
, data
, len32
);
506 /* set opcode and fixed command fields */
507 bnx2x_prep_dmae_with_comp(bp
, &dmae
, DMAE_SRC_PCI
, DMAE_DST_GRC
);
509 /* fill in addresses and len */
510 dmae
.src_addr_lo
= U64_LO(dma_addr
);
511 dmae
.src_addr_hi
= U64_HI(dma_addr
);
512 dmae
.dst_addr_lo
= dst_addr
>> 2;
513 dmae
.dst_addr_hi
= 0;
516 bnx2x_dp_dmae(bp
, &dmae
, BNX2X_MSG_OFF
);
518 /* issue the command and wait for completion */
519 bnx2x_issue_dmae_with_comp(bp
, &dmae
);
522 void bnx2x_read_dmae(struct bnx2x
*bp
, u32 src_addr
, u32 len32
)
524 struct dmae_command dmae
;
526 if (!bp
->dmae_ready
) {
527 u32
*data
= bnx2x_sp(bp
, wb_data
[0]);
530 DP(BNX2X_MSG_OFF
, "DMAE is not ready (src_addr %08x len32 %d)"
531 " using indirect\n", src_addr
, len32
);
532 for (i
= 0; i
< len32
; i
++)
533 data
[i
] = bnx2x_reg_rd_ind(bp
, src_addr
+ i
*4);
537 /* set opcode and fixed command fields */
538 bnx2x_prep_dmae_with_comp(bp
, &dmae
, DMAE_SRC_GRC
, DMAE_DST_PCI
);
540 /* fill in addresses and len */
541 dmae
.src_addr_lo
= src_addr
>> 2;
542 dmae
.src_addr_hi
= 0;
543 dmae
.dst_addr_lo
= U64_LO(bnx2x_sp_mapping(bp
, wb_data
));
544 dmae
.dst_addr_hi
= U64_HI(bnx2x_sp_mapping(bp
, wb_data
));
547 bnx2x_dp_dmae(bp
, &dmae
, BNX2X_MSG_OFF
);
549 /* issue the command and wait for completion */
550 bnx2x_issue_dmae_with_comp(bp
, &dmae
);
553 static void bnx2x_write_dmae_phys_len(struct bnx2x
*bp
, dma_addr_t phys_addr
,
556 int dmae_wr_max
= DMAE_LEN32_WR_MAX(bp
);
559 while (len
> dmae_wr_max
) {
560 bnx2x_write_dmae(bp
, phys_addr
+ offset
,
561 addr
+ offset
, dmae_wr_max
);
562 offset
+= dmae_wr_max
* 4;
566 bnx2x_write_dmae(bp
, phys_addr
+ offset
, addr
+ offset
, len
);
569 /* used only for slowpath so not inlined */
570 static void bnx2x_wb_wr(struct bnx2x
*bp
, int reg
, u32 val_hi
, u32 val_lo
)
574 wb_write
[0] = val_hi
;
575 wb_write
[1] = val_lo
;
576 REG_WR_DMAE(bp
, reg
, wb_write
, 2);
580 static u64
bnx2x_wb_rd(struct bnx2x
*bp
, int reg
)
584 REG_RD_DMAE(bp
, reg
, wb_data
, 2);
586 return HILO_U64(wb_data
[0], wb_data
[1]);
590 static int bnx2x_mc_assert(struct bnx2x
*bp
)
594 u32 row0
, row1
, row2
, row3
;
597 last_idx
= REG_RD8(bp
, BAR_XSTRORM_INTMEM
+
598 XSTORM_ASSERT_LIST_INDEX_OFFSET
);
600 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
602 /* print the asserts */
603 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
605 row0
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
606 XSTORM_ASSERT_LIST_OFFSET(i
));
607 row1
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
608 XSTORM_ASSERT_LIST_OFFSET(i
) + 4);
609 row2
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
610 XSTORM_ASSERT_LIST_OFFSET(i
) + 8);
611 row3
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
612 XSTORM_ASSERT_LIST_OFFSET(i
) + 12);
614 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
615 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
616 " 0x%08x 0x%08x 0x%08x\n",
617 i
, row3
, row2
, row1
, row0
);
625 last_idx
= REG_RD8(bp
, BAR_TSTRORM_INTMEM
+
626 TSTORM_ASSERT_LIST_INDEX_OFFSET
);
628 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
630 /* print the asserts */
631 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
633 row0
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
634 TSTORM_ASSERT_LIST_OFFSET(i
));
635 row1
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
636 TSTORM_ASSERT_LIST_OFFSET(i
) + 4);
637 row2
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
638 TSTORM_ASSERT_LIST_OFFSET(i
) + 8);
639 row3
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
640 TSTORM_ASSERT_LIST_OFFSET(i
) + 12);
642 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
643 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
644 " 0x%08x 0x%08x 0x%08x\n",
645 i
, row3
, row2
, row1
, row0
);
653 last_idx
= REG_RD8(bp
, BAR_CSTRORM_INTMEM
+
654 CSTORM_ASSERT_LIST_INDEX_OFFSET
);
656 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
658 /* print the asserts */
659 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
661 row0
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
662 CSTORM_ASSERT_LIST_OFFSET(i
));
663 row1
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
664 CSTORM_ASSERT_LIST_OFFSET(i
) + 4);
665 row2
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
666 CSTORM_ASSERT_LIST_OFFSET(i
) + 8);
667 row3
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
668 CSTORM_ASSERT_LIST_OFFSET(i
) + 12);
670 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
671 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
672 " 0x%08x 0x%08x 0x%08x\n",
673 i
, row3
, row2
, row1
, row0
);
681 last_idx
= REG_RD8(bp
, BAR_USTRORM_INTMEM
+
682 USTORM_ASSERT_LIST_INDEX_OFFSET
);
684 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
686 /* print the asserts */
687 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
689 row0
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
690 USTORM_ASSERT_LIST_OFFSET(i
));
691 row1
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
692 USTORM_ASSERT_LIST_OFFSET(i
) + 4);
693 row2
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
694 USTORM_ASSERT_LIST_OFFSET(i
) + 8);
695 row3
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
696 USTORM_ASSERT_LIST_OFFSET(i
) + 12);
698 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
699 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
700 " 0x%08x 0x%08x 0x%08x\n",
701 i
, row3
, row2
, row1
, row0
);
711 void bnx2x_fw_dump_lvl(struct bnx2x
*bp
, const char *lvl
)
717 u32 trace_shmem_base
;
719 BNX2X_ERR("NO MCP - can not dump\n");
722 netdev_printk(lvl
, bp
->dev
, "bc %d.%d.%d\n",
723 (bp
->common
.bc_ver
& 0xff0000) >> 16,
724 (bp
->common
.bc_ver
& 0xff00) >> 8,
725 (bp
->common
.bc_ver
& 0xff));
727 val
= REG_RD(bp
, MCP_REG_MCPR_CPU_PROGRAM_COUNTER
);
728 if (val
== REG_RD(bp
, MCP_REG_MCPR_CPU_PROGRAM_COUNTER
))
729 printk("%s" "MCP PC at 0x%x\n", lvl
, val
);
731 if (BP_PATH(bp
) == 0)
732 trace_shmem_base
= bp
->common
.shmem_base
;
734 trace_shmem_base
= SHMEM2_RD(bp
, other_shmem_base_addr
);
735 addr
= trace_shmem_base
- 0x0800 + 4;
736 mark
= REG_RD(bp
, addr
);
737 mark
= (CHIP_IS_E1x(bp
) ? MCP_REG_MCPR_SCRATCH
: MCP_A_REG_MCPR_SCRATCH
)
738 + ((mark
+ 0x3) & ~0x3) - 0x08000000;
739 printk("%s" "begin fw dump (mark 0x%x)\n", lvl
, mark
);
742 for (offset
= mark
; offset
<= trace_shmem_base
; offset
+= 0x8*4) {
743 for (word
= 0; word
< 8; word
++)
744 data
[word
] = htonl(REG_RD(bp
, offset
+ 4*word
));
746 pr_cont("%s", (char *)data
);
748 for (offset
= addr
+ 4; offset
<= mark
; offset
+= 0x8*4) {
749 for (word
= 0; word
< 8; word
++)
750 data
[word
] = htonl(REG_RD(bp
, offset
+ 4*word
));
752 pr_cont("%s", (char *)data
);
754 printk("%s" "end of fw dump\n", lvl
);
757 static inline void bnx2x_fw_dump(struct bnx2x
*bp
)
759 bnx2x_fw_dump_lvl(bp
, KERN_ERR
);
762 void bnx2x_panic_dump(struct bnx2x
*bp
)
766 struct hc_sp_status_block_data sp_sb_data
;
767 int func
= BP_FUNC(bp
);
768 #ifdef BNX2X_STOP_ON_ERROR
769 u16 start
= 0, end
= 0;
773 bp
->stats_state
= STATS_STATE_DISABLED
;
774 DP(BNX2X_MSG_STATS
, "stats_state - DISABLED\n");
776 BNX2X_ERR("begin crash dump -----------------\n");
780 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
781 " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
782 bp
->def_idx
, bp
->def_att_idx
, bp
->attn_state
,
783 bp
->spq_prod_idx
, bp
->stats_counter
);
784 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
785 bp
->def_status_blk
->atten_status_block
.attn_bits
,
786 bp
->def_status_blk
->atten_status_block
.attn_bits_ack
,
787 bp
->def_status_blk
->atten_status_block
.status_block_id
,
788 bp
->def_status_blk
->atten_status_block
.attn_bits_index
);
790 for (i
= 0; i
< HC_SP_SB_MAX_INDICES
; i
++)
792 bp
->def_status_blk
->sp_sb
.index_values
[i
],
793 (i
== HC_SP_SB_MAX_INDICES
- 1) ? ") " : " ");
795 for (i
= 0; i
< sizeof(struct hc_sp_status_block_data
)/sizeof(u32
); i
++)
796 *((u32
*)&sp_sb_data
+ i
) = REG_RD(bp
, BAR_CSTRORM_INTMEM
+
797 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func
) +
800 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) "
801 "pf_id(0x%x) vnic_id(0x%x) "
802 "vf_id(0x%x) vf_valid (0x%x) "
804 sp_sb_data
.igu_sb_id
,
805 sp_sb_data
.igu_seg_id
,
806 sp_sb_data
.p_func
.pf_id
,
807 sp_sb_data
.p_func
.vnic_id
,
808 sp_sb_data
.p_func
.vf_id
,
809 sp_sb_data
.p_func
.vf_valid
,
813 for_each_eth_queue(bp
, i
) {
814 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
816 struct hc_status_block_data_e2 sb_data_e2
;
817 struct hc_status_block_data_e1x sb_data_e1x
;
818 struct hc_status_block_sm
*hc_sm_p
=
820 sb_data_e1x
.common
.state_machine
:
821 sb_data_e2
.common
.state_machine
;
822 struct hc_index_data
*hc_index_p
=
824 sb_data_e1x
.index_data
:
825 sb_data_e2
.index_data
;
828 struct bnx2x_fp_txdata txdata
;
831 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
832 " rx_comp_prod(0x%x)"
833 " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
834 i
, fp
->rx_bd_prod
, fp
->rx_bd_cons
,
836 fp
->rx_comp_cons
, le16_to_cpu(*fp
->rx_cons_sb
));
837 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
838 " fp_hc_idx(0x%x)\n",
839 fp
->rx_sge_prod
, fp
->last_max_sge
,
840 le16_to_cpu(fp
->fp_hc_idx
));
843 for_each_cos_in_tx_queue(fp
, cos
)
845 txdata
= fp
->txdata
[cos
];
846 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
847 " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
848 " *tx_cons_sb(0x%x)\n",
849 i
, txdata
.tx_pkt_prod
,
850 txdata
.tx_pkt_cons
, txdata
.tx_bd_prod
,
852 le16_to_cpu(*txdata
.tx_cons_sb
));
855 loop
= CHIP_IS_E1x(bp
) ?
856 HC_SB_MAX_INDICES_E1X
: HC_SB_MAX_INDICES_E2
;
864 BNX2X_ERR(" run indexes (");
865 for (j
= 0; j
< HC_SB_MAX_SM
; j
++)
867 fp
->sb_running_index
[j
],
868 (j
== HC_SB_MAX_SM
- 1) ? ")" : " ");
870 BNX2X_ERR(" indexes (");
871 for (j
= 0; j
< loop
; j
++)
873 fp
->sb_index_values
[j
],
874 (j
== loop
- 1) ? ")" : " ");
876 data_size
= CHIP_IS_E1x(bp
) ?
877 sizeof(struct hc_status_block_data_e1x
) :
878 sizeof(struct hc_status_block_data_e2
);
879 data_size
/= sizeof(u32
);
880 sb_data_p
= CHIP_IS_E1x(bp
) ?
881 (u32
*)&sb_data_e1x
:
883 /* copy sb data in here */
884 for (j
= 0; j
< data_size
; j
++)
885 *(sb_data_p
+ j
) = REG_RD(bp
, BAR_CSTRORM_INTMEM
+
886 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp
->fw_sb_id
) +
889 if (!CHIP_IS_E1x(bp
)) {
890 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
891 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
893 sb_data_e2
.common
.p_func
.pf_id
,
894 sb_data_e2
.common
.p_func
.vf_id
,
895 sb_data_e2
.common
.p_func
.vf_valid
,
896 sb_data_e2
.common
.p_func
.vnic_id
,
897 sb_data_e2
.common
.same_igu_sb_1b
,
898 sb_data_e2
.common
.state
);
900 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
901 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
903 sb_data_e1x
.common
.p_func
.pf_id
,
904 sb_data_e1x
.common
.p_func
.vf_id
,
905 sb_data_e1x
.common
.p_func
.vf_valid
,
906 sb_data_e1x
.common
.p_func
.vnic_id
,
907 sb_data_e1x
.common
.same_igu_sb_1b
,
908 sb_data_e1x
.common
.state
);
912 for (j
= 0; j
< HC_SB_MAX_SM
; j
++) {
913 pr_cont("SM[%d] __flags (0x%x) "
914 "igu_sb_id (0x%x) igu_seg_id(0x%x) "
915 "time_to_expire (0x%x) "
916 "timer_value(0x%x)\n", j
,
918 hc_sm_p
[j
].igu_sb_id
,
919 hc_sm_p
[j
].igu_seg_id
,
920 hc_sm_p
[j
].time_to_expire
,
921 hc_sm_p
[j
].timer_value
);
925 for (j
= 0; j
< loop
; j
++) {
926 pr_cont("INDEX[%d] flags (0x%x) "
927 "timeout (0x%x)\n", j
,
929 hc_index_p
[j
].timeout
);
933 #ifdef BNX2X_STOP_ON_ERROR
936 for_each_rx_queue(bp
, i
) {
937 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
939 start
= RX_BD(le16_to_cpu(*fp
->rx_cons_sb
) - 10);
940 end
= RX_BD(le16_to_cpu(*fp
->rx_cons_sb
) + 503);
941 for (j
= start
; j
!= end
; j
= RX_BD(j
+ 1)) {
942 u32
*rx_bd
= (u32
*)&fp
->rx_desc_ring
[j
];
943 struct sw_rx_bd
*sw_bd
= &fp
->rx_buf_ring
[j
];
945 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
946 i
, j
, rx_bd
[1], rx_bd
[0], sw_bd
->skb
);
949 start
= RX_SGE(fp
->rx_sge_prod
);
950 end
= RX_SGE(fp
->last_max_sge
);
951 for (j
= start
; j
!= end
; j
= RX_SGE(j
+ 1)) {
952 u32
*rx_sge
= (u32
*)&fp
->rx_sge_ring
[j
];
953 struct sw_rx_page
*sw_page
= &fp
->rx_page_ring
[j
];
955 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
956 i
, j
, rx_sge
[1], rx_sge
[0], sw_page
->page
);
959 start
= RCQ_BD(fp
->rx_comp_cons
- 10);
960 end
= RCQ_BD(fp
->rx_comp_cons
+ 503);
961 for (j
= start
; j
!= end
; j
= RCQ_BD(j
+ 1)) {
962 u32
*cqe
= (u32
*)&fp
->rx_comp_ring
[j
];
964 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
965 i
, j
, cqe
[0], cqe
[1], cqe
[2], cqe
[3]);
970 for_each_tx_queue(bp
, i
) {
971 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
972 for_each_cos_in_tx_queue(fp
, cos
) {
973 struct bnx2x_fp_txdata
*txdata
= &fp
->txdata
[cos
];
975 start
= TX_BD(le16_to_cpu(*txdata
->tx_cons_sb
) - 10);
976 end
= TX_BD(le16_to_cpu(*txdata
->tx_cons_sb
) + 245);
977 for (j
= start
; j
!= end
; j
= TX_BD(j
+ 1)) {
978 struct sw_tx_bd
*sw_bd
=
979 &txdata
->tx_buf_ring
[j
];
981 BNX2X_ERR("fp%d: txdata %d, "
982 "packet[%x]=[%p,%x]\n",
983 i
, cos
, j
, sw_bd
->skb
,
987 start
= TX_BD(txdata
->tx_bd_cons
- 10);
988 end
= TX_BD(txdata
->tx_bd_cons
+ 254);
989 for (j
= start
; j
!= end
; j
= TX_BD(j
+ 1)) {
990 u32
*tx_bd
= (u32
*)&txdata
->tx_desc_ring
[j
];
992 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
994 i
, cos
, j
, tx_bd
[0], tx_bd
[1],
1001 bnx2x_mc_assert(bp
);
1002 BNX2X_ERR("end crash dump -----------------\n");
1006 * FLR Support for E2
1008 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1011 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
1012 #define FLR_WAIT_INTERAVAL 50 /* usec */
1013 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1015 struct pbf_pN_buf_regs
{
1022 struct pbf_pN_cmd_regs
{
1028 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x
*bp
,
1029 struct pbf_pN_buf_regs
*regs
,
1032 u32 init_crd
, crd
, crd_start
, crd_freed
, crd_freed_start
;
1033 u32 cur_cnt
= poll_count
;
1035 crd_freed
= crd_freed_start
= REG_RD(bp
, regs
->crd_freed
);
1036 crd
= crd_start
= REG_RD(bp
, regs
->crd
);
1037 init_crd
= REG_RD(bp
, regs
->init_crd
);
1039 DP(BNX2X_MSG_SP
, "INIT CREDIT[%d] : %x\n", regs
->pN
, init_crd
);
1040 DP(BNX2X_MSG_SP
, "CREDIT[%d] : s:%x\n", regs
->pN
, crd
);
1041 DP(BNX2X_MSG_SP
, "CREDIT_FREED[%d]: s:%x\n", regs
->pN
, crd_freed
);
1043 while ((crd
!= init_crd
) && ((u32
)SUB_S32(crd_freed
, crd_freed_start
) <
1044 (init_crd
- crd_start
))) {
1046 udelay(FLR_WAIT_INTERAVAL
);
1047 crd
= REG_RD(bp
, regs
->crd
);
1048 crd_freed
= REG_RD(bp
, regs
->crd_freed
);
1050 DP(BNX2X_MSG_SP
, "PBF tx buffer[%d] timed out\n",
1052 DP(BNX2X_MSG_SP
, "CREDIT[%d] : c:%x\n",
1054 DP(BNX2X_MSG_SP
, "CREDIT_FREED[%d]: c:%x\n",
1055 regs
->pN
, crd_freed
);
1059 DP(BNX2X_MSG_SP
, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1060 poll_count
-cur_cnt
, FLR_WAIT_INTERAVAL
, regs
->pN
);
1063 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x
*bp
,
1064 struct pbf_pN_cmd_regs
*regs
,
1067 u32 occup
, to_free
, freed
, freed_start
;
1068 u32 cur_cnt
= poll_count
;
1070 occup
= to_free
= REG_RD(bp
, regs
->lines_occup
);
1071 freed
= freed_start
= REG_RD(bp
, regs
->lines_freed
);
1073 DP(BNX2X_MSG_SP
, "OCCUPANCY[%d] : s:%x\n", regs
->pN
, occup
);
1074 DP(BNX2X_MSG_SP
, "LINES_FREED[%d] : s:%x\n", regs
->pN
, freed
);
1076 while (occup
&& ((u32
)SUB_S32(freed
, freed_start
) < to_free
)) {
1078 udelay(FLR_WAIT_INTERAVAL
);
1079 occup
= REG_RD(bp
, regs
->lines_occup
);
1080 freed
= REG_RD(bp
, regs
->lines_freed
);
1082 DP(BNX2X_MSG_SP
, "PBF cmd queue[%d] timed out\n",
1084 DP(BNX2X_MSG_SP
, "OCCUPANCY[%d] : s:%x\n",
1086 DP(BNX2X_MSG_SP
, "LINES_FREED[%d] : s:%x\n",
1091 DP(BNX2X_MSG_SP
, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1092 poll_count
-cur_cnt
, FLR_WAIT_INTERAVAL
, regs
->pN
);
1095 static inline u32
bnx2x_flr_clnup_reg_poll(struct bnx2x
*bp
, u32 reg
,
1096 u32 expected
, u32 poll_count
)
1098 u32 cur_cnt
= poll_count
;
1101 while ((val
= REG_RD(bp
, reg
)) != expected
&& cur_cnt
--)
1102 udelay(FLR_WAIT_INTERAVAL
);
1107 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x
*bp
, u32 reg
,
1108 char *msg
, u32 poll_cnt
)
1110 u32 val
= bnx2x_flr_clnup_reg_poll(bp
, reg
, 0, poll_cnt
);
1112 BNX2X_ERR("%s usage count=%d\n", msg
, val
);
1118 static u32
bnx2x_flr_clnup_poll_count(struct bnx2x
*bp
)
1120 /* adjust polling timeout */
1121 if (CHIP_REV_IS_EMUL(bp
))
1122 return FLR_POLL_CNT
* 2000;
1124 if (CHIP_REV_IS_FPGA(bp
))
1125 return FLR_POLL_CNT
* 120;
1127 return FLR_POLL_CNT
;
1130 static void bnx2x_tx_hw_flushed(struct bnx2x
*bp
, u32 poll_count
)
1132 struct pbf_pN_cmd_regs cmd_regs
[] = {
1133 {0, (CHIP_IS_E3B0(bp
)) ?
1134 PBF_REG_TQ_OCCUPANCY_Q0
:
1135 PBF_REG_P0_TQ_OCCUPANCY
,
1136 (CHIP_IS_E3B0(bp
)) ?
1137 PBF_REG_TQ_LINES_FREED_CNT_Q0
:
1138 PBF_REG_P0_TQ_LINES_FREED_CNT
},
1139 {1, (CHIP_IS_E3B0(bp
)) ?
1140 PBF_REG_TQ_OCCUPANCY_Q1
:
1141 PBF_REG_P1_TQ_OCCUPANCY
,
1142 (CHIP_IS_E3B0(bp
)) ?
1143 PBF_REG_TQ_LINES_FREED_CNT_Q1
:
1144 PBF_REG_P1_TQ_LINES_FREED_CNT
},
1145 {4, (CHIP_IS_E3B0(bp
)) ?
1146 PBF_REG_TQ_OCCUPANCY_LB_Q
:
1147 PBF_REG_P4_TQ_OCCUPANCY
,
1148 (CHIP_IS_E3B0(bp
)) ?
1149 PBF_REG_TQ_LINES_FREED_CNT_LB_Q
:
1150 PBF_REG_P4_TQ_LINES_FREED_CNT
}
1153 struct pbf_pN_buf_regs buf_regs
[] = {
1154 {0, (CHIP_IS_E3B0(bp
)) ?
1155 PBF_REG_INIT_CRD_Q0
:
1156 PBF_REG_P0_INIT_CRD
,
1157 (CHIP_IS_E3B0(bp
)) ?
1160 (CHIP_IS_E3B0(bp
)) ?
1161 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0
:
1162 PBF_REG_P0_INTERNAL_CRD_FREED_CNT
},
1163 {1, (CHIP_IS_E3B0(bp
)) ?
1164 PBF_REG_INIT_CRD_Q1
:
1165 PBF_REG_P1_INIT_CRD
,
1166 (CHIP_IS_E3B0(bp
)) ?
1169 (CHIP_IS_E3B0(bp
)) ?
1170 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1
:
1171 PBF_REG_P1_INTERNAL_CRD_FREED_CNT
},
1172 {4, (CHIP_IS_E3B0(bp
)) ?
1173 PBF_REG_INIT_CRD_LB_Q
:
1174 PBF_REG_P4_INIT_CRD
,
1175 (CHIP_IS_E3B0(bp
)) ?
1176 PBF_REG_CREDIT_LB_Q
:
1178 (CHIP_IS_E3B0(bp
)) ?
1179 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q
:
1180 PBF_REG_P4_INTERNAL_CRD_FREED_CNT
},
1185 /* Verify the command queues are flushed P0, P1, P4 */
1186 for (i
= 0; i
< ARRAY_SIZE(cmd_regs
); i
++)
1187 bnx2x_pbf_pN_cmd_flushed(bp
, &cmd_regs
[i
], poll_count
);
1190 /* Verify the transmission buffers are flushed P0, P1, P4 */
1191 for (i
= 0; i
< ARRAY_SIZE(buf_regs
); i
++)
1192 bnx2x_pbf_pN_buf_flushed(bp
, &buf_regs
[i
], poll_count
);
1195 #define OP_GEN_PARAM(param) \
1196 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1198 #define OP_GEN_TYPE(type) \
1199 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1201 #define OP_GEN_AGG_VECT(index) \
1202 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1205 static inline int bnx2x_send_final_clnup(struct bnx2x
*bp
, u8 clnup_func
,
1208 struct sdm_op_gen op_gen
= {0};
1210 u32 comp_addr
= BAR_CSTRORM_INTMEM
+
1211 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func
);
1214 if (REG_RD(bp
, comp_addr
)) {
1215 BNX2X_ERR("Cleanup complete is not 0\n");
1219 op_gen
.command
|= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX
);
1220 op_gen
.command
|= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE
);
1221 op_gen
.command
|= OP_GEN_AGG_VECT(clnup_func
);
1222 op_gen
.command
|= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT
;
1224 DP(BNX2X_MSG_SP
, "FW Final cleanup\n");
1225 REG_WR(bp
, XSDM_REG_OPERATION_GEN
, op_gen
.command
);
1227 if (bnx2x_flr_clnup_reg_poll(bp
, comp_addr
, 1, poll_cnt
) != 1) {
1228 BNX2X_ERR("FW final cleanup did not succeed\n");
1231 /* Zero completion for nxt FLR */
1232 REG_WR(bp
, comp_addr
, 0);
1237 static inline u8
bnx2x_is_pcie_pending(struct pci_dev
*dev
)
1242 pos
= pci_pcie_cap(dev
);
1246 pci_read_config_word(dev
, pos
+ PCI_EXP_DEVSTA
, &status
);
1247 return status
& PCI_EXP_DEVSTA_TRPND
;
1250 /* PF FLR specific routines
1252 static int bnx2x_poll_hw_usage_counters(struct bnx2x
*bp
, u32 poll_cnt
)
1255 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1256 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1257 CFC_REG_NUM_LCIDS_INSIDE_PF
,
1258 "CFC PF usage counter timed out",
1263 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1264 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1265 DORQ_REG_PF_USAGE_CNT
,
1266 "DQ PF usage counter timed out",
1270 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1271 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1272 QM_REG_PF_USG_CNT_0
+ 4*BP_FUNC(bp
),
1273 "QM PF usage counter timed out",
1277 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1278 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1279 TM_REG_LIN0_VNIC_UC
+ 4*BP_PORT(bp
),
1280 "Timers VNIC usage counter timed out",
1283 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1284 TM_REG_LIN0_NUM_SCANS
+ 4*BP_PORT(bp
),
1285 "Timers NUM_SCANS usage counter timed out",
1289 /* Wait DMAE PF usage counter to zero */
1290 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1291 dmae_reg_go_c
[INIT_DMAE_C(bp
)],
1292 "DMAE dommand register timed out",
1299 static void bnx2x_hw_enable_status(struct bnx2x
*bp
)
1303 val
= REG_RD(bp
, CFC_REG_WEAK_ENABLE_PF
);
1304 DP(BNX2X_MSG_SP
, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val
);
1306 val
= REG_RD(bp
, PBF_REG_DISABLE_PF
);
1307 DP(BNX2X_MSG_SP
, "PBF_REG_DISABLE_PF is 0x%x\n", val
);
1309 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSI_EN
);
1310 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val
);
1312 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSIX_EN
);
1313 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val
);
1315 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSIX_FUNC_MASK
);
1316 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val
);
1318 val
= REG_RD(bp
, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR
);
1319 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val
);
1321 val
= REG_RD(bp
, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR
);
1322 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val
);
1324 val
= REG_RD(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
);
1325 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1329 static int bnx2x_pf_flr_clnup(struct bnx2x
*bp
)
1331 u32 poll_cnt
= bnx2x_flr_clnup_poll_count(bp
);
1333 DP(BNX2X_MSG_SP
, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp
));
1335 /* Re-enable PF target read access */
1336 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ
, 1);
1338 /* Poll HW usage counters */
1339 if (bnx2x_poll_hw_usage_counters(bp
, poll_cnt
))
1342 /* Zero the igu 'trailing edge' and 'leading edge' */
1344 /* Send the FW cleanup command */
1345 if (bnx2x_send_final_clnup(bp
, (u8
)BP_FUNC(bp
), poll_cnt
))
1350 /* Verify TX hw is flushed */
1351 bnx2x_tx_hw_flushed(bp
, poll_cnt
);
1353 /* Wait 100ms (not adjusted according to platform) */
1356 /* Verify no pending pci transactions */
1357 if (bnx2x_is_pcie_pending(bp
->pdev
))
1358 BNX2X_ERR("PCIE Transactions still pending\n");
1361 bnx2x_hw_enable_status(bp
);
1364 * Master enable - Due to WB DMAE writes performed before this
1365 * register is re-initialized as part of the regular function init
1367 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
1372 static void bnx2x_hc_int_enable(struct bnx2x
*bp
)
1374 int port
= BP_PORT(bp
);
1375 u32 addr
= port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
;
1376 u32 val
= REG_RD(bp
, addr
);
1377 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
1378 int msi
= (bp
->flags
& USING_MSI_FLAG
) ? 1 : 0;
1381 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1382 HC_CONFIG_0_REG_INT_LINE_EN_0
);
1383 val
|= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1384 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1386 val
&= ~HC_CONFIG_0_REG_INT_LINE_EN_0
;
1387 val
|= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1388 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1389 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1391 val
|= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1392 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1393 HC_CONFIG_0_REG_INT_LINE_EN_0
|
1394 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1396 if (!CHIP_IS_E1(bp
)) {
1397 DP(NETIF_MSG_INTR
, "write %x to HC %d (addr 0x%x)\n",
1400 REG_WR(bp
, addr
, val
);
1402 val
&= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
;
1407 REG_WR(bp
, HC_REG_INT_MASK
+ port
*4, 0x1FFFF);
1409 DP(NETIF_MSG_INTR
, "write %x to HC %d (addr 0x%x) mode %s\n",
1410 val
, port
, addr
, (msix
? "MSI-X" : (msi
? "MSI" : "INTx")));
1412 REG_WR(bp
, addr
, val
);
1414 * Ensure that HC_CONFIG is written before leading/trailing edge config
1419 if (!CHIP_IS_E1(bp
)) {
1420 /* init leading/trailing edge */
1422 val
= (0xee0f | (1 << (BP_E1HVN(bp
) + 4)));
1424 /* enable nig and gpio3 attention */
1429 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, val
);
1430 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, val
);
1433 /* Make sure that interrupts are indeed enabled from here on */
1437 static void bnx2x_igu_int_enable(struct bnx2x
*bp
)
1440 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
1441 int msi
= (bp
->flags
& USING_MSI_FLAG
) ? 1 : 0;
1443 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
1446 val
&= ~(IGU_PF_CONF_INT_LINE_EN
|
1447 IGU_PF_CONF_SINGLE_ISR_EN
);
1448 val
|= (IGU_PF_CONF_FUNC_EN
|
1449 IGU_PF_CONF_MSI_MSIX_EN
|
1450 IGU_PF_CONF_ATTN_BIT_EN
);
1452 val
&= ~IGU_PF_CONF_INT_LINE_EN
;
1453 val
|= (IGU_PF_CONF_FUNC_EN
|
1454 IGU_PF_CONF_MSI_MSIX_EN
|
1455 IGU_PF_CONF_ATTN_BIT_EN
|
1456 IGU_PF_CONF_SINGLE_ISR_EN
);
1458 val
&= ~IGU_PF_CONF_MSI_MSIX_EN
;
1459 val
|= (IGU_PF_CONF_FUNC_EN
|
1460 IGU_PF_CONF_INT_LINE_EN
|
1461 IGU_PF_CONF_ATTN_BIT_EN
|
1462 IGU_PF_CONF_SINGLE_ISR_EN
);
1465 DP(NETIF_MSG_INTR
, "write 0x%x to IGU mode %s\n",
1466 val
, (msix
? "MSI-X" : (msi
? "MSI" : "INTx")));
1468 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
1472 /* init leading/trailing edge */
1474 val
= (0xee0f | (1 << (BP_E1HVN(bp
) + 4)));
1476 /* enable nig and gpio3 attention */
1481 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, val
);
1482 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, val
);
1484 /* Make sure that interrupts are indeed enabled from here on */
1488 void bnx2x_int_enable(struct bnx2x
*bp
)
1490 if (bp
->common
.int_block
== INT_BLOCK_HC
)
1491 bnx2x_hc_int_enable(bp
);
1493 bnx2x_igu_int_enable(bp
);
1496 static void bnx2x_hc_int_disable(struct bnx2x
*bp
)
1498 int port
= BP_PORT(bp
);
1499 u32 addr
= port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
;
1500 u32 val
= REG_RD(bp
, addr
);
1503 * in E1 we must use only PCI configuration space to disable
1504 * MSI/MSIX capablility
1505 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1507 if (CHIP_IS_E1(bp
)) {
1508 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1509 * Use mask register to prevent from HC sending interrupts
1510 * after we exit the function
1512 REG_WR(bp
, HC_REG_INT_MASK
+ port
*4, 0);
1514 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1515 HC_CONFIG_0_REG_INT_LINE_EN_0
|
1516 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1518 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1519 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1520 HC_CONFIG_0_REG_INT_LINE_EN_0
|
1521 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1523 DP(NETIF_MSG_INTR
, "write %x to HC %d (addr 0x%x)\n",
1526 /* flush all outstanding writes */
1529 REG_WR(bp
, addr
, val
);
1530 if (REG_RD(bp
, addr
) != val
)
1531 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1534 static void bnx2x_igu_int_disable(struct bnx2x
*bp
)
1536 u32 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
1538 val
&= ~(IGU_PF_CONF_MSI_MSIX_EN
|
1539 IGU_PF_CONF_INT_LINE_EN
|
1540 IGU_PF_CONF_ATTN_BIT_EN
);
1542 DP(NETIF_MSG_INTR
, "write %x to IGU\n", val
);
1544 /* flush all outstanding writes */
1547 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
1548 if (REG_RD(bp
, IGU_REG_PF_CONFIGURATION
) != val
)
1549 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1552 void bnx2x_int_disable(struct bnx2x
*bp
)
1554 if (bp
->common
.int_block
== INT_BLOCK_HC
)
1555 bnx2x_hc_int_disable(bp
);
1557 bnx2x_igu_int_disable(bp
);
1560 void bnx2x_int_disable_sync(struct bnx2x
*bp
, int disable_hw
)
1562 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
1566 /* prevent the HW from sending interrupts */
1567 bnx2x_int_disable(bp
);
1569 /* make sure all ISRs are done */
1571 synchronize_irq(bp
->msix_table
[0].vector
);
1576 for_each_eth_queue(bp
, i
)
1577 synchronize_irq(bp
->msix_table
[offset
++].vector
);
1579 synchronize_irq(bp
->pdev
->irq
);
1581 /* make sure sp_task is not running */
1582 cancel_delayed_work(&bp
->sp_task
);
1583 cancel_delayed_work(&bp
->period_task
);
1584 flush_workqueue(bnx2x_wq
);
1590 * General service functions
1593 /* Return true if succeeded to acquire the lock */
1594 static bool bnx2x_trylock_hw_lock(struct bnx2x
*bp
, u32 resource
)
1597 u32 resource_bit
= (1 << resource
);
1598 int func
= BP_FUNC(bp
);
1599 u32 hw_lock_control_reg
;
1601 DP(NETIF_MSG_HW
, "Trying to take a lock on resource %d\n", resource
);
1603 /* Validating that the resource is within range */
1604 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1606 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1607 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
1612 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
1614 hw_lock_control_reg
=
1615 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
1617 /* Try to acquire the lock */
1618 REG_WR(bp
, hw_lock_control_reg
+ 4, resource_bit
);
1619 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1620 if (lock_status
& resource_bit
)
1623 DP(NETIF_MSG_HW
, "Failed to get a lock on resource %d\n", resource
);
1628 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1630 * @bp: driver handle
1632 * Returns the recovery leader resource id according to the engine this function
1633 * belongs to. Currently only only 2 engines is supported.
1635 static inline int bnx2x_get_leader_lock_resource(struct bnx2x
*bp
)
1638 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1
;
1640 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0
;
1644 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1646 * @bp: driver handle
1648 * Tries to aquire a leader lock for cuurent engine.
1650 static inline bool bnx2x_trylock_leader_lock(struct bnx2x
*bp
)
1652 return bnx2x_trylock_hw_lock(bp
, bnx2x_get_leader_lock_resource(bp
));
1656 static void bnx2x_cnic_cfc_comp(struct bnx2x
*bp
, int cid
, u8 err
);
1659 void bnx2x_sp_event(struct bnx2x_fastpath
*fp
, union eth_rx_cqe
*rr_cqe
)
1661 struct bnx2x
*bp
= fp
->bp
;
1662 int cid
= SW_CID(rr_cqe
->ramrod_cqe
.conn_and_cmd_data
);
1663 int command
= CQE_CMD(rr_cqe
->ramrod_cqe
.conn_and_cmd_data
);
1664 enum bnx2x_queue_cmd drv_cmd
= BNX2X_Q_CMD_MAX
;
1665 struct bnx2x_queue_sp_obj
*q_obj
= &fp
->q_obj
;
1668 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1669 fp
->index
, cid
, command
, bp
->state
,
1670 rr_cqe
->ramrod_cqe
.ramrod_type
);
1673 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE
):
1674 DP(BNX2X_MSG_SP
, "got UPDATE ramrod. CID %d\n", cid
);
1675 drv_cmd
= BNX2X_Q_CMD_UPDATE
;
1678 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP
):
1679 DP(BNX2X_MSG_SP
, "got MULTI[%d] setup ramrod\n", cid
);
1680 drv_cmd
= BNX2X_Q_CMD_SETUP
;
1683 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP
):
1684 DP(NETIF_MSG_IFUP
, "got MULTI[%d] tx-only setup ramrod\n", cid
);
1685 drv_cmd
= BNX2X_Q_CMD_SETUP_TX_ONLY
;
1688 case (RAMROD_CMD_ID_ETH_HALT
):
1689 DP(BNX2X_MSG_SP
, "got MULTI[%d] halt ramrod\n", cid
);
1690 drv_cmd
= BNX2X_Q_CMD_HALT
;
1693 case (RAMROD_CMD_ID_ETH_TERMINATE
):
1694 DP(BNX2X_MSG_SP
, "got MULTI[%d] teminate ramrod\n", cid
);
1695 drv_cmd
= BNX2X_Q_CMD_TERMINATE
;
1698 case (RAMROD_CMD_ID_ETH_EMPTY
):
1699 DP(BNX2X_MSG_SP
, "got MULTI[%d] empty ramrod\n", cid
);
1700 drv_cmd
= BNX2X_Q_CMD_EMPTY
;
1704 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1705 command
, fp
->index
);
1709 if ((drv_cmd
!= BNX2X_Q_CMD_MAX
) &&
1710 q_obj
->complete_cmd(bp
, q_obj
, drv_cmd
))
1711 /* q_obj->complete_cmd() failure means that this was
1712 * an unexpected completion.
1714 * In this case we don't want to increase the bp->spq_left
1715 * because apparently we haven't sent this command the first
1718 #ifdef BNX2X_STOP_ON_ERROR
1724 smp_mb__before_atomic_inc();
1725 atomic_inc(&bp
->cq_spq_left
);
1726 /* push the change in bp->spq_left and towards the memory */
1727 smp_mb__after_atomic_inc();
1729 DP(BNX2X_MSG_SP
, "bp->cq_spq_left %x\n", atomic_read(&bp
->cq_spq_left
));
1734 void bnx2x_update_rx_prod(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
1735 u16 bd_prod
, u16 rx_comp_prod
, u16 rx_sge_prod
)
1737 u32 start
= BAR_USTRORM_INTMEM
+ fp
->ustorm_rx_prods_offset
;
1739 bnx2x_update_rx_prod_gen(bp
, fp
, bd_prod
, rx_comp_prod
, rx_sge_prod
,
1743 irqreturn_t
bnx2x_interrupt(int irq
, void *dev_instance
)
1745 struct bnx2x
*bp
= netdev_priv(dev_instance
);
1746 u16 status
= bnx2x_ack_int(bp
);
1751 /* Return here if interrupt is shared and it's not for us */
1752 if (unlikely(status
== 0)) {
1753 DP(NETIF_MSG_INTR
, "not our interrupt!\n");
1756 DP(NETIF_MSG_INTR
, "got an interrupt status 0x%x\n", status
);
1758 #ifdef BNX2X_STOP_ON_ERROR
1759 if (unlikely(bp
->panic
))
1763 for_each_eth_queue(bp
, i
) {
1764 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1766 mask
= 0x2 << (fp
->index
+ CNIC_PRESENT
);
1767 if (status
& mask
) {
1768 /* Handle Rx or Tx according to SB id */
1769 prefetch(fp
->rx_cons_sb
);
1770 for_each_cos_in_tx_queue(fp
, cos
)
1771 prefetch(fp
->txdata
[cos
].tx_cons_sb
);
1772 prefetch(&fp
->sb_running_index
[SM_RX_ID
]);
1773 napi_schedule(&bnx2x_fp(bp
, fp
->index
, napi
));
1780 if (status
& (mask
| 0x1)) {
1781 struct cnic_ops
*c_ops
= NULL
;
1783 if (likely(bp
->state
== BNX2X_STATE_OPEN
)) {
1785 c_ops
= rcu_dereference(bp
->cnic_ops
);
1787 c_ops
->cnic_handler(bp
->cnic_data
, NULL
);
1795 if (unlikely(status
& 0x1)) {
1796 queue_delayed_work(bnx2x_wq
, &bp
->sp_task
, 0);
1803 if (unlikely(status
))
1804 DP(NETIF_MSG_INTR
, "got an unknown interrupt! (status 0x%x)\n",
1813 * General service functions
1816 int bnx2x_acquire_hw_lock(struct bnx2x
*bp
, u32 resource
)
1819 u32 resource_bit
= (1 << resource
);
1820 int func
= BP_FUNC(bp
);
1821 u32 hw_lock_control_reg
;
1824 /* Validating that the resource is within range */
1825 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1827 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1828 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
1833 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
1835 hw_lock_control_reg
=
1836 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
1839 /* Validating that the resource is not already taken */
1840 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1841 if (lock_status
& resource_bit
) {
1842 DP(NETIF_MSG_HW
, "lock_status 0x%x resource_bit 0x%x\n",
1843 lock_status
, resource_bit
);
1847 /* Try for 5 second every 5ms */
1848 for (cnt
= 0; cnt
< 1000; cnt
++) {
1849 /* Try to acquire the lock */
1850 REG_WR(bp
, hw_lock_control_reg
+ 4, resource_bit
);
1851 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1852 if (lock_status
& resource_bit
)
1857 DP(NETIF_MSG_HW
, "Timeout\n");
1861 int bnx2x_release_leader_lock(struct bnx2x
*bp
)
1863 return bnx2x_release_hw_lock(bp
, bnx2x_get_leader_lock_resource(bp
));
1866 int bnx2x_release_hw_lock(struct bnx2x
*bp
, u32 resource
)
1869 u32 resource_bit
= (1 << resource
);
1870 int func
= BP_FUNC(bp
);
1871 u32 hw_lock_control_reg
;
1873 DP(NETIF_MSG_HW
, "Releasing a lock on resource %d\n", resource
);
1875 /* Validating that the resource is within range */
1876 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1878 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1879 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
1884 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
1886 hw_lock_control_reg
=
1887 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
1890 /* Validating that the resource is currently taken */
1891 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1892 if (!(lock_status
& resource_bit
)) {
1893 DP(NETIF_MSG_HW
, "lock_status 0x%x resource_bit 0x%x\n",
1894 lock_status
, resource_bit
);
1898 REG_WR(bp
, hw_lock_control_reg
, resource_bit
);
1903 int bnx2x_get_gpio(struct bnx2x
*bp
, int gpio_num
, u8 port
)
1905 /* The GPIO should be swapped if swap register is set and active */
1906 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
1907 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
1908 int gpio_shift
= gpio_num
+
1909 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
1910 u32 gpio_mask
= (1 << gpio_shift
);
1914 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
1915 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
1919 /* read GPIO value */
1920 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO
);
1922 /* get the requested pin value */
1923 if ((gpio_reg
& gpio_mask
) == gpio_mask
)
1928 DP(NETIF_MSG_LINK
, "pin %d value 0x%x\n", gpio_num
, value
);
1933 int bnx2x_set_gpio(struct bnx2x
*bp
, int gpio_num
, u32 mode
, u8 port
)
1935 /* The GPIO should be swapped if swap register is set and active */
1936 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
1937 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
1938 int gpio_shift
= gpio_num
+
1939 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
1940 u32 gpio_mask
= (1 << gpio_shift
);
1943 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
1944 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
1948 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
1949 /* read GPIO and mask except the float bits */
1950 gpio_reg
= (REG_RD(bp
, MISC_REG_GPIO
) & MISC_REGISTERS_GPIO_FLOAT
);
1953 case MISC_REGISTERS_GPIO_OUTPUT_LOW
:
1954 DP(NETIF_MSG_LINK
, "Set GPIO %d (shift %d) -> output low\n",
1955 gpio_num
, gpio_shift
);
1956 /* clear FLOAT and set CLR */
1957 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
1958 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_CLR_POS
);
1961 case MISC_REGISTERS_GPIO_OUTPUT_HIGH
:
1962 DP(NETIF_MSG_LINK
, "Set GPIO %d (shift %d) -> output high\n",
1963 gpio_num
, gpio_shift
);
1964 /* clear FLOAT and set SET */
1965 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
1966 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_SET_POS
);
1969 case MISC_REGISTERS_GPIO_INPUT_HI_Z
:
1970 DP(NETIF_MSG_LINK
, "Set GPIO %d (shift %d) -> input\n",
1971 gpio_num
, gpio_shift
);
1973 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
1980 REG_WR(bp
, MISC_REG_GPIO
, gpio_reg
);
1981 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
1986 int bnx2x_set_mult_gpio(struct bnx2x
*bp
, u8 pins
, u32 mode
)
1991 /* Any port swapping should be handled by caller. */
1993 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
1994 /* read GPIO and mask except the float bits */
1995 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO
);
1996 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
1997 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_CLR_POS
);
1998 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_SET_POS
);
2001 case MISC_REGISTERS_GPIO_OUTPUT_LOW
:
2002 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> output low\n", pins
);
2004 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_CLR_POS
);
2007 case MISC_REGISTERS_GPIO_OUTPUT_HIGH
:
2008 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> output high\n", pins
);
2010 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_SET_POS
);
2013 case MISC_REGISTERS_GPIO_INPUT_HI_Z
:
2014 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> input\n", pins
);
2016 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2020 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode
);
2026 REG_WR(bp
, MISC_REG_GPIO
, gpio_reg
);
2028 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2033 int bnx2x_set_gpio_int(struct bnx2x
*bp
, int gpio_num
, u32 mode
, u8 port
)
2035 /* The GPIO should be swapped if swap register is set and active */
2036 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
2037 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
2038 int gpio_shift
= gpio_num
+
2039 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
2040 u32 gpio_mask
= (1 << gpio_shift
);
2043 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
2044 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
2048 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2050 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO_INT
);
2053 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR
:
2054 DP(NETIF_MSG_LINK
, "Clear GPIO INT %d (shift %d) -> "
2055 "output low\n", gpio_num
, gpio_shift
);
2056 /* clear SET and set CLR */
2057 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_INT_SET_POS
);
2058 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_INT_CLR_POS
);
2061 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET
:
2062 DP(NETIF_MSG_LINK
, "Set GPIO INT %d (shift %d) -> "
2063 "output high\n", gpio_num
, gpio_shift
);
2064 /* clear CLR and set SET */
2065 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_INT_CLR_POS
);
2066 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_INT_SET_POS
);
2073 REG_WR(bp
, MISC_REG_GPIO_INT
, gpio_reg
);
2074 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2079 static int bnx2x_set_spio(struct bnx2x
*bp
, int spio_num
, u32 mode
)
2081 u32 spio_mask
= (1 << spio_num
);
2084 if ((spio_num
< MISC_REGISTERS_SPIO_4
) ||
2085 (spio_num
> MISC_REGISTERS_SPIO_7
)) {
2086 BNX2X_ERR("Invalid SPIO %d\n", spio_num
);
2090 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_SPIO
);
2091 /* read SPIO and mask except the float bits */
2092 spio_reg
= (REG_RD(bp
, MISC_REG_SPIO
) & MISC_REGISTERS_SPIO_FLOAT
);
2095 case MISC_REGISTERS_SPIO_OUTPUT_LOW
:
2096 DP(NETIF_MSG_LINK
, "Set SPIO %d -> output low\n", spio_num
);
2097 /* clear FLOAT and set CLR */
2098 spio_reg
&= ~(spio_mask
<< MISC_REGISTERS_SPIO_FLOAT_POS
);
2099 spio_reg
|= (spio_mask
<< MISC_REGISTERS_SPIO_CLR_POS
);
2102 case MISC_REGISTERS_SPIO_OUTPUT_HIGH
:
2103 DP(NETIF_MSG_LINK
, "Set SPIO %d -> output high\n", spio_num
);
2104 /* clear FLOAT and set SET */
2105 spio_reg
&= ~(spio_mask
<< MISC_REGISTERS_SPIO_FLOAT_POS
);
2106 spio_reg
|= (spio_mask
<< MISC_REGISTERS_SPIO_SET_POS
);
2109 case MISC_REGISTERS_SPIO_INPUT_HI_Z
:
2110 DP(NETIF_MSG_LINK
, "Set SPIO %d -> input\n", spio_num
);
2112 spio_reg
|= (spio_mask
<< MISC_REGISTERS_SPIO_FLOAT_POS
);
2119 REG_WR(bp
, MISC_REG_SPIO
, spio_reg
);
2120 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_SPIO
);
2125 void bnx2x_calc_fc_adv(struct bnx2x
*bp
)
2127 u8 cfg_idx
= bnx2x_get_link_cfg_idx(bp
);
2128 switch (bp
->link_vars
.ieee_fc
&
2129 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK
) {
2130 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE
:
2131 bp
->port
.advertising
[cfg_idx
] &= ~(ADVERTISED_Asym_Pause
|
2135 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH
:
2136 bp
->port
.advertising
[cfg_idx
] |= (ADVERTISED_Asym_Pause
|
2140 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC
:
2141 bp
->port
.advertising
[cfg_idx
] |= ADVERTISED_Asym_Pause
;
2145 bp
->port
.advertising
[cfg_idx
] &= ~(ADVERTISED_Asym_Pause
|
2151 u8
bnx2x_initial_phy_init(struct bnx2x
*bp
, int load_mode
)
2153 if (!BP_NOMCP(bp
)) {
2155 int cfx_idx
= bnx2x_get_link_cfg_idx(bp
);
2156 u16 req_line_speed
= bp
->link_params
.req_line_speed
[cfx_idx
];
2158 * Initialize link parameters structure variables
2159 * It is recommended to turn off RX FC for jumbo frames
2160 * for better performance
2162 if (CHIP_IS_E1x(bp
) && (bp
->dev
->mtu
> 5000))
2163 bp
->link_params
.req_fc_auto_adv
= BNX2X_FLOW_CTRL_TX
;
2165 bp
->link_params
.req_fc_auto_adv
= BNX2X_FLOW_CTRL_BOTH
;
2167 bnx2x_acquire_phy_lock(bp
);
2169 if (load_mode
== LOAD_DIAG
) {
2170 struct link_params
*lp
= &bp
->link_params
;
2171 lp
->loopback_mode
= LOOPBACK_XGXS
;
2172 /* do PHY loopback at 10G speed, if possible */
2173 if (lp
->req_line_speed
[cfx_idx
] < SPEED_10000
) {
2174 if (lp
->speed_cap_mask
[cfx_idx
] &
2175 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G
)
2176 lp
->req_line_speed
[cfx_idx
] =
2179 lp
->req_line_speed
[cfx_idx
] =
2184 rc
= bnx2x_phy_init(&bp
->link_params
, &bp
->link_vars
);
2186 bnx2x_release_phy_lock(bp
);
2188 bnx2x_calc_fc_adv(bp
);
2190 if (CHIP_REV_IS_SLOW(bp
) && bp
->link_vars
.link_up
) {
2191 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2192 bnx2x_link_report(bp
);
2194 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 0);
2195 bp
->link_params
.req_line_speed
[cfx_idx
] = req_line_speed
;
2198 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2202 void bnx2x_link_set(struct bnx2x
*bp
)
2204 if (!BP_NOMCP(bp
)) {
2205 bnx2x_acquire_phy_lock(bp
);
2206 bnx2x_link_reset(&bp
->link_params
, &bp
->link_vars
, 1);
2207 bnx2x_phy_init(&bp
->link_params
, &bp
->link_vars
);
2208 bnx2x_release_phy_lock(bp
);
2210 bnx2x_calc_fc_adv(bp
);
2212 BNX2X_ERR("Bootcode is missing - can not set link\n");
2215 static void bnx2x__link_reset(struct bnx2x
*bp
)
2217 if (!BP_NOMCP(bp
)) {
2218 bnx2x_acquire_phy_lock(bp
);
2219 bnx2x_link_reset(&bp
->link_params
, &bp
->link_vars
, 1);
2220 bnx2x_release_phy_lock(bp
);
2222 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2225 u8
bnx2x_link_test(struct bnx2x
*bp
, u8 is_serdes
)
2229 if (!BP_NOMCP(bp
)) {
2230 bnx2x_acquire_phy_lock(bp
);
2231 rc
= bnx2x_test_link(&bp
->link_params
, &bp
->link_vars
,
2233 bnx2x_release_phy_lock(bp
);
2235 BNX2X_ERR("Bootcode is missing - can not test link\n");
2240 static void bnx2x_init_port_minmax(struct bnx2x
*bp
)
2242 u32 r_param
= bp
->link_vars
.line_speed
/ 8;
2243 u32 fair_periodic_timeout_usec
;
2246 memset(&(bp
->cmng
.rs_vars
), 0,
2247 sizeof(struct rate_shaping_vars_per_port
));
2248 memset(&(bp
->cmng
.fair_vars
), 0, sizeof(struct fairness_vars_per_port
));
2250 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2251 bp
->cmng
.rs_vars
.rs_periodic_timeout
= RS_PERIODIC_TIMEOUT_USEC
/ 4;
2253 /* this is the threshold below which no timer arming will occur
2254 1.25 coefficient is for the threshold to be a little bigger
2255 than the real time, to compensate for timer in-accuracy */
2256 bp
->cmng
.rs_vars
.rs_threshold
=
2257 (RS_PERIODIC_TIMEOUT_USEC
* r_param
* 5) / 4;
2259 /* resolution of fairness timer */
2260 fair_periodic_timeout_usec
= QM_ARB_BYTES
/ r_param
;
2261 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2262 t_fair
= T_FAIR_COEF
/ bp
->link_vars
.line_speed
;
2264 /* this is the threshold below which we won't arm the timer anymore */
2265 bp
->cmng
.fair_vars
.fair_threshold
= QM_ARB_BYTES
;
2267 /* we multiply by 1e3/8 to get bytes/msec.
2268 We don't want the credits to pass a credit
2269 of the t_fair*FAIR_MEM (algorithm resolution) */
2270 bp
->cmng
.fair_vars
.upper_bound
= r_param
* t_fair
* FAIR_MEM
;
2271 /* since each tick is 4 usec */
2272 bp
->cmng
.fair_vars
.fairness_timeout
= fair_periodic_timeout_usec
/ 4;
2275 /* Calculates the sum of vn_min_rates.
2276 It's needed for further normalizing of the min_rates.
2278 sum of vn_min_rates.
2280 0 - if all the min_rates are 0.
2281 In the later case fainess algorithm should be deactivated.
2282 If not all min_rates are zero then those that are zeroes will be set to 1.
2284 static void bnx2x_calc_vn_weight_sum(struct bnx2x
*bp
)
2289 bp
->vn_weight_sum
= 0;
2290 for (vn
= VN_0
; vn
< E1HVN_MAX
; vn
++) {
2291 u32 vn_cfg
= bp
->mf_config
[vn
];
2292 u32 vn_min_rate
= ((vn_cfg
& FUNC_MF_CFG_MIN_BW_MASK
) >>
2293 FUNC_MF_CFG_MIN_BW_SHIFT
) * 100;
2295 /* Skip hidden vns */
2296 if (vn_cfg
& FUNC_MF_CFG_FUNC_HIDE
)
2299 /* If min rate is zero - set it to 1 */
2301 vn_min_rate
= DEF_MIN_RATE
;
2305 bp
->vn_weight_sum
+= vn_min_rate
;
2308 /* if ETS or all min rates are zeros - disable fairness */
2309 if (BNX2X_IS_ETS_ENABLED(bp
)) {
2310 bp
->cmng
.flags
.cmng_enables
&=
2311 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2312 DP(NETIF_MSG_IFUP
, "Fairness will be disabled due to ETS\n");
2313 } else if (all_zero
) {
2314 bp
->cmng
.flags
.cmng_enables
&=
2315 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2316 DP(NETIF_MSG_IFUP
, "All MIN values are zeroes"
2317 " fairness will be disabled\n");
2319 bp
->cmng
.flags
.cmng_enables
|=
2320 CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2323 static void bnx2x_init_vn_minmax(struct bnx2x
*bp
, int vn
)
2325 struct rate_shaping_vars_per_vn m_rs_vn
;
2326 struct fairness_vars_per_vn m_fair_vn
;
2327 u32 vn_cfg
= bp
->mf_config
[vn
];
2328 int func
= 2*vn
+ BP_PORT(bp
);
2329 u16 vn_min_rate
, vn_max_rate
;
2332 /* If function is hidden - set min and max to zeroes */
2333 if (vn_cfg
& FUNC_MF_CFG_FUNC_HIDE
) {
2338 u32 maxCfg
= bnx2x_extract_max_cfg(bp
, vn_cfg
);
2340 vn_min_rate
= ((vn_cfg
& FUNC_MF_CFG_MIN_BW_MASK
) >>
2341 FUNC_MF_CFG_MIN_BW_SHIFT
) * 100;
2342 /* If fairness is enabled (not all min rates are zeroes) and
2343 if current min rate is zero - set it to 1.
2344 This is a requirement of the algorithm. */
2345 if (bp
->vn_weight_sum
&& (vn_min_rate
== 0))
2346 vn_min_rate
= DEF_MIN_RATE
;
2349 /* maxCfg in percents of linkspeed */
2350 vn_max_rate
= (bp
->link_vars
.line_speed
* maxCfg
) / 100;
2352 /* maxCfg is absolute in 100Mb units */
2353 vn_max_rate
= maxCfg
* 100;
2357 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2358 func
, vn_min_rate
, vn_max_rate
, bp
->vn_weight_sum
);
2360 memset(&m_rs_vn
, 0, sizeof(struct rate_shaping_vars_per_vn
));
2361 memset(&m_fair_vn
, 0, sizeof(struct fairness_vars_per_vn
));
2363 /* global vn counter - maximal Mbps for this vn */
2364 m_rs_vn
.vn_counter
.rate
= vn_max_rate
;
2366 /* quota - number of bytes transmitted in this period */
2367 m_rs_vn
.vn_counter
.quota
=
2368 (vn_max_rate
* RS_PERIODIC_TIMEOUT_USEC
) / 8;
2370 if (bp
->vn_weight_sum
) {
2371 /* credit for each period of the fairness algorithm:
2372 number of bytes in T_FAIR (the vn share the port rate).
2373 vn_weight_sum should not be larger than 10000, thus
2374 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2376 m_fair_vn
.vn_credit_delta
=
2377 max_t(u32
, (vn_min_rate
* (T_FAIR_COEF
/
2378 (8 * bp
->vn_weight_sum
))),
2379 (bp
->cmng
.fair_vars
.fair_threshold
+
2381 DP(NETIF_MSG_IFUP
, "m_fair_vn.vn_credit_delta %d\n",
2382 m_fair_vn
.vn_credit_delta
);
2385 /* Store it to internal memory */
2386 for (i
= 0; i
< sizeof(struct rate_shaping_vars_per_vn
)/4; i
++)
2387 REG_WR(bp
, BAR_XSTRORM_INTMEM
+
2388 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func
) + i
* 4,
2389 ((u32
*)(&m_rs_vn
))[i
]);
2391 for (i
= 0; i
< sizeof(struct fairness_vars_per_vn
)/4; i
++)
2392 REG_WR(bp
, BAR_XSTRORM_INTMEM
+
2393 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func
) + i
* 4,
2394 ((u32
*)(&m_fair_vn
))[i
]);
2397 static int bnx2x_get_cmng_fns_mode(struct bnx2x
*bp
)
2399 if (CHIP_REV_IS_SLOW(bp
))
2400 return CMNG_FNS_NONE
;
2402 return CMNG_FNS_MINMAX
;
2404 return CMNG_FNS_NONE
;
2407 void bnx2x_read_mf_cfg(struct bnx2x
*bp
)
2409 int vn
, n
= (CHIP_MODE_IS_4_PORT(bp
) ? 2 : 1);
2412 return; /* what should be the default bvalue in this case */
2414 /* For 2 port configuration the absolute function number formula
2416 * abs_func = 2 * vn + BP_PORT + BP_PATH
2418 * and there are 4 functions per port
2420 * For 4 port configuration it is
2421 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2423 * and there are 2 functions per port
2425 for (vn
= VN_0
; vn
< E1HVN_MAX
; vn
++) {
2426 int /*abs*/func
= n
* (2 * vn
+ BP_PORT(bp
)) + BP_PATH(bp
);
2428 if (func
>= E1H_FUNC_MAX
)
2432 MF_CFG_RD(bp
, func_mf_config
[func
].config
);
2436 static void bnx2x_cmng_fns_init(struct bnx2x
*bp
, u8 read_cfg
, u8 cmng_type
)
2439 if (cmng_type
== CMNG_FNS_MINMAX
) {
2442 /* clear cmng_enables */
2443 bp
->cmng
.flags
.cmng_enables
= 0;
2445 /* read mf conf from shmem */
2447 bnx2x_read_mf_cfg(bp
);
2449 /* Init rate shaping and fairness contexts */
2450 bnx2x_init_port_minmax(bp
);
2452 /* vn_weight_sum and enable fairness if not 0 */
2453 bnx2x_calc_vn_weight_sum(bp
);
2455 /* calculate and set min-max rate for each vn */
2457 for (vn
= VN_0
; vn
< E1HVN_MAX
; vn
++)
2458 bnx2x_init_vn_minmax(bp
, vn
);
2460 /* always enable rate shaping and fairness */
2461 bp
->cmng
.flags
.cmng_enables
|=
2462 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN
;
2463 if (!bp
->vn_weight_sum
)
2464 DP(NETIF_MSG_IFUP
, "All MIN values are zeroes"
2465 " fairness will be disabled\n");
2469 /* rate shaping and fairness are disabled */
2471 "rate shaping and fairness are disabled\n");
2474 static inline void bnx2x_link_sync_notify(struct bnx2x
*bp
)
2476 int port
= BP_PORT(bp
);
2480 /* Set the attention towards other drivers on the same port */
2481 for (vn
= VN_0
; vn
< E1HVN_MAX
; vn
++) {
2482 if (vn
== BP_E1HVN(bp
))
2485 func
= ((vn
<< 1) | port
);
2486 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_0
+
2487 (LINK_SYNC_ATTENTION_BIT_FUNC_0
+ func
)*4, 1);
2491 /* This function is called upon link interrupt */
2492 static void bnx2x_link_attn(struct bnx2x
*bp
)
2494 /* Make sure that we are synced with the current statistics */
2495 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
2497 bnx2x_link_update(&bp
->link_params
, &bp
->link_vars
);
2499 if (bp
->link_vars
.link_up
) {
2501 /* dropless flow control */
2502 if (!CHIP_IS_E1(bp
) && bp
->dropless_fc
) {
2503 int port
= BP_PORT(bp
);
2504 u32 pause_enabled
= 0;
2506 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_TX
)
2509 REG_WR(bp
, BAR_USTRORM_INTMEM
+
2510 USTORM_ETH_PAUSE_ENABLED_OFFSET(port
),
2514 if (bp
->link_vars
.mac_type
!= MAC_TYPE_EMAC
) {
2515 struct host_port_stats
*pstats
;
2517 pstats
= bnx2x_sp(bp
, port_stats
);
2518 /* reset old mac stats */
2519 memset(&(pstats
->mac_stx
[0]), 0,
2520 sizeof(struct mac_stx
));
2522 if (bp
->state
== BNX2X_STATE_OPEN
)
2523 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2526 if (bp
->link_vars
.link_up
&& bp
->link_vars
.line_speed
) {
2527 int cmng_fns
= bnx2x_get_cmng_fns_mode(bp
);
2529 if (cmng_fns
!= CMNG_FNS_NONE
) {
2530 bnx2x_cmng_fns_init(bp
, false, cmng_fns
);
2531 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
2533 /* rate shaping and fairness are disabled */
2535 "single function mode without fairness\n");
2538 __bnx2x_link_report(bp
);
2541 bnx2x_link_sync_notify(bp
);
2544 void bnx2x__link_status_update(struct bnx2x
*bp
)
2546 if (bp
->state
!= BNX2X_STATE_OPEN
)
2549 bnx2x_link_status_update(&bp
->link_params
, &bp
->link_vars
);
2551 if (bp
->link_vars
.link_up
)
2552 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2554 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
2556 /* indicate link status */
2557 bnx2x_link_report(bp
);
2560 static void bnx2x_pmf_update(struct bnx2x
*bp
)
2562 int port
= BP_PORT(bp
);
2566 DP(NETIF_MSG_LINK
, "pmf %d\n", bp
->port
.pmf
);
2569 * We need the mb() to ensure the ordering between the writing to
2570 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2574 /* queue a periodic task */
2575 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 0);
2577 bnx2x_dcbx_pmf_update(bp
);
2579 /* enable nig attention */
2580 val
= (0xff0f | (1 << (BP_E1HVN(bp
) + 4)));
2581 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
2582 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, val
);
2583 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, val
);
2584 } else if (!CHIP_IS_E1x(bp
)) {
2585 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, val
);
2586 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, val
);
2589 bnx2x_stats_handle(bp
, STATS_EVENT_PMF
);
2597 * General service functions
2600 /* send the MCP a request, block until there is a reply */
2601 u32
bnx2x_fw_command(struct bnx2x
*bp
, u32 command
, u32 param
)
2603 int mb_idx
= BP_FW_MB_IDX(bp
);
2607 u8 delay
= CHIP_REV_IS_SLOW(bp
) ? 100 : 10;
2609 mutex_lock(&bp
->fw_mb_mutex
);
2611 SHMEM_WR(bp
, func_mb
[mb_idx
].drv_mb_param
, param
);
2612 SHMEM_WR(bp
, func_mb
[mb_idx
].drv_mb_header
, (command
| seq
));
2614 DP(BNX2X_MSG_MCP
, "wrote command (%x) to FW MB param 0x%08x\n",
2615 (command
| seq
), param
);
2618 /* let the FW do it's magic ... */
2621 rc
= SHMEM_RD(bp
, func_mb
[mb_idx
].fw_mb_header
);
2623 /* Give the FW up to 5 second (500*10ms) */
2624 } while ((seq
!= (rc
& FW_MSG_SEQ_NUMBER_MASK
)) && (cnt
++ < 500));
2626 DP(BNX2X_MSG_MCP
, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2627 cnt
*delay
, rc
, seq
);
2629 /* is this a reply to our command? */
2630 if (seq
== (rc
& FW_MSG_SEQ_NUMBER_MASK
))
2631 rc
&= FW_MSG_CODE_MASK
;
2634 BNX2X_ERR("FW failed to respond!\n");
2638 mutex_unlock(&bp
->fw_mb_mutex
);
2643 static u8
stat_counter_valid(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
)
2646 /* Statistics are not supported for CNIC Clients at the moment */
2653 void bnx2x_func_init(struct bnx2x
*bp
, struct bnx2x_func_init_params
*p
)
2655 if (CHIP_IS_E1x(bp
)) {
2656 struct tstorm_eth_function_common_config tcfg
= {0};
2658 storm_memset_func_cfg(bp
, &tcfg
, p
->func_id
);
2661 /* Enable the function in the FW */
2662 storm_memset_vf_to_pf(bp
, p
->func_id
, p
->pf_id
);
2663 storm_memset_func_en(bp
, p
->func_id
, 1);
2666 if (p
->func_flgs
& FUNC_FLG_SPQ
) {
2667 storm_memset_spq_addr(bp
, p
->spq_map
, p
->func_id
);
2668 REG_WR(bp
, XSEM_REG_FAST_MEMORY
+
2669 XSTORM_SPQ_PROD_OFFSET(p
->func_id
), p
->spq_prod
);
2674 * bnx2x_get_tx_only_flags - Return common flags
2678 * @zero_stats TRUE if statistics zeroing is needed
2680 * Return the flags that are common for the Tx-only and not normal connections.
2682 static inline unsigned long bnx2x_get_common_flags(struct bnx2x
*bp
,
2683 struct bnx2x_fastpath
*fp
,
2686 unsigned long flags
= 0;
2688 /* PF driver will always initialize the Queue to an ACTIVE state */
2689 __set_bit(BNX2X_Q_FLG_ACTIVE
, &flags
);
2691 /* tx only connections collect statistics (on the same index as the
2692 * parent connection). The statistics are zeroed when the parent
2693 * connection is initialized.
2695 if (stat_counter_valid(bp
, fp
)) {
2696 __set_bit(BNX2X_Q_FLG_STATS
, &flags
);
2698 __set_bit(BNX2X_Q_FLG_ZERO_STATS
, &flags
);
2704 static inline unsigned long bnx2x_get_q_flags(struct bnx2x
*bp
,
2705 struct bnx2x_fastpath
*fp
,
2708 unsigned long flags
= 0;
2710 /* calculate other queue flags */
2712 __set_bit(BNX2X_Q_FLG_OV
, &flags
);
2715 __set_bit(BNX2X_Q_FLG_FCOE
, &flags
);
2717 if (!fp
->disable_tpa
) {
2718 __set_bit(BNX2X_Q_FLG_TPA
, &flags
);
2719 __set_bit(BNX2X_Q_FLG_TPA_IPV6
, &flags
);
2723 __set_bit(BNX2X_Q_FLG_LEADING_RSS
, &flags
);
2724 __set_bit(BNX2X_Q_FLG_MCAST
, &flags
);
2727 /* Always set HW VLAN stripping */
2728 __set_bit(BNX2X_Q_FLG_VLAN
, &flags
);
2731 return flags
| bnx2x_get_common_flags(bp
, fp
, true);
2734 static void bnx2x_pf_q_prep_general(struct bnx2x
*bp
,
2735 struct bnx2x_fastpath
*fp
, struct bnx2x_general_setup_params
*gen_init
,
2738 gen_init
->stat_id
= bnx2x_stats_id(fp
);
2739 gen_init
->spcl_id
= fp
->cl_id
;
2741 /* Always use mini-jumbo MTU for FCoE L2 ring */
2743 gen_init
->mtu
= BNX2X_FCOE_MINI_JUMBO_MTU
;
2745 gen_init
->mtu
= bp
->dev
->mtu
;
2747 gen_init
->cos
= cos
;
2750 static void bnx2x_pf_rx_q_prep(struct bnx2x
*bp
,
2751 struct bnx2x_fastpath
*fp
, struct rxq_pause_params
*pause
,
2752 struct bnx2x_rxq_setup_params
*rxq_init
)
2756 u16 tpa_agg_size
= 0;
2758 if (!fp
->disable_tpa
) {
2759 pause
->sge_th_hi
= 250;
2760 pause
->sge_th_lo
= 150;
2761 tpa_agg_size
= min_t(u32
,
2762 (min_t(u32
, 8, MAX_SKB_FRAGS
) *
2763 SGE_PAGE_SIZE
* PAGES_PER_SGE
), 0xffff);
2764 max_sge
= SGE_PAGE_ALIGN(bp
->dev
->mtu
) >>
2766 max_sge
= ((max_sge
+ PAGES_PER_SGE
- 1) &
2767 (~(PAGES_PER_SGE
-1))) >> PAGES_PER_SGE_SHIFT
;
2768 sge_sz
= (u16
)min_t(u32
, SGE_PAGE_SIZE
* PAGES_PER_SGE
,
2772 /* pause - not for e1 */
2773 if (!CHIP_IS_E1(bp
)) {
2774 pause
->bd_th_hi
= 350;
2775 pause
->bd_th_lo
= 250;
2776 pause
->rcq_th_hi
= 350;
2777 pause
->rcq_th_lo
= 250;
2783 rxq_init
->dscr_map
= fp
->rx_desc_mapping
;
2784 rxq_init
->sge_map
= fp
->rx_sge_mapping
;
2785 rxq_init
->rcq_map
= fp
->rx_comp_mapping
;
2786 rxq_init
->rcq_np_map
= fp
->rx_comp_mapping
+ BCM_PAGE_SIZE
;
2788 /* This should be a maximum number of data bytes that may be
2789 * placed on the BD (not including paddings).
2791 rxq_init
->buf_sz
= fp
->rx_buf_size
- BNX2X_FW_RX_ALIGN
-
2792 IP_HEADER_ALIGNMENT_PADDING
;
2794 rxq_init
->cl_qzone_id
= fp
->cl_qzone_id
;
2795 rxq_init
->tpa_agg_sz
= tpa_agg_size
;
2796 rxq_init
->sge_buf_sz
= sge_sz
;
2797 rxq_init
->max_sges_pkt
= max_sge
;
2798 rxq_init
->rss_engine_id
= BP_FUNC(bp
);
2800 /* Maximum number or simultaneous TPA aggregation for this Queue.
2802 * For PF Clients it should be the maximum avaliable number.
2803 * VF driver(s) may want to define it to a smaller value.
2805 rxq_init
->max_tpa_queues
=
2806 (CHIP_IS_E1(bp
) ? ETH_MAX_AGGREGATION_QUEUES_E1
:
2807 ETH_MAX_AGGREGATION_QUEUES_E1H_E2
);
2809 rxq_init
->cache_line_log
= BNX2X_RX_ALIGN_SHIFT
;
2810 rxq_init
->fw_sb_id
= fp
->fw_sb_id
;
2813 rxq_init
->sb_cq_index
= HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS
;
2815 rxq_init
->sb_cq_index
= HC_INDEX_ETH_RX_CQ_CONS
;
2818 static void bnx2x_pf_tx_q_prep(struct bnx2x
*bp
,
2819 struct bnx2x_fastpath
*fp
, struct bnx2x_txq_setup_params
*txq_init
,
2822 txq_init
->dscr_map
= fp
->txdata
[cos
].tx_desc_mapping
;
2823 txq_init
->sb_cq_index
= HC_INDEX_ETH_FIRST_TX_CQ_CONS
+ cos
;
2824 txq_init
->traffic_type
= LLFC_TRAFFIC_TYPE_NW
;
2825 txq_init
->fw_sb_id
= fp
->fw_sb_id
;
2828 * set the tss leading client id for TX classfication ==
2829 * leading RSS client id
2831 txq_init
->tss_leading_cl_id
= bnx2x_fp(bp
, 0, cl_id
);
2833 if (IS_FCOE_FP(fp
)) {
2834 txq_init
->sb_cq_index
= HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS
;
2835 txq_init
->traffic_type
= LLFC_TRAFFIC_TYPE_FCOE
;
2839 static void bnx2x_pf_init(struct bnx2x
*bp
)
2841 struct bnx2x_func_init_params func_init
= {0};
2842 struct event_ring_data eq_data
= { {0} };
2845 if (!CHIP_IS_E1x(bp
)) {
2846 /* reset IGU PF statistics: MSIX + ATTN */
2848 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+
2849 BNX2X_IGU_STAS_MSG_VF_CNT
*4 +
2850 (CHIP_MODE_IS_4_PORT(bp
) ?
2851 BP_FUNC(bp
) : BP_VN(bp
))*4, 0);
2853 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+
2854 BNX2X_IGU_STAS_MSG_VF_CNT
*4 +
2855 BNX2X_IGU_STAS_MSG_PF_CNT
*4 +
2856 (CHIP_MODE_IS_4_PORT(bp
) ?
2857 BP_FUNC(bp
) : BP_VN(bp
))*4, 0);
2860 /* function setup flags */
2861 flags
= (FUNC_FLG_STATS
| FUNC_FLG_LEADING
| FUNC_FLG_SPQ
);
2863 /* This flag is relevant for E1x only.
2864 * E2 doesn't have a TPA configuration in a function level.
2866 flags
|= (bp
->flags
& TPA_ENABLE_FLAG
) ? FUNC_FLG_TPA
: 0;
2868 func_init
.func_flgs
= flags
;
2869 func_init
.pf_id
= BP_FUNC(bp
);
2870 func_init
.func_id
= BP_FUNC(bp
);
2871 func_init
.spq_map
= bp
->spq_mapping
;
2872 func_init
.spq_prod
= bp
->spq_prod_idx
;
2874 bnx2x_func_init(bp
, &func_init
);
2876 memset(&(bp
->cmng
), 0, sizeof(struct cmng_struct_per_port
));
2879 * Congestion management values depend on the link rate
2880 * There is no active link so initial link rate is set to 10 Gbps.
2881 * When the link comes up The congestion management values are
2882 * re-calculated according to the actual link rate.
2884 bp
->link_vars
.line_speed
= SPEED_10000
;
2885 bnx2x_cmng_fns_init(bp
, true, bnx2x_get_cmng_fns_mode(bp
));
2887 /* Only the PMF sets the HW */
2889 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
2891 /* init Event Queue */
2892 eq_data
.base_addr
.hi
= U64_HI(bp
->eq_mapping
);
2893 eq_data
.base_addr
.lo
= U64_LO(bp
->eq_mapping
);
2894 eq_data
.producer
= bp
->eq_prod
;
2895 eq_data
.index_id
= HC_SP_INDEX_EQ_CONS
;
2896 eq_data
.sb_id
= DEF_SB_ID
;
2897 storm_memset_eq_data(bp
, &eq_data
, BP_FUNC(bp
));
2901 static void bnx2x_e1h_disable(struct bnx2x
*bp
)
2903 int port
= BP_PORT(bp
);
2905 bnx2x_tx_disable(bp
);
2907 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 0);
2910 static void bnx2x_e1h_enable(struct bnx2x
*bp
)
2912 int port
= BP_PORT(bp
);
2914 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 1);
2916 /* Tx queue should be only reenabled */
2917 netif_tx_wake_all_queues(bp
->dev
);
2920 * Should not call netif_carrier_on since it will be called if the link
2921 * is up when checking for link state
2925 /* called due to MCP event (on pmf):
2926 * reread new bandwidth configuration
2928 * notify others function about the change
2930 static inline void bnx2x_config_mf_bw(struct bnx2x
*bp
)
2932 if (bp
->link_vars
.link_up
) {
2933 bnx2x_cmng_fns_init(bp
, true, CMNG_FNS_MINMAX
);
2934 bnx2x_link_sync_notify(bp
);
2936 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
2939 static inline void bnx2x_set_mf_bw(struct bnx2x
*bp
)
2941 bnx2x_config_mf_bw(bp
);
2942 bnx2x_fw_command(bp
, DRV_MSG_CODE_SET_MF_BW_ACK
, 0);
2945 static void bnx2x_dcc_event(struct bnx2x
*bp
, u32 dcc_event
)
2947 DP(BNX2X_MSG_MCP
, "dcc_event 0x%x\n", dcc_event
);
2949 if (dcc_event
& DRV_STATUS_DCC_DISABLE_ENABLE_PF
) {
2952 * This is the only place besides the function initialization
2953 * where the bp->flags can change so it is done without any
2956 if (bp
->mf_config
[BP_VN(bp
)] & FUNC_MF_CFG_FUNC_DISABLED
) {
2957 DP(NETIF_MSG_IFDOWN
, "mf_cfg function disabled\n");
2958 bp
->flags
|= MF_FUNC_DIS
;
2960 bnx2x_e1h_disable(bp
);
2962 DP(NETIF_MSG_IFUP
, "mf_cfg function enabled\n");
2963 bp
->flags
&= ~MF_FUNC_DIS
;
2965 bnx2x_e1h_enable(bp
);
2967 dcc_event
&= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF
;
2969 if (dcc_event
& DRV_STATUS_DCC_BANDWIDTH_ALLOCATION
) {
2970 bnx2x_config_mf_bw(bp
);
2971 dcc_event
&= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION
;
2974 /* Report results to MCP */
2976 bnx2x_fw_command(bp
, DRV_MSG_CODE_DCC_FAILURE
, 0);
2978 bnx2x_fw_command(bp
, DRV_MSG_CODE_DCC_OK
, 0);
2981 /* must be called under the spq lock */
2982 static inline struct eth_spe
*bnx2x_sp_get_next(struct bnx2x
*bp
)
2984 struct eth_spe
*next_spe
= bp
->spq_prod_bd
;
2986 if (bp
->spq_prod_bd
== bp
->spq_last_bd
) {
2987 bp
->spq_prod_bd
= bp
->spq
;
2988 bp
->spq_prod_idx
= 0;
2989 DP(NETIF_MSG_TIMER
, "end of spq\n");
2997 /* must be called under the spq lock */
2998 static inline void bnx2x_sp_prod_update(struct bnx2x
*bp
)
3000 int func
= BP_FUNC(bp
);
3003 * Make sure that BD data is updated before writing the producer:
3004 * BD data is written to the memory, the producer is read from the
3005 * memory, thus we need a full memory barrier to ensure the ordering.
3009 REG_WR16(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_SPQ_PROD_OFFSET(func
),
3015 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3017 * @cmd: command to check
3018 * @cmd_type: command type
3020 static inline bool bnx2x_is_contextless_ramrod(int cmd
, int cmd_type
)
3022 if ((cmd_type
== NONE_CONNECTION_TYPE
) ||
3023 (cmd
== RAMROD_CMD_ID_ETH_FORWARD_SETUP
) ||
3024 (cmd
== RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
) ||
3025 (cmd
== RAMROD_CMD_ID_ETH_FILTER_RULES
) ||
3026 (cmd
== RAMROD_CMD_ID_ETH_MULTICAST_RULES
) ||
3027 (cmd
== RAMROD_CMD_ID_ETH_SET_MAC
) ||
3028 (cmd
== RAMROD_CMD_ID_ETH_RSS_UPDATE
))
3037 * bnx2x_sp_post - place a single command on an SP ring
3039 * @bp: driver handle
3040 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3041 * @cid: SW CID the command is related to
3042 * @data_hi: command private data address (high 32 bits)
3043 * @data_lo: command private data address (low 32 bits)
3044 * @cmd_type: command type (e.g. NONE, ETH)
3046 * SP data is handled as if it's always an address pair, thus data fields are
3047 * not swapped to little endian in upper functions. Instead this function swaps
3048 * data as if it's two u32 fields.
3050 int bnx2x_sp_post(struct bnx2x
*bp
, int command
, int cid
,
3051 u32 data_hi
, u32 data_lo
, int cmd_type
)
3053 struct eth_spe
*spe
;
3055 bool common
= bnx2x_is_contextless_ramrod(command
, cmd_type
);
3057 #ifdef BNX2X_STOP_ON_ERROR
3058 if (unlikely(bp
->panic
))
3062 spin_lock_bh(&bp
->spq_lock
);
3065 if (!atomic_read(&bp
->eq_spq_left
)) {
3066 BNX2X_ERR("BUG! EQ ring full!\n");
3067 spin_unlock_bh(&bp
->spq_lock
);
3071 } else if (!atomic_read(&bp
->cq_spq_left
)) {
3072 BNX2X_ERR("BUG! SPQ ring full!\n");
3073 spin_unlock_bh(&bp
->spq_lock
);
3078 spe
= bnx2x_sp_get_next(bp
);
3080 /* CID needs port number to be encoded int it */
3081 spe
->hdr
.conn_and_cmd_data
=
3082 cpu_to_le32((command
<< SPE_HDR_CMD_ID_SHIFT
) |
3085 type
= (cmd_type
<< SPE_HDR_CONN_TYPE_SHIFT
) & SPE_HDR_CONN_TYPE
;
3087 type
|= ((BP_FUNC(bp
) << SPE_HDR_FUNCTION_ID_SHIFT
) &
3088 SPE_HDR_FUNCTION_ID
);
3090 spe
->hdr
.type
= cpu_to_le16(type
);
3092 spe
->data
.update_data_addr
.hi
= cpu_to_le32(data_hi
);
3093 spe
->data
.update_data_addr
.lo
= cpu_to_le32(data_lo
);
3096 * It's ok if the actual decrement is issued towards the memory
3097 * somewhere between the spin_lock and spin_unlock. Thus no
3098 * more explict memory barrier is needed.
3101 atomic_dec(&bp
->eq_spq_left
);
3103 atomic_dec(&bp
->cq_spq_left
);
3106 DP(BNX2X_MSG_SP
/*NETIF_MSG_TIMER*/,
3107 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
3108 "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3109 bp
->spq_prod_idx
, (u32
)U64_HI(bp
->spq_mapping
),
3110 (u32
)(U64_LO(bp
->spq_mapping
) +
3111 (void *)bp
->spq_prod_bd
- (void *)bp
->spq
), command
, common
,
3112 HW_CID(bp
, cid
), data_hi
, data_lo
, type
,
3113 atomic_read(&bp
->cq_spq_left
), atomic_read(&bp
->eq_spq_left
));
3115 bnx2x_sp_prod_update(bp
);
3116 spin_unlock_bh(&bp
->spq_lock
);
3120 /* acquire split MCP access lock register */
3121 static int bnx2x_acquire_alr(struct bnx2x
*bp
)
3127 for (j
= 0; j
< 1000; j
++) {
3129 REG_WR(bp
, GRCBASE_MCP
+ 0x9c, val
);
3130 val
= REG_RD(bp
, GRCBASE_MCP
+ 0x9c);
3131 if (val
& (1L << 31))
3136 if (!(val
& (1L << 31))) {
3137 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3144 /* release split MCP access lock register */
3145 static void bnx2x_release_alr(struct bnx2x
*bp
)
3147 REG_WR(bp
, GRCBASE_MCP
+ 0x9c, 0);
3150 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3151 #define BNX2X_DEF_SB_IDX 0x0002
3153 static inline u16
bnx2x_update_dsb_idx(struct bnx2x
*bp
)
3155 struct host_sp_status_block
*def_sb
= bp
->def_status_blk
;
3158 barrier(); /* status block is written to by the chip */
3159 if (bp
->def_att_idx
!= def_sb
->atten_status_block
.attn_bits_index
) {
3160 bp
->def_att_idx
= def_sb
->atten_status_block
.attn_bits_index
;
3161 rc
|= BNX2X_DEF_SB_ATT_IDX
;
3164 if (bp
->def_idx
!= def_sb
->sp_sb
.running_index
) {
3165 bp
->def_idx
= def_sb
->sp_sb
.running_index
;
3166 rc
|= BNX2X_DEF_SB_IDX
;
3169 /* Do not reorder: indecies reading should complete before handling */
3175 * slow path service functions
3178 static void bnx2x_attn_int_asserted(struct bnx2x
*bp
, u32 asserted
)
3180 int port
= BP_PORT(bp
);
3181 u32 aeu_addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
3182 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
3183 u32 nig_int_mask_addr
= port
? NIG_REG_MASK_INTERRUPT_PORT1
:
3184 NIG_REG_MASK_INTERRUPT_PORT0
;
3189 if (bp
->attn_state
& asserted
)
3190 BNX2X_ERR("IGU ERROR\n");
3192 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
3193 aeu_mask
= REG_RD(bp
, aeu_addr
);
3195 DP(NETIF_MSG_HW
, "aeu_mask %x newly asserted %x\n",
3196 aeu_mask
, asserted
);
3197 aeu_mask
&= ~(asserted
& 0x3ff);
3198 DP(NETIF_MSG_HW
, "new mask %x\n", aeu_mask
);
3200 REG_WR(bp
, aeu_addr
, aeu_mask
);
3201 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
3203 DP(NETIF_MSG_HW
, "attn_state %x\n", bp
->attn_state
);
3204 bp
->attn_state
|= asserted
;
3205 DP(NETIF_MSG_HW
, "new state %x\n", bp
->attn_state
);
3207 if (asserted
& ATTN_HARD_WIRED_MASK
) {
3208 if (asserted
& ATTN_NIG_FOR_FUNC
) {
3210 bnx2x_acquire_phy_lock(bp
);
3212 /* save nig interrupt mask */
3213 nig_mask
= REG_RD(bp
, nig_int_mask_addr
);
3215 /* If nig_mask is not set, no need to call the update
3219 REG_WR(bp
, nig_int_mask_addr
, 0);
3221 bnx2x_link_attn(bp
);
3224 /* handle unicore attn? */
3226 if (asserted
& ATTN_SW_TIMER_4_FUNC
)
3227 DP(NETIF_MSG_HW
, "ATTN_SW_TIMER_4_FUNC!\n");
3229 if (asserted
& GPIO_2_FUNC
)
3230 DP(NETIF_MSG_HW
, "GPIO_2_FUNC!\n");
3232 if (asserted
& GPIO_3_FUNC
)
3233 DP(NETIF_MSG_HW
, "GPIO_3_FUNC!\n");
3235 if (asserted
& GPIO_4_FUNC
)
3236 DP(NETIF_MSG_HW
, "GPIO_4_FUNC!\n");
3239 if (asserted
& ATTN_GENERAL_ATTN_1
) {
3240 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_1!\n");
3241 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_1
, 0x0);
3243 if (asserted
& ATTN_GENERAL_ATTN_2
) {
3244 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_2!\n");
3245 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_2
, 0x0);
3247 if (asserted
& ATTN_GENERAL_ATTN_3
) {
3248 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_3!\n");
3249 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_3
, 0x0);
3252 if (asserted
& ATTN_GENERAL_ATTN_4
) {
3253 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_4!\n");
3254 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_4
, 0x0);
3256 if (asserted
& ATTN_GENERAL_ATTN_5
) {
3257 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_5!\n");
3258 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_5
, 0x0);
3260 if (asserted
& ATTN_GENERAL_ATTN_6
) {
3261 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_6!\n");
3262 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_6
, 0x0);
3266 } /* if hardwired */
3268 if (bp
->common
.int_block
== INT_BLOCK_HC
)
3269 reg_addr
= (HC_REG_COMMAND_REG
+ port
*32 +
3270 COMMAND_REG_ATTN_BITS_SET
);
3272 reg_addr
= (BAR_IGU_INTMEM
+ IGU_CMD_ATTN_BIT_SET_UPPER
*8);
3274 DP(NETIF_MSG_HW
, "about to mask 0x%08x at %s addr 0x%x\n", asserted
,
3275 (bp
->common
.int_block
== INT_BLOCK_HC
) ? "HC" : "IGU", reg_addr
);
3276 REG_WR(bp
, reg_addr
, asserted
);
3278 /* now set back the mask */
3279 if (asserted
& ATTN_NIG_FOR_FUNC
) {
3280 REG_WR(bp
, nig_int_mask_addr
, nig_mask
);
3281 bnx2x_release_phy_lock(bp
);
3285 static inline void bnx2x_fan_failure(struct bnx2x
*bp
)
3287 int port
= BP_PORT(bp
);
3289 /* mark the failure */
3292 dev_info
.port_hw_config
[port
].external_phy_config
);
3294 ext_phy_config
&= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK
;
3295 ext_phy_config
|= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE
;
3296 SHMEM_WR(bp
, dev_info
.port_hw_config
[port
].external_phy_config
,
3299 /* log the failure */
3300 netdev_err(bp
->dev
, "Fan Failure on Network Controller has caused"
3301 " the driver to shutdown the card to prevent permanent"
3302 " damage. Please contact OEM Support for assistance\n");
3305 static inline void bnx2x_attn_int_deasserted0(struct bnx2x
*bp
, u32 attn
)
3307 int port
= BP_PORT(bp
);
3311 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
3312 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
3314 if (attn
& AEU_INPUTS_ATTN_BITS_SPIO5
) {
3316 val
= REG_RD(bp
, reg_offset
);
3317 val
&= ~AEU_INPUTS_ATTN_BITS_SPIO5
;
3318 REG_WR(bp
, reg_offset
, val
);
3320 BNX2X_ERR("SPIO5 hw attention\n");
3322 /* Fan failure attention */
3323 bnx2x_hw_reset_phy(&bp
->link_params
);
3324 bnx2x_fan_failure(bp
);
3327 if ((attn
& bp
->link_vars
.aeu_int_mask
) && bp
->port
.pmf
) {
3328 bnx2x_acquire_phy_lock(bp
);
3329 bnx2x_handle_module_detect_int(&bp
->link_params
);
3330 bnx2x_release_phy_lock(bp
);
3333 if (attn
& HW_INTERRUT_ASSERT_SET_0
) {
3335 val
= REG_RD(bp
, reg_offset
);
3336 val
&= ~(attn
& HW_INTERRUT_ASSERT_SET_0
);
3337 REG_WR(bp
, reg_offset
, val
);
3339 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3340 (u32
)(attn
& HW_INTERRUT_ASSERT_SET_0
));
3345 static inline void bnx2x_attn_int_deasserted1(struct bnx2x
*bp
, u32 attn
)
3349 if (attn
& AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT
) {
3351 val
= REG_RD(bp
, DORQ_REG_DORQ_INT_STS_CLR
);
3352 BNX2X_ERR("DB hw attention 0x%x\n", val
);
3353 /* DORQ discard attention */
3355 BNX2X_ERR("FATAL error from DORQ\n");
3358 if (attn
& HW_INTERRUT_ASSERT_SET_1
) {
3360 int port
= BP_PORT(bp
);
3363 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1
:
3364 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1
);
3366 val
= REG_RD(bp
, reg_offset
);
3367 val
&= ~(attn
& HW_INTERRUT_ASSERT_SET_1
);
3368 REG_WR(bp
, reg_offset
, val
);
3370 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3371 (u32
)(attn
& HW_INTERRUT_ASSERT_SET_1
));
3376 static inline void bnx2x_attn_int_deasserted2(struct bnx2x
*bp
, u32 attn
)
3380 if (attn
& AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT
) {
3382 val
= REG_RD(bp
, CFC_REG_CFC_INT_STS_CLR
);
3383 BNX2X_ERR("CFC hw attention 0x%x\n", val
);
3384 /* CFC error attention */
3386 BNX2X_ERR("FATAL error from CFC\n");
3389 if (attn
& AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT
) {
3390 val
= REG_RD(bp
, PXP_REG_PXP_INT_STS_CLR_0
);
3391 BNX2X_ERR("PXP hw attention-0 0x%x\n", val
);
3392 /* RQ_USDMDP_FIFO_OVERFLOW */
3394 BNX2X_ERR("FATAL error from PXP\n");
3396 if (!CHIP_IS_E1x(bp
)) {
3397 val
= REG_RD(bp
, PXP_REG_PXP_INT_STS_CLR_1
);
3398 BNX2X_ERR("PXP hw attention-1 0x%x\n", val
);
3402 if (attn
& HW_INTERRUT_ASSERT_SET_2
) {
3404 int port
= BP_PORT(bp
);
3407 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2
:
3408 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2
);
3410 val
= REG_RD(bp
, reg_offset
);
3411 val
&= ~(attn
& HW_INTERRUT_ASSERT_SET_2
);
3412 REG_WR(bp
, reg_offset
, val
);
3414 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3415 (u32
)(attn
& HW_INTERRUT_ASSERT_SET_2
));
3420 static inline void bnx2x_attn_int_deasserted3(struct bnx2x
*bp
, u32 attn
)
3424 if (attn
& EVEREST_GEN_ATTN_IN_USE_MASK
) {
3426 if (attn
& BNX2X_PMF_LINK_ASSERT
) {
3427 int func
= BP_FUNC(bp
);
3429 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
3430 bp
->mf_config
[BP_VN(bp
)] = MF_CFG_RD(bp
,
3431 func_mf_config
[BP_ABS_FUNC(bp
)].config
);
3433 func_mb
[BP_FW_MB_IDX(bp
)].drv_status
);
3434 if (val
& DRV_STATUS_DCC_EVENT_MASK
)
3436 (val
& DRV_STATUS_DCC_EVENT_MASK
));
3438 if (val
& DRV_STATUS_SET_MF_BW
)
3439 bnx2x_set_mf_bw(bp
);
3441 if ((bp
->port
.pmf
== 0) && (val
& DRV_STATUS_PMF
))
3442 bnx2x_pmf_update(bp
);
3445 (val
& DRV_STATUS_DCBX_NEGOTIATION_RESULTS
) &&
3446 bp
->dcbx_enabled
> 0)
3447 /* start dcbx state machine */
3448 bnx2x_dcbx_set_params(bp
,
3449 BNX2X_DCBX_STATE_NEG_RECEIVED
);
3450 if (bp
->link_vars
.periodic_flags
&
3451 PERIODIC_FLAGS_LINK_EVENT
) {
3452 /* sync with link */
3453 bnx2x_acquire_phy_lock(bp
);
3454 bp
->link_vars
.periodic_flags
&=
3455 ~PERIODIC_FLAGS_LINK_EVENT
;
3456 bnx2x_release_phy_lock(bp
);
3458 bnx2x_link_sync_notify(bp
);
3459 bnx2x_link_report(bp
);
3461 /* Always call it here: bnx2x_link_report() will
3462 * prevent the link indication duplication.
3464 bnx2x__link_status_update(bp
);
3465 } else if (attn
& BNX2X_MC_ASSERT_BITS
) {
3467 BNX2X_ERR("MC assert!\n");
3468 bnx2x_mc_assert(bp
);
3469 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_10
, 0);
3470 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_9
, 0);
3471 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_8
, 0);
3472 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_7
, 0);
3475 } else if (attn
& BNX2X_MCP_ASSERT
) {
3477 BNX2X_ERR("MCP assert!\n");
3478 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_11
, 0);
3482 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn
);
3485 if (attn
& EVEREST_LATCHED_ATTN_IN_USE_MASK
) {
3486 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn
);
3487 if (attn
& BNX2X_GRC_TIMEOUT
) {
3488 val
= CHIP_IS_E1(bp
) ? 0 :
3489 REG_RD(bp
, MISC_REG_GRC_TIMEOUT_ATTN
);
3490 BNX2X_ERR("GRC time-out 0x%08x\n", val
);
3492 if (attn
& BNX2X_GRC_RSV
) {
3493 val
= CHIP_IS_E1(bp
) ? 0 :
3494 REG_RD(bp
, MISC_REG_GRC_RSV_ATTN
);
3495 BNX2X_ERR("GRC reserved 0x%08x\n", val
);
3497 REG_WR(bp
, MISC_REG_AEU_CLR_LATCH_SIGNAL
, 0x7ff);
3503 * 0-7 - Engine0 load counter.
3504 * 8-15 - Engine1 load counter.
3505 * 16 - Engine0 RESET_IN_PROGRESS bit.
3506 * 17 - Engine1 RESET_IN_PROGRESS bit.
3507 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3509 * 19 - Engine1 ONE_IS_LOADED.
3510 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3511 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3512 * just the one belonging to its engine).
3515 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3517 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3518 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3519 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3520 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3521 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3522 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3523 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3526 * Set the GLOBAL_RESET bit.
3528 * Should be run under rtnl lock
3530 void bnx2x_set_reset_global(struct bnx2x
*bp
)
3532 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3534 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
| BNX2X_GLOBAL_RESET_BIT
);
3540 * Clear the GLOBAL_RESET bit.
3542 * Should be run under rtnl lock
3544 static inline void bnx2x_clear_reset_global(struct bnx2x
*bp
)
3546 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3548 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
& (~BNX2X_GLOBAL_RESET_BIT
));
3554 * Checks the GLOBAL_RESET bit.
3556 * should be run under rtnl lock
3558 static inline bool bnx2x_reset_is_global(struct bnx2x
*bp
)
3560 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3562 DP(NETIF_MSG_HW
, "GEN_REG_VAL=0x%08x\n", val
);
3563 return (val
& BNX2X_GLOBAL_RESET_BIT
) ? true : false;
3567 * Clear RESET_IN_PROGRESS bit for the current engine.
3569 * Should be run under rtnl lock
3571 static inline void bnx2x_set_reset_done(struct bnx2x
*bp
)
3573 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3574 u32 bit
= BP_PATH(bp
) ?
3575 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
3579 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
3585 * Set RESET_IN_PROGRESS for the current engine.
3587 * should be run under rtnl lock
3589 void bnx2x_set_reset_in_progress(struct bnx2x
*bp
)
3591 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3592 u32 bit
= BP_PATH(bp
) ?
3593 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
3597 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
3603 * Checks the RESET_IN_PROGRESS bit for the given engine.
3604 * should be run under rtnl lock
3606 bool bnx2x_reset_is_done(struct bnx2x
*bp
, int engine
)
3608 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3610 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
3612 /* return false if bit is set */
3613 return (val
& bit
) ? false : true;
3617 * Increment the load counter for the current engine.
3619 * should be run under rtnl lock
3621 void bnx2x_inc_load_cnt(struct bnx2x
*bp
)
3623 u32 val1
, val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3624 u32 mask
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
3625 BNX2X_PATH0_LOAD_CNT_MASK
;
3626 u32 shift
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_SHIFT
:
3627 BNX2X_PATH0_LOAD_CNT_SHIFT
;
3629 DP(NETIF_MSG_HW
, "Old GEN_REG_VAL=0x%08x\n", val
);
3631 /* get the current counter value */
3632 val1
= (val
& mask
) >> shift
;
3637 /* clear the old value */
3640 /* set the new one */
3641 val
|= ((val1
<< shift
) & mask
);
3643 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
3649 * bnx2x_dec_load_cnt - decrement the load counter
3651 * @bp: driver handle
3653 * Should be run under rtnl lock.
3654 * Decrements the load counter for the current engine. Returns
3655 * the new counter value.
3657 u32
bnx2x_dec_load_cnt(struct bnx2x
*bp
)
3659 u32 val1
, val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3660 u32 mask
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
3661 BNX2X_PATH0_LOAD_CNT_MASK
;
3662 u32 shift
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_SHIFT
:
3663 BNX2X_PATH0_LOAD_CNT_SHIFT
;
3665 DP(NETIF_MSG_HW
, "Old GEN_REG_VAL=0x%08x\n", val
);
3667 /* get the current counter value */
3668 val1
= (val
& mask
) >> shift
;
3673 /* clear the old value */
3676 /* set the new one */
3677 val
|= ((val1
<< shift
) & mask
);
3679 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
3687 * Read the load counter for the current engine.
3689 * should be run under rtnl lock
3691 static inline u32
bnx2x_get_load_cnt(struct bnx2x
*bp
, int engine
)
3693 u32 mask
= (engine
? BNX2X_PATH1_LOAD_CNT_MASK
:
3694 BNX2X_PATH0_LOAD_CNT_MASK
);
3695 u32 shift
= (engine
? BNX2X_PATH1_LOAD_CNT_SHIFT
:
3696 BNX2X_PATH0_LOAD_CNT_SHIFT
);
3697 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3699 DP(NETIF_MSG_HW
, "GLOB_REG=0x%08x\n", val
);
3701 val
= (val
& mask
) >> shift
;
3703 DP(NETIF_MSG_HW
, "load_cnt for engine %d = %d\n", engine
, val
);
3709 * Reset the load counter for the current engine.
3711 * should be run under rtnl lock
3713 static inline void bnx2x_clear_load_cnt(struct bnx2x
*bp
)
3715 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3716 u32 mask
= (BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
3717 BNX2X_PATH0_LOAD_CNT_MASK
);
3719 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
& (~mask
));
3722 static inline void _print_next_block(int idx
, const char *blk
)
3729 static inline int bnx2x_check_blocks_with_parity0(u32 sig
, int par_num
,
3734 for (i
= 0; sig
; i
++) {
3735 cur_bit
= ((u32
)0x1 << i
);
3736 if (sig
& cur_bit
) {
3738 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR
:
3740 _print_next_block(par_num
++, "BRB");
3742 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR
:
3744 _print_next_block(par_num
++, "PARSER");
3746 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR
:
3748 _print_next_block(par_num
++, "TSDM");
3750 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR
:
3752 _print_next_block(par_num
++,
3755 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR
:
3757 _print_next_block(par_num
++, "TCM");
3759 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR
:
3761 _print_next_block(par_num
++, "TSEMI");
3763 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR
:
3765 _print_next_block(par_num
++, "XPB");
3777 static inline int bnx2x_check_blocks_with_parity1(u32 sig
, int par_num
,
3778 bool *global
, bool print
)
3782 for (i
= 0; sig
; i
++) {
3783 cur_bit
= ((u32
)0x1 << i
);
3784 if (sig
& cur_bit
) {
3786 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR
:
3788 _print_next_block(par_num
++, "PBF");
3790 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR
:
3792 _print_next_block(par_num
++, "QM");
3794 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR
:
3796 _print_next_block(par_num
++, "TM");
3798 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR
:
3800 _print_next_block(par_num
++, "XSDM");
3802 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR
:
3804 _print_next_block(par_num
++, "XCM");
3806 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR
:
3808 _print_next_block(par_num
++, "XSEMI");
3810 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR
:
3812 _print_next_block(par_num
++,
3815 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR
:
3817 _print_next_block(par_num
++, "NIG");
3819 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR
:
3821 _print_next_block(par_num
++,
3825 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR
:
3827 _print_next_block(par_num
++, "DEBUG");
3829 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR
:
3831 _print_next_block(par_num
++, "USDM");
3833 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR
:
3835 _print_next_block(par_num
++, "UCM");
3837 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR
:
3839 _print_next_block(par_num
++, "USEMI");
3841 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR
:
3843 _print_next_block(par_num
++, "UPB");
3845 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR
:
3847 _print_next_block(par_num
++, "CSDM");
3849 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR
:
3851 _print_next_block(par_num
++, "CCM");
3863 static inline int bnx2x_check_blocks_with_parity2(u32 sig
, int par_num
,
3868 for (i
= 0; sig
; i
++) {
3869 cur_bit
= ((u32
)0x1 << i
);
3870 if (sig
& cur_bit
) {
3872 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR
:
3874 _print_next_block(par_num
++, "CSEMI");
3876 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR
:
3878 _print_next_block(par_num
++, "PXP");
3880 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
:
3882 _print_next_block(par_num
++,
3883 "PXPPCICLOCKCLIENT");
3885 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR
:
3887 _print_next_block(par_num
++, "CFC");
3889 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR
:
3891 _print_next_block(par_num
++, "CDU");
3893 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR
:
3895 _print_next_block(par_num
++, "DMAE");
3897 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR
:
3899 _print_next_block(par_num
++, "IGU");
3901 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR
:
3903 _print_next_block(par_num
++, "MISC");
3915 static inline int bnx2x_check_blocks_with_parity3(u32 sig
, int par_num
,
3916 bool *global
, bool print
)
3920 for (i
= 0; sig
; i
++) {
3921 cur_bit
= ((u32
)0x1 << i
);
3922 if (sig
& cur_bit
) {
3924 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY
:
3926 _print_next_block(par_num
++, "MCP ROM");
3929 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY
:
3931 _print_next_block(par_num
++,
3935 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY
:
3937 _print_next_block(par_num
++,
3941 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY
:
3943 _print_next_block(par_num
++,
3957 static inline int bnx2x_check_blocks_with_parity4(u32 sig
, int par_num
,
3962 for (i
= 0; sig
; i
++) {
3963 cur_bit
= ((u32
)0x1 << i
);
3964 if (sig
& cur_bit
) {
3966 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
:
3968 _print_next_block(par_num
++, "PGLUE_B");
3970 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
:
3972 _print_next_block(par_num
++, "ATC");
3984 static inline bool bnx2x_parity_attn(struct bnx2x
*bp
, bool *global
, bool print
,
3987 if ((sig
[0] & HW_PRTY_ASSERT_SET_0
) ||
3988 (sig
[1] & HW_PRTY_ASSERT_SET_1
) ||
3989 (sig
[2] & HW_PRTY_ASSERT_SET_2
) ||
3990 (sig
[3] & HW_PRTY_ASSERT_SET_3
) ||
3991 (sig
[4] & HW_PRTY_ASSERT_SET_4
)) {
3993 DP(NETIF_MSG_HW
, "Was parity error: HW block parity attention: "
3994 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
3996 sig
[0] & HW_PRTY_ASSERT_SET_0
,
3997 sig
[1] & HW_PRTY_ASSERT_SET_1
,
3998 sig
[2] & HW_PRTY_ASSERT_SET_2
,
3999 sig
[3] & HW_PRTY_ASSERT_SET_3
,
4000 sig
[4] & HW_PRTY_ASSERT_SET_4
);
4003 "Parity errors detected in blocks: ");
4004 par_num
= bnx2x_check_blocks_with_parity0(
4005 sig
[0] & HW_PRTY_ASSERT_SET_0
, par_num
, print
);
4006 par_num
= bnx2x_check_blocks_with_parity1(
4007 sig
[1] & HW_PRTY_ASSERT_SET_1
, par_num
, global
, print
);
4008 par_num
= bnx2x_check_blocks_with_parity2(
4009 sig
[2] & HW_PRTY_ASSERT_SET_2
, par_num
, print
);
4010 par_num
= bnx2x_check_blocks_with_parity3(
4011 sig
[3] & HW_PRTY_ASSERT_SET_3
, par_num
, global
, print
);
4012 par_num
= bnx2x_check_blocks_with_parity4(
4013 sig
[4] & HW_PRTY_ASSERT_SET_4
, par_num
, print
);
4024 * bnx2x_chk_parity_attn - checks for parity attentions.
4026 * @bp: driver handle
4027 * @global: true if there was a global attention
4028 * @print: show parity attention in syslog
4030 bool bnx2x_chk_parity_attn(struct bnx2x
*bp
, bool *global
, bool print
)
4032 struct attn_route attn
= { {0} };
4033 int port
= BP_PORT(bp
);
4035 attn
.sig
[0] = REG_RD(bp
,
4036 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+
4038 attn
.sig
[1] = REG_RD(bp
,
4039 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0
+
4041 attn
.sig
[2] = REG_RD(bp
,
4042 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0
+
4044 attn
.sig
[3] = REG_RD(bp
,
4045 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0
+
4048 if (!CHIP_IS_E1x(bp
))
4049 attn
.sig
[4] = REG_RD(bp
,
4050 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0
+
4053 return bnx2x_parity_attn(bp
, global
, print
, attn
.sig
);
4057 static inline void bnx2x_attn_int_deasserted4(struct bnx2x
*bp
, u32 attn
)
4060 if (attn
& AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT
) {
4062 val
= REG_RD(bp
, PGLUE_B_REG_PGLUE_B_INT_STS_CLR
);
4063 BNX2X_ERR("PGLUE hw attention 0x%x\n", val
);
4064 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR
)
4065 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4067 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR
)
4068 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4069 "INCORRECT_RCV_BEHAVIOR\n");
4070 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN
)
4071 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4072 "WAS_ERROR_ATTN\n");
4073 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN
)
4074 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4075 "VF_LENGTH_VIOLATION_ATTN\n");
4077 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN
)
4078 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4079 "VF_GRC_SPACE_VIOLATION_ATTN\n");
4081 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN
)
4082 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4083 "VF_MSIX_BAR_VIOLATION_ATTN\n");
4084 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN
)
4085 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4086 "TCPL_ERROR_ATTN\n");
4087 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN
)
4088 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4089 "TCPL_IN_TWO_RCBS_ATTN\n");
4090 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW
)
4091 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4092 "CSSNOOP_FIFO_OVERFLOW\n");
4094 if (attn
& AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT
) {
4095 val
= REG_RD(bp
, ATC_REG_ATC_INT_STS_CLR
);
4096 BNX2X_ERR("ATC hw attention 0x%x\n", val
);
4097 if (val
& ATC_ATC_INT_STS_REG_ADDRESS_ERROR
)
4098 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4099 if (val
& ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND
)
4100 BNX2X_ERR("ATC_ATC_INT_STS_REG"
4101 "_ATC_TCPL_TO_NOT_PEND\n");
4102 if (val
& ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS
)
4103 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4104 "ATC_GPA_MULTIPLE_HITS\n");
4105 if (val
& ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT
)
4106 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4107 "ATC_RCPL_TO_EMPTY_CNT\n");
4108 if (val
& ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR
)
4109 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4110 if (val
& ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU
)
4111 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4112 "ATC_IREQ_LESS_THAN_STU\n");
4115 if (attn
& (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
|
4116 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
)) {
4117 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4118 (u32
)(attn
& (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
|
4119 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
)));
4124 static void bnx2x_attn_int_deasserted(struct bnx2x
*bp
, u32 deasserted
)
4126 struct attn_route attn
, *group_mask
;
4127 int port
= BP_PORT(bp
);
4132 bool global
= false;
4134 /* need to take HW lock because MCP or other port might also
4135 try to handle this event */
4136 bnx2x_acquire_alr(bp
);
4138 if (bnx2x_chk_parity_attn(bp
, &global
, true)) {
4139 #ifndef BNX2X_STOP_ON_ERROR
4140 bp
->recovery_state
= BNX2X_RECOVERY_INIT
;
4141 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);
4142 /* Disable HW interrupts */
4143 bnx2x_int_disable(bp
);
4144 /* In case of parity errors don't handle attentions so that
4145 * other function would "see" parity errors.
4150 bnx2x_release_alr(bp
);
4154 attn
.sig
[0] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+ port
*4);
4155 attn
.sig
[1] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0
+ port
*4);
4156 attn
.sig
[2] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0
+ port
*4);
4157 attn
.sig
[3] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0
+ port
*4);
4158 if (!CHIP_IS_E1x(bp
))
4160 REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0
+ port
*4);
4164 DP(NETIF_MSG_HW
, "attn: %08x %08x %08x %08x %08x\n",
4165 attn
.sig
[0], attn
.sig
[1], attn
.sig
[2], attn
.sig
[3], attn
.sig
[4]);
4167 for (index
= 0; index
< MAX_DYNAMIC_ATTN_GRPS
; index
++) {
4168 if (deasserted
& (1 << index
)) {
4169 group_mask
= &bp
->attn_group
[index
];
4171 DP(NETIF_MSG_HW
, "group[%d]: %08x %08x "
4174 group_mask
->sig
[0], group_mask
->sig
[1],
4175 group_mask
->sig
[2], group_mask
->sig
[3],
4176 group_mask
->sig
[4]);
4178 bnx2x_attn_int_deasserted4(bp
,
4179 attn
.sig
[4] & group_mask
->sig
[4]);
4180 bnx2x_attn_int_deasserted3(bp
,
4181 attn
.sig
[3] & group_mask
->sig
[3]);
4182 bnx2x_attn_int_deasserted1(bp
,
4183 attn
.sig
[1] & group_mask
->sig
[1]);
4184 bnx2x_attn_int_deasserted2(bp
,
4185 attn
.sig
[2] & group_mask
->sig
[2]);
4186 bnx2x_attn_int_deasserted0(bp
,
4187 attn
.sig
[0] & group_mask
->sig
[0]);
4191 bnx2x_release_alr(bp
);
4193 if (bp
->common
.int_block
== INT_BLOCK_HC
)
4194 reg_addr
= (HC_REG_COMMAND_REG
+ port
*32 +
4195 COMMAND_REG_ATTN_BITS_CLR
);
4197 reg_addr
= (BAR_IGU_INTMEM
+ IGU_CMD_ATTN_BIT_CLR_UPPER
*8);
4200 DP(NETIF_MSG_HW
, "about to mask 0x%08x at %s addr 0x%x\n", val
,
4201 (bp
->common
.int_block
== INT_BLOCK_HC
) ? "HC" : "IGU", reg_addr
);
4202 REG_WR(bp
, reg_addr
, val
);
4204 if (~bp
->attn_state
& deasserted
)
4205 BNX2X_ERR("IGU ERROR\n");
4207 reg_addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
4208 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
4210 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
4211 aeu_mask
= REG_RD(bp
, reg_addr
);
4213 DP(NETIF_MSG_HW
, "aeu_mask %x newly deasserted %x\n",
4214 aeu_mask
, deasserted
);
4215 aeu_mask
|= (deasserted
& 0x3ff);
4216 DP(NETIF_MSG_HW
, "new mask %x\n", aeu_mask
);
4218 REG_WR(bp
, reg_addr
, aeu_mask
);
4219 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
4221 DP(NETIF_MSG_HW
, "attn_state %x\n", bp
->attn_state
);
4222 bp
->attn_state
&= ~deasserted
;
4223 DP(NETIF_MSG_HW
, "new state %x\n", bp
->attn_state
);
4226 static void bnx2x_attn_int(struct bnx2x
*bp
)
4228 /* read local copy of bits */
4229 u32 attn_bits
= le32_to_cpu(bp
->def_status_blk
->atten_status_block
.
4231 u32 attn_ack
= le32_to_cpu(bp
->def_status_blk
->atten_status_block
.
4233 u32 attn_state
= bp
->attn_state
;
4235 /* look for changed bits */
4236 u32 asserted
= attn_bits
& ~attn_ack
& ~attn_state
;
4237 u32 deasserted
= ~attn_bits
& attn_ack
& attn_state
;
4240 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4241 attn_bits
, attn_ack
, asserted
, deasserted
);
4243 if (~(attn_bits
^ attn_ack
) & (attn_bits
^ attn_state
))
4244 BNX2X_ERR("BAD attention state\n");
4246 /* handle bits that were raised */
4248 bnx2x_attn_int_asserted(bp
, asserted
);
4251 bnx2x_attn_int_deasserted(bp
, deasserted
);
4254 void bnx2x_igu_ack_sb(struct bnx2x
*bp
, u8 igu_sb_id
, u8 segment
,
4255 u16 index
, u8 op
, u8 update
)
4257 u32 igu_addr
= BAR_IGU_INTMEM
+ (IGU_CMD_INT_ACK_BASE
+ igu_sb_id
)*8;
4259 bnx2x_igu_ack_sb_gen(bp
, igu_sb_id
, segment
, index
, op
, update
,
4263 static inline void bnx2x_update_eq_prod(struct bnx2x
*bp
, u16 prod
)
4265 /* No memory barriers */
4266 storm_memset_eq_prod(bp
, prod
, BP_FUNC(bp
));
4267 mmiowb(); /* keep prod updates ordered */
4271 static int bnx2x_cnic_handle_cfc_del(struct bnx2x
*bp
, u32 cid
,
4272 union event_ring_elem
*elem
)
4274 u8 err
= elem
->message
.error
;
4276 if (!bp
->cnic_eth_dev
.starting_cid
||
4277 (cid
< bp
->cnic_eth_dev
.starting_cid
&&
4278 cid
!= bp
->cnic_eth_dev
.iscsi_l2_cid
))
4281 DP(BNX2X_MSG_SP
, "got delete ramrod for CNIC CID %d\n", cid
);
4283 if (unlikely(err
)) {
4285 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4287 bnx2x_panic_dump(bp
);
4289 bnx2x_cnic_cfc_comp(bp
, cid
, err
);
4294 static inline void bnx2x_handle_mcast_eqe(struct bnx2x
*bp
)
4296 struct bnx2x_mcast_ramrod_params rparam
;
4299 memset(&rparam
, 0, sizeof(rparam
));
4301 rparam
.mcast_obj
= &bp
->mcast_obj
;
4303 netif_addr_lock_bh(bp
->dev
);
4305 /* Clear pending state for the last command */
4306 bp
->mcast_obj
.raw
.clear_pending(&bp
->mcast_obj
.raw
);
4308 /* If there are pending mcast commands - send them */
4309 if (bp
->mcast_obj
.check_pending(&bp
->mcast_obj
)) {
4310 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
4312 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4316 netif_addr_unlock_bh(bp
->dev
);
4319 static inline void bnx2x_handle_classification_eqe(struct bnx2x
*bp
,
4320 union event_ring_elem
*elem
)
4322 unsigned long ramrod_flags
= 0;
4324 u32 cid
= elem
->message
.data
.eth_event
.echo
& BNX2X_SWCID_MASK
;
4325 struct bnx2x_vlan_mac_obj
*vlan_mac_obj
;
4327 /* Always push next commands out, don't wait here */
4328 __set_bit(RAMROD_CONT
, &ramrod_flags
);
4330 switch (elem
->message
.data
.eth_event
.echo
>> BNX2X_SWCID_SHIFT
) {
4331 case BNX2X_FILTER_MAC_PENDING
:
4333 if (cid
== BNX2X_ISCSI_ETH_CID
)
4334 vlan_mac_obj
= &bp
->iscsi_l2_mac_obj
;
4337 vlan_mac_obj
= &bp
->fp
[cid
].mac_obj
;
4340 vlan_mac_obj
= &bp
->fp
[cid
].mac_obj
;
4342 case BNX2X_FILTER_MCAST_PENDING
:
4343 /* This is only relevant for 57710 where multicast MACs are
4344 * configured as unicast MACs using the same ramrod.
4346 bnx2x_handle_mcast_eqe(bp
);
4349 BNX2X_ERR("Unsupported classification command: %d\n",
4350 elem
->message
.data
.eth_event
.echo
);
4354 rc
= vlan_mac_obj
->complete(bp
, vlan_mac_obj
, elem
, &ramrod_flags
);
4357 BNX2X_ERR("Failed to schedule new commands: %d\n", rc
);
4359 DP(BNX2X_MSG_SP
, "Scheduled next pending commands...\n");
4364 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x
*bp
, bool start
);
4367 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x
*bp
)
4369 netif_addr_lock_bh(bp
->dev
);
4371 clear_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
);
4373 /* Send rx_mode command again if was requested */
4374 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
))
4375 bnx2x_set_storm_rx_mode(bp
);
4377 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
,
4379 bnx2x_set_iscsi_eth_rx_mode(bp
, true);
4380 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
,
4382 bnx2x_set_iscsi_eth_rx_mode(bp
, false);
4385 netif_addr_unlock_bh(bp
->dev
);
4388 static inline struct bnx2x_queue_sp_obj
*bnx2x_cid_to_q_obj(
4389 struct bnx2x
*bp
, u32 cid
)
4391 DP(BNX2X_MSG_SP
, "retrieving fp from cid %d", cid
);
4393 if (cid
== BNX2X_FCOE_ETH_CID
)
4394 return &bnx2x_fcoe(bp
, q_obj
);
4397 return &bnx2x_fp(bp
, CID_TO_FP(cid
), q_obj
);
4400 static void bnx2x_eq_int(struct bnx2x
*bp
)
4402 u16 hw_cons
, sw_cons
, sw_prod
;
4403 union event_ring_elem
*elem
;
4407 struct bnx2x_queue_sp_obj
*q_obj
;
4408 struct bnx2x_func_sp_obj
*f_obj
= &bp
->func_obj
;
4409 struct bnx2x_raw_obj
*rss_raw
= &bp
->rss_conf_obj
.raw
;
4411 hw_cons
= le16_to_cpu(*bp
->eq_cons_sb
);
4413 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4414 * when we get the the next-page we nned to adjust so the loop
4415 * condition below will be met. The next element is the size of a
4416 * regular element and hence incrementing by 1
4418 if ((hw_cons
& EQ_DESC_MAX_PAGE
) == EQ_DESC_MAX_PAGE
)
4421 /* This function may never run in parallel with itself for a
4422 * specific bp, thus there is no need in "paired" read memory
4425 sw_cons
= bp
->eq_cons
;
4426 sw_prod
= bp
->eq_prod
;
4428 DP(BNX2X_MSG_SP
, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4429 hw_cons
, sw_cons
, atomic_read(&bp
->eq_spq_left
));
4431 for (; sw_cons
!= hw_cons
;
4432 sw_prod
= NEXT_EQ_IDX(sw_prod
), sw_cons
= NEXT_EQ_IDX(sw_cons
)) {
4435 elem
= &bp
->eq_ring
[EQ_DESC(sw_cons
)];
4437 cid
= SW_CID(elem
->message
.data
.cfc_del_event
.cid
);
4438 opcode
= elem
->message
.opcode
;
4441 /* handle eq element */
4443 case EVENT_RING_OPCODE_STAT_QUERY
:
4444 DP(NETIF_MSG_TIMER
, "got statistics comp event %d\n",
4446 /* nothing to do with stats comp */
4449 case EVENT_RING_OPCODE_CFC_DEL
:
4450 /* handle according to cid range */
4452 * we may want to verify here that the bp state is
4456 "got delete ramrod for MULTI[%d]\n", cid
);
4458 if (!bnx2x_cnic_handle_cfc_del(bp
, cid
, elem
))
4461 q_obj
= bnx2x_cid_to_q_obj(bp
, cid
);
4463 if (q_obj
->complete_cmd(bp
, q_obj
, BNX2X_Q_CMD_CFC_DEL
))
4470 case EVENT_RING_OPCODE_STOP_TRAFFIC
:
4471 DP(BNX2X_MSG_SP
, "got STOP TRAFFIC\n");
4472 if (f_obj
->complete_cmd(bp
, f_obj
,
4473 BNX2X_F_CMD_TX_STOP
))
4475 bnx2x_dcbx_set_params(bp
, BNX2X_DCBX_STATE_TX_PAUSED
);
4478 case EVENT_RING_OPCODE_START_TRAFFIC
:
4479 DP(BNX2X_MSG_SP
, "got START TRAFFIC\n");
4480 if (f_obj
->complete_cmd(bp
, f_obj
,
4481 BNX2X_F_CMD_TX_START
))
4483 bnx2x_dcbx_set_params(bp
, BNX2X_DCBX_STATE_TX_RELEASED
);
4485 case EVENT_RING_OPCODE_FUNCTION_START
:
4486 DP(BNX2X_MSG_SP
, "got FUNC_START ramrod\n");
4487 if (f_obj
->complete_cmd(bp
, f_obj
, BNX2X_F_CMD_START
))
4492 case EVENT_RING_OPCODE_FUNCTION_STOP
:
4493 DP(BNX2X_MSG_SP
, "got FUNC_STOP ramrod\n");
4494 if (f_obj
->complete_cmd(bp
, f_obj
, BNX2X_F_CMD_STOP
))
4500 switch (opcode
| bp
->state
) {
4501 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES
|
4503 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES
|
4504 BNX2X_STATE_OPENING_WAIT4_PORT
):
4505 cid
= elem
->message
.data
.eth_event
.echo
&
4507 DP(BNX2X_MSG_SP
, "got RSS_UPDATE ramrod. CID %d\n",
4509 rss_raw
->clear_pending(rss_raw
);
4512 case (EVENT_RING_OPCODE_SET_MAC
| BNX2X_STATE_OPEN
):
4513 case (EVENT_RING_OPCODE_SET_MAC
| BNX2X_STATE_DIAG
):
4514 case (EVENT_RING_OPCODE_SET_MAC
|
4515 BNX2X_STATE_CLOSING_WAIT4_HALT
):
4516 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
4518 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
4520 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
4521 BNX2X_STATE_CLOSING_WAIT4_HALT
):
4522 DP(BNX2X_MSG_SP
, "got (un)set mac ramrod\n");
4523 bnx2x_handle_classification_eqe(bp
, elem
);
4526 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
4528 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
4530 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
4531 BNX2X_STATE_CLOSING_WAIT4_HALT
):
4532 DP(BNX2X_MSG_SP
, "got mcast ramrod\n");
4533 bnx2x_handle_mcast_eqe(bp
);
4536 case (EVENT_RING_OPCODE_FILTERS_RULES
|
4538 case (EVENT_RING_OPCODE_FILTERS_RULES
|
4540 case (EVENT_RING_OPCODE_FILTERS_RULES
|
4541 BNX2X_STATE_CLOSING_WAIT4_HALT
):
4542 DP(BNX2X_MSG_SP
, "got rx_mode ramrod\n");
4543 bnx2x_handle_rx_mode_eqe(bp
);
4546 /* unknown event log error and continue */
4547 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4548 elem
->message
.opcode
, bp
->state
);
4554 smp_mb__before_atomic_inc();
4555 atomic_add(spqe_cnt
, &bp
->eq_spq_left
);
4557 bp
->eq_cons
= sw_cons
;
4558 bp
->eq_prod
= sw_prod
;
4559 /* Make sure that above mem writes were issued towards the memory */
4562 /* update producer */
4563 bnx2x_update_eq_prod(bp
, bp
->eq_prod
);
4566 static void bnx2x_sp_task(struct work_struct
*work
)
4568 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, sp_task
.work
);
4571 status
= bnx2x_update_dsb_idx(bp
);
4572 /* if (status == 0) */
4573 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4575 DP(NETIF_MSG_INTR
, "got a slowpath interrupt (status 0x%x)\n", status
);
4578 if (status
& BNX2X_DEF_SB_ATT_IDX
) {
4580 status
&= ~BNX2X_DEF_SB_ATT_IDX
;
4583 /* SP events: STAT_QUERY and others */
4584 if (status
& BNX2X_DEF_SB_IDX
) {
4586 struct bnx2x_fastpath
*fp
= bnx2x_fcoe_fp(bp
);
4588 if ((!NO_FCOE(bp
)) &&
4589 (bnx2x_has_rx_work(fp
) || bnx2x_has_tx_work(fp
))) {
4591 * Prevent local bottom-halves from running as
4592 * we are going to change the local NAPI list.
4595 napi_schedule(&bnx2x_fcoe(bp
, napi
));
4599 /* Handle EQ completions */
4602 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
,
4603 le16_to_cpu(bp
->def_idx
), IGU_INT_NOP
, 1);
4605 status
&= ~BNX2X_DEF_SB_IDX
;
4608 if (unlikely(status
))
4609 DP(NETIF_MSG_INTR
, "got an unknown interrupt! (status 0x%x)\n",
4612 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, ATTENTION_ID
,
4613 le16_to_cpu(bp
->def_att_idx
), IGU_INT_ENABLE
, 1);
4616 irqreturn_t
bnx2x_msix_sp_int(int irq
, void *dev_instance
)
4618 struct net_device
*dev
= dev_instance
;
4619 struct bnx2x
*bp
= netdev_priv(dev
);
4621 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
, 0,
4622 IGU_INT_DISABLE
, 0);
4624 #ifdef BNX2X_STOP_ON_ERROR
4625 if (unlikely(bp
->panic
))
4631 struct cnic_ops
*c_ops
;
4634 c_ops
= rcu_dereference(bp
->cnic_ops
);
4636 c_ops
->cnic_handler(bp
->cnic_data
, NULL
);
4640 queue_delayed_work(bnx2x_wq
, &bp
->sp_task
, 0);
4645 /* end of slow path */
4648 void bnx2x_drv_pulse(struct bnx2x
*bp
)
4650 SHMEM_WR(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_pulse_mb
,
4651 bp
->fw_drv_pulse_wr_seq
);
4655 static void bnx2x_timer(unsigned long data
)
4658 struct bnx2x
*bp
= (struct bnx2x
*) data
;
4660 if (!netif_running(bp
->dev
))
4664 struct bnx2x_fastpath
*fp
= &bp
->fp
[0];
4666 for_each_cos_in_tx_queue(fp
, cos
)
4667 bnx2x_tx_int(bp
, &fp
->txdata
[cos
]);
4668 bnx2x_rx_int(fp
, 1000);
4671 if (!BP_NOMCP(bp
)) {
4672 int mb_idx
= BP_FW_MB_IDX(bp
);
4676 ++bp
->fw_drv_pulse_wr_seq
;
4677 bp
->fw_drv_pulse_wr_seq
&= DRV_PULSE_SEQ_MASK
;
4678 /* TBD - add SYSTEM_TIME */
4679 drv_pulse
= bp
->fw_drv_pulse_wr_seq
;
4680 bnx2x_drv_pulse(bp
);
4682 mcp_pulse
= (SHMEM_RD(bp
, func_mb
[mb_idx
].mcp_pulse_mb
) &
4683 MCP_PULSE_SEQ_MASK
);
4684 /* The delta between driver pulse and mcp response
4685 * should be 1 (before mcp response) or 0 (after mcp response)
4687 if ((drv_pulse
!= mcp_pulse
) &&
4688 (drv_pulse
!= ((mcp_pulse
+ 1) & MCP_PULSE_SEQ_MASK
))) {
4689 /* someone lost a heartbeat... */
4690 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4691 drv_pulse
, mcp_pulse
);
4695 if (bp
->state
== BNX2X_STATE_OPEN
)
4696 bnx2x_stats_handle(bp
, STATS_EVENT_UPDATE
);
4698 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
4701 /* end of Statistics */
4706 * nic init service functions
4709 static inline void bnx2x_fill(struct bnx2x
*bp
, u32 addr
, int fill
, u32 len
)
4712 if (!(len
%4) && !(addr
%4))
4713 for (i
= 0; i
< len
; i
+= 4)
4714 REG_WR(bp
, addr
+ i
, fill
);
4716 for (i
= 0; i
< len
; i
++)
4717 REG_WR8(bp
, addr
+ i
, fill
);
4721 /* helper: writes FP SP data to FW - data_size in dwords */
4722 static inline void bnx2x_wr_fp_sb_data(struct bnx2x
*bp
,
4728 for (index
= 0; index
< data_size
; index
++)
4729 REG_WR(bp
, BAR_CSTRORM_INTMEM
+
4730 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id
) +
4732 *(sb_data_p
+ index
));
4735 static inline void bnx2x_zero_fp_sb(struct bnx2x
*bp
, int fw_sb_id
)
4739 struct hc_status_block_data_e2 sb_data_e2
;
4740 struct hc_status_block_data_e1x sb_data_e1x
;
4742 /* disable the function first */
4743 if (!CHIP_IS_E1x(bp
)) {
4744 memset(&sb_data_e2
, 0, sizeof(struct hc_status_block_data_e2
));
4745 sb_data_e2
.common
.state
= SB_DISABLED
;
4746 sb_data_e2
.common
.p_func
.vf_valid
= false;
4747 sb_data_p
= (u32
*)&sb_data_e2
;
4748 data_size
= sizeof(struct hc_status_block_data_e2
)/sizeof(u32
);
4750 memset(&sb_data_e1x
, 0,
4751 sizeof(struct hc_status_block_data_e1x
));
4752 sb_data_e1x
.common
.state
= SB_DISABLED
;
4753 sb_data_e1x
.common
.p_func
.vf_valid
= false;
4754 sb_data_p
= (u32
*)&sb_data_e1x
;
4755 data_size
= sizeof(struct hc_status_block_data_e1x
)/sizeof(u32
);
4757 bnx2x_wr_fp_sb_data(bp
, fw_sb_id
, sb_data_p
, data_size
);
4759 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
4760 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id
), 0,
4761 CSTORM_STATUS_BLOCK_SIZE
);
4762 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
4763 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id
), 0,
4764 CSTORM_SYNC_BLOCK_SIZE
);
4767 /* helper: writes SP SB data to FW */
4768 static inline void bnx2x_wr_sp_sb_data(struct bnx2x
*bp
,
4769 struct hc_sp_status_block_data
*sp_sb_data
)
4771 int func
= BP_FUNC(bp
);
4773 for (i
= 0; i
< sizeof(struct hc_sp_status_block_data
)/sizeof(u32
); i
++)
4774 REG_WR(bp
, BAR_CSTRORM_INTMEM
+
4775 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func
) +
4777 *((u32
*)sp_sb_data
+ i
));
4780 static inline void bnx2x_zero_sp_sb(struct bnx2x
*bp
)
4782 int func
= BP_FUNC(bp
);
4783 struct hc_sp_status_block_data sp_sb_data
;
4784 memset(&sp_sb_data
, 0, sizeof(struct hc_sp_status_block_data
));
4786 sp_sb_data
.state
= SB_DISABLED
;
4787 sp_sb_data
.p_func
.vf_valid
= false;
4789 bnx2x_wr_sp_sb_data(bp
, &sp_sb_data
);
4791 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
4792 CSTORM_SP_STATUS_BLOCK_OFFSET(func
), 0,
4793 CSTORM_SP_STATUS_BLOCK_SIZE
);
4794 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
4795 CSTORM_SP_SYNC_BLOCK_OFFSET(func
), 0,
4796 CSTORM_SP_SYNC_BLOCK_SIZE
);
4802 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm
*hc_sm
,
4803 int igu_sb_id
, int igu_seg_id
)
4805 hc_sm
->igu_sb_id
= igu_sb_id
;
4806 hc_sm
->igu_seg_id
= igu_seg_id
;
4807 hc_sm
->timer_value
= 0xFF;
4808 hc_sm
->time_to_expire
= 0xFFFFFFFF;
4811 static void bnx2x_init_sb(struct bnx2x
*bp
, dma_addr_t mapping
, int vfid
,
4812 u8 vf_valid
, int fw_sb_id
, int igu_sb_id
)
4816 struct hc_status_block_data_e2 sb_data_e2
;
4817 struct hc_status_block_data_e1x sb_data_e1x
;
4818 struct hc_status_block_sm
*hc_sm_p
;
4822 if (CHIP_INT_MODE_IS_BC(bp
))
4823 igu_seg_id
= HC_SEG_ACCESS_NORM
;
4825 igu_seg_id
= IGU_SEG_ACCESS_NORM
;
4827 bnx2x_zero_fp_sb(bp
, fw_sb_id
);
4829 if (!CHIP_IS_E1x(bp
)) {
4830 memset(&sb_data_e2
, 0, sizeof(struct hc_status_block_data_e2
));
4831 sb_data_e2
.common
.state
= SB_ENABLED
;
4832 sb_data_e2
.common
.p_func
.pf_id
= BP_FUNC(bp
);
4833 sb_data_e2
.common
.p_func
.vf_id
= vfid
;
4834 sb_data_e2
.common
.p_func
.vf_valid
= vf_valid
;
4835 sb_data_e2
.common
.p_func
.vnic_id
= BP_VN(bp
);
4836 sb_data_e2
.common
.same_igu_sb_1b
= true;
4837 sb_data_e2
.common
.host_sb_addr
.hi
= U64_HI(mapping
);
4838 sb_data_e2
.common
.host_sb_addr
.lo
= U64_LO(mapping
);
4839 hc_sm_p
= sb_data_e2
.common
.state_machine
;
4840 sb_data_p
= (u32
*)&sb_data_e2
;
4841 data_size
= sizeof(struct hc_status_block_data_e2
)/sizeof(u32
);
4843 memset(&sb_data_e1x
, 0,
4844 sizeof(struct hc_status_block_data_e1x
));
4845 sb_data_e1x
.common
.state
= SB_ENABLED
;
4846 sb_data_e1x
.common
.p_func
.pf_id
= BP_FUNC(bp
);
4847 sb_data_e1x
.common
.p_func
.vf_id
= 0xff;
4848 sb_data_e1x
.common
.p_func
.vf_valid
= false;
4849 sb_data_e1x
.common
.p_func
.vnic_id
= BP_VN(bp
);
4850 sb_data_e1x
.common
.same_igu_sb_1b
= true;
4851 sb_data_e1x
.common
.host_sb_addr
.hi
= U64_HI(mapping
);
4852 sb_data_e1x
.common
.host_sb_addr
.lo
= U64_LO(mapping
);
4853 hc_sm_p
= sb_data_e1x
.common
.state_machine
;
4854 sb_data_p
= (u32
*)&sb_data_e1x
;
4855 data_size
= sizeof(struct hc_status_block_data_e1x
)/sizeof(u32
);
4858 bnx2x_setup_ndsb_state_machine(&hc_sm_p
[SM_RX_ID
],
4859 igu_sb_id
, igu_seg_id
);
4860 bnx2x_setup_ndsb_state_machine(&hc_sm_p
[SM_TX_ID
],
4861 igu_sb_id
, igu_seg_id
);
4863 DP(NETIF_MSG_HW
, "Init FW SB %d\n", fw_sb_id
);
4865 /* write indecies to HW */
4866 bnx2x_wr_fp_sb_data(bp
, fw_sb_id
, sb_data_p
, data_size
);
4869 static void bnx2x_update_coalesce_sb(struct bnx2x
*bp
, u8 fw_sb_id
,
4870 u16 tx_usec
, u16 rx_usec
)
4872 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
, HC_INDEX_ETH_RX_CQ_CONS
,
4874 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
4875 HC_INDEX_ETH_TX_CQ_CONS_COS0
, false,
4877 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
4878 HC_INDEX_ETH_TX_CQ_CONS_COS1
, false,
4880 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
4881 HC_INDEX_ETH_TX_CQ_CONS_COS2
, false,
4885 static void bnx2x_init_def_sb(struct bnx2x
*bp
)
4887 struct host_sp_status_block
*def_sb
= bp
->def_status_blk
;
4888 dma_addr_t mapping
= bp
->def_status_blk_mapping
;
4889 int igu_sp_sb_index
;
4891 int port
= BP_PORT(bp
);
4892 int func
= BP_FUNC(bp
);
4896 struct hc_sp_status_block_data sp_sb_data
;
4897 memset(&sp_sb_data
, 0, sizeof(struct hc_sp_status_block_data
));
4899 if (CHIP_INT_MODE_IS_BC(bp
)) {
4900 igu_sp_sb_index
= DEF_SB_IGU_ID
;
4901 igu_seg_id
= HC_SEG_ACCESS_DEF
;
4903 igu_sp_sb_index
= bp
->igu_dsb_id
;
4904 igu_seg_id
= IGU_SEG_ACCESS_DEF
;
4908 section
= ((u64
)mapping
) + offsetof(struct host_sp_status_block
,
4909 atten_status_block
);
4910 def_sb
->atten_status_block
.status_block_id
= igu_sp_sb_index
;
4914 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
4915 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
4916 for (index
= 0; index
< MAX_DYNAMIC_ATTN_GRPS
; index
++) {
4918 /* take care of sig[0]..sig[4] */
4919 for (sindex
= 0; sindex
< 4; sindex
++)
4920 bp
->attn_group
[index
].sig
[sindex
] =
4921 REG_RD(bp
, reg_offset
+ sindex
*0x4 + 0x10*index
);
4923 if (!CHIP_IS_E1x(bp
))
4925 * enable5 is separate from the rest of the registers,
4926 * and therefore the address skip is 4
4927 * and not 16 between the different groups
4929 bp
->attn_group
[index
].sig
[4] = REG_RD(bp
,
4930 reg_offset
+ 0x10 + 0x4*index
);
4932 bp
->attn_group
[index
].sig
[4] = 0;
4935 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
4936 reg_offset
= (port
? HC_REG_ATTN_MSG1_ADDR_L
:
4937 HC_REG_ATTN_MSG0_ADDR_L
);
4939 REG_WR(bp
, reg_offset
, U64_LO(section
));
4940 REG_WR(bp
, reg_offset
+ 4, U64_HI(section
));
4941 } else if (!CHIP_IS_E1x(bp
)) {
4942 REG_WR(bp
, IGU_REG_ATTN_MSG_ADDR_L
, U64_LO(section
));
4943 REG_WR(bp
, IGU_REG_ATTN_MSG_ADDR_H
, U64_HI(section
));
4946 section
= ((u64
)mapping
) + offsetof(struct host_sp_status_block
,
4949 bnx2x_zero_sp_sb(bp
);
4951 sp_sb_data
.state
= SB_ENABLED
;
4952 sp_sb_data
.host_sb_addr
.lo
= U64_LO(section
);
4953 sp_sb_data
.host_sb_addr
.hi
= U64_HI(section
);
4954 sp_sb_data
.igu_sb_id
= igu_sp_sb_index
;
4955 sp_sb_data
.igu_seg_id
= igu_seg_id
;
4956 sp_sb_data
.p_func
.pf_id
= func
;
4957 sp_sb_data
.p_func
.vnic_id
= BP_VN(bp
);
4958 sp_sb_data
.p_func
.vf_id
= 0xff;
4960 bnx2x_wr_sp_sb_data(bp
, &sp_sb_data
);
4962 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
, 0, IGU_INT_ENABLE
, 0);
4965 void bnx2x_update_coalesce(struct bnx2x
*bp
)
4969 for_each_eth_queue(bp
, i
)
4970 bnx2x_update_coalesce_sb(bp
, bp
->fp
[i
].fw_sb_id
,
4971 bp
->tx_ticks
, bp
->rx_ticks
);
4974 static void bnx2x_init_sp_ring(struct bnx2x
*bp
)
4976 spin_lock_init(&bp
->spq_lock
);
4977 atomic_set(&bp
->cq_spq_left
, MAX_SPQ_PENDING
);
4979 bp
->spq_prod_idx
= 0;
4980 bp
->dsb_sp_prod
= BNX2X_SP_DSB_INDEX
;
4981 bp
->spq_prod_bd
= bp
->spq
;
4982 bp
->spq_last_bd
= bp
->spq_prod_bd
+ MAX_SP_DESC_CNT
;
4985 static void bnx2x_init_eq_ring(struct bnx2x
*bp
)
4988 for (i
= 1; i
<= NUM_EQ_PAGES
; i
++) {
4989 union event_ring_elem
*elem
=
4990 &bp
->eq_ring
[EQ_DESC_CNT_PAGE
* i
- 1];
4992 elem
->next_page
.addr
.hi
=
4993 cpu_to_le32(U64_HI(bp
->eq_mapping
+
4994 BCM_PAGE_SIZE
* (i
% NUM_EQ_PAGES
)));
4995 elem
->next_page
.addr
.lo
=
4996 cpu_to_le32(U64_LO(bp
->eq_mapping
+
4997 BCM_PAGE_SIZE
*(i
% NUM_EQ_PAGES
)));
5000 bp
->eq_prod
= NUM_EQ_DESC
;
5001 bp
->eq_cons_sb
= BNX2X_EQ_INDEX
;
5002 /* we want a warning message before it gets rought... */
5003 atomic_set(&bp
->eq_spq_left
,
5004 min_t(int, MAX_SP_DESC_CNT
- MAX_SPQ_PENDING
, NUM_EQ_DESC
) - 1);
5008 /* called with netif_addr_lock_bh() */
5009 void bnx2x_set_q_rx_mode(struct bnx2x
*bp
, u8 cl_id
,
5010 unsigned long rx_mode_flags
,
5011 unsigned long rx_accept_flags
,
5012 unsigned long tx_accept_flags
,
5013 unsigned long ramrod_flags
)
5015 struct bnx2x_rx_mode_ramrod_params ramrod_param
;
5018 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
5020 /* Prepare ramrod parameters */
5021 ramrod_param
.cid
= 0;
5022 ramrod_param
.cl_id
= cl_id
;
5023 ramrod_param
.rx_mode_obj
= &bp
->rx_mode_obj
;
5024 ramrod_param
.func_id
= BP_FUNC(bp
);
5026 ramrod_param
.pstate
= &bp
->sp_state
;
5027 ramrod_param
.state
= BNX2X_FILTER_RX_MODE_PENDING
;
5029 ramrod_param
.rdata
= bnx2x_sp(bp
, rx_mode_rdata
);
5030 ramrod_param
.rdata_mapping
= bnx2x_sp_mapping(bp
, rx_mode_rdata
);
5032 set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
);
5034 ramrod_param
.ramrod_flags
= ramrod_flags
;
5035 ramrod_param
.rx_mode_flags
= rx_mode_flags
;
5037 ramrod_param
.rx_accept_flags
= rx_accept_flags
;
5038 ramrod_param
.tx_accept_flags
= tx_accept_flags
;
5040 rc
= bnx2x_config_rx_mode(bp
, &ramrod_param
);
5042 BNX2X_ERR("Set rx_mode %d failed\n", bp
->rx_mode
);
5047 /* called with netif_addr_lock_bh() */
5048 void bnx2x_set_storm_rx_mode(struct bnx2x
*bp
)
5050 unsigned long rx_mode_flags
= 0, ramrod_flags
= 0;
5051 unsigned long rx_accept_flags
= 0, tx_accept_flags
= 0;
5056 /* Configure rx_mode of FCoE Queue */
5057 __set_bit(BNX2X_RX_MODE_FCOE_ETH
, &rx_mode_flags
);
5060 switch (bp
->rx_mode
) {
5061 case BNX2X_RX_MODE_NONE
:
5063 * 'drop all' supersedes any accept flags that may have been
5064 * passed to the function.
5067 case BNX2X_RX_MODE_NORMAL
:
5068 __set_bit(BNX2X_ACCEPT_UNICAST
, &rx_accept_flags
);
5069 __set_bit(BNX2X_ACCEPT_MULTICAST
, &rx_accept_flags
);
5070 __set_bit(BNX2X_ACCEPT_BROADCAST
, &rx_accept_flags
);
5072 /* internal switching mode */
5073 __set_bit(BNX2X_ACCEPT_UNICAST
, &tx_accept_flags
);
5074 __set_bit(BNX2X_ACCEPT_MULTICAST
, &tx_accept_flags
);
5075 __set_bit(BNX2X_ACCEPT_BROADCAST
, &tx_accept_flags
);
5078 case BNX2X_RX_MODE_ALLMULTI
:
5079 __set_bit(BNX2X_ACCEPT_UNICAST
, &rx_accept_flags
);
5080 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &rx_accept_flags
);
5081 __set_bit(BNX2X_ACCEPT_BROADCAST
, &rx_accept_flags
);
5083 /* internal switching mode */
5084 __set_bit(BNX2X_ACCEPT_UNICAST
, &tx_accept_flags
);
5085 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &tx_accept_flags
);
5086 __set_bit(BNX2X_ACCEPT_BROADCAST
, &tx_accept_flags
);
5089 case BNX2X_RX_MODE_PROMISC
:
5090 /* According to deffinition of SI mode, iface in promisc mode
5091 * should receive matched and unmatched (in resolution of port)
5094 __set_bit(BNX2X_ACCEPT_UNMATCHED
, &rx_accept_flags
);
5095 __set_bit(BNX2X_ACCEPT_UNICAST
, &rx_accept_flags
);
5096 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &rx_accept_flags
);
5097 __set_bit(BNX2X_ACCEPT_BROADCAST
, &rx_accept_flags
);
5099 /* internal switching mode */
5100 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &tx_accept_flags
);
5101 __set_bit(BNX2X_ACCEPT_BROADCAST
, &tx_accept_flags
);
5104 __set_bit(BNX2X_ACCEPT_ALL_UNICAST
, &tx_accept_flags
);
5106 __set_bit(BNX2X_ACCEPT_UNICAST
, &tx_accept_flags
);
5110 BNX2X_ERR("Unknown rx_mode: %d\n", bp
->rx_mode
);
5114 if (bp
->rx_mode
!= BNX2X_RX_MODE_NONE
) {
5115 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, &rx_accept_flags
);
5116 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, &tx_accept_flags
);
5119 __set_bit(RAMROD_RX
, &ramrod_flags
);
5120 __set_bit(RAMROD_TX
, &ramrod_flags
);
5122 bnx2x_set_q_rx_mode(bp
, bp
->fp
->cl_id
, rx_mode_flags
, rx_accept_flags
,
5123 tx_accept_flags
, ramrod_flags
);
5126 static void bnx2x_init_internal_common(struct bnx2x
*bp
)
5132 * In switch independent mode, the TSTORM needs to accept
5133 * packets that failed classification, since approximate match
5134 * mac addresses aren't written to NIG LLH
5136 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
5137 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET
, 2);
5138 else if (!CHIP_IS_E1(bp
)) /* 57710 doesn't support MF */
5139 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
5140 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET
, 0);
5142 /* Zero this manually as its initialization is
5143 currently missing in the initTool */
5144 for (i
= 0; i
< (USTORM_AGG_DATA_SIZE
>> 2); i
++)
5145 REG_WR(bp
, BAR_USTRORM_INTMEM
+
5146 USTORM_AGG_DATA_OFFSET
+ i
* 4, 0);
5147 if (!CHIP_IS_E1x(bp
)) {
5148 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_IGU_MODE_OFFSET
,
5149 CHIP_INT_MODE_IS_BC(bp
) ?
5150 HC_IGU_BC_MODE
: HC_IGU_NBC_MODE
);
5154 static void bnx2x_init_internal(struct bnx2x
*bp
, u32 load_code
)
5156 switch (load_code
) {
5157 case FW_MSG_CODE_DRV_LOAD_COMMON
:
5158 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
:
5159 bnx2x_init_internal_common(bp
);
5162 case FW_MSG_CODE_DRV_LOAD_PORT
:
5166 case FW_MSG_CODE_DRV_LOAD_FUNCTION
:
5167 /* internal memory per function is
5168 initialized inside bnx2x_pf_init */
5172 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code
);
5177 static inline u8
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath
*fp
)
5179 return fp
->bp
->igu_base_sb
+ fp
->index
+ CNIC_PRESENT
;
5182 static inline u8
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath
*fp
)
5184 return fp
->bp
->base_fw_ndsb
+ fp
->index
+ CNIC_PRESENT
;
5187 static inline u8
bnx2x_fp_cl_id(struct bnx2x_fastpath
*fp
)
5189 if (CHIP_IS_E1x(fp
->bp
))
5190 return BP_L_ID(fp
->bp
) + fp
->index
;
5191 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5192 return bnx2x_fp_igu_sb_id(fp
);
5195 static void bnx2x_init_eth_fp(struct bnx2x
*bp
, int fp_idx
)
5197 struct bnx2x_fastpath
*fp
= &bp
->fp
[fp_idx
];
5199 unsigned long q_type
= 0;
5200 u32 cids
[BNX2X_MULTI_TX_COS
] = { 0 };
5203 fp
->cl_id
= bnx2x_fp_cl_id(fp
);
5204 fp
->fw_sb_id
= bnx2x_fp_fw_sb_id(fp
);
5205 fp
->igu_sb_id
= bnx2x_fp_igu_sb_id(fp
);
5206 /* qZone id equals to FW (per path) client id */
5207 fp
->cl_qzone_id
= bnx2x_fp_qzone_id(fp
);
5210 fp
->ustorm_rx_prods_offset
= bnx2x_rx_ustorm_prods_offset(fp
);
5211 /* Setup SB indicies */
5212 fp
->rx_cons_sb
= BNX2X_RX_SB_INDEX
;
5214 /* Configure Queue State object */
5215 __set_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
);
5216 __set_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
);
5218 BUG_ON(fp
->max_cos
> BNX2X_MULTI_TX_COS
);
5221 for_each_cos_in_tx_queue(fp
, cos
) {
5222 bnx2x_init_txdata(bp
, &fp
->txdata
[cos
],
5223 CID_COS_TO_TX_ONLY_CID(fp
->cid
, cos
),
5224 FP_COS_TO_TXQ(fp
, cos
),
5225 BNX2X_TX_SB_INDEX_BASE
+ cos
);
5226 cids
[cos
] = fp
->txdata
[cos
].cid
;
5229 bnx2x_init_queue_obj(bp
, &fp
->q_obj
, fp
->cl_id
, cids
, fp
->max_cos
,
5230 BP_FUNC(bp
), bnx2x_sp(bp
, q_rdata
),
5231 bnx2x_sp_mapping(bp
, q_rdata
), q_type
);
5234 * Configure classification DBs: Always enable Tx switching
5236 bnx2x_init_vlan_mac_fp_objs(fp
, BNX2X_OBJ_TYPE_RX_TX
);
5238 DP(NETIF_MSG_IFUP
, "queue[%d]: bnx2x_init_sb(%p,%p) "
5239 "cl_id %d fw_sb %d igu_sb %d\n",
5240 fp_idx
, bp
, fp
->status_blk
.e2_sb
, fp
->cl_id
, fp
->fw_sb_id
,
5242 bnx2x_init_sb(bp
, fp
->status_blk_mapping
, BNX2X_VF_ID_INVALID
, false,
5243 fp
->fw_sb_id
, fp
->igu_sb_id
);
5245 bnx2x_update_fpsb_idx(fp
);
5248 void bnx2x_nic_init(struct bnx2x
*bp
, u32 load_code
)
5252 for_each_eth_queue(bp
, i
)
5253 bnx2x_init_eth_fp(bp
, i
);
5256 bnx2x_init_fcoe_fp(bp
);
5258 bnx2x_init_sb(bp
, bp
->cnic_sb_mapping
,
5259 BNX2X_VF_ID_INVALID
, false,
5260 bnx2x_cnic_fw_sb_id(bp
), bnx2x_cnic_igu_sb_id(bp
));
5264 /* Initialize MOD_ABS interrupts */
5265 bnx2x_init_mod_abs_int(bp
, &bp
->link_vars
, bp
->common
.chip_id
,
5266 bp
->common
.shmem_base
, bp
->common
.shmem2_base
,
5268 /* ensure status block indices were read */
5271 bnx2x_init_def_sb(bp
);
5272 bnx2x_update_dsb_idx(bp
);
5273 bnx2x_init_rx_rings(bp
);
5274 bnx2x_init_tx_rings(bp
);
5275 bnx2x_init_sp_ring(bp
);
5276 bnx2x_init_eq_ring(bp
);
5277 bnx2x_init_internal(bp
, load_code
);
5279 bnx2x_stats_init(bp
);
5281 /* flush all before enabling interrupts */
5285 bnx2x_int_enable(bp
);
5287 /* Check for SPIO5 */
5288 bnx2x_attn_int_deasserted0(bp
,
5289 REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+ BP_PORT(bp
)*4) &
5290 AEU_INPUTS_ATTN_BITS_SPIO5
);
5293 /* end of nic init */
5296 * gzip service functions
5299 static int bnx2x_gunzip_init(struct bnx2x
*bp
)
5301 bp
->gunzip_buf
= dma_alloc_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
,
5302 &bp
->gunzip_mapping
, GFP_KERNEL
);
5303 if (bp
->gunzip_buf
== NULL
)
5306 bp
->strm
= kmalloc(sizeof(*bp
->strm
), GFP_KERNEL
);
5307 if (bp
->strm
== NULL
)
5310 bp
->strm
->workspace
= vmalloc(zlib_inflate_workspacesize());
5311 if (bp
->strm
->workspace
== NULL
)
5321 dma_free_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
, bp
->gunzip_buf
,
5322 bp
->gunzip_mapping
);
5323 bp
->gunzip_buf
= NULL
;
5326 netdev_err(bp
->dev
, "Cannot allocate firmware buffer for"
5327 " un-compression\n");
5331 static void bnx2x_gunzip_end(struct bnx2x
*bp
)
5334 vfree(bp
->strm
->workspace
);
5339 if (bp
->gunzip_buf
) {
5340 dma_free_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
, bp
->gunzip_buf
,
5341 bp
->gunzip_mapping
);
5342 bp
->gunzip_buf
= NULL
;
5346 static int bnx2x_gunzip(struct bnx2x
*bp
, const u8
*zbuf
, int len
)
5350 /* check gzip header */
5351 if ((zbuf
[0] != 0x1f) || (zbuf
[1] != 0x8b) || (zbuf
[2] != Z_DEFLATED
)) {
5352 BNX2X_ERR("Bad gzip header\n");
5360 if (zbuf
[3] & FNAME
)
5361 while ((zbuf
[n
++] != 0) && (n
< len
));
5363 bp
->strm
->next_in
= (typeof(bp
->strm
->next_in
))zbuf
+ n
;
5364 bp
->strm
->avail_in
= len
- n
;
5365 bp
->strm
->next_out
= bp
->gunzip_buf
;
5366 bp
->strm
->avail_out
= FW_BUF_SIZE
;
5368 rc
= zlib_inflateInit2(bp
->strm
, -MAX_WBITS
);
5372 rc
= zlib_inflate(bp
->strm
, Z_FINISH
);
5373 if ((rc
!= Z_OK
) && (rc
!= Z_STREAM_END
))
5374 netdev_err(bp
->dev
, "Firmware decompression error: %s\n",
5377 bp
->gunzip_outlen
= (FW_BUF_SIZE
- bp
->strm
->avail_out
);
5378 if (bp
->gunzip_outlen
& 0x3)
5379 netdev_err(bp
->dev
, "Firmware decompression error:"
5380 " gunzip_outlen (%d) not aligned\n",
5382 bp
->gunzip_outlen
>>= 2;
5384 zlib_inflateEnd(bp
->strm
);
5386 if (rc
== Z_STREAM_END
)
5392 /* nic load/unload */
5395 * General service functions
5398 /* send a NIG loopback debug packet */
5399 static void bnx2x_lb_pckt(struct bnx2x
*bp
)
5403 /* Ethernet source and destination addresses */
5404 wb_write
[0] = 0x55555555;
5405 wb_write
[1] = 0x55555555;
5406 wb_write
[2] = 0x20; /* SOP */
5407 REG_WR_DMAE(bp
, NIG_REG_DEBUG_PACKET_LB
, wb_write
, 3);
5409 /* NON-IP protocol */
5410 wb_write
[0] = 0x09000000;
5411 wb_write
[1] = 0x55555555;
5412 wb_write
[2] = 0x10; /* EOP, eop_bvalid = 0 */
5413 REG_WR_DMAE(bp
, NIG_REG_DEBUG_PACKET_LB
, wb_write
, 3);
5416 /* some of the internal memories
5417 * are not directly readable from the driver
5418 * to test them we send debug packets
5420 static int bnx2x_int_mem_test(struct bnx2x
*bp
)
5426 if (CHIP_REV_IS_FPGA(bp
))
5428 else if (CHIP_REV_IS_EMUL(bp
))
5433 /* Disable inputs of parser neighbor blocks */
5434 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x0);
5435 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x0);
5436 REG_WR(bp
, CFC_REG_DEBUG0
, 0x1);
5437 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x0);
5439 /* Write 0 to parser credits for CFC search request */
5440 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x0);
5442 /* send Ethernet packet */
5445 /* TODO do i reset NIG statistic? */
5446 /* Wait until NIG register shows 1 packet of size 0x10 */
5447 count
= 1000 * factor
;
5450 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
5451 val
= *bnx2x_sp(bp
, wb_data
[0]);
5459 BNX2X_ERR("NIG timeout val = 0x%x\n", val
);
5463 /* Wait until PRS register shows 1 packet */
5464 count
= 1000 * factor
;
5466 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
5474 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
5478 /* Reset and init BRB, PRS */
5479 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
, 0x03);
5481 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0x03);
5483 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
5484 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
5486 DP(NETIF_MSG_HW
, "part2\n");
5488 /* Disable inputs of parser neighbor blocks */
5489 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x0);
5490 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x0);
5491 REG_WR(bp
, CFC_REG_DEBUG0
, 0x1);
5492 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x0);
5494 /* Write 0 to parser credits for CFC search request */
5495 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x0);
5497 /* send 10 Ethernet packets */
5498 for (i
= 0; i
< 10; i
++)
5501 /* Wait until NIG register shows 10 + 1
5502 packets of size 11*0x10 = 0xb0 */
5503 count
= 1000 * factor
;
5506 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
5507 val
= *bnx2x_sp(bp
, wb_data
[0]);
5515 BNX2X_ERR("NIG timeout val = 0x%x\n", val
);
5519 /* Wait until PRS register shows 2 packets */
5520 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
5522 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
5524 /* Write 1 to parser credits for CFC search request */
5525 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x1);
5527 /* Wait until PRS register shows 3 packets */
5528 msleep(10 * factor
);
5529 /* Wait until NIG register shows 1 packet of size 0x10 */
5530 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
5532 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
5534 /* clear NIG EOP FIFO */
5535 for (i
= 0; i
< 11; i
++)
5536 REG_RD(bp
, NIG_REG_INGRESS_EOP_LB_FIFO
);
5537 val
= REG_RD(bp
, NIG_REG_INGRESS_EOP_LB_EMPTY
);
5539 BNX2X_ERR("clear of NIG failed\n");
5543 /* Reset and init BRB, PRS, NIG */
5544 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
, 0x03);
5546 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0x03);
5548 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
5549 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
5552 REG_WR(bp
, PRS_REG_NIC_MODE
, 1);
5555 /* Enable inputs of parser neighbor blocks */
5556 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x7fffffff);
5557 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x1);
5558 REG_WR(bp
, CFC_REG_DEBUG0
, 0x0);
5559 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x1);
5561 DP(NETIF_MSG_HW
, "done\n");
5566 static void bnx2x_enable_blocks_attention(struct bnx2x
*bp
)
5568 REG_WR(bp
, PXP_REG_PXP_INT_MASK_0
, 0);
5569 if (!CHIP_IS_E1x(bp
))
5570 REG_WR(bp
, PXP_REG_PXP_INT_MASK_1
, 0x40);
5572 REG_WR(bp
, PXP_REG_PXP_INT_MASK_1
, 0);
5573 REG_WR(bp
, DORQ_REG_DORQ_INT_MASK
, 0);
5574 REG_WR(bp
, CFC_REG_CFC_INT_MASK
, 0);
5576 * mask read length error interrupts in brb for parser
5577 * (parsing unit and 'checksum and crc' unit)
5578 * these errors are legal (PU reads fixed length and CAC can cause
5579 * read length error on truncated packets)
5581 REG_WR(bp
, BRB1_REG_BRB1_INT_MASK
, 0xFC00);
5582 REG_WR(bp
, QM_REG_QM_INT_MASK
, 0);
5583 REG_WR(bp
, TM_REG_TM_INT_MASK
, 0);
5584 REG_WR(bp
, XSDM_REG_XSDM_INT_MASK_0
, 0);
5585 REG_WR(bp
, XSDM_REG_XSDM_INT_MASK_1
, 0);
5586 REG_WR(bp
, XCM_REG_XCM_INT_MASK
, 0);
5587 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5588 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5589 REG_WR(bp
, USDM_REG_USDM_INT_MASK_0
, 0);
5590 REG_WR(bp
, USDM_REG_USDM_INT_MASK_1
, 0);
5591 REG_WR(bp
, UCM_REG_UCM_INT_MASK
, 0);
5592 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5593 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5594 REG_WR(bp
, GRCBASE_UPB
+ PB_REG_PB_INT_MASK
, 0);
5595 REG_WR(bp
, CSDM_REG_CSDM_INT_MASK_0
, 0);
5596 REG_WR(bp
, CSDM_REG_CSDM_INT_MASK_1
, 0);
5597 REG_WR(bp
, CCM_REG_CCM_INT_MASK
, 0);
5598 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5599 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5601 if (CHIP_REV_IS_FPGA(bp
))
5602 REG_WR(bp
, PXP2_REG_PXP2_INT_MASK_0
, 0x580000);
5603 else if (!CHIP_IS_E1x(bp
))
5604 REG_WR(bp
, PXP2_REG_PXP2_INT_MASK_0
,
5605 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5606 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5607 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5608 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5609 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED
));
5611 REG_WR(bp
, PXP2_REG_PXP2_INT_MASK_0
, 0x480000);
5612 REG_WR(bp
, TSDM_REG_TSDM_INT_MASK_0
, 0);
5613 REG_WR(bp
, TSDM_REG_TSDM_INT_MASK_1
, 0);
5614 REG_WR(bp
, TCM_REG_TCM_INT_MASK
, 0);
5615 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5617 if (!CHIP_IS_E1x(bp
))
5618 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5619 REG_WR(bp
, TSEM_REG_TSEM_INT_MASK_1
, 0x07ff);
5621 REG_WR(bp
, CDU_REG_CDU_INT_MASK
, 0);
5622 REG_WR(bp
, DMAE_REG_DMAE_INT_MASK
, 0);
5623 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5624 REG_WR(bp
, PBF_REG_PBF_INT_MASK
, 0x18); /* bit 3,4 masked */
5627 static void bnx2x_reset_common(struct bnx2x
*bp
)
5632 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
5635 if (CHIP_IS_E3(bp
)) {
5636 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
5637 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
5640 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
, val
);
5643 static void bnx2x_setup_dmae(struct bnx2x
*bp
)
5646 spin_lock_init(&bp
->dmae_lock
);
5649 static void bnx2x_init_pxp(struct bnx2x
*bp
)
5652 int r_order
, w_order
;
5654 pci_read_config_word(bp
->pdev
,
5655 pci_pcie_cap(bp
->pdev
) + PCI_EXP_DEVCTL
, &devctl
);
5656 DP(NETIF_MSG_HW
, "read 0x%x from devctl\n", devctl
);
5657 w_order
= ((devctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
5659 r_order
= ((devctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
5661 DP(NETIF_MSG_HW
, "force read order to %d\n", bp
->mrrs
);
5665 bnx2x_init_pxp_arb(bp
, r_order
, w_order
);
5668 static void bnx2x_setup_fan_failure_detection(struct bnx2x
*bp
)
5678 val
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.config2
) &
5679 SHARED_HW_CFG_FAN_FAILURE_MASK
;
5681 if (val
== SHARED_HW_CFG_FAN_FAILURE_ENABLED
)
5685 * The fan failure mechanism is usually related to the PHY type since
5686 * the power consumption of the board is affected by the PHY. Currently,
5687 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5689 else if (val
== SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE
)
5690 for (port
= PORT_0
; port
< PORT_MAX
; port
++) {
5692 bnx2x_fan_failure_det_req(
5694 bp
->common
.shmem_base
,
5695 bp
->common
.shmem2_base
,
5699 DP(NETIF_MSG_HW
, "fan detection setting: %d\n", is_required
);
5701 if (is_required
== 0)
5704 /* Fan failure is indicated by SPIO 5 */
5705 bnx2x_set_spio(bp
, MISC_REGISTERS_SPIO_5
,
5706 MISC_REGISTERS_SPIO_INPUT_HI_Z
);
5708 /* set to active low mode */
5709 val
= REG_RD(bp
, MISC_REG_SPIO_INT
);
5710 val
|= ((1 << MISC_REGISTERS_SPIO_5
) <<
5711 MISC_REGISTERS_SPIO_INT_OLD_SET_POS
);
5712 REG_WR(bp
, MISC_REG_SPIO_INT
, val
);
5714 /* enable interrupt to signal the IGU */
5715 val
= REG_RD(bp
, MISC_REG_SPIO_EVENT_EN
);
5716 val
|= (1 << MISC_REGISTERS_SPIO_5
);
5717 REG_WR(bp
, MISC_REG_SPIO_EVENT_EN
, val
);
5720 static void bnx2x_pretend_func(struct bnx2x
*bp
, u8 pretend_func_num
)
5726 if (CHIP_IS_E1H(bp
) && (pretend_func_num
>= E1H_FUNC_MAX
))
5729 switch (BP_ABS_FUNC(bp
)) {
5731 offset
= PXP2_REG_PGL_PRETEND_FUNC_F0
;
5734 offset
= PXP2_REG_PGL_PRETEND_FUNC_F1
;
5737 offset
= PXP2_REG_PGL_PRETEND_FUNC_F2
;
5740 offset
= PXP2_REG_PGL_PRETEND_FUNC_F3
;
5743 offset
= PXP2_REG_PGL_PRETEND_FUNC_F4
;
5746 offset
= PXP2_REG_PGL_PRETEND_FUNC_F5
;
5749 offset
= PXP2_REG_PGL_PRETEND_FUNC_F6
;
5752 offset
= PXP2_REG_PGL_PRETEND_FUNC_F7
;
5758 REG_WR(bp
, offset
, pretend_func_num
);
5760 DP(NETIF_MSG_HW
, "Pretending to func %d\n", pretend_func_num
);
5763 void bnx2x_pf_disable(struct bnx2x
*bp
)
5765 u32 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
5766 val
&= ~IGU_PF_CONF_FUNC_EN
;
5768 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
5769 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 0);
5770 REG_WR(bp
, CFC_REG_WEAK_ENABLE_PF
, 0);
5773 static inline void bnx2x__common_init_phy(struct bnx2x
*bp
)
5775 u32 shmem_base
[2], shmem2_base
[2];
5776 shmem_base
[0] = bp
->common
.shmem_base
;
5777 shmem2_base
[0] = bp
->common
.shmem2_base
;
5778 if (!CHIP_IS_E1x(bp
)) {
5780 SHMEM2_RD(bp
, other_shmem_base_addr
);
5782 SHMEM2_RD(bp
, other_shmem2_base_addr
);
5784 bnx2x_acquire_phy_lock(bp
);
5785 bnx2x_common_init_phy(bp
, shmem_base
, shmem2_base
,
5786 bp
->common
.chip_id
);
5787 bnx2x_release_phy_lock(bp
);
5791 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5793 * @bp: driver handle
5795 static int bnx2x_init_hw_common(struct bnx2x
*bp
)
5799 DP(BNX2X_MSG_MCP
, "starting common init func %d\n", BP_ABS_FUNC(bp
));
5802 * take the UNDI lock to protect undi_unload flow from accessing
5803 * registers while we're resetting the chip
5805 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_UNDI
);
5807 bnx2x_reset_common(bp
);
5808 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0xffffffff);
5811 if (CHIP_IS_E3(bp
)) {
5812 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
5813 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
5815 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_SET
, val
);
5817 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_UNDI
);
5819 bnx2x_init_block(bp
, BLOCK_MISC
, PHASE_COMMON
);
5821 if (!CHIP_IS_E1x(bp
)) {
5825 * 4-port mode or 2-port mode we need to turn of master-enable
5826 * for everyone, after that, turn it back on for self.
5827 * so, we disregard multi-function or not, and always disable
5828 * for all functions on the given path, this means 0,2,4,6 for
5829 * path 0 and 1,3,5,7 for path 1
5831 for (abs_func_id
= BP_PATH(bp
);
5832 abs_func_id
< E2_FUNC_MAX
*2; abs_func_id
+= 2) {
5833 if (abs_func_id
== BP_ABS_FUNC(bp
)) {
5835 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
,
5840 bnx2x_pretend_func(bp
, abs_func_id
);
5841 /* clear pf enable */
5842 bnx2x_pf_disable(bp
);
5843 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
5847 bnx2x_init_block(bp
, BLOCK_PXP
, PHASE_COMMON
);
5848 if (CHIP_IS_E1(bp
)) {
5849 /* enable HW interrupt from PXP on USDM overflow
5850 bit 16 on INT_MASK_0 */
5851 REG_WR(bp
, PXP_REG_PXP_INT_MASK_0
, 0);
5854 bnx2x_init_block(bp
, BLOCK_PXP2
, PHASE_COMMON
);
5858 REG_WR(bp
, PXP2_REG_RQ_QM_ENDIAN_M
, 1);
5859 REG_WR(bp
, PXP2_REG_RQ_TM_ENDIAN_M
, 1);
5860 REG_WR(bp
, PXP2_REG_RQ_SRC_ENDIAN_M
, 1);
5861 REG_WR(bp
, PXP2_REG_RQ_CDU_ENDIAN_M
, 1);
5862 REG_WR(bp
, PXP2_REG_RQ_DBG_ENDIAN_M
, 1);
5863 /* make sure this value is 0 */
5864 REG_WR(bp
, PXP2_REG_RQ_HC_ENDIAN_M
, 0);
5866 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
5867 REG_WR(bp
, PXP2_REG_RD_QM_SWAP_MODE
, 1);
5868 REG_WR(bp
, PXP2_REG_RD_TM_SWAP_MODE
, 1);
5869 REG_WR(bp
, PXP2_REG_RD_SRC_SWAP_MODE
, 1);
5870 REG_WR(bp
, PXP2_REG_RD_CDURD_SWAP_MODE
, 1);
5873 bnx2x_ilt_init_page_size(bp
, INITOP_SET
);
5875 if (CHIP_REV_IS_FPGA(bp
) && CHIP_IS_E1H(bp
))
5876 REG_WR(bp
, PXP2_REG_PGL_TAGS_LIMIT
, 0x1);
5878 /* let the HW do it's magic ... */
5880 /* finish PXP init */
5881 val
= REG_RD(bp
, PXP2_REG_RQ_CFG_DONE
);
5883 BNX2X_ERR("PXP2 CFG failed\n");
5886 val
= REG_RD(bp
, PXP2_REG_RD_INIT_DONE
);
5888 BNX2X_ERR("PXP2 RD_INIT failed\n");
5892 /* Timers bug workaround E2 only. We need to set the entire ILT to
5893 * have entries with value "0" and valid bit on.
5894 * This needs to be done by the first PF that is loaded in a path
5895 * (i.e. common phase)
5897 if (!CHIP_IS_E1x(bp
)) {
5898 /* In E2 there is a bug in the timers block that can cause function 6 / 7
5899 * (i.e. vnic3) to start even if it is marked as "scan-off".
5900 * This occurs when a different function (func2,3) is being marked
5901 * as "scan-off". Real-life scenario for example: if a driver is being
5902 * load-unloaded while func6,7 are down. This will cause the timer to access
5903 * the ilt, translate to a logical address and send a request to read/write.
5904 * Since the ilt for the function that is down is not valid, this will cause
5905 * a translation error which is unrecoverable.
5906 * The Workaround is intended to make sure that when this happens nothing fatal
5907 * will occur. The workaround:
5908 * 1. First PF driver which loads on a path will:
5909 * a. After taking the chip out of reset, by using pretend,
5910 * it will write "0" to the following registers of
5912 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5913 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
5914 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
5915 * And for itself it will write '1' to
5916 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
5917 * dmae-operations (writing to pram for example.)
5918 * note: can be done for only function 6,7 but cleaner this
5920 * b. Write zero+valid to the entire ILT.
5921 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
5922 * VNIC3 (of that port). The range allocated will be the
5923 * entire ILT. This is needed to prevent ILT range error.
5924 * 2. Any PF driver load flow:
5925 * a. ILT update with the physical addresses of the allocated
5927 * b. Wait 20msec. - note that this timeout is needed to make
5928 * sure there are no requests in one of the PXP internal
5929 * queues with "old" ILT addresses.
5930 * c. PF enable in the PGLC.
5931 * d. Clear the was_error of the PF in the PGLC. (could have
5932 * occured while driver was down)
5933 * e. PF enable in the CFC (WEAK + STRONG)
5934 * f. Timers scan enable
5935 * 3. PF driver unload flow:
5936 * a. Clear the Timers scan_en.
5937 * b. Polling for scan_on=0 for that PF.
5938 * c. Clear the PF enable bit in the PXP.
5939 * d. Clear the PF enable in the CFC (WEAK + STRONG)
5940 * e. Write zero+valid to all ILT entries (The valid bit must
5942 * f. If this is VNIC 3 of a port then also init
5943 * first_timers_ilt_entry to zero and last_timers_ilt_entry
5944 * to the last enrty in the ILT.
5947 * Currently the PF error in the PGLC is non recoverable.
5948 * In the future the there will be a recovery routine for this error.
5949 * Currently attention is masked.
5950 * Having an MCP lock on the load/unload process does not guarantee that
5951 * there is no Timer disable during Func6/7 enable. This is because the
5952 * Timers scan is currently being cleared by the MCP on FLR.
5953 * Step 2.d can be done only for PF6/7 and the driver can also check if
5954 * there is error before clearing it. But the flow above is simpler and
5956 * All ILT entries are written by zero+valid and not just PF6/7
5957 * ILT entries since in the future the ILT entries allocation for
5958 * PF-s might be dynamic.
5960 struct ilt_client_info ilt_cli
;
5961 struct bnx2x_ilt ilt
;
5962 memset(&ilt_cli
, 0, sizeof(struct ilt_client_info
));
5963 memset(&ilt
, 0, sizeof(struct bnx2x_ilt
));
5965 /* initialize dummy TM client */
5967 ilt_cli
.end
= ILT_NUM_PAGE_ENTRIES
- 1;
5968 ilt_cli
.client_num
= ILT_CLIENT_TM
;
5970 /* Step 1: set zeroes to all ilt page entries with valid bit on
5971 * Step 2: set the timers first/last ilt entry to point
5972 * to the entire range to prevent ILT range error for 3rd/4th
5973 * vnic (this code assumes existance of the vnic)
5975 * both steps performed by call to bnx2x_ilt_client_init_op()
5976 * with dummy TM client
5978 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
5979 * and his brother are split registers
5981 bnx2x_pretend_func(bp
, (BP_PATH(bp
) + 6));
5982 bnx2x_ilt_client_init_op_ilt(bp
, &ilt
, &ilt_cli
, INITOP_CLEAR
);
5983 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
5985 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN
, BNX2X_PXP_DRAM_ALIGN
);
5986 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN_RD
, BNX2X_PXP_DRAM_ALIGN
);
5987 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN_SEL
, 1);
5991 REG_WR(bp
, PXP2_REG_RQ_DISABLE_INPUTS
, 0);
5992 REG_WR(bp
, PXP2_REG_RD_DISABLE_INPUTS
, 0);
5994 if (!CHIP_IS_E1x(bp
)) {
5995 int factor
= CHIP_REV_IS_EMUL(bp
) ? 1000 :
5996 (CHIP_REV_IS_FPGA(bp
) ? 400 : 0);
5997 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, PHASE_COMMON
);
5999 bnx2x_init_block(bp
, BLOCK_ATC
, PHASE_COMMON
);
6001 /* let the HW do it's magic ... */
6004 val
= REG_RD(bp
, ATC_REG_ATC_INIT_DONE
);
6005 } while (factor
-- && (val
!= 1));
6008 BNX2X_ERR("ATC_INIT failed\n");
6013 bnx2x_init_block(bp
, BLOCK_DMAE
, PHASE_COMMON
);
6015 /* clean the DMAE memory */
6017 bnx2x_init_fill(bp
, TSEM_REG_PRAM
, 0, 8, 1);
6019 bnx2x_init_block(bp
, BLOCK_TCM
, PHASE_COMMON
);
6021 bnx2x_init_block(bp
, BLOCK_UCM
, PHASE_COMMON
);
6023 bnx2x_init_block(bp
, BLOCK_CCM
, PHASE_COMMON
);
6025 bnx2x_init_block(bp
, BLOCK_XCM
, PHASE_COMMON
);
6027 bnx2x_read_dmae(bp
, XSEM_REG_PASSIVE_BUFFER
, 3);
6028 bnx2x_read_dmae(bp
, CSEM_REG_PASSIVE_BUFFER
, 3);
6029 bnx2x_read_dmae(bp
, TSEM_REG_PASSIVE_BUFFER
, 3);
6030 bnx2x_read_dmae(bp
, USEM_REG_PASSIVE_BUFFER
, 3);
6032 bnx2x_init_block(bp
, BLOCK_QM
, PHASE_COMMON
);
6035 /* QM queues pointers table */
6036 bnx2x_qm_init_ptr_table(bp
, bp
->qm_cid_count
, INITOP_SET
);
6038 /* soft reset pulse */
6039 REG_WR(bp
, QM_REG_SOFT_RESET
, 1);
6040 REG_WR(bp
, QM_REG_SOFT_RESET
, 0);
6043 bnx2x_init_block(bp
, BLOCK_TM
, PHASE_COMMON
);
6046 bnx2x_init_block(bp
, BLOCK_DORQ
, PHASE_COMMON
);
6047 REG_WR(bp
, DORQ_REG_DPM_CID_OFST
, BNX2X_DB_SHIFT
);
6048 if (!CHIP_REV_IS_SLOW(bp
))
6049 /* enable hw interrupt from doorbell Q */
6050 REG_WR(bp
, DORQ_REG_DORQ_INT_MASK
, 0);
6052 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
6054 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
6055 REG_WR(bp
, PRS_REG_A_PRSU_20
, 0xf);
6057 if (!CHIP_IS_E1(bp
))
6058 REG_WR(bp
, PRS_REG_E1HOV_MODE
, bp
->path_has_ovlan
);
6060 if (!CHIP_IS_E1x(bp
) && !CHIP_IS_E3B0(bp
))
6061 /* Bit-map indicating which L2 hdrs may appear
6062 * after the basic Ethernet header
6064 REG_WR(bp
, PRS_REG_HDRS_AFTER_BASIC
,
6065 bp
->path_has_ovlan
? 7 : 6);
6067 bnx2x_init_block(bp
, BLOCK_TSDM
, PHASE_COMMON
);
6068 bnx2x_init_block(bp
, BLOCK_CSDM
, PHASE_COMMON
);
6069 bnx2x_init_block(bp
, BLOCK_USDM
, PHASE_COMMON
);
6070 bnx2x_init_block(bp
, BLOCK_XSDM
, PHASE_COMMON
);
6072 if (!CHIP_IS_E1x(bp
)) {
6073 /* reset VFC memories */
6074 REG_WR(bp
, TSEM_REG_FAST_MEMORY
+ VFC_REG_MEMORIES_RST
,
6075 VFC_MEMORIES_RST_REG_CAM_RST
|
6076 VFC_MEMORIES_RST_REG_RAM_RST
);
6077 REG_WR(bp
, XSEM_REG_FAST_MEMORY
+ VFC_REG_MEMORIES_RST
,
6078 VFC_MEMORIES_RST_REG_CAM_RST
|
6079 VFC_MEMORIES_RST_REG_RAM_RST
);
6084 bnx2x_init_block(bp
, BLOCK_TSEM
, PHASE_COMMON
);
6085 bnx2x_init_block(bp
, BLOCK_USEM
, PHASE_COMMON
);
6086 bnx2x_init_block(bp
, BLOCK_CSEM
, PHASE_COMMON
);
6087 bnx2x_init_block(bp
, BLOCK_XSEM
, PHASE_COMMON
);
6090 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
6092 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
,
6095 bnx2x_init_block(bp
, BLOCK_UPB
, PHASE_COMMON
);
6096 bnx2x_init_block(bp
, BLOCK_XPB
, PHASE_COMMON
);
6097 bnx2x_init_block(bp
, BLOCK_PBF
, PHASE_COMMON
);
6099 if (!CHIP_IS_E1x(bp
))
6100 REG_WR(bp
, PBF_REG_HDRS_AFTER_BASIC
,
6101 bp
->path_has_ovlan
? 7 : 6);
6103 REG_WR(bp
, SRC_REG_SOFT_RST
, 1);
6105 bnx2x_init_block(bp
, BLOCK_SRC
, PHASE_COMMON
);
6108 REG_WR(bp
, SRC_REG_KEYSEARCH_0
, 0x63285672);
6109 REG_WR(bp
, SRC_REG_KEYSEARCH_1
, 0x24b8f2cc);
6110 REG_WR(bp
, SRC_REG_KEYSEARCH_2
, 0x223aef9b);
6111 REG_WR(bp
, SRC_REG_KEYSEARCH_3
, 0x26001e3a);
6112 REG_WR(bp
, SRC_REG_KEYSEARCH_4
, 0x7ae91116);
6113 REG_WR(bp
, SRC_REG_KEYSEARCH_5
, 0x5ce5230b);
6114 REG_WR(bp
, SRC_REG_KEYSEARCH_6
, 0x298d8adf);
6115 REG_WR(bp
, SRC_REG_KEYSEARCH_7
, 0x6eb0ff09);
6116 REG_WR(bp
, SRC_REG_KEYSEARCH_8
, 0x1830f82f);
6117 REG_WR(bp
, SRC_REG_KEYSEARCH_9
, 0x01e46be7);
6119 REG_WR(bp
, SRC_REG_SOFT_RST
, 0);
6121 if (sizeof(union cdu_context
) != 1024)
6122 /* we currently assume that a context is 1024 bytes */
6123 dev_alert(&bp
->pdev
->dev
, "please adjust the size "
6124 "of cdu_context(%ld)\n",
6125 (long)sizeof(union cdu_context
));
6127 bnx2x_init_block(bp
, BLOCK_CDU
, PHASE_COMMON
);
6128 val
= (4 << 24) + (0 << 12) + 1024;
6129 REG_WR(bp
, CDU_REG_CDU_GLOBAL_PARAMS
, val
);
6131 bnx2x_init_block(bp
, BLOCK_CFC
, PHASE_COMMON
);
6132 REG_WR(bp
, CFC_REG_INIT_REG
, 0x7FF);
6133 /* enable context validation interrupt from CFC */
6134 REG_WR(bp
, CFC_REG_CFC_INT_MASK
, 0);
6136 /* set the thresholds to prevent CFC/CDU race */
6137 REG_WR(bp
, CFC_REG_DEBUG0
, 0x20020000);
6139 bnx2x_init_block(bp
, BLOCK_HC
, PHASE_COMMON
);
6141 if (!CHIP_IS_E1x(bp
) && BP_NOMCP(bp
))
6142 REG_WR(bp
, IGU_REG_RESET_MEMORIES
, 0x36);
6144 bnx2x_init_block(bp
, BLOCK_IGU
, PHASE_COMMON
);
6145 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, PHASE_COMMON
);
6147 /* Reset PCIE errors for debug */
6148 REG_WR(bp
, 0x2814, 0xffffffff);
6149 REG_WR(bp
, 0x3820, 0xffffffff);
6151 if (!CHIP_IS_E1x(bp
)) {
6152 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_CONTROL_5
,
6153 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1
|
6154 PXPCS_TL_CONTROL_5_ERR_UNSPPORT
));
6155 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_FUNC345_STAT
,
6156 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4
|
6157 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3
|
6158 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2
));
6159 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_FUNC678_STAT
,
6160 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7
|
6161 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6
|
6162 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5
));
6165 bnx2x_init_block(bp
, BLOCK_NIG
, PHASE_COMMON
);
6166 if (!CHIP_IS_E1(bp
)) {
6167 /* in E3 this done in per-port section */
6168 if (!CHIP_IS_E3(bp
))
6169 REG_WR(bp
, NIG_REG_LLH_MF_MODE
, IS_MF(bp
));
6171 if (CHIP_IS_E1H(bp
))
6172 /* not applicable for E2 (and above ...) */
6173 REG_WR(bp
, NIG_REG_LLH_E1HOV_MODE
, IS_MF_SD(bp
));
6175 if (CHIP_REV_IS_SLOW(bp
))
6178 /* finish CFC init */
6179 val
= reg_poll(bp
, CFC_REG_LL_INIT_DONE
, 1, 100, 10);
6181 BNX2X_ERR("CFC LL_INIT failed\n");
6184 val
= reg_poll(bp
, CFC_REG_AC_INIT_DONE
, 1, 100, 10);
6186 BNX2X_ERR("CFC AC_INIT failed\n");
6189 val
= reg_poll(bp
, CFC_REG_CAM_INIT_DONE
, 1, 100, 10);
6191 BNX2X_ERR("CFC CAM_INIT failed\n");
6194 REG_WR(bp
, CFC_REG_DEBUG0
, 0);
6196 if (CHIP_IS_E1(bp
)) {
6197 /* read NIG statistic
6198 to see if this is our first up since powerup */
6199 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
6200 val
= *bnx2x_sp(bp
, wb_data
[0]);
6202 /* do internal memory self test */
6203 if ((val
== 0) && bnx2x_int_mem_test(bp
)) {
6204 BNX2X_ERR("internal mem self test failed\n");
6209 bnx2x_setup_fan_failure_detection(bp
);
6211 /* clear PXP2 attentions */
6212 REG_RD(bp
, PXP2_REG_PXP2_INT_STS_CLR_0
);
6214 bnx2x_enable_blocks_attention(bp
);
6215 bnx2x_enable_blocks_parity(bp
);
6217 if (!BP_NOMCP(bp
)) {
6218 if (CHIP_IS_E1x(bp
))
6219 bnx2x__common_init_phy(bp
);
6221 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6227 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6229 * @bp: driver handle
6231 static int bnx2x_init_hw_common_chip(struct bnx2x
*bp
)
6233 int rc
= bnx2x_init_hw_common(bp
);
6238 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6240 bnx2x__common_init_phy(bp
);
6245 static int bnx2x_init_hw_port(struct bnx2x
*bp
)
6247 int port
= BP_PORT(bp
);
6248 int init_phase
= port
? PHASE_PORT1
: PHASE_PORT0
;
6252 bnx2x__link_reset(bp
);
6254 DP(BNX2X_MSG_MCP
, "starting port init port %d\n", port
);
6256 REG_WR(bp
, NIG_REG_MASK_INTERRUPT_PORT0
+ port
*4, 0);
6258 bnx2x_init_block(bp
, BLOCK_MISC
, init_phase
);
6259 bnx2x_init_block(bp
, BLOCK_PXP
, init_phase
);
6260 bnx2x_init_block(bp
, BLOCK_PXP2
, init_phase
);
6262 /* Timers bug workaround: disables the pf_master bit in pglue at
6263 * common phase, we need to enable it here before any dmae access are
6264 * attempted. Therefore we manually added the enable-master to the
6265 * port phase (it also happens in the function phase)
6267 if (!CHIP_IS_E1x(bp
))
6268 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
6270 bnx2x_init_block(bp
, BLOCK_ATC
, init_phase
);
6271 bnx2x_init_block(bp
, BLOCK_DMAE
, init_phase
);
6272 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, init_phase
);
6273 bnx2x_init_block(bp
, BLOCK_QM
, init_phase
);
6275 bnx2x_init_block(bp
, BLOCK_TCM
, init_phase
);
6276 bnx2x_init_block(bp
, BLOCK_UCM
, init_phase
);
6277 bnx2x_init_block(bp
, BLOCK_CCM
, init_phase
);
6278 bnx2x_init_block(bp
, BLOCK_XCM
, init_phase
);
6280 /* QM cid (connection) count */
6281 bnx2x_qm_init_cid_count(bp
, bp
->qm_cid_count
, INITOP_SET
);
6284 bnx2x_init_block(bp
, BLOCK_TM
, init_phase
);
6285 REG_WR(bp
, TM_REG_LIN0_SCAN_TIME
+ port
*4, 20);
6286 REG_WR(bp
, TM_REG_LIN0_MAX_ACTIVE_CID
+ port
*4, 31);
6289 bnx2x_init_block(bp
, BLOCK_DORQ
, init_phase
);
6291 if (CHIP_IS_E1(bp
) || CHIP_IS_E1H(bp
)) {
6292 bnx2x_init_block(bp
, BLOCK_BRB1
, init_phase
);
6295 low
= ((bp
->flags
& ONE_PORT_FLAG
) ? 160 : 246);
6296 else if (bp
->dev
->mtu
> 4096) {
6297 if (bp
->flags
& ONE_PORT_FLAG
)
6301 /* (24*1024 + val*4)/256 */
6302 low
= 96 + (val
/64) +
6303 ((val
% 64) ? 1 : 0);
6306 low
= ((bp
->flags
& ONE_PORT_FLAG
) ? 80 : 160);
6307 high
= low
+ 56; /* 14*1024/256 */
6308 REG_WR(bp
, BRB1_REG_PAUSE_LOW_THRESHOLD_0
+ port
*4, low
);
6309 REG_WR(bp
, BRB1_REG_PAUSE_HIGH_THRESHOLD_0
+ port
*4, high
);
6312 if (CHIP_MODE_IS_4_PORT(bp
))
6313 REG_WR(bp
, (BP_PORT(bp
) ?
6314 BRB1_REG_MAC_GUARANTIED_1
:
6315 BRB1_REG_MAC_GUARANTIED_0
), 40);
6318 bnx2x_init_block(bp
, BLOCK_PRS
, init_phase
);
6319 if (CHIP_IS_E3B0(bp
))
6320 /* Ovlan exists only if we are in multi-function +
6321 * switch-dependent mode, in switch-independent there
6322 * is no ovlan headers
6324 REG_WR(bp
, BP_PORT(bp
) ?
6325 PRS_REG_HDRS_AFTER_BASIC_PORT_1
:
6326 PRS_REG_HDRS_AFTER_BASIC_PORT_0
,
6327 (bp
->path_has_ovlan
? 7 : 6));
6329 bnx2x_init_block(bp
, BLOCK_TSDM
, init_phase
);
6330 bnx2x_init_block(bp
, BLOCK_CSDM
, init_phase
);
6331 bnx2x_init_block(bp
, BLOCK_USDM
, init_phase
);
6332 bnx2x_init_block(bp
, BLOCK_XSDM
, init_phase
);
6334 bnx2x_init_block(bp
, BLOCK_TSEM
, init_phase
);
6335 bnx2x_init_block(bp
, BLOCK_USEM
, init_phase
);
6336 bnx2x_init_block(bp
, BLOCK_CSEM
, init_phase
);
6337 bnx2x_init_block(bp
, BLOCK_XSEM
, init_phase
);
6339 bnx2x_init_block(bp
, BLOCK_UPB
, init_phase
);
6340 bnx2x_init_block(bp
, BLOCK_XPB
, init_phase
);
6342 bnx2x_init_block(bp
, BLOCK_PBF
, init_phase
);
6344 if (CHIP_IS_E1x(bp
)) {
6345 /* configure PBF to work without PAUSE mtu 9000 */
6346 REG_WR(bp
, PBF_REG_P0_PAUSE_ENABLE
+ port
*4, 0);
6348 /* update threshold */
6349 REG_WR(bp
, PBF_REG_P0_ARB_THRSH
+ port
*4, (9040/16));
6350 /* update init credit */
6351 REG_WR(bp
, PBF_REG_P0_INIT_CRD
+ port
*4, (9040/16) + 553 - 22);
6354 REG_WR(bp
, PBF_REG_INIT_P0
+ port
*4, 1);
6356 REG_WR(bp
, PBF_REG_INIT_P0
+ port
*4, 0);
6360 bnx2x_init_block(bp
, BLOCK_SRC
, init_phase
);
6362 bnx2x_init_block(bp
, BLOCK_CDU
, init_phase
);
6363 bnx2x_init_block(bp
, BLOCK_CFC
, init_phase
);
6365 if (CHIP_IS_E1(bp
)) {
6366 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
6367 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
6369 bnx2x_init_block(bp
, BLOCK_HC
, init_phase
);
6371 bnx2x_init_block(bp
, BLOCK_IGU
, init_phase
);
6373 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, init_phase
);
6374 /* init aeu_mask_attn_func_0/1:
6375 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6376 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6377 * bits 4-7 are used for "per vn group attention" */
6378 val
= IS_MF(bp
) ? 0xF7 : 0x7;
6379 /* Enable DCBX attention for all but E1 */
6380 val
|= CHIP_IS_E1(bp
) ? 0 : 0x10;
6381 REG_WR(bp
, MISC_REG_AEU_MASK_ATTN_FUNC_0
+ port
*4, val
);
6383 bnx2x_init_block(bp
, BLOCK_NIG
, init_phase
);
6385 if (!CHIP_IS_E1x(bp
)) {
6386 /* Bit-map indicating which L2 hdrs may appear after the
6387 * basic Ethernet header
6389 REG_WR(bp
, BP_PORT(bp
) ?
6390 NIG_REG_P1_HDRS_AFTER_BASIC
:
6391 NIG_REG_P0_HDRS_AFTER_BASIC
,
6392 IS_MF_SD(bp
) ? 7 : 6);
6395 REG_WR(bp
, BP_PORT(bp
) ?
6396 NIG_REG_LLH1_MF_MODE
:
6397 NIG_REG_LLH_MF_MODE
, IS_MF(bp
));
6399 if (!CHIP_IS_E3(bp
))
6400 REG_WR(bp
, NIG_REG_XGXS_SERDES0_MODE_SEL
+ port
*4, 1);
6402 if (!CHIP_IS_E1(bp
)) {
6403 /* 0x2 disable mf_ov, 0x1 enable */
6404 REG_WR(bp
, NIG_REG_LLH0_BRB1_DRV_MASK_MF
+ port
*4,
6405 (IS_MF_SD(bp
) ? 0x1 : 0x2));
6407 if (!CHIP_IS_E1x(bp
)) {
6409 switch (bp
->mf_mode
) {
6410 case MULTI_FUNCTION_SD
:
6413 case MULTI_FUNCTION_SI
:
6418 REG_WR(bp
, (BP_PORT(bp
) ? NIG_REG_LLH1_CLS_TYPE
:
6419 NIG_REG_LLH0_CLS_TYPE
), val
);
6422 REG_WR(bp
, NIG_REG_LLFC_ENABLE_0
+ port
*4, 0);
6423 REG_WR(bp
, NIG_REG_LLFC_OUT_EN_0
+ port
*4, 0);
6424 REG_WR(bp
, NIG_REG_PAUSE_ENABLE_0
+ port
*4, 1);
6429 /* If SPIO5 is set to generate interrupts, enable it for this port */
6430 val
= REG_RD(bp
, MISC_REG_SPIO_EVENT_EN
);
6431 if (val
& (1 << MISC_REGISTERS_SPIO_5
)) {
6432 u32 reg_addr
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
6433 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
6434 val
= REG_RD(bp
, reg_addr
);
6435 val
|= AEU_INPUTS_ATTN_BITS_SPIO5
;
6436 REG_WR(bp
, reg_addr
, val
);
6442 static void bnx2x_ilt_wr(struct bnx2x
*bp
, u32 index
, dma_addr_t addr
)
6447 reg
= PXP2_REG_RQ_ONCHIP_AT
+ index
*8;
6449 reg
= PXP2_REG_RQ_ONCHIP_AT_B0
+ index
*8;
6451 bnx2x_wb_wr(bp
, reg
, ONCHIP_ADDR1(addr
), ONCHIP_ADDR2(addr
));
6454 static inline void bnx2x_igu_clear_sb(struct bnx2x
*bp
, u8 idu_sb_id
)
6456 bnx2x_igu_clear_sb_gen(bp
, BP_FUNC(bp
), idu_sb_id
, true /*PF*/);
6459 static inline void bnx2x_clear_func_ilt(struct bnx2x
*bp
, u32 func
)
6461 u32 i
, base
= FUNC_ILT_BASE(func
);
6462 for (i
= base
; i
< base
+ ILT_PER_FUNC
; i
++)
6463 bnx2x_ilt_wr(bp
, i
, 0);
6466 static int bnx2x_init_hw_func(struct bnx2x
*bp
)
6468 int port
= BP_PORT(bp
);
6469 int func
= BP_FUNC(bp
);
6470 int init_phase
= PHASE_PF0
+ func
;
6471 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
6474 u32 main_mem_base
, main_mem_size
, main_mem_prty_clr
;
6475 int i
, main_mem_width
;
6477 DP(BNX2X_MSG_MCP
, "starting func init func %d\n", func
);
6479 /* FLR cleanup - hmmm */
6480 if (!CHIP_IS_E1x(bp
))
6481 bnx2x_pf_flr_clnup(bp
);
6483 /* set MSI reconfigure capability */
6484 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
6485 addr
= (port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
);
6486 val
= REG_RD(bp
, addr
);
6487 val
|= HC_CONFIG_0_REG_MSI_ATTN_EN_0
;
6488 REG_WR(bp
, addr
, val
);
6491 bnx2x_init_block(bp
, BLOCK_PXP
, init_phase
);
6492 bnx2x_init_block(bp
, BLOCK_PXP2
, init_phase
);
6495 cdu_ilt_start
= ilt
->clients
[ILT_CLIENT_CDU
].start
;
6497 for (i
= 0; i
< L2_ILT_LINES(bp
); i
++) {
6498 ilt
->lines
[cdu_ilt_start
+ i
].page
=
6499 bp
->context
.vcxt
+ (ILT_PAGE_CIDS
* i
);
6500 ilt
->lines
[cdu_ilt_start
+ i
].page_mapping
=
6501 bp
->context
.cxt_mapping
+ (CDU_ILT_PAGE_SZ
* i
);
6502 /* cdu ilt pages are allocated manually so there's no need to
6505 bnx2x_ilt_init_op(bp
, INITOP_SET
);
6508 bnx2x_src_init_t2(bp
, bp
->t2
, bp
->t2_mapping
, SRC_CONN_NUM
);
6510 /* T1 hash bits value determines the T1 number of entries */
6511 REG_WR(bp
, SRC_REG_NUMBER_HASH_BITS0
+ port
*4, SRC_HASH_BITS
);
6516 REG_WR(bp
, PRS_REG_NIC_MODE
, 1);
6517 #endif /* BCM_CNIC */
6519 if (!CHIP_IS_E1x(bp
)) {
6520 u32 pf_conf
= IGU_PF_CONF_FUNC_EN
;
6522 /* Turn on a single ISR mode in IGU if driver is going to use
6525 if (!(bp
->flags
& USING_MSIX_FLAG
))
6526 pf_conf
|= IGU_PF_CONF_SINGLE_ISR_EN
;
6528 * Timers workaround bug: function init part.
6529 * Need to wait 20msec after initializing ILT,
6530 * needed to make sure there are no requests in
6531 * one of the PXP internal queues with "old" ILT addresses
6535 * Master enable - Due to WB DMAE writes performed before this
6536 * register is re-initialized as part of the regular function
6539 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
6540 /* Enable the function in IGU */
6541 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, pf_conf
);
6546 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, init_phase
);
6548 if (!CHIP_IS_E1x(bp
))
6549 REG_WR(bp
, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR
, func
);
6551 bnx2x_init_block(bp
, BLOCK_ATC
, init_phase
);
6552 bnx2x_init_block(bp
, BLOCK_DMAE
, init_phase
);
6553 bnx2x_init_block(bp
, BLOCK_NIG
, init_phase
);
6554 bnx2x_init_block(bp
, BLOCK_SRC
, init_phase
);
6555 bnx2x_init_block(bp
, BLOCK_MISC
, init_phase
);
6556 bnx2x_init_block(bp
, BLOCK_TCM
, init_phase
);
6557 bnx2x_init_block(bp
, BLOCK_UCM
, init_phase
);
6558 bnx2x_init_block(bp
, BLOCK_CCM
, init_phase
);
6559 bnx2x_init_block(bp
, BLOCK_XCM
, init_phase
);
6560 bnx2x_init_block(bp
, BLOCK_TSEM
, init_phase
);
6561 bnx2x_init_block(bp
, BLOCK_USEM
, init_phase
);
6562 bnx2x_init_block(bp
, BLOCK_CSEM
, init_phase
);
6563 bnx2x_init_block(bp
, BLOCK_XSEM
, init_phase
);
6565 if (!CHIP_IS_E1x(bp
))
6566 REG_WR(bp
, QM_REG_PF_EN
, 1);
6568 if (!CHIP_IS_E1x(bp
)) {
6569 REG_WR(bp
, TSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
6570 REG_WR(bp
, USEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
6571 REG_WR(bp
, CSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
6572 REG_WR(bp
, XSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
6574 bnx2x_init_block(bp
, BLOCK_QM
, init_phase
);
6576 bnx2x_init_block(bp
, BLOCK_TM
, init_phase
);
6577 bnx2x_init_block(bp
, BLOCK_DORQ
, init_phase
);
6578 bnx2x_init_block(bp
, BLOCK_BRB1
, init_phase
);
6579 bnx2x_init_block(bp
, BLOCK_PRS
, init_phase
);
6580 bnx2x_init_block(bp
, BLOCK_TSDM
, init_phase
);
6581 bnx2x_init_block(bp
, BLOCK_CSDM
, init_phase
);
6582 bnx2x_init_block(bp
, BLOCK_USDM
, init_phase
);
6583 bnx2x_init_block(bp
, BLOCK_XSDM
, init_phase
);
6584 bnx2x_init_block(bp
, BLOCK_UPB
, init_phase
);
6585 bnx2x_init_block(bp
, BLOCK_XPB
, init_phase
);
6586 bnx2x_init_block(bp
, BLOCK_PBF
, init_phase
);
6587 if (!CHIP_IS_E1x(bp
))
6588 REG_WR(bp
, PBF_REG_DISABLE_PF
, 0);
6590 bnx2x_init_block(bp
, BLOCK_CDU
, init_phase
);
6592 bnx2x_init_block(bp
, BLOCK_CFC
, init_phase
);
6594 if (!CHIP_IS_E1x(bp
))
6595 REG_WR(bp
, CFC_REG_WEAK_ENABLE_PF
, 1);
6598 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 1);
6599 REG_WR(bp
, NIG_REG_LLH0_FUNC_VLAN_ID
+ port
*8, bp
->mf_ov
);
6602 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, init_phase
);
6604 /* HC init per function */
6605 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
6606 if (CHIP_IS_E1H(bp
)) {
6607 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
6609 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
6610 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
6612 bnx2x_init_block(bp
, BLOCK_HC
, init_phase
);
6615 int num_segs
, sb_idx
, prod_offset
;
6617 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
6619 if (!CHIP_IS_E1x(bp
)) {
6620 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, 0);
6621 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, 0);
6624 bnx2x_init_block(bp
, BLOCK_IGU
, init_phase
);
6626 if (!CHIP_IS_E1x(bp
)) {
6630 * E2 mode: address 0-135 match to the mapping memory;
6631 * 136 - PF0 default prod; 137 - PF1 default prod;
6632 * 138 - PF2 default prod; 139 - PF3 default prod;
6633 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6634 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6637 * E1.5 mode - In backward compatible mode;
6638 * for non default SB; each even line in the memory
6639 * holds the U producer and each odd line hold
6640 * the C producer. The first 128 producers are for
6641 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6642 * producers are for the DSB for each PF.
6643 * Each PF has five segments: (the order inside each
6644 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6645 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6646 * 144-147 attn prods;
6648 /* non-default-status-blocks */
6649 num_segs
= CHIP_INT_MODE_IS_BC(bp
) ?
6650 IGU_BC_NDSB_NUM_SEGS
: IGU_NORM_NDSB_NUM_SEGS
;
6651 for (sb_idx
= 0; sb_idx
< bp
->igu_sb_cnt
; sb_idx
++) {
6652 prod_offset
= (bp
->igu_base_sb
+ sb_idx
) *
6655 for (i
= 0; i
< num_segs
; i
++) {
6656 addr
= IGU_REG_PROD_CONS_MEMORY
+
6657 (prod_offset
+ i
) * 4;
6658 REG_WR(bp
, addr
, 0);
6660 /* send consumer update with value 0 */
6661 bnx2x_ack_sb(bp
, bp
->igu_base_sb
+ sb_idx
,
6662 USTORM_ID
, 0, IGU_INT_NOP
, 1);
6663 bnx2x_igu_clear_sb(bp
,
6664 bp
->igu_base_sb
+ sb_idx
);
6667 /* default-status-blocks */
6668 num_segs
= CHIP_INT_MODE_IS_BC(bp
) ?
6669 IGU_BC_DSB_NUM_SEGS
: IGU_NORM_DSB_NUM_SEGS
;
6671 if (CHIP_MODE_IS_4_PORT(bp
))
6672 dsb_idx
= BP_FUNC(bp
);
6674 dsb_idx
= BP_E1HVN(bp
);
6676 prod_offset
= (CHIP_INT_MODE_IS_BC(bp
) ?
6677 IGU_BC_BASE_DSB_PROD
+ dsb_idx
:
6678 IGU_NORM_BASE_DSB_PROD
+ dsb_idx
);
6680 for (i
= 0; i
< (num_segs
* E1HVN_MAX
);
6682 addr
= IGU_REG_PROD_CONS_MEMORY
+
6683 (prod_offset
+ i
)*4;
6684 REG_WR(bp
, addr
, 0);
6686 /* send consumer update with 0 */
6687 if (CHIP_INT_MODE_IS_BC(bp
)) {
6688 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6689 USTORM_ID
, 0, IGU_INT_NOP
, 1);
6690 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6691 CSTORM_ID
, 0, IGU_INT_NOP
, 1);
6692 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6693 XSTORM_ID
, 0, IGU_INT_NOP
, 1);
6694 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6695 TSTORM_ID
, 0, IGU_INT_NOP
, 1);
6696 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6697 ATTENTION_ID
, 0, IGU_INT_NOP
, 1);
6699 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6700 USTORM_ID
, 0, IGU_INT_NOP
, 1);
6701 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6702 ATTENTION_ID
, 0, IGU_INT_NOP
, 1);
6704 bnx2x_igu_clear_sb(bp
, bp
->igu_dsb_id
);
6706 /* !!! these should become driver const once
6707 rf-tool supports split-68 const */
6708 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_LSB
, 0);
6709 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_MSB
, 0);
6710 REG_WR(bp
, IGU_REG_SB_MASK_LSB
, 0);
6711 REG_WR(bp
, IGU_REG_SB_MASK_MSB
, 0);
6712 REG_WR(bp
, IGU_REG_PBA_STATUS_LSB
, 0);
6713 REG_WR(bp
, IGU_REG_PBA_STATUS_MSB
, 0);
6717 /* Reset PCIE errors for debug */
6718 REG_WR(bp
, 0x2114, 0xffffffff);
6719 REG_WR(bp
, 0x2120, 0xffffffff);
6721 if (CHIP_IS_E1x(bp
)) {
6722 main_mem_size
= HC_REG_MAIN_MEMORY_SIZE
/ 2; /*dwords*/
6723 main_mem_base
= HC_REG_MAIN_MEMORY
+
6724 BP_PORT(bp
) * (main_mem_size
* 4);
6725 main_mem_prty_clr
= HC_REG_HC_PRTY_STS_CLR
;
6728 val
= REG_RD(bp
, main_mem_prty_clr
);
6730 DP(BNX2X_MSG_MCP
, "Hmmm... Parity errors in HC "
6732 "function init (0x%x)!\n", val
);
6734 /* Clear "false" parity errors in MSI-X table */
6735 for (i
= main_mem_base
;
6736 i
< main_mem_base
+ main_mem_size
* 4;
6737 i
+= main_mem_width
) {
6738 bnx2x_read_dmae(bp
, i
, main_mem_width
/ 4);
6739 bnx2x_write_dmae(bp
, bnx2x_sp_mapping(bp
, wb_data
),
6740 i
, main_mem_width
/ 4);
6742 /* Clear HC parity attention */
6743 REG_RD(bp
, main_mem_prty_clr
);
6746 #ifdef BNX2X_STOP_ON_ERROR
6747 /* Enable STORMs SP logging */
6748 REG_WR8(bp
, BAR_USTRORM_INTMEM
+
6749 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
6750 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
6751 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
6752 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
6753 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
6754 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+
6755 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
6758 bnx2x_phy_probe(&bp
->link_params
);
6764 void bnx2x_free_mem(struct bnx2x
*bp
)
6767 bnx2x_free_fp_mem(bp
);
6768 /* end of fastpath */
6770 BNX2X_PCI_FREE(bp
->def_status_blk
, bp
->def_status_blk_mapping
,
6771 sizeof(struct host_sp_status_block
));
6773 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
6774 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
6776 BNX2X_PCI_FREE(bp
->slowpath
, bp
->slowpath_mapping
,
6777 sizeof(struct bnx2x_slowpath
));
6779 BNX2X_PCI_FREE(bp
->context
.vcxt
, bp
->context
.cxt_mapping
,
6782 bnx2x_ilt_mem_op(bp
, ILT_MEMOP_FREE
);
6784 BNX2X_FREE(bp
->ilt
->lines
);
6787 if (!CHIP_IS_E1x(bp
))
6788 BNX2X_PCI_FREE(bp
->cnic_sb
.e2_sb
, bp
->cnic_sb_mapping
,
6789 sizeof(struct host_hc_status_block_e2
));
6791 BNX2X_PCI_FREE(bp
->cnic_sb
.e1x_sb
, bp
->cnic_sb_mapping
,
6792 sizeof(struct host_hc_status_block_e1x
));
6794 BNX2X_PCI_FREE(bp
->t2
, bp
->t2_mapping
, SRC_T2_SZ
);
6797 BNX2X_PCI_FREE(bp
->spq
, bp
->spq_mapping
, BCM_PAGE_SIZE
);
6799 BNX2X_PCI_FREE(bp
->eq_ring
, bp
->eq_mapping
,
6800 BCM_PAGE_SIZE
* NUM_EQ_PAGES
);
6803 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x
*bp
)
6807 /* number of eth_queues */
6808 u8 num_queue_stats
= BNX2X_NUM_ETH_QUEUES(bp
);
6810 /* Total number of FW statistics requests =
6811 * 1 for port stats + 1 for PF stats + num_eth_queues */
6812 bp
->fw_stats_num
= 2 + num_queue_stats
;
6815 /* Request is built from stats_query_header and an array of
6816 * stats_query_cmd_group each of which contains
6817 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
6818 * configured in the stats_query_header.
6820 num_groups
= (2 + num_queue_stats
) / STATS_QUERY_CMD_COUNT
+
6821 (((2 + num_queue_stats
) % STATS_QUERY_CMD_COUNT
) ? 1 : 0);
6823 bp
->fw_stats_req_sz
= sizeof(struct stats_query_header
) +
6824 num_groups
* sizeof(struct stats_query_cmd_group
);
6826 /* Data for statistics requests + stats_conter
6828 * stats_counter holds per-STORM counters that are incremented
6829 * when STORM has finished with the current request.
6831 bp
->fw_stats_data_sz
= sizeof(struct per_port_stats
) +
6832 sizeof(struct per_pf_stats
) +
6833 sizeof(struct per_queue_stats
) * num_queue_stats
+
6834 sizeof(struct stats_counter
);
6836 BNX2X_PCI_ALLOC(bp
->fw_stats
, &bp
->fw_stats_mapping
,
6837 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
6840 bp
->fw_stats_req
= (struct bnx2x_fw_stats_req
*)bp
->fw_stats
;
6841 bp
->fw_stats_req_mapping
= bp
->fw_stats_mapping
;
6843 bp
->fw_stats_data
= (struct bnx2x_fw_stats_data
*)
6844 ((u8
*)bp
->fw_stats
+ bp
->fw_stats_req_sz
);
6846 bp
->fw_stats_data_mapping
= bp
->fw_stats_mapping
+
6847 bp
->fw_stats_req_sz
;
6851 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
6852 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
6857 int bnx2x_alloc_mem(struct bnx2x
*bp
)
6860 if (!CHIP_IS_E1x(bp
))
6861 /* size = the status block + ramrod buffers */
6862 BNX2X_PCI_ALLOC(bp
->cnic_sb
.e2_sb
, &bp
->cnic_sb_mapping
,
6863 sizeof(struct host_hc_status_block_e2
));
6865 BNX2X_PCI_ALLOC(bp
->cnic_sb
.e1x_sb
, &bp
->cnic_sb_mapping
,
6866 sizeof(struct host_hc_status_block_e1x
));
6868 /* allocate searcher T2 table */
6869 BNX2X_PCI_ALLOC(bp
->t2
, &bp
->t2_mapping
, SRC_T2_SZ
);
6873 BNX2X_PCI_ALLOC(bp
->def_status_blk
, &bp
->def_status_blk_mapping
,
6874 sizeof(struct host_sp_status_block
));
6876 BNX2X_PCI_ALLOC(bp
->slowpath
, &bp
->slowpath_mapping
,
6877 sizeof(struct bnx2x_slowpath
));
6879 /* Allocated memory for FW statistics */
6880 if (bnx2x_alloc_fw_stats_mem(bp
))
6883 bp
->context
.size
= sizeof(union cdu_context
) * BNX2X_L2_CID_COUNT(bp
);
6885 BNX2X_PCI_ALLOC(bp
->context
.vcxt
, &bp
->context
.cxt_mapping
,
6888 BNX2X_ALLOC(bp
->ilt
->lines
, sizeof(struct ilt_line
) * ILT_MAX_LINES
);
6890 if (bnx2x_ilt_mem_op(bp
, ILT_MEMOP_ALLOC
))
6893 /* Slow path ring */
6894 BNX2X_PCI_ALLOC(bp
->spq
, &bp
->spq_mapping
, BCM_PAGE_SIZE
);
6897 BNX2X_PCI_ALLOC(bp
->eq_ring
, &bp
->eq_mapping
,
6898 BCM_PAGE_SIZE
* NUM_EQ_PAGES
);
6902 /* need to be done at the end, since it's self adjusting to amount
6903 * of memory available for RSS queues
6905 if (bnx2x_alloc_fp_mem(bp
))
6915 * Init service functions
6918 int bnx2x_set_mac_one(struct bnx2x
*bp
, u8
*mac
,
6919 struct bnx2x_vlan_mac_obj
*obj
, bool set
,
6920 int mac_type
, unsigned long *ramrod_flags
)
6923 struct bnx2x_vlan_mac_ramrod_params ramrod_param
;
6925 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
6927 /* Fill general parameters */
6928 ramrod_param
.vlan_mac_obj
= obj
;
6929 ramrod_param
.ramrod_flags
= *ramrod_flags
;
6931 /* Fill a user request section if needed */
6932 if (!test_bit(RAMROD_CONT
, ramrod_flags
)) {
6933 memcpy(ramrod_param
.user_req
.u
.mac
.mac
, mac
, ETH_ALEN
);
6935 __set_bit(mac_type
, &ramrod_param
.user_req
.vlan_mac_flags
);
6937 /* Set the command: ADD or DEL */
6939 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_ADD
;
6941 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
6944 rc
= bnx2x_config_vlan_mac(bp
, &ramrod_param
);
6946 BNX2X_ERR("%s MAC failed\n", (set
? "Set" : "Del"));
6950 int bnx2x_del_all_macs(struct bnx2x
*bp
,
6951 struct bnx2x_vlan_mac_obj
*mac_obj
,
6952 int mac_type
, bool wait_for_comp
)
6955 unsigned long ramrod_flags
= 0, vlan_mac_flags
= 0;
6957 /* Wait for completion of requested */
6959 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
6961 /* Set the mac type of addresses we want to clear */
6962 __set_bit(mac_type
, &vlan_mac_flags
);
6964 rc
= mac_obj
->delete_all(bp
, mac_obj
, &vlan_mac_flags
, &ramrod_flags
);
6966 BNX2X_ERR("Failed to delete MACs: %d\n", rc
);
6971 int bnx2x_set_eth_mac(struct bnx2x
*bp
, bool set
)
6973 unsigned long ramrod_flags
= 0;
6975 DP(NETIF_MSG_IFUP
, "Adding Eth MAC\n");
6977 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
6978 /* Eth MAC is set on RSS leading client (fp[0]) */
6979 return bnx2x_set_mac_one(bp
, bp
->dev
->dev_addr
, &bp
->fp
->mac_obj
, set
,
6980 BNX2X_ETH_MAC
, &ramrod_flags
);
6983 int bnx2x_setup_leading(struct bnx2x
*bp
)
6985 return bnx2x_setup_queue(bp
, &bp
->fp
[0], 1);
6989 * bnx2x_set_int_mode - configure interrupt mode
6991 * @bp: driver handle
6993 * In case of MSI-X it will also try to enable MSI-X.
6995 static void __devinit
bnx2x_set_int_mode(struct bnx2x
*bp
)
6999 bnx2x_enable_msi(bp
);
7000 /* falling through... */
7002 bp
->num_queues
= 1 + NON_ETH_CONTEXT_USE
;
7003 DP(NETIF_MSG_IFUP
, "set number of queues to 1\n");
7006 /* Set number of queues according to bp->multi_mode value */
7007 bnx2x_set_num_queues(bp
);
7009 DP(NETIF_MSG_IFUP
, "set number of queues to %d\n",
7012 /* if we can't use MSI-X we only need one fp,
7013 * so try to enable MSI-X with the requested number of fp's
7014 * and fallback to MSI or legacy INTx with one fp
7016 if (bnx2x_enable_msix(bp
)) {
7017 /* failed to enable MSI-X */
7020 "Multi requested but failed to "
7021 "enable MSI-X (%d), "
7022 "set number of queues to %d\n",
7024 1 + NON_ETH_CONTEXT_USE
);
7025 bp
->num_queues
= 1 + NON_ETH_CONTEXT_USE
;
7027 /* Try to enable MSI */
7028 if (!(bp
->flags
& DISABLE_MSI_FLAG
))
7029 bnx2x_enable_msi(bp
);
7035 /* must be called prioir to any HW initializations */
7036 static inline u16
bnx2x_cid_ilt_lines(struct bnx2x
*bp
)
7038 return L2_ILT_LINES(bp
);
7041 void bnx2x_ilt_set_info(struct bnx2x
*bp
)
7043 struct ilt_client_info
*ilt_client
;
7044 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
7047 ilt
->start_line
= FUNC_ILT_BASE(BP_FUNC(bp
));
7048 DP(BNX2X_MSG_SP
, "ilt starts at line %d\n", ilt
->start_line
);
7051 ilt_client
= &ilt
->clients
[ILT_CLIENT_CDU
];
7052 ilt_client
->client_num
= ILT_CLIENT_CDU
;
7053 ilt_client
->page_size
= CDU_ILT_PAGE_SZ
;
7054 ilt_client
->flags
= ILT_CLIENT_SKIP_MEM
;
7055 ilt_client
->start
= line
;
7056 line
+= bnx2x_cid_ilt_lines(bp
);
7058 line
+= CNIC_ILT_LINES
;
7060 ilt_client
->end
= line
- 1;
7062 DP(BNX2X_MSG_SP
, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7063 "flags 0x%x, hw psz %d\n",
7066 ilt_client
->page_size
,
7068 ilog2(ilt_client
->page_size
>> 12));
7071 if (QM_INIT(bp
->qm_cid_count
)) {
7072 ilt_client
= &ilt
->clients
[ILT_CLIENT_QM
];
7073 ilt_client
->client_num
= ILT_CLIENT_QM
;
7074 ilt_client
->page_size
= QM_ILT_PAGE_SZ
;
7075 ilt_client
->flags
= 0;
7076 ilt_client
->start
= line
;
7078 /* 4 bytes for each cid */
7079 line
+= DIV_ROUND_UP(bp
->qm_cid_count
* QM_QUEUES_PER_FUNC
* 4,
7082 ilt_client
->end
= line
- 1;
7084 DP(BNX2X_MSG_SP
, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7085 "flags 0x%x, hw psz %d\n",
7088 ilt_client
->page_size
,
7090 ilog2(ilt_client
->page_size
>> 12));
7094 ilt_client
= &ilt
->clients
[ILT_CLIENT_SRC
];
7096 ilt_client
->client_num
= ILT_CLIENT_SRC
;
7097 ilt_client
->page_size
= SRC_ILT_PAGE_SZ
;
7098 ilt_client
->flags
= 0;
7099 ilt_client
->start
= line
;
7100 line
+= SRC_ILT_LINES
;
7101 ilt_client
->end
= line
- 1;
7103 DP(BNX2X_MSG_SP
, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7104 "flags 0x%x, hw psz %d\n",
7107 ilt_client
->page_size
,
7109 ilog2(ilt_client
->page_size
>> 12));
7112 ilt_client
->flags
= (ILT_CLIENT_SKIP_INIT
| ILT_CLIENT_SKIP_MEM
);
7116 ilt_client
= &ilt
->clients
[ILT_CLIENT_TM
];
7118 ilt_client
->client_num
= ILT_CLIENT_TM
;
7119 ilt_client
->page_size
= TM_ILT_PAGE_SZ
;
7120 ilt_client
->flags
= 0;
7121 ilt_client
->start
= line
;
7122 line
+= TM_ILT_LINES
;
7123 ilt_client
->end
= line
- 1;
7125 DP(BNX2X_MSG_SP
, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7126 "flags 0x%x, hw psz %d\n",
7129 ilt_client
->page_size
,
7131 ilog2(ilt_client
->page_size
>> 12));
7134 ilt_client
->flags
= (ILT_CLIENT_SKIP_INIT
| ILT_CLIENT_SKIP_MEM
);
7136 BUG_ON(line
> ILT_MAX_LINES
);
7140 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7142 * @bp: driver handle
7143 * @fp: pointer to fastpath
7144 * @init_params: pointer to parameters structure
7146 * parameters configured:
7147 * - HC configuration
7148 * - Queue's CDU context
7150 static inline void bnx2x_pf_q_prep_init(struct bnx2x
*bp
,
7151 struct bnx2x_fastpath
*fp
, struct bnx2x_queue_init_params
*init_params
)
7155 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7156 if (!IS_FCOE_FP(fp
)) {
7157 __set_bit(BNX2X_Q_FLG_HC
, &init_params
->rx
.flags
);
7158 __set_bit(BNX2X_Q_FLG_HC
, &init_params
->tx
.flags
);
7160 /* If HC is supporterd, enable host coalescing in the transition
7163 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_params
->rx
.flags
);
7164 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_params
->tx
.flags
);
7167 init_params
->rx
.hc_rate
= bp
->rx_ticks
?
7168 (1000000 / bp
->rx_ticks
) : 0;
7169 init_params
->tx
.hc_rate
= bp
->tx_ticks
?
7170 (1000000 / bp
->tx_ticks
) : 0;
7173 init_params
->rx
.fw_sb_id
= init_params
->tx
.fw_sb_id
=
7177 * CQ index among the SB indices: FCoE clients uses the default
7178 * SB, therefore it's different.
7180 init_params
->rx
.sb_cq_index
= HC_INDEX_ETH_RX_CQ_CONS
;
7181 init_params
->tx
.sb_cq_index
= HC_INDEX_ETH_FIRST_TX_CQ_CONS
;
7184 /* set maximum number of COSs supported by this queue */
7185 init_params
->max_cos
= fp
->max_cos
;
7187 DP(BNX2X_MSG_SP
, "fp: %d setting queue params max cos to: %d",
7188 fp
->index
, init_params
->max_cos
);
7190 /* set the context pointers queue object */
7191 for (cos
= FIRST_TX_COS_INDEX
; cos
< init_params
->max_cos
; cos
++)
7192 init_params
->cxts
[cos
] =
7193 &bp
->context
.vcxt
[fp
->txdata
[cos
].cid
].eth
;
7196 int bnx2x_setup_tx_only(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
7197 struct bnx2x_queue_state_params
*q_params
,
7198 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
,
7199 int tx_index
, bool leading
)
7201 memset(tx_only_params
, 0, sizeof(*tx_only_params
));
7203 /* Set the command */
7204 q_params
->cmd
= BNX2X_Q_CMD_SETUP_TX_ONLY
;
7206 /* Set tx-only QUEUE flags: don't zero statistics */
7207 tx_only_params
->flags
= bnx2x_get_common_flags(bp
, fp
, false);
7209 /* choose the index of the cid to send the slow path on */
7210 tx_only_params
->cid_index
= tx_index
;
7212 /* Set general TX_ONLY_SETUP parameters */
7213 bnx2x_pf_q_prep_general(bp
, fp
, &tx_only_params
->gen_params
, tx_index
);
7215 /* Set Tx TX_ONLY_SETUP parameters */
7216 bnx2x_pf_tx_q_prep(bp
, fp
, &tx_only_params
->txq_params
, tx_index
);
7218 DP(BNX2X_MSG_SP
, "preparing to send tx-only ramrod for connection:"
7219 "cos %d, primary cid %d, cid %d, "
7220 "client id %d, sp-client id %d, flags %lx",
7221 tx_index
, q_params
->q_obj
->cids
[FIRST_TX_COS_INDEX
],
7222 q_params
->q_obj
->cids
[tx_index
], q_params
->q_obj
->cl_id
,
7223 tx_only_params
->gen_params
.spcl_id
, tx_only_params
->flags
);
7225 /* send the ramrod */
7226 return bnx2x_queue_state_change(bp
, q_params
);
7231 * bnx2x_setup_queue - setup queue
7233 * @bp: driver handle
7234 * @fp: pointer to fastpath
7235 * @leading: is leading
7237 * This function performs 2 steps in a Queue state machine
7238 * actually: 1) RESET->INIT 2) INIT->SETUP
7241 int bnx2x_setup_queue(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
7244 struct bnx2x_queue_state_params q_params
= {0};
7245 struct bnx2x_queue_setup_params
*setup_params
=
7246 &q_params
.params
.setup
;
7247 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
=
7248 &q_params
.params
.tx_only
;
7252 DP(BNX2X_MSG_SP
, "setting up queue %d", fp
->index
);
7254 /* reset IGU state skip FCoE L2 queue */
7255 if (!IS_FCOE_FP(fp
))
7256 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
, 0,
7259 q_params
.q_obj
= &fp
->q_obj
;
7260 /* We want to wait for completion in this context */
7261 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
7263 /* Prepare the INIT parameters */
7264 bnx2x_pf_q_prep_init(bp
, fp
, &q_params
.params
.init
);
7266 /* Set the command */
7267 q_params
.cmd
= BNX2X_Q_CMD_INIT
;
7269 /* Change the state to INIT */
7270 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7272 BNX2X_ERR("Queue(%d) INIT failed\n", fp
->index
);
7276 DP(BNX2X_MSG_SP
, "init complete");
7279 /* Now move the Queue to the SETUP state... */
7280 memset(setup_params
, 0, sizeof(*setup_params
));
7282 /* Set QUEUE flags */
7283 setup_params
->flags
= bnx2x_get_q_flags(bp
, fp
, leading
);
7285 /* Set general SETUP parameters */
7286 bnx2x_pf_q_prep_general(bp
, fp
, &setup_params
->gen_params
,
7287 FIRST_TX_COS_INDEX
);
7289 bnx2x_pf_rx_q_prep(bp
, fp
, &setup_params
->pause_params
,
7290 &setup_params
->rxq_params
);
7292 bnx2x_pf_tx_q_prep(bp
, fp
, &setup_params
->txq_params
,
7293 FIRST_TX_COS_INDEX
);
7295 /* Set the command */
7296 q_params
.cmd
= BNX2X_Q_CMD_SETUP
;
7298 /* Change the state to SETUP */
7299 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7301 BNX2X_ERR("Queue(%d) SETUP failed\n", fp
->index
);
7305 /* loop through the relevant tx-only indices */
7306 for (tx_index
= FIRST_TX_ONLY_COS_INDEX
;
7307 tx_index
< fp
->max_cos
;
7310 /* prepare and send tx-only ramrod*/
7311 rc
= bnx2x_setup_tx_only(bp
, fp
, &q_params
,
7312 tx_only_params
, tx_index
, leading
);
7314 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7315 fp
->index
, tx_index
);
7323 static int bnx2x_stop_queue(struct bnx2x
*bp
, int index
)
7325 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
7326 struct bnx2x_fp_txdata
*txdata
;
7327 struct bnx2x_queue_state_params q_params
= {0};
7330 DP(BNX2X_MSG_SP
, "stopping queue %d cid %d", index
, fp
->cid
);
7332 q_params
.q_obj
= &fp
->q_obj
;
7333 /* We want to wait for completion in this context */
7334 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
7337 /* close tx-only connections */
7338 for (tx_index
= FIRST_TX_ONLY_COS_INDEX
;
7339 tx_index
< fp
->max_cos
;
7342 /* ascertain this is a normal queue*/
7343 txdata
= &fp
->txdata
[tx_index
];
7345 DP(BNX2X_MSG_SP
, "stopping tx-only queue %d",
7348 /* send halt terminate on tx-only connection */
7349 q_params
.cmd
= BNX2X_Q_CMD_TERMINATE
;
7350 memset(&q_params
.params
.terminate
, 0,
7351 sizeof(q_params
.params
.terminate
));
7352 q_params
.params
.terminate
.cid_index
= tx_index
;
7354 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7358 /* send halt terminate on tx-only connection */
7359 q_params
.cmd
= BNX2X_Q_CMD_CFC_DEL
;
7360 memset(&q_params
.params
.cfc_del
, 0,
7361 sizeof(q_params
.params
.cfc_del
));
7362 q_params
.params
.cfc_del
.cid_index
= tx_index
;
7363 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7367 /* Stop the primary connection: */
7368 /* ...halt the connection */
7369 q_params
.cmd
= BNX2X_Q_CMD_HALT
;
7370 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7374 /* ...terminate the connection */
7375 q_params
.cmd
= BNX2X_Q_CMD_TERMINATE
;
7376 memset(&q_params
.params
.terminate
, 0,
7377 sizeof(q_params
.params
.terminate
));
7378 q_params
.params
.terminate
.cid_index
= FIRST_TX_COS_INDEX
;
7379 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7382 /* ...delete cfc entry */
7383 q_params
.cmd
= BNX2X_Q_CMD_CFC_DEL
;
7384 memset(&q_params
.params
.cfc_del
, 0,
7385 sizeof(q_params
.params
.cfc_del
));
7386 q_params
.params
.cfc_del
.cid_index
= FIRST_TX_COS_INDEX
;
7387 return bnx2x_queue_state_change(bp
, &q_params
);
7391 static void bnx2x_reset_func(struct bnx2x
*bp
)
7393 int port
= BP_PORT(bp
);
7394 int func
= BP_FUNC(bp
);
7397 /* Disable the function in the FW */
7398 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(func
), 0);
7399 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(func
), 0);
7400 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(func
), 0);
7401 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(func
), 0);
7404 for_each_eth_queue(bp
, i
) {
7405 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
7406 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
7407 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp
->fw_sb_id
),
7413 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
7414 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp
)),
7418 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
7419 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func
),
7422 for (i
= 0; i
< XSTORM_SPQ_DATA_SIZE
/ 4; i
++)
7423 REG_WR(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_SPQ_DATA_OFFSET(func
),
7427 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
7428 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
7429 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
7431 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, 0);
7432 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, 0);
7436 /* Disable Timer scan */
7437 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 0);
7439 * Wait for at least 10ms and up to 2 second for the timers scan to
7442 for (i
= 0; i
< 200; i
++) {
7444 if (!REG_RD(bp
, TM_REG_LIN0_SCAN_ON
+ port
*4))
7449 bnx2x_clear_func_ilt(bp
, func
);
7451 /* Timers workaround bug for E2: if this is vnic-3,
7452 * we need to set the entire ilt range for this timers.
7454 if (!CHIP_IS_E1x(bp
) && BP_VN(bp
) == 3) {
7455 struct ilt_client_info ilt_cli
;
7456 /* use dummy TM client */
7457 memset(&ilt_cli
, 0, sizeof(struct ilt_client_info
));
7459 ilt_cli
.end
= ILT_NUM_PAGE_ENTRIES
- 1;
7460 ilt_cli
.client_num
= ILT_CLIENT_TM
;
7462 bnx2x_ilt_boundry_init_op(bp
, &ilt_cli
, 0, INITOP_CLEAR
);
7465 /* this assumes that reset_port() called before reset_func()*/
7466 if (!CHIP_IS_E1x(bp
))
7467 bnx2x_pf_disable(bp
);
7472 static void bnx2x_reset_port(struct bnx2x
*bp
)
7474 int port
= BP_PORT(bp
);
7477 /* Reset physical Link */
7478 bnx2x__link_reset(bp
);
7480 REG_WR(bp
, NIG_REG_MASK_INTERRUPT_PORT0
+ port
*4, 0);
7482 /* Do not rcv packets to BRB */
7483 REG_WR(bp
, NIG_REG_LLH0_BRB1_DRV_MASK
+ port
*4, 0x0);
7484 /* Do not direct rcv packets that are not for MCP to the BRB */
7485 REG_WR(bp
, (port
? NIG_REG_LLH1_BRB1_NOT_MCP
:
7486 NIG_REG_LLH0_BRB1_NOT_MCP
), 0x0);
7489 REG_WR(bp
, MISC_REG_AEU_MASK_ATTN_FUNC_0
+ port
*4, 0);
7492 /* Check for BRB port occupancy */
7493 val
= REG_RD(bp
, BRB1_REG_PORT_NUM_OCC_BLOCKS_0
+ port
*4);
7495 DP(NETIF_MSG_IFDOWN
,
7496 "BRB1 is not empty %d blocks are occupied\n", val
);
7498 /* TODO: Close Doorbell port? */
7501 static inline int bnx2x_reset_hw(struct bnx2x
*bp
, u32 load_code
)
7503 struct bnx2x_func_state_params func_params
= {0};
7505 /* Prepare parameters for function state transitions */
7506 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
7508 func_params
.f_obj
= &bp
->func_obj
;
7509 func_params
.cmd
= BNX2X_F_CMD_HW_RESET
;
7511 func_params
.params
.hw_init
.load_phase
= load_code
;
7513 return bnx2x_func_state_change(bp
, &func_params
);
7516 static inline int bnx2x_func_stop(struct bnx2x
*bp
)
7518 struct bnx2x_func_state_params func_params
= {0};
7521 /* Prepare parameters for function state transitions */
7522 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
7523 func_params
.f_obj
= &bp
->func_obj
;
7524 func_params
.cmd
= BNX2X_F_CMD_STOP
;
7527 * Try to stop the function the 'good way'. If fails (in case
7528 * of a parity error during bnx2x_chip_cleanup()) and we are
7529 * not in a debug mode, perform a state transaction in order to
7530 * enable further HW_RESET transaction.
7532 rc
= bnx2x_func_state_change(bp
, &func_params
);
7534 #ifdef BNX2X_STOP_ON_ERROR
7537 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7539 __set_bit(RAMROD_DRV_CLR_ONLY
, &func_params
.ramrod_flags
);
7540 return bnx2x_func_state_change(bp
, &func_params
);
7548 * bnx2x_send_unload_req - request unload mode from the MCP.
7550 * @bp: driver handle
7551 * @unload_mode: requested function's unload mode
7553 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7555 u32
bnx2x_send_unload_req(struct bnx2x
*bp
, int unload_mode
)
7558 int port
= BP_PORT(bp
);
7560 /* Select the UNLOAD request mode */
7561 if (unload_mode
== UNLOAD_NORMAL
)
7562 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
7564 else if (bp
->flags
& NO_WOL_FLAG
)
7565 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
;
7568 u32 emac_base
= port
? GRCBASE_EMAC1
: GRCBASE_EMAC0
;
7569 u8
*mac_addr
= bp
->dev
->dev_addr
;
7571 /* The mac address is written to entries 1-4 to
7572 preserve entry 0 which is used by the PMF */
7573 u8 entry
= (BP_E1HVN(bp
) + 1)*8;
7575 val
= (mac_addr
[0] << 8) | mac_addr
[1];
7576 EMAC_WR(bp
, EMAC_REG_EMAC_MAC_MATCH
+ entry
, val
);
7578 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
7579 (mac_addr
[4] << 8) | mac_addr
[5];
7580 EMAC_WR(bp
, EMAC_REG_EMAC_MAC_MATCH
+ entry
+ 4, val
);
7582 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_EN
;
7585 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
7587 /* Send the request to the MCP */
7589 reset_code
= bnx2x_fw_command(bp
, reset_code
, 0);
7591 int path
= BP_PATH(bp
);
7593 DP(NETIF_MSG_IFDOWN
, "NO MCP - load counts[%d] "
7595 path
, load_count
[path
][0], load_count
[path
][1],
7596 load_count
[path
][2]);
7597 load_count
[path
][0]--;
7598 load_count
[path
][1 + port
]--;
7599 DP(NETIF_MSG_IFDOWN
, "NO MCP - new load counts[%d] "
7601 path
, load_count
[path
][0], load_count
[path
][1],
7602 load_count
[path
][2]);
7603 if (load_count
[path
][0] == 0)
7604 reset_code
= FW_MSG_CODE_DRV_UNLOAD_COMMON
;
7605 else if (load_count
[path
][1 + port
] == 0)
7606 reset_code
= FW_MSG_CODE_DRV_UNLOAD_PORT
;
7608 reset_code
= FW_MSG_CODE_DRV_UNLOAD_FUNCTION
;
7615 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7617 * @bp: driver handle
7619 void bnx2x_send_unload_done(struct bnx2x
*bp
)
7621 /* Report UNLOAD_DONE to MCP */
7623 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
7626 static inline int bnx2x_func_wait_started(struct bnx2x
*bp
)
7629 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
7635 * (assumption: No Attention from MCP at this stage)
7636 * PMF probably in the middle of TXdisable/enable transaction
7637 * 1. Sync IRS for default SB
7638 * 2. Sync SP queue - this guarantes us that attention handling started
7639 * 3. Wait, that TXdisable/enable transaction completes
7641 * 1+2 guranty that if DCBx attention was scheduled it already changed
7642 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7643 * received complettion for the transaction the state is TX_STOPPED.
7644 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7648 /* make sure default SB ISR is done */
7650 synchronize_irq(bp
->msix_table
[0].vector
);
7652 synchronize_irq(bp
->pdev
->irq
);
7654 flush_workqueue(bnx2x_wq
);
7656 while (bnx2x_func_get_state(bp
, &bp
->func_obj
) !=
7657 BNX2X_F_STATE_STARTED
&& tout
--)
7660 if (bnx2x_func_get_state(bp
, &bp
->func_obj
) !=
7661 BNX2X_F_STATE_STARTED
) {
7662 #ifdef BNX2X_STOP_ON_ERROR
7666 * Failed to complete the transaction in a "good way"
7667 * Force both transactions with CLR bit
7669 struct bnx2x_func_state_params func_params
= {0};
7671 DP(BNX2X_MSG_SP
, "Hmmm... unexpected function state! "
7672 "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7674 func_params
.f_obj
= &bp
->func_obj
;
7675 __set_bit(RAMROD_DRV_CLR_ONLY
,
7676 &func_params
.ramrod_flags
);
7678 /* STARTED-->TX_ST0PPED */
7679 func_params
.cmd
= BNX2X_F_CMD_TX_STOP
;
7680 bnx2x_func_state_change(bp
, &func_params
);
7682 /* TX_ST0PPED-->STARTED */
7683 func_params
.cmd
= BNX2X_F_CMD_TX_START
;
7684 return bnx2x_func_state_change(bp
, &func_params
);
7691 void bnx2x_chip_cleanup(struct bnx2x
*bp
, int unload_mode
)
7693 int port
= BP_PORT(bp
);
7696 struct bnx2x_mcast_ramrod_params rparam
= {0};
7699 /* Wait until tx fastpath tasks complete */
7700 for_each_tx_queue(bp
, i
) {
7701 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
7703 for_each_cos_in_tx_queue(fp
, cos
)
7704 rc
= bnx2x_clean_tx_queue(bp
, &fp
->txdata
[cos
]);
7705 #ifdef BNX2X_STOP_ON_ERROR
7711 /* Give HW time to discard old tx messages */
7712 usleep_range(1000, 1000);
7714 /* Clean all ETH MACs */
7715 rc
= bnx2x_del_all_macs(bp
, &bp
->fp
[0].mac_obj
, BNX2X_ETH_MAC
, false);
7717 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc
);
7719 /* Clean up UC list */
7720 rc
= bnx2x_del_all_macs(bp
, &bp
->fp
[0].mac_obj
, BNX2X_UC_LIST_MAC
,
7723 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7727 if (!CHIP_IS_E1(bp
))
7728 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 0);
7730 /* Set "drop all" (stop Rx).
7731 * We need to take a netif_addr_lock() here in order to prevent
7732 * a race between the completion code and this code.
7734 netif_addr_lock_bh(bp
->dev
);
7735 /* Schedule the rx_mode command */
7736 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
))
7737 set_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
);
7739 bnx2x_set_storm_rx_mode(bp
);
7741 /* Cleanup multicast configuration */
7742 rparam
.mcast_obj
= &bp
->mcast_obj
;
7743 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
7745 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc
);
7747 netif_addr_unlock_bh(bp
->dev
);
7752 * Send the UNLOAD_REQUEST to the MCP. This will return if
7753 * this function should perform FUNC, PORT or COMMON HW
7756 reset_code
= bnx2x_send_unload_req(bp
, unload_mode
);
7759 * (assumption: No Attention from MCP at this stage)
7760 * PMF probably in the middle of TXdisable/enable transaction
7762 rc
= bnx2x_func_wait_started(bp
);
7764 BNX2X_ERR("bnx2x_func_wait_started failed\n");
7765 #ifdef BNX2X_STOP_ON_ERROR
7770 /* Close multi and leading connections
7771 * Completions for ramrods are collected in a synchronous way
7773 for_each_queue(bp
, i
)
7774 if (bnx2x_stop_queue(bp
, i
))
7775 #ifdef BNX2X_STOP_ON_ERROR
7780 /* If SP settings didn't get completed so far - something
7781 * very wrong has happen.
7783 if (!bnx2x_wait_sp_comp(bp
, ~0x0UL
))
7784 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
7786 #ifndef BNX2X_STOP_ON_ERROR
7789 rc
= bnx2x_func_stop(bp
);
7791 BNX2X_ERR("Function stop failed!\n");
7792 #ifdef BNX2X_STOP_ON_ERROR
7797 /* Disable HW interrupts, NAPI */
7798 bnx2x_netif_stop(bp
, 1);
7803 /* Reset the chip */
7804 rc
= bnx2x_reset_hw(bp
, reset_code
);
7806 BNX2X_ERR("HW_RESET failed\n");
7809 /* Report UNLOAD_DONE to MCP */
7810 bnx2x_send_unload_done(bp
);
7813 void bnx2x_disable_close_the_gate(struct bnx2x
*bp
)
7817 DP(NETIF_MSG_HW
, "Disabling \"close the gates\"\n");
7819 if (CHIP_IS_E1(bp
)) {
7820 int port
= BP_PORT(bp
);
7821 u32 addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
7822 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
7824 val
= REG_RD(bp
, addr
);
7826 REG_WR(bp
, addr
, val
);
7828 val
= REG_RD(bp
, MISC_REG_AEU_GENERAL_MASK
);
7829 val
&= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK
|
7830 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK
);
7831 REG_WR(bp
, MISC_REG_AEU_GENERAL_MASK
, val
);
7835 /* Close gates #2, #3 and #4: */
7836 static void bnx2x_set_234_gates(struct bnx2x
*bp
, bool close
)
7840 /* Gates #2 and #4a are closed/opened for "not E1" only */
7841 if (!CHIP_IS_E1(bp
)) {
7843 REG_WR(bp
, PXP_REG_HST_DISCARD_DOORBELLS
, !!close
);
7845 REG_WR(bp
, PXP_REG_HST_DISCARD_INTERNAL_WRITES
, !!close
);
7849 if (CHIP_IS_E1x(bp
)) {
7850 /* Prevent interrupts from HC on both ports */
7851 val
= REG_RD(bp
, HC_REG_CONFIG_1
);
7852 REG_WR(bp
, HC_REG_CONFIG_1
,
7853 (!close
) ? (val
| HC_CONFIG_1_REG_BLOCK_DISABLE_1
) :
7854 (val
& ~(u32
)HC_CONFIG_1_REG_BLOCK_DISABLE_1
));
7856 val
= REG_RD(bp
, HC_REG_CONFIG_0
);
7857 REG_WR(bp
, HC_REG_CONFIG_0
,
7858 (!close
) ? (val
| HC_CONFIG_0_REG_BLOCK_DISABLE_0
) :
7859 (val
& ~(u32
)HC_CONFIG_0_REG_BLOCK_DISABLE_0
));
7861 /* Prevent incomming interrupts in IGU */
7862 val
= REG_RD(bp
, IGU_REG_BLOCK_CONFIGURATION
);
7864 REG_WR(bp
, IGU_REG_BLOCK_CONFIGURATION
,
7866 (val
| IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE
) :
7867 (val
& ~(u32
)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE
));
7870 DP(NETIF_MSG_HW
, "%s gates #2, #3 and #4\n",
7871 close
? "closing" : "opening");
7875 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
7877 static void bnx2x_clp_reset_prep(struct bnx2x
*bp
, u32
*magic_val
)
7879 /* Do some magic... */
7880 u32 val
= MF_CFG_RD(bp
, shared_mf_config
.clp_mb
);
7881 *magic_val
= val
& SHARED_MF_CLP_MAGIC
;
7882 MF_CFG_WR(bp
, shared_mf_config
.clp_mb
, val
| SHARED_MF_CLP_MAGIC
);
7886 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
7888 * @bp: driver handle
7889 * @magic_val: old value of the `magic' bit.
7891 static void bnx2x_clp_reset_done(struct bnx2x
*bp
, u32 magic_val
)
7893 /* Restore the `magic' bit value... */
7894 u32 val
= MF_CFG_RD(bp
, shared_mf_config
.clp_mb
);
7895 MF_CFG_WR(bp
, shared_mf_config
.clp_mb
,
7896 (val
& (~SHARED_MF_CLP_MAGIC
)) | magic_val
);
7900 * bnx2x_reset_mcp_prep - prepare for MCP reset.
7902 * @bp: driver handle
7903 * @magic_val: old value of 'magic' bit.
7905 * Takes care of CLP configurations.
7907 static void bnx2x_reset_mcp_prep(struct bnx2x
*bp
, u32
*magic_val
)
7910 u32 validity_offset
;
7912 DP(NETIF_MSG_HW
, "Starting\n");
7914 /* Set `magic' bit in order to save MF config */
7915 if (!CHIP_IS_E1(bp
))
7916 bnx2x_clp_reset_prep(bp
, magic_val
);
7918 /* Get shmem offset */
7919 shmem
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
7920 validity_offset
= offsetof(struct shmem_region
, validity_map
[0]);
7922 /* Clear validity map flags */
7924 REG_WR(bp
, shmem
+ validity_offset
, 0);
7927 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
7928 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
7931 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
7933 * @bp: driver handle
7935 static inline void bnx2x_mcp_wait_one(struct bnx2x
*bp
)
7937 /* special handling for emulation and FPGA,
7938 wait 10 times longer */
7939 if (CHIP_REV_IS_SLOW(bp
))
7940 msleep(MCP_ONE_TIMEOUT
*10);
7942 msleep(MCP_ONE_TIMEOUT
);
7946 * initializes bp->common.shmem_base and waits for validity signature to appear
7948 static int bnx2x_init_shmem(struct bnx2x
*bp
)
7954 bp
->common
.shmem_base
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
7955 if (bp
->common
.shmem_base
) {
7956 val
= SHMEM_RD(bp
, validity_map
[BP_PORT(bp
)]);
7957 if (val
& SHR_MEM_VALIDITY_MB
)
7961 bnx2x_mcp_wait_one(bp
);
7963 } while (cnt
++ < (MCP_TIMEOUT
/ MCP_ONE_TIMEOUT
));
7965 BNX2X_ERR("BAD MCP validity signature\n");
7970 static int bnx2x_reset_mcp_comp(struct bnx2x
*bp
, u32 magic_val
)
7972 int rc
= bnx2x_init_shmem(bp
);
7974 /* Restore the `magic' bit value */
7975 if (!CHIP_IS_E1(bp
))
7976 bnx2x_clp_reset_done(bp
, magic_val
);
7981 static void bnx2x_pxp_prep(struct bnx2x
*bp
)
7983 if (!CHIP_IS_E1(bp
)) {
7984 REG_WR(bp
, PXP2_REG_RD_START_INIT
, 0);
7985 REG_WR(bp
, PXP2_REG_RQ_RBC_DONE
, 0);
7991 * Reset the whole chip except for:
7993 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
7996 * - MISC (including AEU)
8000 static void bnx2x_process_kill_chip_reset(struct bnx2x
*bp
, bool global
)
8002 u32 not_reset_mask1
, reset_mask1
, not_reset_mask2
, reset_mask2
;
8003 u32 global_bits2
, stay_reset2
;
8006 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8007 * (per chip) blocks.
8010 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU
|
8011 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE
;
8013 /* Don't reset the following blocks */
8015 MISC_REGISTERS_RESET_REG_1_RST_HC
|
8016 MISC_REGISTERS_RESET_REG_1_RST_PXPV
|
8017 MISC_REGISTERS_RESET_REG_1_RST_PXP
;
8020 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO
|
8021 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE
|
8022 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE
|
8023 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE
|
8024 MISC_REGISTERS_RESET_REG_2_RST_RBCN
|
8025 MISC_REGISTERS_RESET_REG_2_RST_GRC
|
8026 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE
|
8027 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B
|
8028 MISC_REGISTERS_RESET_REG_2_RST_ATC
|
8029 MISC_REGISTERS_RESET_REG_2_PGLC
;
8032 * Keep the following blocks in reset:
8033 * - all xxMACs are handled by the bnx2x_link code.
8036 MISC_REGISTERS_RESET_REG_2_RST_BMAC0
|
8037 MISC_REGISTERS_RESET_REG_2_RST_BMAC1
|
8038 MISC_REGISTERS_RESET_REG_2_RST_EMAC0
|
8039 MISC_REGISTERS_RESET_REG_2_RST_EMAC1
|
8040 MISC_REGISTERS_RESET_REG_2_UMAC0
|
8041 MISC_REGISTERS_RESET_REG_2_UMAC1
|
8042 MISC_REGISTERS_RESET_REG_2_XMAC
|
8043 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT
;
8045 /* Full reset masks according to the chip */
8046 reset_mask1
= 0xffffffff;
8049 reset_mask2
= 0xffff;
8050 else if (CHIP_IS_E1H(bp
))
8051 reset_mask2
= 0x1ffff;
8052 else if (CHIP_IS_E2(bp
))
8053 reset_mask2
= 0xfffff;
8054 else /* CHIP_IS_E3 */
8055 reset_mask2
= 0x3ffffff;
8057 /* Don't reset global blocks unless we need to */
8059 reset_mask2
&= ~global_bits2
;
8062 * In case of attention in the QM, we need to reset PXP
8063 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8064 * because otherwise QM reset would release 'close the gates' shortly
8065 * before resetting the PXP, then the PSWRQ would send a write
8066 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8067 * read the payload data from PSWWR, but PSWWR would not
8068 * respond. The write queue in PGLUE would stuck, dmae commands
8069 * would not return. Therefore it's important to reset the second
8070 * reset register (containing the
8071 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8072 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8075 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
,
8076 reset_mask2
& (~not_reset_mask2
));
8078 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
8079 reset_mask1
& (~not_reset_mask1
));
8084 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_SET
,
8085 reset_mask2
& (~stay_reset2
));
8090 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, reset_mask1
);
8095 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8096 * It should get cleared in no more than 1s.
8098 * @bp: driver handle
8100 * It should get cleared in no more than 1s. Returns 0 if
8101 * pending writes bit gets cleared.
8103 static int bnx2x_er_poll_igu_vq(struct bnx2x
*bp
)
8109 pend_bits
= REG_RD(bp
, IGU_REG_PENDING_BITS_STATUS
);
8114 usleep_range(1000, 1000);
8115 } while (cnt
-- > 0);
8118 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8126 static int bnx2x_process_kill(struct bnx2x
*bp
, bool global
)
8130 u32 sr_cnt
, blk_cnt
, port_is_idle_0
, port_is_idle_1
, pgl_exp_rom2
;
8133 /* Empty the Tetris buffer, wait for 1s */
8135 sr_cnt
= REG_RD(bp
, PXP2_REG_RD_SR_CNT
);
8136 blk_cnt
= REG_RD(bp
, PXP2_REG_RD_BLK_CNT
);
8137 port_is_idle_0
= REG_RD(bp
, PXP2_REG_RD_PORT_IS_IDLE_0
);
8138 port_is_idle_1
= REG_RD(bp
, PXP2_REG_RD_PORT_IS_IDLE_1
);
8139 pgl_exp_rom2
= REG_RD(bp
, PXP2_REG_PGL_EXP_ROM2
);
8140 if ((sr_cnt
== 0x7e) && (blk_cnt
== 0xa0) &&
8141 ((port_is_idle_0
& 0x1) == 0x1) &&
8142 ((port_is_idle_1
& 0x1) == 0x1) &&
8143 (pgl_exp_rom2
== 0xffffffff))
8145 usleep_range(1000, 1000);
8146 } while (cnt
-- > 0);
8149 DP(NETIF_MSG_HW
, "Tetris buffer didn't get empty or there"
8151 " outstanding read requests after 1s!\n");
8152 DP(NETIF_MSG_HW
, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8153 " port_is_idle_0=0x%08x,"
8154 " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8155 sr_cnt
, blk_cnt
, port_is_idle_0
, port_is_idle_1
,
8162 /* Close gates #2, #3 and #4 */
8163 bnx2x_set_234_gates(bp
, true);
8165 /* Poll for IGU VQs for 57712 and newer chips */
8166 if (!CHIP_IS_E1x(bp
) && bnx2x_er_poll_igu_vq(bp
))
8170 /* TBD: Indicate that "process kill" is in progress to MCP */
8172 /* Clear "unprepared" bit */
8173 REG_WR(bp
, MISC_REG_UNPREPARED
, 0);
8176 /* Make sure all is written to the chip before the reset */
8179 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8180 * PSWHST, GRC and PSWRD Tetris buffer.
8182 usleep_range(1000, 1000);
8184 /* Prepare to chip reset: */
8187 bnx2x_reset_mcp_prep(bp
, &val
);
8193 /* reset the chip */
8194 bnx2x_process_kill_chip_reset(bp
, global
);
8197 /* Recover after reset: */
8199 if (global
&& bnx2x_reset_mcp_comp(bp
, val
))
8202 /* TBD: Add resetting the NO_MCP mode DB here */
8207 /* Open the gates #2, #3 and #4 */
8208 bnx2x_set_234_gates(bp
, false);
8210 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8211 * reset state, re-enable attentions. */
8216 int bnx2x_leader_reset(struct bnx2x
*bp
)
8219 bool global
= bnx2x_reset_is_global(bp
);
8221 /* Try to recover after the failure */
8222 if (bnx2x_process_kill(bp
, global
)) {
8223 netdev_err(bp
->dev
, "Something bad had happen on engine %d! "
8224 "Aii!\n", BP_PATH(bp
));
8226 goto exit_leader_reset
;
8230 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8233 bnx2x_set_reset_done(bp
);
8235 bnx2x_clear_reset_global(bp
);
8239 bnx2x_release_leader_lock(bp
);
8244 static inline void bnx2x_recovery_failed(struct bnx2x
*bp
)
8246 netdev_err(bp
->dev
, "Recovery has failed. Power cycle is needed.\n");
8248 /* Disconnect this device */
8249 netif_device_detach(bp
->dev
);
8252 * Block ifup for all function on this engine until "process kill"
8255 bnx2x_set_reset_in_progress(bp
);
8257 /* Shut down the power */
8258 bnx2x_set_power_state(bp
, PCI_D3hot
);
8260 bp
->recovery_state
= BNX2X_RECOVERY_FAILED
;
8266 * Assumption: runs under rtnl lock. This together with the fact
8267 * that it's called only from bnx2x_sp_rtnl() ensure that it
8268 * will never be called when netif_running(bp->dev) is false.
8270 static void bnx2x_parity_recover(struct bnx2x
*bp
)
8272 bool global
= false;
8274 DP(NETIF_MSG_HW
, "Handling parity\n");
8276 switch (bp
->recovery_state
) {
8277 case BNX2X_RECOVERY_INIT
:
8278 DP(NETIF_MSG_HW
, "State is BNX2X_RECOVERY_INIT\n");
8279 bnx2x_chk_parity_attn(bp
, &global
, false);
8281 /* Try to get a LEADER_LOCK HW lock */
8282 if (bnx2x_trylock_leader_lock(bp
)) {
8283 bnx2x_set_reset_in_progress(bp
);
8285 * Check if there is a global attention and if
8286 * there was a global attention, set the global
8291 bnx2x_set_reset_global(bp
);
8296 /* Stop the driver */
8297 /* If interface has been removed - break */
8298 if (bnx2x_nic_unload(bp
, UNLOAD_RECOVERY
))
8301 bp
->recovery_state
= BNX2X_RECOVERY_WAIT
;
8304 * Reset MCP command sequence number and MCP mail box
8305 * sequence as we are going to reset the MCP.
8309 bp
->fw_drv_pulse_wr_seq
= 0;
8312 /* Ensure "is_leader", MCP command sequence and
8313 * "recovery_state" update values are seen on other
8319 case BNX2X_RECOVERY_WAIT
:
8320 DP(NETIF_MSG_HW
, "State is BNX2X_RECOVERY_WAIT\n");
8321 if (bp
->is_leader
) {
8322 int other_engine
= BP_PATH(bp
) ? 0 : 1;
8323 u32 other_load_counter
=
8324 bnx2x_get_load_cnt(bp
, other_engine
);
8326 bnx2x_get_load_cnt(bp
, BP_PATH(bp
));
8327 global
= bnx2x_reset_is_global(bp
);
8330 * In case of a parity in a global block, let
8331 * the first leader that performs a
8332 * leader_reset() reset the global blocks in
8333 * order to clear global attentions. Otherwise
8334 * the the gates will remain closed for that
8338 (global
&& other_load_counter
)) {
8339 /* Wait until all other functions get
8342 schedule_delayed_work(&bp
->sp_rtnl_task
,
8346 /* If all other functions got down -
8347 * try to bring the chip back to
8348 * normal. In any case it's an exit
8349 * point for a leader.
8351 if (bnx2x_leader_reset(bp
)) {
8352 bnx2x_recovery_failed(bp
);
8356 /* If we are here, means that the
8357 * leader has succeeded and doesn't
8358 * want to be a leader any more. Try
8359 * to continue as a none-leader.
8363 } else { /* non-leader */
8364 if (!bnx2x_reset_is_done(bp
, BP_PATH(bp
))) {
8365 /* Try to get a LEADER_LOCK HW lock as
8366 * long as a former leader may have
8367 * been unloaded by the user or
8368 * released a leadership by another
8371 if (bnx2x_trylock_leader_lock(bp
)) {
8372 /* I'm a leader now! Restart a
8379 schedule_delayed_work(&bp
->sp_rtnl_task
,
8385 * If there was a global attention, wait
8386 * for it to be cleared.
8388 if (bnx2x_reset_is_global(bp
)) {
8389 schedule_delayed_work(
8395 if (bnx2x_nic_load(bp
, LOAD_NORMAL
))
8396 bnx2x_recovery_failed(bp
);
8398 bp
->recovery_state
=
8399 BNX2X_RECOVERY_DONE
;
8412 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8413 * scheduled on a general queue in order to prevent a dead lock.
8415 static void bnx2x_sp_rtnl_task(struct work_struct
*work
)
8417 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, sp_rtnl_task
.work
);
8421 if (!netif_running(bp
->dev
))
8424 /* if stop on error is defined no recovery flows should be executed */
8425 #ifdef BNX2X_STOP_ON_ERROR
8426 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8427 "so reset not done to allow debug dump,\n"
8428 "you will need to reboot when done\n");
8429 goto sp_rtnl_not_reset
;
8432 if (unlikely(bp
->recovery_state
!= BNX2X_RECOVERY_DONE
)) {
8434 * Clear all pending SP commands as we are going to reset the
8437 bp
->sp_rtnl_state
= 0;
8440 bnx2x_parity_recover(bp
);
8445 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT
, &bp
->sp_rtnl_state
)) {
8447 * Clear all pending SP commands as we are going to reset the
8450 bp
->sp_rtnl_state
= 0;
8453 bnx2x_nic_unload(bp
, UNLOAD_NORMAL
);
8454 bnx2x_nic_load(bp
, LOAD_NORMAL
);
8458 #ifdef BNX2X_STOP_ON_ERROR
8461 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC
, &bp
->sp_rtnl_state
))
8462 bnx2x_setup_tc(bp
->dev
, bp
->dcbx_port_params
.ets
.num_of_cos
);
8468 /* end of nic load/unload */
8470 static void bnx2x_period_task(struct work_struct
*work
)
8472 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, period_task
.work
);
8474 if (!netif_running(bp
->dev
))
8475 goto period_task_exit
;
8477 if (CHIP_REV_IS_SLOW(bp
)) {
8478 BNX2X_ERR("period task called on emulation, ignoring\n");
8479 goto period_task_exit
;
8482 bnx2x_acquire_phy_lock(bp
);
8484 * The barrier is needed to ensure the ordering between the writing to
8485 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8490 bnx2x_period_func(&bp
->link_params
, &bp
->link_vars
);
8492 /* Re-queue task in 1 sec */
8493 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 1*HZ
);
8496 bnx2x_release_phy_lock(bp
);
8502 * Init service functions
8505 static u32
bnx2x_get_pretend_reg(struct bnx2x
*bp
)
8507 u32 base
= PXP2_REG_PGL_PRETEND_FUNC_F0
;
8508 u32 stride
= PXP2_REG_PGL_PRETEND_FUNC_F1
- base
;
8509 return base
+ (BP_ABS_FUNC(bp
)) * stride
;
8512 static void bnx2x_undi_int_disable_e1h(struct bnx2x
*bp
)
8514 u32 reg
= bnx2x_get_pretend_reg(bp
);
8516 /* Flush all outstanding writes */
8519 /* Pretend to be function 0 */
8521 REG_RD(bp
, reg
); /* Flush the GRC transaction (in the chip) */
8523 /* From now we are in the "like-E1" mode */
8524 bnx2x_int_disable(bp
);
8526 /* Flush all outstanding writes */
8529 /* Restore the original function */
8530 REG_WR(bp
, reg
, BP_ABS_FUNC(bp
));
8534 static inline void bnx2x_undi_int_disable(struct bnx2x
*bp
)
8537 bnx2x_int_disable(bp
);
8539 bnx2x_undi_int_disable_e1h(bp
);
8542 static void __devinit
bnx2x_undi_unload(struct bnx2x
*bp
)
8546 /* Check if there is any driver already loaded */
8547 val
= REG_RD(bp
, MISC_REG_UNPREPARED
);
8549 /* Check if it is the UNDI driver
8550 * UNDI driver initializes CID offset for normal bell to 0x7
8552 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_UNDI
);
8553 val
= REG_RD(bp
, DORQ_REG_NORM_CID_OFST
);
8555 u32 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
8556 /* save our pf_num */
8557 int orig_pf_num
= bp
->pf_num
;
8559 u32 swap_en
, swap_val
, value
;
8561 /* clear the UNDI indication */
8562 REG_WR(bp
, DORQ_REG_NORM_CID_OFST
, 0);
8564 BNX2X_DEV_INFO("UNDI is active! reset device\n");
8566 /* try unload UNDI on port 0 */
8569 (SHMEM_RD(bp
, func_mb
[bp
->pf_num
].drv_mb_header
) &
8570 DRV_MSG_SEQ_NUMBER_MASK
);
8571 reset_code
= bnx2x_fw_command(bp
, reset_code
, 0);
8573 /* if UNDI is loaded on the other port */
8574 if (reset_code
!= FW_MSG_CODE_DRV_UNLOAD_COMMON
) {
8576 /* send "DONE" for previous unload */
8577 bnx2x_fw_command(bp
,
8578 DRV_MSG_CODE_UNLOAD_DONE
, 0);
8580 /* unload UNDI on port 1 */
8583 (SHMEM_RD(bp
, func_mb
[bp
->pf_num
].drv_mb_header
) &
8584 DRV_MSG_SEQ_NUMBER_MASK
);
8585 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
8587 bnx2x_fw_command(bp
, reset_code
, 0);
8590 /* now it's safe to release the lock */
8591 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_UNDI
);
8593 bnx2x_undi_int_disable(bp
);
8596 /* close input traffic and wait for it */
8597 /* Do not rcv packets to BRB */
8598 REG_WR(bp
, (port
? NIG_REG_LLH1_BRB1_DRV_MASK
:
8599 NIG_REG_LLH0_BRB1_DRV_MASK
), 0x0);
8600 /* Do not direct rcv packets that are not for MCP to
8602 REG_WR(bp
, (port
? NIG_REG_LLH1_BRB1_NOT_MCP
:
8603 NIG_REG_LLH0_BRB1_NOT_MCP
), 0x0);
8605 REG_WR(bp
, (port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
8606 MISC_REG_AEU_MASK_ATTN_FUNC_0
), 0);
8609 /* save NIG port swap info */
8610 swap_val
= REG_RD(bp
, NIG_REG_PORT_SWAP
);
8611 swap_en
= REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
);
8614 GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
8618 if (CHIP_IS_E3(bp
)) {
8619 value
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
8620 value
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
8624 GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
,
8627 /* take the NIG out of reset and restore swap values */
8629 GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
,
8630 MISC_REGISTERS_RESET_REG_1_RST_NIG
);
8631 REG_WR(bp
, NIG_REG_PORT_SWAP
, swap_val
);
8632 REG_WR(bp
, NIG_REG_STRAP_OVERRIDE
, swap_en
);
8634 /* send unload done to the MCP */
8635 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
8637 /* restore our func and fw_seq */
8638 bp
->pf_num
= orig_pf_num
;
8640 (SHMEM_RD(bp
, func_mb
[bp
->pf_num
].drv_mb_header
) &
8641 DRV_MSG_SEQ_NUMBER_MASK
);
8643 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_UNDI
);
8647 static void __devinit
bnx2x_get_common_hwinfo(struct bnx2x
*bp
)
8649 u32 val
, val2
, val3
, val4
, id
;
8652 /* Get the chip revision id and number. */
8653 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8654 val
= REG_RD(bp
, MISC_REG_CHIP_NUM
);
8655 id
= ((val
& 0xffff) << 16);
8656 val
= REG_RD(bp
, MISC_REG_CHIP_REV
);
8657 id
|= ((val
& 0xf) << 12);
8658 val
= REG_RD(bp
, MISC_REG_CHIP_METAL
);
8659 id
|= ((val
& 0xff) << 4);
8660 val
= REG_RD(bp
, MISC_REG_BOND_ID
);
8662 bp
->common
.chip_id
= id
;
8664 /* Set doorbell size */
8665 bp
->db_size
= (1 << BNX2X_DB_SHIFT
);
8667 if (!CHIP_IS_E1x(bp
)) {
8668 val
= REG_RD(bp
, MISC_REG_PORT4MODE_EN_OVWR
);
8670 val
= REG_RD(bp
, MISC_REG_PORT4MODE_EN
);
8672 val
= (val
>> 1) & 1;
8673 BNX2X_DEV_INFO("chip is in %s\n", val
? "4_PORT_MODE" :
8675 bp
->common
.chip_port_mode
= val
? CHIP_4_PORT_MODE
:
8678 if (CHIP_MODE_IS_4_PORT(bp
))
8679 bp
->pfid
= (bp
->pf_num
>> 1); /* 0..3 */
8681 bp
->pfid
= (bp
->pf_num
& 0x6); /* 0, 2, 4, 6 */
8683 bp
->common
.chip_port_mode
= CHIP_PORT_MODE_NONE
; /* N/A */
8684 bp
->pfid
= bp
->pf_num
; /* 0..7 */
8687 bp
->link_params
.chip_id
= bp
->common
.chip_id
;
8688 BNX2X_DEV_INFO("chip ID is 0x%x\n", id
);
8690 val
= (REG_RD(bp
, 0x2874) & 0x55);
8691 if ((bp
->common
.chip_id
& 0x1) ||
8692 (CHIP_IS_E1(bp
) && val
) || (CHIP_IS_E1H(bp
) && (val
== 0x55))) {
8693 bp
->flags
|= ONE_PORT_FLAG
;
8694 BNX2X_DEV_INFO("single port device\n");
8697 val
= REG_RD(bp
, MCP_REG_MCPR_NVM_CFG4
);
8698 bp
->common
.flash_size
= (BNX2X_NVRAM_1MB_SIZE
<<
8699 (val
& MCPR_NVM_CFG4_FLASH_SIZE
));
8700 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8701 bp
->common
.flash_size
, bp
->common
.flash_size
);
8703 bnx2x_init_shmem(bp
);
8707 bp
->common
.shmem2_base
= REG_RD(bp
, (BP_PATH(bp
) ?
8708 MISC_REG_GENERIC_CR_1
:
8709 MISC_REG_GENERIC_CR_0
));
8711 bp
->link_params
.shmem_base
= bp
->common
.shmem_base
;
8712 bp
->link_params
.shmem2_base
= bp
->common
.shmem2_base
;
8713 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
8714 bp
->common
.shmem_base
, bp
->common
.shmem2_base
);
8716 if (!bp
->common
.shmem_base
) {
8717 BNX2X_DEV_INFO("MCP not active\n");
8718 bp
->flags
|= NO_MCP_FLAG
;
8722 bp
->common
.hw_config
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.config
);
8723 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp
->common
.hw_config
);
8725 bp
->link_params
.hw_led_mode
= ((bp
->common
.hw_config
&
8726 SHARED_HW_CFG_LED_MODE_MASK
) >>
8727 SHARED_HW_CFG_LED_MODE_SHIFT
);
8729 bp
->link_params
.feature_config_flags
= 0;
8730 val
= SHMEM_RD(bp
, dev_info
.shared_feature_config
.config
);
8731 if (val
& SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED
)
8732 bp
->link_params
.feature_config_flags
|=
8733 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED
;
8735 bp
->link_params
.feature_config_flags
&=
8736 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED
;
8738 val
= SHMEM_RD(bp
, dev_info
.bc_rev
) >> 8;
8739 bp
->common
.bc_ver
= val
;
8740 BNX2X_DEV_INFO("bc_ver %X\n", val
);
8741 if (val
< BNX2X_BC_VER
) {
8742 /* for now only warn
8743 * later we might need to enforce this */
8744 BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8745 "please upgrade BC\n", BNX2X_BC_VER
, val
);
8747 bp
->link_params
.feature_config_flags
|=
8748 (val
>= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL
) ?
8749 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY
: 0;
8751 bp
->link_params
.feature_config_flags
|=
8752 (val
>= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL
) ?
8753 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY
: 0;
8755 bp
->link_params
.feature_config_flags
|=
8756 (val
>= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED
) ?
8757 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED
: 0;
8759 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_PMC
, &pmc
);
8760 bp
->flags
|= (pmc
& PCI_PM_CAP_PME_D3cold
) ? 0 : NO_WOL_FLAG
;
8762 BNX2X_DEV_INFO("%sWoL capable\n",
8763 (bp
->flags
& NO_WOL_FLAG
) ? "not " : "");
8765 val
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
);
8766 val2
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[4]);
8767 val3
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[8]);
8768 val4
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[12]);
8770 dev_info(&bp
->pdev
->dev
, "part number %X-%X-%X-%X\n",
8771 val
, val2
, val3
, val4
);
8774 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8775 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8777 static void __devinit
bnx2x_get_igu_cam_info(struct bnx2x
*bp
)
8779 int pfid
= BP_FUNC(bp
);
8780 int vn
= BP_E1HVN(bp
);
8783 u8 fid
, igu_sb_cnt
= 0;
8785 bp
->igu_base_sb
= 0xff;
8786 if (CHIP_INT_MODE_IS_BC(bp
)) {
8787 igu_sb_cnt
= bp
->igu_sb_cnt
;
8788 bp
->igu_base_sb
= (CHIP_MODE_IS_4_PORT(bp
) ? pfid
: vn
) *
8791 bp
->igu_dsb_id
= E1HVN_MAX
* FP_SB_MAX_E1x
+
8792 (CHIP_MODE_IS_4_PORT(bp
) ? pfid
: vn
);
8797 /* IGU in normal mode - read CAM */
8798 for (igu_sb_id
= 0; igu_sb_id
< IGU_REG_MAPPING_MEMORY_SIZE
;
8800 val
= REG_RD(bp
, IGU_REG_MAPPING_MEMORY
+ igu_sb_id
* 4);
8801 if (!(val
& IGU_REG_MAPPING_MEMORY_VALID
))
8804 if ((fid
& IGU_FID_ENCODE_IS_PF
)) {
8805 if ((fid
& IGU_FID_PF_NUM_MASK
) != pfid
)
8807 if (IGU_VEC(val
) == 0)
8808 /* default status block */
8809 bp
->igu_dsb_id
= igu_sb_id
;
8811 if (bp
->igu_base_sb
== 0xff)
8812 bp
->igu_base_sb
= igu_sb_id
;
8818 #ifdef CONFIG_PCI_MSI
8820 * It's expected that number of CAM entries for this functions is equal
8821 * to the number evaluated based on the MSI-X table size. We want a
8822 * harsh warning if these values are different!
8824 WARN_ON(bp
->igu_sb_cnt
!= igu_sb_cnt
);
8827 if (igu_sb_cnt
== 0)
8828 BNX2X_ERR("CAM configuration error\n");
8831 static void __devinit
bnx2x_link_settings_supported(struct bnx2x
*bp
,
8834 int cfg_size
= 0, idx
, port
= BP_PORT(bp
);
8836 /* Aggregation of supported attributes of all external phys */
8837 bp
->port
.supported
[0] = 0;
8838 bp
->port
.supported
[1] = 0;
8839 switch (bp
->link_params
.num_phys
) {
8841 bp
->port
.supported
[0] = bp
->link_params
.phy
[INT_PHY
].supported
;
8845 bp
->port
.supported
[0] = bp
->link_params
.phy
[EXT_PHY1
].supported
;
8849 if (bp
->link_params
.multi_phy_config
&
8850 PORT_HW_CFG_PHY_SWAPPED_ENABLED
) {
8851 bp
->port
.supported
[1] =
8852 bp
->link_params
.phy
[EXT_PHY1
].supported
;
8853 bp
->port
.supported
[0] =
8854 bp
->link_params
.phy
[EXT_PHY2
].supported
;
8856 bp
->port
.supported
[0] =
8857 bp
->link_params
.phy
[EXT_PHY1
].supported
;
8858 bp
->port
.supported
[1] =
8859 bp
->link_params
.phy
[EXT_PHY2
].supported
;
8865 if (!(bp
->port
.supported
[0] || bp
->port
.supported
[1])) {
8866 BNX2X_ERR("NVRAM config error. BAD phy config."
8867 "PHY1 config 0x%x, PHY2 config 0x%x\n",
8869 dev_info
.port_hw_config
[port
].external_phy_config
),
8871 dev_info
.port_hw_config
[port
].external_phy_config2
));
8876 bp
->port
.phy_addr
= REG_RD(bp
, MISC_REG_WC0_CTRL_PHY_ADDR
);
8878 switch (switch_cfg
) {
8880 bp
->port
.phy_addr
= REG_RD(
8881 bp
, NIG_REG_SERDES0_CTRL_PHY_ADDR
+ port
*0x10);
8883 case SWITCH_CFG_10G
:
8884 bp
->port
.phy_addr
= REG_RD(
8885 bp
, NIG_REG_XGXS0_CTRL_PHY_ADDR
+ port
*0x18);
8888 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
8889 bp
->port
.link_config
[0]);
8893 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp
->port
.phy_addr
);
8894 /* mask what we support according to speed_cap_mask per configuration */
8895 for (idx
= 0; idx
< cfg_size
; idx
++) {
8896 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
8897 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF
))
8898 bp
->port
.supported
[idx
] &= ~SUPPORTED_10baseT_Half
;
8900 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
8901 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL
))
8902 bp
->port
.supported
[idx
] &= ~SUPPORTED_10baseT_Full
;
8904 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
8905 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF
))
8906 bp
->port
.supported
[idx
] &= ~SUPPORTED_100baseT_Half
;
8908 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
8909 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL
))
8910 bp
->port
.supported
[idx
] &= ~SUPPORTED_100baseT_Full
;
8912 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
8913 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G
))
8914 bp
->port
.supported
[idx
] &= ~(SUPPORTED_1000baseT_Half
|
8915 SUPPORTED_1000baseT_Full
);
8917 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
8918 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G
))
8919 bp
->port
.supported
[idx
] &= ~SUPPORTED_2500baseX_Full
;
8921 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
8922 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G
))
8923 bp
->port
.supported
[idx
] &= ~SUPPORTED_10000baseT_Full
;
8927 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp
->port
.supported
[0],
8928 bp
->port
.supported
[1]);
8931 static void __devinit
bnx2x_link_settings_requested(struct bnx2x
*bp
)
8933 u32 link_config
, idx
, cfg_size
= 0;
8934 bp
->port
.advertising
[0] = 0;
8935 bp
->port
.advertising
[1] = 0;
8936 switch (bp
->link_params
.num_phys
) {
8945 for (idx
= 0; idx
< cfg_size
; idx
++) {
8946 bp
->link_params
.req_duplex
[idx
] = DUPLEX_FULL
;
8947 link_config
= bp
->port
.link_config
[idx
];
8948 switch (link_config
& PORT_FEATURE_LINK_SPEED_MASK
) {
8949 case PORT_FEATURE_LINK_SPEED_AUTO
:
8950 if (bp
->port
.supported
[idx
] & SUPPORTED_Autoneg
) {
8951 bp
->link_params
.req_line_speed
[idx
] =
8953 bp
->port
.advertising
[idx
] |=
8954 bp
->port
.supported
[idx
];
8956 /* force 10G, no AN */
8957 bp
->link_params
.req_line_speed
[idx
] =
8959 bp
->port
.advertising
[idx
] |=
8960 (ADVERTISED_10000baseT_Full
|
8966 case PORT_FEATURE_LINK_SPEED_10M_FULL
:
8967 if (bp
->port
.supported
[idx
] & SUPPORTED_10baseT_Full
) {
8968 bp
->link_params
.req_line_speed
[idx
] =
8970 bp
->port
.advertising
[idx
] |=
8971 (ADVERTISED_10baseT_Full
|
8974 BNX2X_ERR("NVRAM config error. "
8975 "Invalid link_config 0x%x"
8976 " speed_cap_mask 0x%x\n",
8978 bp
->link_params
.speed_cap_mask
[idx
]);
8983 case PORT_FEATURE_LINK_SPEED_10M_HALF
:
8984 if (bp
->port
.supported
[idx
] & SUPPORTED_10baseT_Half
) {
8985 bp
->link_params
.req_line_speed
[idx
] =
8987 bp
->link_params
.req_duplex
[idx
] =
8989 bp
->port
.advertising
[idx
] |=
8990 (ADVERTISED_10baseT_Half
|
8993 BNX2X_ERR("NVRAM config error. "
8994 "Invalid link_config 0x%x"
8995 " speed_cap_mask 0x%x\n",
8997 bp
->link_params
.speed_cap_mask
[idx
]);
9002 case PORT_FEATURE_LINK_SPEED_100M_FULL
:
9003 if (bp
->port
.supported
[idx
] &
9004 SUPPORTED_100baseT_Full
) {
9005 bp
->link_params
.req_line_speed
[idx
] =
9007 bp
->port
.advertising
[idx
] |=
9008 (ADVERTISED_100baseT_Full
|
9011 BNX2X_ERR("NVRAM config error. "
9012 "Invalid link_config 0x%x"
9013 " speed_cap_mask 0x%x\n",
9015 bp
->link_params
.speed_cap_mask
[idx
]);
9020 case PORT_FEATURE_LINK_SPEED_100M_HALF
:
9021 if (bp
->port
.supported
[idx
] &
9022 SUPPORTED_100baseT_Half
) {
9023 bp
->link_params
.req_line_speed
[idx
] =
9025 bp
->link_params
.req_duplex
[idx
] =
9027 bp
->port
.advertising
[idx
] |=
9028 (ADVERTISED_100baseT_Half
|
9031 BNX2X_ERR("NVRAM config error. "
9032 "Invalid link_config 0x%x"
9033 " speed_cap_mask 0x%x\n",
9035 bp
->link_params
.speed_cap_mask
[idx
]);
9040 case PORT_FEATURE_LINK_SPEED_1G
:
9041 if (bp
->port
.supported
[idx
] &
9042 SUPPORTED_1000baseT_Full
) {
9043 bp
->link_params
.req_line_speed
[idx
] =
9045 bp
->port
.advertising
[idx
] |=
9046 (ADVERTISED_1000baseT_Full
|
9049 BNX2X_ERR("NVRAM config error. "
9050 "Invalid link_config 0x%x"
9051 " speed_cap_mask 0x%x\n",
9053 bp
->link_params
.speed_cap_mask
[idx
]);
9058 case PORT_FEATURE_LINK_SPEED_2_5G
:
9059 if (bp
->port
.supported
[idx
] &
9060 SUPPORTED_2500baseX_Full
) {
9061 bp
->link_params
.req_line_speed
[idx
] =
9063 bp
->port
.advertising
[idx
] |=
9064 (ADVERTISED_2500baseX_Full
|
9067 BNX2X_ERR("NVRAM config error. "
9068 "Invalid link_config 0x%x"
9069 " speed_cap_mask 0x%x\n",
9071 bp
->link_params
.speed_cap_mask
[idx
]);
9076 case PORT_FEATURE_LINK_SPEED_10G_CX4
:
9077 if (bp
->port
.supported
[idx
] &
9078 SUPPORTED_10000baseT_Full
) {
9079 bp
->link_params
.req_line_speed
[idx
] =
9081 bp
->port
.advertising
[idx
] |=
9082 (ADVERTISED_10000baseT_Full
|
9085 BNX2X_ERR("NVRAM config error. "
9086 "Invalid link_config 0x%x"
9087 " speed_cap_mask 0x%x\n",
9089 bp
->link_params
.speed_cap_mask
[idx
]);
9093 case PORT_FEATURE_LINK_SPEED_20G
:
9094 bp
->link_params
.req_line_speed
[idx
] = SPEED_20000
;
9098 BNX2X_ERR("NVRAM config error. "
9099 "BAD link speed link_config 0x%x\n",
9101 bp
->link_params
.req_line_speed
[idx
] =
9103 bp
->port
.advertising
[idx
] =
9104 bp
->port
.supported
[idx
];
9108 bp
->link_params
.req_flow_ctrl
[idx
] = (link_config
&
9109 PORT_FEATURE_FLOW_CONTROL_MASK
);
9110 if ((bp
->link_params
.req_flow_ctrl
[idx
] ==
9111 BNX2X_FLOW_CTRL_AUTO
) &&
9112 !(bp
->port
.supported
[idx
] & SUPPORTED_Autoneg
)) {
9113 bp
->link_params
.req_flow_ctrl
[idx
] =
9114 BNX2X_FLOW_CTRL_NONE
;
9117 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
9118 " 0x%x advertising 0x%x\n",
9119 bp
->link_params
.req_line_speed
[idx
],
9120 bp
->link_params
.req_duplex
[idx
],
9121 bp
->link_params
.req_flow_ctrl
[idx
],
9122 bp
->port
.advertising
[idx
]);
9126 static void __devinit
bnx2x_set_mac_buf(u8
*mac_buf
, u32 mac_lo
, u16 mac_hi
)
9128 mac_hi
= cpu_to_be16(mac_hi
);
9129 mac_lo
= cpu_to_be32(mac_lo
);
9130 memcpy(mac_buf
, &mac_hi
, sizeof(mac_hi
));
9131 memcpy(mac_buf
+ sizeof(mac_hi
), &mac_lo
, sizeof(mac_lo
));
9134 static void __devinit
bnx2x_get_port_hwinfo(struct bnx2x
*bp
)
9136 int port
= BP_PORT(bp
);
9138 u32 ext_phy_type
, ext_phy_config
;
9140 bp
->link_params
.bp
= bp
;
9141 bp
->link_params
.port
= port
;
9143 bp
->link_params
.lane_config
=
9144 SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].lane_config
);
9146 bp
->link_params
.speed_cap_mask
[0] =
9148 dev_info
.port_hw_config
[port
].speed_capability_mask
);
9149 bp
->link_params
.speed_cap_mask
[1] =
9151 dev_info
.port_hw_config
[port
].speed_capability_mask2
);
9152 bp
->port
.link_config
[0] =
9153 SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].link_config
);
9155 bp
->port
.link_config
[1] =
9156 SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].link_config2
);
9158 bp
->link_params
.multi_phy_config
=
9159 SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].multi_phy_config
);
9160 /* If the device is capable of WoL, set the default state according
9163 config
= SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].config
);
9164 bp
->wol
= (!(bp
->flags
& NO_WOL_FLAG
) &&
9165 (config
& PORT_FEATURE_WOL_ENABLED
));
9167 BNX2X_DEV_INFO("lane_config 0x%08x "
9168 "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9169 bp
->link_params
.lane_config
,
9170 bp
->link_params
.speed_cap_mask
[0],
9171 bp
->port
.link_config
[0]);
9173 bp
->link_params
.switch_cfg
= (bp
->port
.link_config
[0] &
9174 PORT_FEATURE_CONNECTED_SWITCH_MASK
);
9175 bnx2x_phy_probe(&bp
->link_params
);
9176 bnx2x_link_settings_supported(bp
, bp
->link_params
.switch_cfg
);
9178 bnx2x_link_settings_requested(bp
);
9181 * If connected directly, work with the internal PHY, otherwise, work
9182 * with the external PHY
9186 dev_info
.port_hw_config
[port
].external_phy_config
);
9187 ext_phy_type
= XGXS_EXT_PHY_TYPE(ext_phy_config
);
9188 if (ext_phy_type
== PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT
)
9189 bp
->mdio
.prtad
= bp
->port
.phy_addr
;
9191 else if ((ext_phy_type
!= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE
) &&
9192 (ext_phy_type
!= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN
))
9194 XGXS_EXT_PHY_ADDR(ext_phy_config
);
9197 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9198 * In MF mode, it is set to cover self test cases
9201 bp
->port
.need_hw_lock
= 1;
9203 bp
->port
.need_hw_lock
= bnx2x_hw_lock_required(bp
,
9204 bp
->common
.shmem_base
,
9205 bp
->common
.shmem2_base
);
9209 static void __devinit
bnx2x_get_cnic_info(struct bnx2x
*bp
)
9211 int port
= BP_PORT(bp
);
9212 int func
= BP_ABS_FUNC(bp
);
9214 u32 max_iscsi_conn
= FW_ENCODE_32BIT_PATTERN
^ SHMEM_RD(bp
,
9215 drv_lic_key
[port
].max_iscsi_conn
);
9216 u32 max_fcoe_conn
= FW_ENCODE_32BIT_PATTERN
^ SHMEM_RD(bp
,
9217 drv_lic_key
[port
].max_fcoe_conn
);
9219 /* Get the number of maximum allowed iSCSI and FCoE connections */
9220 bp
->cnic_eth_dev
.max_iscsi_conn
=
9221 (max_iscsi_conn
& BNX2X_MAX_ISCSI_INIT_CONN_MASK
) >>
9222 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT
;
9224 bp
->cnic_eth_dev
.max_fcoe_conn
=
9225 (max_fcoe_conn
& BNX2X_MAX_FCOE_INIT_CONN_MASK
) >>
9226 BNX2X_MAX_FCOE_INIT_CONN_SHIFT
;
9231 bp
->cnic_eth_dev
.fcoe_wwn_port_name_hi
=
9233 dev_info
.port_hw_config
[port
].
9234 fcoe_wwn_port_name_upper
);
9235 bp
->cnic_eth_dev
.fcoe_wwn_port_name_lo
=
9237 dev_info
.port_hw_config
[port
].
9238 fcoe_wwn_port_name_lower
);
9241 bp
->cnic_eth_dev
.fcoe_wwn_node_name_hi
=
9243 dev_info
.port_hw_config
[port
].
9244 fcoe_wwn_node_name_upper
);
9245 bp
->cnic_eth_dev
.fcoe_wwn_node_name_lo
=
9247 dev_info
.port_hw_config
[port
].
9248 fcoe_wwn_node_name_lower
);
9249 } else if (!IS_MF_SD(bp
)) {
9250 u32 cfg
= MF_CFG_RD(bp
, func_ext_config
[func
].func_cfg
);
9253 * Read the WWN info only if the FCoE feature is enabled for
9256 if (cfg
& MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD
) {
9258 bp
->cnic_eth_dev
.fcoe_wwn_port_name_hi
=
9259 MF_CFG_RD(bp
, func_ext_config
[func
].
9260 fcoe_wwn_port_name_upper
);
9261 bp
->cnic_eth_dev
.fcoe_wwn_port_name_lo
=
9262 MF_CFG_RD(bp
, func_ext_config
[func
].
9263 fcoe_wwn_port_name_lower
);
9266 bp
->cnic_eth_dev
.fcoe_wwn_node_name_hi
=
9267 MF_CFG_RD(bp
, func_ext_config
[func
].
9268 fcoe_wwn_node_name_upper
);
9269 bp
->cnic_eth_dev
.fcoe_wwn_node_name_lo
=
9270 MF_CFG_RD(bp
, func_ext_config
[func
].
9271 fcoe_wwn_node_name_lower
);
9275 BNX2X_DEV_INFO("max_iscsi_conn 0x%x max_fcoe_conn 0x%x\n",
9276 bp
->cnic_eth_dev
.max_iscsi_conn
,
9277 bp
->cnic_eth_dev
.max_fcoe_conn
);
9280 * If maximum allowed number of connections is zero -
9281 * disable the feature.
9283 if (!bp
->cnic_eth_dev
.max_iscsi_conn
)
9284 bp
->flags
|= NO_ISCSI_OOO_FLAG
| NO_ISCSI_FLAG
;
9286 if (!bp
->cnic_eth_dev
.max_fcoe_conn
)
9287 bp
->flags
|= NO_FCOE_FLAG
;
9291 static void __devinit
bnx2x_get_mac_hwinfo(struct bnx2x
*bp
)
9294 int func
= BP_ABS_FUNC(bp
);
9295 int port
= BP_PORT(bp
);
9297 u8
*iscsi_mac
= bp
->cnic_eth_dev
.iscsi_mac
;
9298 u8
*fip_mac
= bp
->fip_mac
;
9301 /* Zero primary MAC configuration */
9302 memset(bp
->dev
->dev_addr
, 0, ETH_ALEN
);
9305 BNX2X_ERROR("warning: random MAC workaround active\n");
9306 random_ether_addr(bp
->dev
->dev_addr
);
9307 } else if (IS_MF(bp
)) {
9308 val2
= MF_CFG_RD(bp
, func_mf_config
[func
].mac_upper
);
9309 val
= MF_CFG_RD(bp
, func_mf_config
[func
].mac_lower
);
9310 if ((val2
!= FUNC_MF_CFG_UPPERMAC_DEFAULT
) &&
9311 (val
!= FUNC_MF_CFG_LOWERMAC_DEFAULT
))
9312 bnx2x_set_mac_buf(bp
->dev
->dev_addr
, val
, val2
);
9315 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9316 * FCoE MAC then the appropriate feature should be disabled.
9319 u32 cfg
= MF_CFG_RD(bp
, func_ext_config
[func
].func_cfg
);
9320 if (cfg
& MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD
) {
9321 val2
= MF_CFG_RD(bp
, func_ext_config
[func
].
9322 iscsi_mac_addr_upper
);
9323 val
= MF_CFG_RD(bp
, func_ext_config
[func
].
9324 iscsi_mac_addr_lower
);
9325 bnx2x_set_mac_buf(iscsi_mac
, val
, val2
);
9326 BNX2X_DEV_INFO("Read iSCSI MAC: "
9328 BNX2X_MAC_PRN_LIST(iscsi_mac
));
9330 bp
->flags
|= NO_ISCSI_OOO_FLAG
| NO_ISCSI_FLAG
;
9332 if (cfg
& MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD
) {
9333 val2
= MF_CFG_RD(bp
, func_ext_config
[func
].
9334 fcoe_mac_addr_upper
);
9335 val
= MF_CFG_RD(bp
, func_ext_config
[func
].
9336 fcoe_mac_addr_lower
);
9337 bnx2x_set_mac_buf(fip_mac
, val
, val2
);
9338 BNX2X_DEV_INFO("Read FCoE L2 MAC to "
9340 BNX2X_MAC_PRN_LIST(fip_mac
));
9343 bp
->flags
|= NO_FCOE_FLAG
;
9347 /* in SF read MACs from port configuration */
9348 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_upper
);
9349 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_lower
);
9350 bnx2x_set_mac_buf(bp
->dev
->dev_addr
, val
, val2
);
9353 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
9355 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
9357 bnx2x_set_mac_buf(iscsi_mac
, val
, val2
);
9359 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
9360 fcoe_fip_mac_upper
);
9361 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
9362 fcoe_fip_mac_lower
);
9363 bnx2x_set_mac_buf(fip_mac
, val
, val2
);
9367 memcpy(bp
->link_params
.mac_addr
, bp
->dev
->dev_addr
, ETH_ALEN
);
9368 memcpy(bp
->dev
->perm_addr
, bp
->dev
->dev_addr
, ETH_ALEN
);
9371 /* Set the FCoE MAC in MF_SD mode */
9372 if (!CHIP_IS_E1x(bp
) && IS_MF_SD(bp
))
9373 memcpy(fip_mac
, bp
->dev
->dev_addr
, ETH_ALEN
);
9375 /* Disable iSCSI if MAC configuration is
9378 if (!is_valid_ether_addr(iscsi_mac
)) {
9379 bp
->flags
|= NO_ISCSI_FLAG
;
9380 memset(iscsi_mac
, 0, ETH_ALEN
);
9383 /* Disable FCoE if MAC configuration is
9386 if (!is_valid_ether_addr(fip_mac
)) {
9387 bp
->flags
|= NO_FCOE_FLAG
;
9388 memset(bp
->fip_mac
, 0, ETH_ALEN
);
9392 if (!is_valid_ether_addr(bp
->dev
->dev_addr
))
9393 dev_err(&bp
->pdev
->dev
,
9394 "bad Ethernet MAC address configuration: "
9395 BNX2X_MAC_FMT
", change it manually before bringing up "
9396 "the appropriate network interface\n",
9397 BNX2X_MAC_PRN_LIST(bp
->dev
->dev_addr
));
9400 static int __devinit
bnx2x_get_hwinfo(struct bnx2x
*bp
)
9402 int /*abs*/func
= BP_ABS_FUNC(bp
);
9407 bnx2x_get_common_hwinfo(bp
);
9410 * initialize IGU parameters
9412 if (CHIP_IS_E1x(bp
)) {
9413 bp
->common
.int_block
= INT_BLOCK_HC
;
9415 bp
->igu_dsb_id
= DEF_SB_IGU_ID
;
9416 bp
->igu_base_sb
= 0;
9418 bp
->common
.int_block
= INT_BLOCK_IGU
;
9419 val
= REG_RD(bp
, IGU_REG_BLOCK_CONFIGURATION
);
9421 if (val
& IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
) {
9424 BNX2X_DEV_INFO("FORCING Normal Mode\n");
9426 val
&= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
);
9427 REG_WR(bp
, IGU_REG_BLOCK_CONFIGURATION
, val
);
9428 REG_WR(bp
, IGU_REG_RESET_MEMORIES
, 0x7f);
9430 while (tout
&& REG_RD(bp
, IGU_REG_RESET_MEMORIES
)) {
9432 usleep_range(1000, 1000);
9435 if (REG_RD(bp
, IGU_REG_RESET_MEMORIES
)) {
9436 dev_err(&bp
->pdev
->dev
,
9437 "FORCING Normal Mode failed!!!\n");
9442 if (val
& IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
) {
9443 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9444 bp
->common
.int_block
|= INT_BLOCK_MODE_BW_COMP
;
9446 BNX2X_DEV_INFO("IGU Normal Mode\n");
9448 bnx2x_get_igu_cam_info(bp
);
9453 * set base FW non-default (fast path) status block id, this value is
9454 * used to initialize the fw_sb_id saved on the fp/queue structure to
9455 * determine the id used by the FW.
9457 if (CHIP_IS_E1x(bp
))
9458 bp
->base_fw_ndsb
= BP_PORT(bp
) * FP_SB_MAX_E1x
+ BP_L_ID(bp
);
9460 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9461 * the same queue are indicated on the same IGU SB). So we prefer
9462 * FW and IGU SBs to be the same value.
9464 bp
->base_fw_ndsb
= bp
->igu_base_sb
;
9466 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
9467 "base_fw_ndsb %d\n", bp
->igu_dsb_id
, bp
->igu_base_sb
,
9468 bp
->igu_sb_cnt
, bp
->base_fw_ndsb
);
9471 * Initialize MF configuration
9478 if (!CHIP_IS_E1(bp
) && !BP_NOMCP(bp
)) {
9479 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9480 bp
->common
.shmem2_base
, SHMEM2_RD(bp
, size
),
9481 (u32
)offsetof(struct shmem2_region
, mf_cfg_addr
));
9483 if (SHMEM2_HAS(bp
, mf_cfg_addr
))
9484 bp
->common
.mf_cfg_base
= SHMEM2_RD(bp
, mf_cfg_addr
);
9486 bp
->common
.mf_cfg_base
= bp
->common
.shmem_base
+
9487 offsetof(struct shmem_region
, func_mb
) +
9488 E1H_FUNC_MAX
* sizeof(struct drv_func_mb
);
9490 * get mf configuration:
9491 * 1. existence of MF configuration
9492 * 2. MAC address must be legal (check only upper bytes)
9493 * for Switch-Independent mode;
9494 * OVLAN must be legal for Switch-Dependent mode
9495 * 3. SF_MODE configures specific MF mode
9497 if (bp
->common
.mf_cfg_base
!= SHMEM_MF_CFG_ADDR_NONE
) {
9498 /* get mf configuration */
9500 dev_info
.shared_feature_config
.config
);
9501 val
&= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK
;
9504 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT
:
9505 val
= MF_CFG_RD(bp
, func_mf_config
[func
].
9507 /* check for legal mac (upper bytes)*/
9508 if (val
!= 0xffff) {
9509 bp
->mf_mode
= MULTI_FUNCTION_SI
;
9510 bp
->mf_config
[vn
] = MF_CFG_RD(bp
,
9511 func_mf_config
[func
].config
);
9513 BNX2X_DEV_INFO("illegal MAC address "
9516 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED
:
9517 /* get OV configuration */
9519 func_mf_config
[FUNC_0
].e1hov_tag
);
9520 val
&= FUNC_MF_CFG_E1HOV_TAG_MASK
;
9522 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
) {
9523 bp
->mf_mode
= MULTI_FUNCTION_SD
;
9524 bp
->mf_config
[vn
] = MF_CFG_RD(bp
,
9525 func_mf_config
[func
].config
);
9527 BNX2X_DEV_INFO("illegal OV for SD\n");
9530 /* Unknown configuration: reset mf_config */
9531 bp
->mf_config
[vn
] = 0;
9532 BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val
);
9536 BNX2X_DEV_INFO("%s function mode\n",
9537 IS_MF(bp
) ? "multi" : "single");
9539 switch (bp
->mf_mode
) {
9540 case MULTI_FUNCTION_SD
:
9541 val
= MF_CFG_RD(bp
, func_mf_config
[func
].e1hov_tag
) &
9542 FUNC_MF_CFG_E1HOV_TAG_MASK
;
9543 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
) {
9545 bp
->path_has_ovlan
= true;
9547 BNX2X_DEV_INFO("MF OV for func %d is %d "
9548 "(0x%04x)\n", func
, bp
->mf_ov
,
9551 dev_err(&bp
->pdev
->dev
,
9552 "No valid MF OV for func %d, "
9553 "aborting\n", func
);
9557 case MULTI_FUNCTION_SI
:
9558 BNX2X_DEV_INFO("func %d is in MF "
9559 "switch-independent mode\n", func
);
9563 dev_err(&bp
->pdev
->dev
,
9564 "VN %d is in a single function mode, "
9571 /* check if other port on the path needs ovlan:
9572 * Since MF configuration is shared between ports
9573 * Possible mixed modes are only
9574 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9576 if (CHIP_MODE_IS_4_PORT(bp
) &&
9577 !bp
->path_has_ovlan
&&
9579 bp
->common
.mf_cfg_base
!= SHMEM_MF_CFG_ADDR_NONE
) {
9580 u8 other_port
= !BP_PORT(bp
);
9581 u8 other_func
= BP_PATH(bp
) + 2*other_port
;
9583 func_mf_config
[other_func
].e1hov_tag
);
9584 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
)
9585 bp
->path_has_ovlan
= true;
9589 /* adjust igu_sb_cnt to MF for E1x */
9590 if (CHIP_IS_E1x(bp
) && IS_MF(bp
))
9591 bp
->igu_sb_cnt
/= E1HVN_MAX
;
9594 bnx2x_get_port_hwinfo(bp
);
9596 if (!BP_NOMCP(bp
)) {
9598 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
9599 DRV_MSG_SEQ_NUMBER_MASK
);
9600 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
9603 /* Get MAC addresses */
9604 bnx2x_get_mac_hwinfo(bp
);
9607 bnx2x_get_cnic_info(bp
);
9610 /* Get current FW pulse sequence */
9611 if (!BP_NOMCP(bp
)) {
9612 int mb_idx
= BP_FW_MB_IDX(bp
);
9614 bp
->fw_drv_pulse_wr_seq
=
9615 (SHMEM_RD(bp
, func_mb
[mb_idx
].drv_pulse_mb
) &
9616 DRV_PULSE_SEQ_MASK
);
9617 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp
->fw_drv_pulse_wr_seq
);
9623 static void __devinit
bnx2x_read_fwinfo(struct bnx2x
*bp
)
9625 int cnt
, i
, block_end
, rodi
;
9626 char vpd_data
[BNX2X_VPD_LEN
+1];
9627 char str_id_reg
[VENDOR_ID_LEN
+1];
9628 char str_id_cap
[VENDOR_ID_LEN
+1];
9631 cnt
= pci_read_vpd(bp
->pdev
, 0, BNX2X_VPD_LEN
, vpd_data
);
9632 memset(bp
->fw_ver
, 0, sizeof(bp
->fw_ver
));
9634 if (cnt
< BNX2X_VPD_LEN
)
9637 i
= pci_vpd_find_tag(vpd_data
, 0, BNX2X_VPD_LEN
,
9638 PCI_VPD_LRDT_RO_DATA
);
9643 block_end
= i
+ PCI_VPD_LRDT_TAG_SIZE
+
9644 pci_vpd_lrdt_size(&vpd_data
[i
]);
9646 i
+= PCI_VPD_LRDT_TAG_SIZE
;
9648 if (block_end
> BNX2X_VPD_LEN
)
9651 rodi
= pci_vpd_find_info_keyword(vpd_data
, i
, block_end
,
9652 PCI_VPD_RO_KEYWORD_MFR_ID
);
9656 len
= pci_vpd_info_field_size(&vpd_data
[rodi
]);
9658 if (len
!= VENDOR_ID_LEN
)
9661 rodi
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
9663 /* vendor specific info */
9664 snprintf(str_id_reg
, VENDOR_ID_LEN
+ 1, "%04x", PCI_VENDOR_ID_DELL
);
9665 snprintf(str_id_cap
, VENDOR_ID_LEN
+ 1, "%04X", PCI_VENDOR_ID_DELL
);
9666 if (!strncmp(str_id_reg
, &vpd_data
[rodi
], VENDOR_ID_LEN
) ||
9667 !strncmp(str_id_cap
, &vpd_data
[rodi
], VENDOR_ID_LEN
)) {
9669 rodi
= pci_vpd_find_info_keyword(vpd_data
, i
, block_end
,
9670 PCI_VPD_RO_KEYWORD_VENDOR0
);
9672 len
= pci_vpd_info_field_size(&vpd_data
[rodi
]);
9674 rodi
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
9676 if (len
< 32 && (len
+ rodi
) <= BNX2X_VPD_LEN
) {
9677 memcpy(bp
->fw_ver
, &vpd_data
[rodi
], len
);
9678 bp
->fw_ver
[len
] = ' ';
9687 static void __devinit
bnx2x_set_modes_bitmap(struct bnx2x
*bp
)
9691 if (CHIP_REV_IS_FPGA(bp
))
9692 SET_FLAGS(flags
, MODE_FPGA
);
9693 else if (CHIP_REV_IS_EMUL(bp
))
9694 SET_FLAGS(flags
, MODE_EMUL
);
9696 SET_FLAGS(flags
, MODE_ASIC
);
9698 if (CHIP_MODE_IS_4_PORT(bp
))
9699 SET_FLAGS(flags
, MODE_PORT4
);
9701 SET_FLAGS(flags
, MODE_PORT2
);
9704 SET_FLAGS(flags
, MODE_E2
);
9705 else if (CHIP_IS_E3(bp
)) {
9706 SET_FLAGS(flags
, MODE_E3
);
9707 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
9708 SET_FLAGS(flags
, MODE_E3_A0
);
9709 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
9710 SET_FLAGS(flags
, MODE_E3_B0
| MODE_COS3
);
9714 SET_FLAGS(flags
, MODE_MF
);
9715 switch (bp
->mf_mode
) {
9716 case MULTI_FUNCTION_SD
:
9717 SET_FLAGS(flags
, MODE_MF_SD
);
9719 case MULTI_FUNCTION_SI
:
9720 SET_FLAGS(flags
, MODE_MF_SI
);
9724 SET_FLAGS(flags
, MODE_SF
);
9726 #if defined(__LITTLE_ENDIAN)
9727 SET_FLAGS(flags
, MODE_LITTLE_ENDIAN
);
9728 #else /*(__BIG_ENDIAN)*/
9729 SET_FLAGS(flags
, MODE_BIG_ENDIAN
);
9731 INIT_MODE_FLAGS(bp
) = flags
;
9734 static int __devinit
bnx2x_init_bp(struct bnx2x
*bp
)
9740 mutex_init(&bp
->port
.phy_mutex
);
9741 mutex_init(&bp
->fw_mb_mutex
);
9742 spin_lock_init(&bp
->stats_lock
);
9744 mutex_init(&bp
->cnic_mutex
);
9747 INIT_DELAYED_WORK(&bp
->sp_task
, bnx2x_sp_task
);
9748 INIT_DELAYED_WORK(&bp
->sp_rtnl_task
, bnx2x_sp_rtnl_task
);
9749 INIT_DELAYED_WORK(&bp
->period_task
, bnx2x_period_task
);
9750 rc
= bnx2x_get_hwinfo(bp
);
9754 bnx2x_set_modes_bitmap(bp
);
9756 rc
= bnx2x_alloc_mem_bp(bp
);
9760 bnx2x_read_fwinfo(bp
);
9764 /* need to reset chip if undi was active */
9766 bnx2x_undi_unload(bp
);
9768 if (CHIP_REV_IS_FPGA(bp
))
9769 dev_err(&bp
->pdev
->dev
, "FPGA detected\n");
9771 if (BP_NOMCP(bp
) && (func
== 0))
9772 dev_err(&bp
->pdev
->dev
, "MCP disabled, "
9773 "must load devices in order!\n");
9775 bp
->multi_mode
= multi_mode
;
9779 bp
->flags
&= ~TPA_ENABLE_FLAG
;
9780 bp
->dev
->features
&= ~NETIF_F_LRO
;
9782 bp
->flags
|= TPA_ENABLE_FLAG
;
9783 bp
->dev
->features
|= NETIF_F_LRO
;
9785 bp
->disable_tpa
= disable_tpa
;
9788 bp
->dropless_fc
= 0;
9790 bp
->dropless_fc
= dropless_fc
;
9794 bp
->tx_ring_size
= MAX_TX_AVAIL
;
9796 /* make sure that the numbers are in the right granularity */
9797 bp
->tx_ticks
= (50 / BNX2X_BTR
) * BNX2X_BTR
;
9798 bp
->rx_ticks
= (25 / BNX2X_BTR
) * BNX2X_BTR
;
9800 timer_interval
= (CHIP_REV_IS_SLOW(bp
) ? 5*HZ
: HZ
);
9801 bp
->current_interval
= (poll
? poll
: timer_interval
);
9803 init_timer(&bp
->timer
);
9804 bp
->timer
.expires
= jiffies
+ bp
->current_interval
;
9805 bp
->timer
.data
= (unsigned long) bp
;
9806 bp
->timer
.function
= bnx2x_timer
;
9808 bnx2x_dcbx_set_state(bp
, true, BNX2X_DCBX_ENABLED_ON_NEG_ON
);
9809 bnx2x_dcbx_init_params(bp
);
9812 if (CHIP_IS_E1x(bp
))
9813 bp
->cnic_base_cl_id
= FP_SB_MAX_E1x
;
9815 bp
->cnic_base_cl_id
= FP_SB_MAX_E2
;
9818 /* multiple tx priority */
9819 if (CHIP_IS_E1x(bp
))
9820 bp
->max_cos
= BNX2X_MULTI_TX_COS_E1X
;
9821 if (CHIP_IS_E2(bp
) || CHIP_IS_E3A0(bp
))
9822 bp
->max_cos
= BNX2X_MULTI_TX_COS_E2_E3A0
;
9823 if (CHIP_IS_E3B0(bp
))
9824 bp
->max_cos
= BNX2X_MULTI_TX_COS_E3B0
;
9830 /****************************************************************************
9831 * General service functions
9832 ****************************************************************************/
9835 * net_device service functions
9838 /* called with rtnl_lock */
9839 static int bnx2x_open(struct net_device
*dev
)
9841 struct bnx2x
*bp
= netdev_priv(dev
);
9842 bool global
= false;
9843 int other_engine
= BP_PATH(bp
) ? 0 : 1;
9844 u32 other_load_counter
, load_counter
;
9846 netif_carrier_off(dev
);
9848 bnx2x_set_power_state(bp
, PCI_D0
);
9850 other_load_counter
= bnx2x_get_load_cnt(bp
, other_engine
);
9851 load_counter
= bnx2x_get_load_cnt(bp
, BP_PATH(bp
));
9854 * If parity had happen during the unload, then attentions
9855 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
9856 * want the first function loaded on the current engine to
9857 * complete the recovery.
9859 if (!bnx2x_reset_is_done(bp
, BP_PATH(bp
)) ||
9860 bnx2x_chk_parity_attn(bp
, &global
, true))
9863 * If there are attentions and they are in a global
9864 * blocks, set the GLOBAL_RESET bit regardless whether
9865 * it will be this function that will complete the
9869 bnx2x_set_reset_global(bp
);
9872 * Only the first function on the current engine should
9873 * try to recover in open. In case of attentions in
9874 * global blocks only the first in the chip should try
9877 if ((!load_counter
&&
9878 (!global
|| !other_load_counter
)) &&
9879 bnx2x_trylock_leader_lock(bp
) &&
9880 !bnx2x_leader_reset(bp
)) {
9881 netdev_info(bp
->dev
, "Recovered in open\n");
9885 /* recovery has failed... */
9886 bnx2x_set_power_state(bp
, PCI_D3hot
);
9887 bp
->recovery_state
= BNX2X_RECOVERY_FAILED
;
9889 netdev_err(bp
->dev
, "Recovery flow hasn't been properly"
9890 " completed yet. Try again later. If u still see this"
9891 " message after a few retries then power cycle is"
9897 bp
->recovery_state
= BNX2X_RECOVERY_DONE
;
9898 return bnx2x_nic_load(bp
, LOAD_OPEN
);
9901 /* called with rtnl_lock */
9902 static int bnx2x_close(struct net_device
*dev
)
9904 struct bnx2x
*bp
= netdev_priv(dev
);
9906 /* Unload the driver, release IRQs */
9907 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
);
9910 bnx2x_set_power_state(bp
, PCI_D3hot
);
9915 static inline int bnx2x_init_mcast_macs_list(struct bnx2x
*bp
,
9916 struct bnx2x_mcast_ramrod_params
*p
)
9918 int mc_count
= netdev_mc_count(bp
->dev
);
9919 struct bnx2x_mcast_list_elem
*mc_mac
=
9920 kzalloc(sizeof(*mc_mac
) * mc_count
, GFP_ATOMIC
);
9921 struct netdev_hw_addr
*ha
;
9926 INIT_LIST_HEAD(&p
->mcast_list
);
9928 netdev_for_each_mc_addr(ha
, bp
->dev
) {
9929 mc_mac
->mac
= bnx2x_mc_addr(ha
);
9930 list_add_tail(&mc_mac
->link
, &p
->mcast_list
);
9934 p
->mcast_list_len
= mc_count
;
9939 static inline void bnx2x_free_mcast_macs_list(
9940 struct bnx2x_mcast_ramrod_params
*p
)
9942 struct bnx2x_mcast_list_elem
*mc_mac
=
9943 list_first_entry(&p
->mcast_list
, struct bnx2x_mcast_list_elem
,
9951 * bnx2x_set_uc_list - configure a new unicast MACs list.
9953 * @bp: driver handle
9955 * We will use zero (0) as a MAC type for these MACs.
9957 static inline int bnx2x_set_uc_list(struct bnx2x
*bp
)
9960 struct net_device
*dev
= bp
->dev
;
9961 struct netdev_hw_addr
*ha
;
9962 struct bnx2x_vlan_mac_obj
*mac_obj
= &bp
->fp
->mac_obj
;
9963 unsigned long ramrod_flags
= 0;
9965 /* First schedule a cleanup up of old configuration */
9966 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_UC_LIST_MAC
, false);
9968 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc
);
9972 netdev_for_each_uc_addr(ha
, dev
) {
9973 rc
= bnx2x_set_mac_one(bp
, bnx2x_uc_addr(ha
), mac_obj
, true,
9974 BNX2X_UC_LIST_MAC
, &ramrod_flags
);
9976 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
9982 /* Execute the pending commands */
9983 __set_bit(RAMROD_CONT
, &ramrod_flags
);
9984 return bnx2x_set_mac_one(bp
, NULL
, mac_obj
, false /* don't care */,
9985 BNX2X_UC_LIST_MAC
, &ramrod_flags
);
9988 static inline int bnx2x_set_mc_list(struct bnx2x
*bp
)
9990 struct net_device
*dev
= bp
->dev
;
9991 struct bnx2x_mcast_ramrod_params rparam
= {0};
9994 rparam
.mcast_obj
= &bp
->mcast_obj
;
9996 /* first, clear all configured multicast MACs */
9997 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
9999 BNX2X_ERR("Failed to clear multicast "
10000 "configuration: %d\n", rc
);
10004 /* then, configure a new MACs list */
10005 if (netdev_mc_count(dev
)) {
10006 rc
= bnx2x_init_mcast_macs_list(bp
, &rparam
);
10008 BNX2X_ERR("Failed to create multicast MACs "
10013 /* Now add the new MACs */
10014 rc
= bnx2x_config_mcast(bp
, &rparam
,
10015 BNX2X_MCAST_CMD_ADD
);
10017 BNX2X_ERR("Failed to set a new multicast "
10018 "configuration: %d\n", rc
);
10020 bnx2x_free_mcast_macs_list(&rparam
);
10027 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10028 void bnx2x_set_rx_mode(struct net_device
*dev
)
10030 struct bnx2x
*bp
= netdev_priv(dev
);
10031 u32 rx_mode
= BNX2X_RX_MODE_NORMAL
;
10033 if (bp
->state
!= BNX2X_STATE_OPEN
) {
10034 DP(NETIF_MSG_IFUP
, "state is %x, returning\n", bp
->state
);
10038 DP(NETIF_MSG_IFUP
, "dev->flags = %x\n", bp
->dev
->flags
);
10040 if (dev
->flags
& IFF_PROMISC
)
10041 rx_mode
= BNX2X_RX_MODE_PROMISC
;
10042 else if ((dev
->flags
& IFF_ALLMULTI
) ||
10043 ((netdev_mc_count(dev
) > BNX2X_MAX_MULTICAST
) &&
10045 rx_mode
= BNX2X_RX_MODE_ALLMULTI
;
10047 /* some multicasts */
10048 if (bnx2x_set_mc_list(bp
) < 0)
10049 rx_mode
= BNX2X_RX_MODE_ALLMULTI
;
10051 if (bnx2x_set_uc_list(bp
) < 0)
10052 rx_mode
= BNX2X_RX_MODE_PROMISC
;
10055 bp
->rx_mode
= rx_mode
;
10057 /* Schedule the rx_mode command */
10058 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
)) {
10059 set_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
);
10063 bnx2x_set_storm_rx_mode(bp
);
10066 /* called with rtnl_lock */
10067 static int bnx2x_mdio_read(struct net_device
*netdev
, int prtad
,
10068 int devad
, u16 addr
)
10070 struct bnx2x
*bp
= netdev_priv(netdev
);
10074 DP(NETIF_MSG_LINK
, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10075 prtad
, devad
, addr
);
10077 /* The HW expects different devad if CL22 is used */
10078 devad
= (devad
== MDIO_DEVAD_NONE
) ? DEFAULT_PHY_DEV_ADDR
: devad
;
10080 bnx2x_acquire_phy_lock(bp
);
10081 rc
= bnx2x_phy_read(&bp
->link_params
, prtad
, devad
, addr
, &value
);
10082 bnx2x_release_phy_lock(bp
);
10083 DP(NETIF_MSG_LINK
, "mdio_read_val 0x%x rc = 0x%x\n", value
, rc
);
10090 /* called with rtnl_lock */
10091 static int bnx2x_mdio_write(struct net_device
*netdev
, int prtad
, int devad
,
10092 u16 addr
, u16 value
)
10094 struct bnx2x
*bp
= netdev_priv(netdev
);
10097 DP(NETIF_MSG_LINK
, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10098 " value 0x%x\n", prtad
, devad
, addr
, value
);
10100 /* The HW expects different devad if CL22 is used */
10101 devad
= (devad
== MDIO_DEVAD_NONE
) ? DEFAULT_PHY_DEV_ADDR
: devad
;
10103 bnx2x_acquire_phy_lock(bp
);
10104 rc
= bnx2x_phy_write(&bp
->link_params
, prtad
, devad
, addr
, value
);
10105 bnx2x_release_phy_lock(bp
);
10109 /* called with rtnl_lock */
10110 static int bnx2x_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
10112 struct bnx2x
*bp
= netdev_priv(dev
);
10113 struct mii_ioctl_data
*mdio
= if_mii(ifr
);
10115 DP(NETIF_MSG_LINK
, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10116 mdio
->phy_id
, mdio
->reg_num
, mdio
->val_in
);
10118 if (!netif_running(dev
))
10121 return mdio_mii_ioctl(&bp
->mdio
, mdio
, cmd
);
10124 #ifdef CONFIG_NET_POLL_CONTROLLER
10125 static void poll_bnx2x(struct net_device
*dev
)
10127 struct bnx2x
*bp
= netdev_priv(dev
);
10129 disable_irq(bp
->pdev
->irq
);
10130 bnx2x_interrupt(bp
->pdev
->irq
, dev
);
10131 enable_irq(bp
->pdev
->irq
);
10135 static const struct net_device_ops bnx2x_netdev_ops
= {
10136 .ndo_open
= bnx2x_open
,
10137 .ndo_stop
= bnx2x_close
,
10138 .ndo_start_xmit
= bnx2x_start_xmit
,
10139 .ndo_select_queue
= bnx2x_select_queue
,
10140 .ndo_set_rx_mode
= bnx2x_set_rx_mode
,
10141 .ndo_set_mac_address
= bnx2x_change_mac_addr
,
10142 .ndo_validate_addr
= eth_validate_addr
,
10143 .ndo_do_ioctl
= bnx2x_ioctl
,
10144 .ndo_change_mtu
= bnx2x_change_mtu
,
10145 .ndo_fix_features
= bnx2x_fix_features
,
10146 .ndo_set_features
= bnx2x_set_features
,
10147 .ndo_tx_timeout
= bnx2x_tx_timeout
,
10148 #ifdef CONFIG_NET_POLL_CONTROLLER
10149 .ndo_poll_controller
= poll_bnx2x
,
10151 .ndo_setup_tc
= bnx2x_setup_tc
,
10153 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10154 .ndo_fcoe_get_wwn
= bnx2x_fcoe_get_wwn
,
10158 static inline int bnx2x_set_coherency_mask(struct bnx2x
*bp
)
10160 struct device
*dev
= &bp
->pdev
->dev
;
10162 if (dma_set_mask(dev
, DMA_BIT_MASK(64)) == 0) {
10163 bp
->flags
|= USING_DAC_FLAG
;
10164 if (dma_set_coherent_mask(dev
, DMA_BIT_MASK(64)) != 0) {
10165 dev_err(dev
, "dma_set_coherent_mask failed, "
10169 } else if (dma_set_mask(dev
, DMA_BIT_MASK(32)) != 0) {
10170 dev_err(dev
, "System does not support DMA, aborting\n");
10177 static int __devinit
bnx2x_init_dev(struct pci_dev
*pdev
,
10178 struct net_device
*dev
,
10179 unsigned long board_type
)
10184 SET_NETDEV_DEV(dev
, &pdev
->dev
);
10185 bp
= netdev_priv(dev
);
10190 bp
->pf_num
= PCI_FUNC(pdev
->devfn
);
10192 rc
= pci_enable_device(pdev
);
10194 dev_err(&bp
->pdev
->dev
,
10195 "Cannot enable PCI device, aborting\n");
10199 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
10200 dev_err(&bp
->pdev
->dev
,
10201 "Cannot find PCI device base address, aborting\n");
10203 goto err_out_disable
;
10206 if (!(pci_resource_flags(pdev
, 2) & IORESOURCE_MEM
)) {
10207 dev_err(&bp
->pdev
->dev
, "Cannot find second PCI device"
10208 " base address, aborting\n");
10210 goto err_out_disable
;
10213 if (atomic_read(&pdev
->enable_cnt
) == 1) {
10214 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
10216 dev_err(&bp
->pdev
->dev
,
10217 "Cannot obtain PCI resources, aborting\n");
10218 goto err_out_disable
;
10221 pci_set_master(pdev
);
10222 pci_save_state(pdev
);
10225 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
10226 if (bp
->pm_cap
== 0) {
10227 dev_err(&bp
->pdev
->dev
,
10228 "Cannot find power management capability, aborting\n");
10230 goto err_out_release
;
10233 if (!pci_is_pcie(pdev
)) {
10234 dev_err(&bp
->pdev
->dev
, "Not PCI Express, aborting\n");
10236 goto err_out_release
;
10239 rc
= bnx2x_set_coherency_mask(bp
);
10241 goto err_out_release
;
10243 dev
->mem_start
= pci_resource_start(pdev
, 0);
10244 dev
->base_addr
= dev
->mem_start
;
10245 dev
->mem_end
= pci_resource_end(pdev
, 0);
10247 dev
->irq
= pdev
->irq
;
10249 bp
->regview
= pci_ioremap_bar(pdev
, 0);
10250 if (!bp
->regview
) {
10251 dev_err(&bp
->pdev
->dev
,
10252 "Cannot map register space, aborting\n");
10254 goto err_out_release
;
10257 bnx2x_set_power_state(bp
, PCI_D0
);
10259 /* clean indirect addresses */
10260 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
10261 PCICFG_VENDOR_ID_OFFSET
);
10262 /* Clean the following indirect addresses for all functions since it
10263 * is not used by the driver.
10265 REG_WR(bp
, PXP2_REG_PGL_ADDR_88_F0
, 0);
10266 REG_WR(bp
, PXP2_REG_PGL_ADDR_8C_F0
, 0);
10267 REG_WR(bp
, PXP2_REG_PGL_ADDR_90_F0
, 0);
10268 REG_WR(bp
, PXP2_REG_PGL_ADDR_94_F0
, 0);
10269 REG_WR(bp
, PXP2_REG_PGL_ADDR_88_F1
, 0);
10270 REG_WR(bp
, PXP2_REG_PGL_ADDR_8C_F1
, 0);
10271 REG_WR(bp
, PXP2_REG_PGL_ADDR_90_F1
, 0);
10272 REG_WR(bp
, PXP2_REG_PGL_ADDR_94_F1
, 0);
10275 * Enable internal target-read (in case we are probed after PF FLR).
10276 * Must be done prior to any BAR read access. Only for 57712 and up
10278 if (board_type
!= BCM57710
&&
10279 board_type
!= BCM57711
&&
10280 board_type
!= BCM57711E
)
10281 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ
, 1);
10283 /* Reset the load counter */
10284 bnx2x_clear_load_cnt(bp
);
10286 dev
->watchdog_timeo
= TX_TIMEOUT
;
10288 dev
->netdev_ops
= &bnx2x_netdev_ops
;
10289 bnx2x_set_ethtool_ops(dev
);
10291 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
10292 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
|
10293 NETIF_F_RXCSUM
| NETIF_F_LRO
| NETIF_F_HW_VLAN_TX
;
10295 dev
->vlan_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
10296 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
| NETIF_F_HIGHDMA
;
10298 dev
->features
|= dev
->hw_features
| NETIF_F_HW_VLAN_RX
;
10299 if (bp
->flags
& USING_DAC_FLAG
)
10300 dev
->features
|= NETIF_F_HIGHDMA
;
10302 /* Add Loopback capability to the device */
10303 dev
->hw_features
|= NETIF_F_LOOPBACK
;
10306 dev
->dcbnl_ops
= &bnx2x_dcbnl_ops
;
10309 /* get_port_hwinfo() will set prtad and mmds properly */
10310 bp
->mdio
.prtad
= MDIO_PRTAD_NONE
;
10312 bp
->mdio
.mode_support
= MDIO_SUPPORTS_C45
| MDIO_EMULATE_C22
;
10313 bp
->mdio
.dev
= dev
;
10314 bp
->mdio
.mdio_read
= bnx2x_mdio_read
;
10315 bp
->mdio
.mdio_write
= bnx2x_mdio_write
;
10320 if (atomic_read(&pdev
->enable_cnt
) == 1)
10321 pci_release_regions(pdev
);
10324 pci_disable_device(pdev
);
10325 pci_set_drvdata(pdev
, NULL
);
10331 static void __devinit
bnx2x_get_pcie_width_speed(struct bnx2x
*bp
,
10332 int *width
, int *speed
)
10334 u32 val
= REG_RD(bp
, PCICFG_OFFSET
+ PCICFG_LINK_CONTROL
);
10336 *width
= (val
& PCICFG_LINK_WIDTH
) >> PCICFG_LINK_WIDTH_SHIFT
;
10338 /* return value of 1=2.5GHz 2=5GHz */
10339 *speed
= (val
& PCICFG_LINK_SPEED
) >> PCICFG_LINK_SPEED_SHIFT
;
10342 static int bnx2x_check_firmware(struct bnx2x
*bp
)
10344 const struct firmware
*firmware
= bp
->firmware
;
10345 struct bnx2x_fw_file_hdr
*fw_hdr
;
10346 struct bnx2x_fw_file_section
*sections
;
10347 u32 offset
, len
, num_ops
;
10352 if (firmware
->size
< sizeof(struct bnx2x_fw_file_hdr
))
10355 fw_hdr
= (struct bnx2x_fw_file_hdr
*)firmware
->data
;
10356 sections
= (struct bnx2x_fw_file_section
*)fw_hdr
;
10358 /* Make sure none of the offsets and sizes make us read beyond
10359 * the end of the firmware data */
10360 for (i
= 0; i
< sizeof(*fw_hdr
) / sizeof(*sections
); i
++) {
10361 offset
= be32_to_cpu(sections
[i
].offset
);
10362 len
= be32_to_cpu(sections
[i
].len
);
10363 if (offset
+ len
> firmware
->size
) {
10364 dev_err(&bp
->pdev
->dev
,
10365 "Section %d length is out of bounds\n", i
);
10370 /* Likewise for the init_ops offsets */
10371 offset
= be32_to_cpu(fw_hdr
->init_ops_offsets
.offset
);
10372 ops_offsets
= (u16
*)(firmware
->data
+ offset
);
10373 num_ops
= be32_to_cpu(fw_hdr
->init_ops
.len
) / sizeof(struct raw_op
);
10375 for (i
= 0; i
< be32_to_cpu(fw_hdr
->init_ops_offsets
.len
) / 2; i
++) {
10376 if (be16_to_cpu(ops_offsets
[i
]) > num_ops
) {
10377 dev_err(&bp
->pdev
->dev
,
10378 "Section offset %d is out of bounds\n", i
);
10383 /* Check FW version */
10384 offset
= be32_to_cpu(fw_hdr
->fw_version
.offset
);
10385 fw_ver
= firmware
->data
+ offset
;
10386 if ((fw_ver
[0] != BCM_5710_FW_MAJOR_VERSION
) ||
10387 (fw_ver
[1] != BCM_5710_FW_MINOR_VERSION
) ||
10388 (fw_ver
[2] != BCM_5710_FW_REVISION_VERSION
) ||
10389 (fw_ver
[3] != BCM_5710_FW_ENGINEERING_VERSION
)) {
10390 dev_err(&bp
->pdev
->dev
,
10391 "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10392 fw_ver
[0], fw_ver
[1], fw_ver
[2],
10393 fw_ver
[3], BCM_5710_FW_MAJOR_VERSION
,
10394 BCM_5710_FW_MINOR_VERSION
,
10395 BCM_5710_FW_REVISION_VERSION
,
10396 BCM_5710_FW_ENGINEERING_VERSION
);
10403 static inline void be32_to_cpu_n(const u8
*_source
, u8
*_target
, u32 n
)
10405 const __be32
*source
= (const __be32
*)_source
;
10406 u32
*target
= (u32
*)_target
;
10409 for (i
= 0; i
< n
/4; i
++)
10410 target
[i
] = be32_to_cpu(source
[i
]);
10414 Ops array is stored in the following format:
10415 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10417 static inline void bnx2x_prep_ops(const u8
*_source
, u8
*_target
, u32 n
)
10419 const __be32
*source
= (const __be32
*)_source
;
10420 struct raw_op
*target
= (struct raw_op
*)_target
;
10423 for (i
= 0, j
= 0; i
< n
/8; i
++, j
+= 2) {
10424 tmp
= be32_to_cpu(source
[j
]);
10425 target
[i
].op
= (tmp
>> 24) & 0xff;
10426 target
[i
].offset
= tmp
& 0xffffff;
10427 target
[i
].raw_data
= be32_to_cpu(source
[j
+ 1]);
10432 * IRO array is stored in the following format:
10433 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10435 static inline void bnx2x_prep_iro(const u8
*_source
, u8
*_target
, u32 n
)
10437 const __be32
*source
= (const __be32
*)_source
;
10438 struct iro
*target
= (struct iro
*)_target
;
10441 for (i
= 0, j
= 0; i
< n
/sizeof(struct iro
); i
++) {
10442 target
[i
].base
= be32_to_cpu(source
[j
]);
10444 tmp
= be32_to_cpu(source
[j
]);
10445 target
[i
].m1
= (tmp
>> 16) & 0xffff;
10446 target
[i
].m2
= tmp
& 0xffff;
10448 tmp
= be32_to_cpu(source
[j
]);
10449 target
[i
].m3
= (tmp
>> 16) & 0xffff;
10450 target
[i
].size
= tmp
& 0xffff;
10455 static inline void be16_to_cpu_n(const u8
*_source
, u8
*_target
, u32 n
)
10457 const __be16
*source
= (const __be16
*)_source
;
10458 u16
*target
= (u16
*)_target
;
10461 for (i
= 0; i
< n
/2; i
++)
10462 target
[i
] = be16_to_cpu(source
[i
]);
10465 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
10467 u32 len = be32_to_cpu(fw_hdr->arr.len); \
10468 bp->arr = kmalloc(len, GFP_KERNEL); \
10470 pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10473 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
10474 (u8 *)bp->arr, len); \
10477 int bnx2x_init_firmware(struct bnx2x
*bp
)
10479 const char *fw_file_name
;
10480 struct bnx2x_fw_file_hdr
*fw_hdr
;
10483 if (CHIP_IS_E1(bp
))
10484 fw_file_name
= FW_FILE_NAME_E1
;
10485 else if (CHIP_IS_E1H(bp
))
10486 fw_file_name
= FW_FILE_NAME_E1H
;
10487 else if (!CHIP_IS_E1x(bp
))
10488 fw_file_name
= FW_FILE_NAME_E2
;
10490 BNX2X_ERR("Unsupported chip revision\n");
10494 BNX2X_DEV_INFO("Loading %s\n", fw_file_name
);
10496 rc
= request_firmware(&bp
->firmware
, fw_file_name
, &bp
->pdev
->dev
);
10498 BNX2X_ERR("Can't load firmware file %s\n", fw_file_name
);
10499 goto request_firmware_exit
;
10502 rc
= bnx2x_check_firmware(bp
);
10504 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name
);
10505 goto request_firmware_exit
;
10508 fw_hdr
= (struct bnx2x_fw_file_hdr
*)bp
->firmware
->data
;
10510 /* Initialize the pointers to the init arrays */
10512 BNX2X_ALLOC_AND_SET(init_data
, request_firmware_exit
, be32_to_cpu_n
);
10515 BNX2X_ALLOC_AND_SET(init_ops
, init_ops_alloc_err
, bnx2x_prep_ops
);
10518 BNX2X_ALLOC_AND_SET(init_ops_offsets
, init_offsets_alloc_err
,
10521 /* STORMs firmware */
10522 INIT_TSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
10523 be32_to_cpu(fw_hdr
->tsem_int_table_data
.offset
);
10524 INIT_TSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
10525 be32_to_cpu(fw_hdr
->tsem_pram_data
.offset
);
10526 INIT_USEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
10527 be32_to_cpu(fw_hdr
->usem_int_table_data
.offset
);
10528 INIT_USEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
10529 be32_to_cpu(fw_hdr
->usem_pram_data
.offset
);
10530 INIT_XSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
10531 be32_to_cpu(fw_hdr
->xsem_int_table_data
.offset
);
10532 INIT_XSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
10533 be32_to_cpu(fw_hdr
->xsem_pram_data
.offset
);
10534 INIT_CSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
10535 be32_to_cpu(fw_hdr
->csem_int_table_data
.offset
);
10536 INIT_CSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
10537 be32_to_cpu(fw_hdr
->csem_pram_data
.offset
);
10539 BNX2X_ALLOC_AND_SET(iro_arr
, iro_alloc_err
, bnx2x_prep_iro
);
10544 kfree(bp
->init_ops_offsets
);
10545 init_offsets_alloc_err
:
10546 kfree(bp
->init_ops
);
10547 init_ops_alloc_err
:
10548 kfree(bp
->init_data
);
10549 request_firmware_exit
:
10550 release_firmware(bp
->firmware
);
10555 static void bnx2x_release_firmware(struct bnx2x
*bp
)
10557 kfree(bp
->init_ops_offsets
);
10558 kfree(bp
->init_ops
);
10559 kfree(bp
->init_data
);
10560 release_firmware(bp
->firmware
);
10564 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv
= {
10565 .init_hw_cmn_chip
= bnx2x_init_hw_common_chip
,
10566 .init_hw_cmn
= bnx2x_init_hw_common
,
10567 .init_hw_port
= bnx2x_init_hw_port
,
10568 .init_hw_func
= bnx2x_init_hw_func
,
10570 .reset_hw_cmn
= bnx2x_reset_common
,
10571 .reset_hw_port
= bnx2x_reset_port
,
10572 .reset_hw_func
= bnx2x_reset_func
,
10574 .gunzip_init
= bnx2x_gunzip_init
,
10575 .gunzip_end
= bnx2x_gunzip_end
,
10577 .init_fw
= bnx2x_init_firmware
,
10578 .release_fw
= bnx2x_release_firmware
,
10581 void bnx2x__init_func_obj(struct bnx2x
*bp
)
10583 /* Prepare DMAE related driver resources */
10584 bnx2x_setup_dmae(bp
);
10586 bnx2x_init_func_obj(bp
, &bp
->func_obj
,
10587 bnx2x_sp(bp
, func_rdata
),
10588 bnx2x_sp_mapping(bp
, func_rdata
),
10589 &bnx2x_func_sp_drv
);
10592 /* must be called after sriov-enable */
10593 static inline int bnx2x_set_qm_cid_count(struct bnx2x
*bp
)
10595 int cid_count
= BNX2X_L2_CID_COUNT(bp
);
10598 cid_count
+= CNIC_CID_MAX
;
10600 return roundup(cid_count
, QM_CID_ROUND
);
10604 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10609 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev
*pdev
)
10614 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
10617 * If MSI-X is not supported - return number of SBs needed to support
10618 * one fast path queue: one FP queue + SB for CNIC
10621 return 1 + CNIC_PRESENT
;
10624 * The value in the PCI configuration space is the index of the last
10625 * entry, namely one less than the actual size of the table, which is
10626 * exactly what we want to return from this function: number of all SBs
10627 * without the default SB.
10629 pci_read_config_word(pdev
, pos
+ PCI_MSI_FLAGS
, &control
);
10630 return control
& PCI_MSIX_FLAGS_QSIZE
;
10633 static int __devinit
bnx2x_init_one(struct pci_dev
*pdev
,
10634 const struct pci_device_id
*ent
)
10636 struct net_device
*dev
= NULL
;
10638 int pcie_width
, pcie_speed
;
10639 int rc
, max_non_def_sbs
;
10640 int rx_count
, tx_count
, rss_count
;
10642 * An estimated maximum supported CoS number according to the chip
10644 * We will try to roughly estimate the maximum number of CoSes this chip
10645 * may support in order to minimize the memory allocated for Tx
10646 * netdev_queue's. This number will be accurately calculated during the
10647 * initialization of bp->max_cos based on the chip versions AND chip
10648 * revision in the bnx2x_init_bp().
10650 u8 max_cos_est
= 0;
10652 switch (ent
->driver_data
) {
10656 max_cos_est
= BNX2X_MULTI_TX_COS_E1X
;
10661 max_cos_est
= BNX2X_MULTI_TX_COS_E2_E3A0
;
10670 max_cos_est
= BNX2X_MULTI_TX_COS_E3B0
;
10674 pr_err("Unknown board_type (%ld), aborting\n",
10679 max_non_def_sbs
= bnx2x_get_num_non_def_sbs(pdev
);
10682 * Do not allow the maximum SB count to grow above 16
10683 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
10684 * We will use the FP_SB_MAX_E1x macro for this matter.
10686 max_non_def_sbs
= min_t(int, FP_SB_MAX_E1x
, max_non_def_sbs
);
10688 WARN_ON(!max_non_def_sbs
);
10690 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
10691 rss_count
= max_non_def_sbs
- CNIC_PRESENT
;
10693 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
10694 rx_count
= rss_count
+ FCOE_PRESENT
;
10697 * Maximum number of netdev Tx queues:
10698 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
10700 tx_count
= MAX_TXQS_PER_COS
* max_cos_est
+ FCOE_PRESENT
;
10702 /* dev zeroed in init_etherdev */
10703 dev
= alloc_etherdev_mqs(sizeof(*bp
), tx_count
, rx_count
);
10705 dev_err(&pdev
->dev
, "Cannot allocate net device\n");
10709 bp
= netdev_priv(dev
);
10711 DP(NETIF_MSG_DRV
, "Allocated netdev with %d tx and %d rx queues\n",
10712 tx_count
, rx_count
);
10714 bp
->igu_sb_cnt
= max_non_def_sbs
;
10715 bp
->msg_enable
= debug
;
10716 pci_set_drvdata(pdev
, dev
);
10718 rc
= bnx2x_init_dev(pdev
, dev
, ent
->driver_data
);
10724 DP(NETIF_MSG_DRV
, "max_non_def_sbs %d", max_non_def_sbs
);
10726 rc
= bnx2x_init_bp(bp
);
10728 goto init_one_exit
;
10731 * Map doorbels here as we need the real value of bp->max_cos which
10732 * is initialized in bnx2x_init_bp().
10734 bp
->doorbells
= ioremap_nocache(pci_resource_start(pdev
, 2),
10735 min_t(u64
, BNX2X_DB_SIZE(bp
),
10736 pci_resource_len(pdev
, 2)));
10737 if (!bp
->doorbells
) {
10738 dev_err(&bp
->pdev
->dev
,
10739 "Cannot map doorbell space, aborting\n");
10741 goto init_one_exit
;
10744 /* calc qm_cid_count */
10745 bp
->qm_cid_count
= bnx2x_set_qm_cid_count(bp
);
10748 /* disable FCOE L2 queue for E1x and E3*/
10749 if (CHIP_IS_E1x(bp
) || CHIP_IS_E3(bp
))
10750 bp
->flags
|= NO_FCOE_FLAG
;
10754 /* Configure interrupt mode: try to enable MSI-X/MSI if
10755 * needed, set bp->num_queues appropriately.
10757 bnx2x_set_int_mode(bp
);
10759 /* Add all NAPI objects */
10760 bnx2x_add_all_napi(bp
);
10762 rc
= register_netdev(dev
);
10764 dev_err(&pdev
->dev
, "Cannot register net device\n");
10765 goto init_one_exit
;
10769 if (!NO_FCOE(bp
)) {
10770 /* Add storage MAC address */
10772 dev_addr_add(bp
->dev
, bp
->fip_mac
, NETDEV_HW_ADDR_T_SAN
);
10777 bnx2x_get_pcie_width_speed(bp
, &pcie_width
, &pcie_speed
);
10779 netdev_info(dev
, "%s (%c%d) PCI-E x%d %s found at mem %lx,"
10780 " IRQ %d, ", board_info
[ent
->driver_data
].name
,
10781 (CHIP_REV(bp
) >> 12) + 'A', (CHIP_METAL(bp
) >> 4),
10783 ((!CHIP_IS_E2(bp
) && pcie_speed
== 2) ||
10784 (CHIP_IS_E2(bp
) && pcie_speed
== 1)) ?
10785 "5GHz (Gen2)" : "2.5GHz",
10786 dev
->base_addr
, bp
->pdev
->irq
);
10787 pr_cont("node addr %pM\n", dev
->dev_addr
);
10793 iounmap(bp
->regview
);
10796 iounmap(bp
->doorbells
);
10800 if (atomic_read(&pdev
->enable_cnt
) == 1)
10801 pci_release_regions(pdev
);
10803 pci_disable_device(pdev
);
10804 pci_set_drvdata(pdev
, NULL
);
10809 static void __devexit
bnx2x_remove_one(struct pci_dev
*pdev
)
10811 struct net_device
*dev
= pci_get_drvdata(pdev
);
10815 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
10818 bp
= netdev_priv(dev
);
10821 /* Delete storage MAC address */
10822 if (!NO_FCOE(bp
)) {
10824 dev_addr_del(bp
->dev
, bp
->fip_mac
, NETDEV_HW_ADDR_T_SAN
);
10830 /* Delete app tlvs from dcbnl */
10831 bnx2x_dcbnl_update_applist(bp
, true);
10834 unregister_netdev(dev
);
10836 /* Delete all NAPI objects */
10837 bnx2x_del_all_napi(bp
);
10839 /* Power on: we can't let PCI layer write to us while we are in D3 */
10840 bnx2x_set_power_state(bp
, PCI_D0
);
10842 /* Disable MSI/MSI-X */
10843 bnx2x_disable_msi(bp
);
10846 bnx2x_set_power_state(bp
, PCI_D3hot
);
10848 /* Make sure RESET task is not scheduled before continuing */
10849 cancel_delayed_work_sync(&bp
->sp_rtnl_task
);
10852 iounmap(bp
->regview
);
10855 iounmap(bp
->doorbells
);
10857 bnx2x_free_mem_bp(bp
);
10861 if (atomic_read(&pdev
->enable_cnt
) == 1)
10862 pci_release_regions(pdev
);
10864 pci_disable_device(pdev
);
10865 pci_set_drvdata(pdev
, NULL
);
10868 static int bnx2x_eeh_nic_unload(struct bnx2x
*bp
)
10872 bp
->state
= BNX2X_STATE_ERROR
;
10874 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
10877 bnx2x_cnic_notify(bp
, CNIC_CTL_STOP_CMD
);
10880 bnx2x_tx_disable(bp
);
10882 bnx2x_netif_stop(bp
, 0);
10884 del_timer_sync(&bp
->timer
);
10886 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
10889 bnx2x_free_irq(bp
);
10891 /* Free SKBs, SGEs, TPA pool and driver internals */
10892 bnx2x_free_skbs(bp
);
10894 for_each_rx_queue(bp
, i
)
10895 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
10897 bnx2x_free_mem(bp
);
10899 bp
->state
= BNX2X_STATE_CLOSED
;
10901 netif_carrier_off(bp
->dev
);
10906 static void bnx2x_eeh_recover(struct bnx2x
*bp
)
10910 mutex_init(&bp
->port
.phy_mutex
);
10912 bp
->common
.shmem_base
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
10913 bp
->link_params
.shmem_base
= bp
->common
.shmem_base
;
10914 BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp
->common
.shmem_base
);
10916 if (!bp
->common
.shmem_base
||
10917 (bp
->common
.shmem_base
< 0xA0000) ||
10918 (bp
->common
.shmem_base
>= 0xC0000)) {
10919 BNX2X_DEV_INFO("MCP not active\n");
10920 bp
->flags
|= NO_MCP_FLAG
;
10924 val
= SHMEM_RD(bp
, validity_map
[BP_PORT(bp
)]);
10925 if ((val
& (SHR_MEM_VALIDITY_DEV_INFO
| SHR_MEM_VALIDITY_MB
))
10926 != (SHR_MEM_VALIDITY_DEV_INFO
| SHR_MEM_VALIDITY_MB
))
10927 BNX2X_ERR("BAD MCP validity signature\n");
10929 if (!BP_NOMCP(bp
)) {
10931 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
10932 DRV_MSG_SEQ_NUMBER_MASK
);
10933 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
10938 * bnx2x_io_error_detected - called when PCI error is detected
10939 * @pdev: Pointer to PCI device
10940 * @state: The current pci connection state
10942 * This function is called after a PCI bus error affecting
10943 * this device has been detected.
10945 static pci_ers_result_t
bnx2x_io_error_detected(struct pci_dev
*pdev
,
10946 pci_channel_state_t state
)
10948 struct net_device
*dev
= pci_get_drvdata(pdev
);
10949 struct bnx2x
*bp
= netdev_priv(dev
);
10953 netif_device_detach(dev
);
10955 if (state
== pci_channel_io_perm_failure
) {
10957 return PCI_ERS_RESULT_DISCONNECT
;
10960 if (netif_running(dev
))
10961 bnx2x_eeh_nic_unload(bp
);
10963 pci_disable_device(pdev
);
10967 /* Request a slot reset */
10968 return PCI_ERS_RESULT_NEED_RESET
;
10972 * bnx2x_io_slot_reset - called after the PCI bus has been reset
10973 * @pdev: Pointer to PCI device
10975 * Restart the card from scratch, as if from a cold-boot.
10977 static pci_ers_result_t
bnx2x_io_slot_reset(struct pci_dev
*pdev
)
10979 struct net_device
*dev
= pci_get_drvdata(pdev
);
10980 struct bnx2x
*bp
= netdev_priv(dev
);
10984 if (pci_enable_device(pdev
)) {
10985 dev_err(&pdev
->dev
,
10986 "Cannot re-enable PCI device after reset\n");
10988 return PCI_ERS_RESULT_DISCONNECT
;
10991 pci_set_master(pdev
);
10992 pci_restore_state(pdev
);
10994 if (netif_running(dev
))
10995 bnx2x_set_power_state(bp
, PCI_D0
);
10999 return PCI_ERS_RESULT_RECOVERED
;
11003 * bnx2x_io_resume - called when traffic can start flowing again
11004 * @pdev: Pointer to PCI device
11006 * This callback is called when the error recovery driver tells us that
11007 * its OK to resume normal operation.
11009 static void bnx2x_io_resume(struct pci_dev
*pdev
)
11011 struct net_device
*dev
= pci_get_drvdata(pdev
);
11012 struct bnx2x
*bp
= netdev_priv(dev
);
11014 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
11015 netdev_err(bp
->dev
, "Handling parity error recovery. "
11016 "Try again later\n");
11022 bnx2x_eeh_recover(bp
);
11024 if (netif_running(dev
))
11025 bnx2x_nic_load(bp
, LOAD_NORMAL
);
11027 netif_device_attach(dev
);
11032 static struct pci_error_handlers bnx2x_err_handler
= {
11033 .error_detected
= bnx2x_io_error_detected
,
11034 .slot_reset
= bnx2x_io_slot_reset
,
11035 .resume
= bnx2x_io_resume
,
11038 static struct pci_driver bnx2x_pci_driver
= {
11039 .name
= DRV_MODULE_NAME
,
11040 .id_table
= bnx2x_pci_tbl
,
11041 .probe
= bnx2x_init_one
,
11042 .remove
= __devexit_p(bnx2x_remove_one
),
11043 .suspend
= bnx2x_suspend
,
11044 .resume
= bnx2x_resume
,
11045 .err_handler
= &bnx2x_err_handler
,
11048 static int __init
bnx2x_init(void)
11052 pr_info("%s", version
);
11054 bnx2x_wq
= create_singlethread_workqueue("bnx2x");
11055 if (bnx2x_wq
== NULL
) {
11056 pr_err("Cannot create workqueue\n");
11060 ret
= pci_register_driver(&bnx2x_pci_driver
);
11062 pr_err("Cannot register driver\n");
11063 destroy_workqueue(bnx2x_wq
);
11068 static void __exit
bnx2x_cleanup(void)
11070 pci_unregister_driver(&bnx2x_pci_driver
);
11072 destroy_workqueue(bnx2x_wq
);
11075 void bnx2x_notify_link_changed(struct bnx2x
*bp
)
11077 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ BP_FUNC(bp
)*sizeof(u32
), 1);
11080 module_init(bnx2x_init
);
11081 module_exit(bnx2x_cleanup
);
11085 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11087 * @bp: driver handle
11088 * @set: set or clear the CAM entry
11090 * This function will wait until the ramdord completion returns.
11091 * Return 0 if success, -ENODEV if ramrod doesn't return.
11093 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x
*bp
)
11095 unsigned long ramrod_flags
= 0;
11097 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
11098 return bnx2x_set_mac_one(bp
, bp
->cnic_eth_dev
.iscsi_mac
,
11099 &bp
->iscsi_l2_mac_obj
, true,
11100 BNX2X_ISCSI_ETH_MAC
, &ramrod_flags
);
11103 /* count denotes the number of new completions we have seen */
11104 static void bnx2x_cnic_sp_post(struct bnx2x
*bp
, int count
)
11106 struct eth_spe
*spe
;
11108 #ifdef BNX2X_STOP_ON_ERROR
11109 if (unlikely(bp
->panic
))
11113 spin_lock_bh(&bp
->spq_lock
);
11114 BUG_ON(bp
->cnic_spq_pending
< count
);
11115 bp
->cnic_spq_pending
-= count
;
11118 for (; bp
->cnic_kwq_pending
; bp
->cnic_kwq_pending
--) {
11119 u16 type
= (le16_to_cpu(bp
->cnic_kwq_cons
->hdr
.type
)
11120 & SPE_HDR_CONN_TYPE
) >>
11121 SPE_HDR_CONN_TYPE_SHIFT
;
11122 u8 cmd
= (le32_to_cpu(bp
->cnic_kwq_cons
->hdr
.conn_and_cmd_data
)
11123 >> SPE_HDR_CMD_ID_SHIFT
) & 0xff;
11125 /* Set validation for iSCSI L2 client before sending SETUP
11128 if (type
== ETH_CONNECTION_TYPE
) {
11129 if (cmd
== RAMROD_CMD_ID_ETH_CLIENT_SETUP
)
11130 bnx2x_set_ctx_validation(bp
, &bp
->context
.
11131 vcxt
[BNX2X_ISCSI_ETH_CID
].eth
,
11132 BNX2X_ISCSI_ETH_CID
);
11136 * There may be not more than 8 L2, not more than 8 L5 SPEs
11137 * and in the air. We also check that number of outstanding
11138 * COMMON ramrods is not more than the EQ and SPQ can
11141 if (type
== ETH_CONNECTION_TYPE
) {
11142 if (!atomic_read(&bp
->cq_spq_left
))
11145 atomic_dec(&bp
->cq_spq_left
);
11146 } else if (type
== NONE_CONNECTION_TYPE
) {
11147 if (!atomic_read(&bp
->eq_spq_left
))
11150 atomic_dec(&bp
->eq_spq_left
);
11151 } else if ((type
== ISCSI_CONNECTION_TYPE
) ||
11152 (type
== FCOE_CONNECTION_TYPE
)) {
11153 if (bp
->cnic_spq_pending
>=
11154 bp
->cnic_eth_dev
.max_kwqe_pending
)
11157 bp
->cnic_spq_pending
++;
11159 BNX2X_ERR("Unknown SPE type: %d\n", type
);
11164 spe
= bnx2x_sp_get_next(bp
);
11165 *spe
= *bp
->cnic_kwq_cons
;
11167 DP(NETIF_MSG_TIMER
, "pending on SPQ %d, on KWQ %d count %d\n",
11168 bp
->cnic_spq_pending
, bp
->cnic_kwq_pending
, count
);
11170 if (bp
->cnic_kwq_cons
== bp
->cnic_kwq_last
)
11171 bp
->cnic_kwq_cons
= bp
->cnic_kwq
;
11173 bp
->cnic_kwq_cons
++;
11175 bnx2x_sp_prod_update(bp
);
11176 spin_unlock_bh(&bp
->spq_lock
);
11179 static int bnx2x_cnic_sp_queue(struct net_device
*dev
,
11180 struct kwqe_16
*kwqes
[], u32 count
)
11182 struct bnx2x
*bp
= netdev_priv(dev
);
11185 #ifdef BNX2X_STOP_ON_ERROR
11186 if (unlikely(bp
->panic
))
11190 spin_lock_bh(&bp
->spq_lock
);
11192 for (i
= 0; i
< count
; i
++) {
11193 struct eth_spe
*spe
= (struct eth_spe
*)kwqes
[i
];
11195 if (bp
->cnic_kwq_pending
== MAX_SP_DESC_CNT
)
11198 *bp
->cnic_kwq_prod
= *spe
;
11200 bp
->cnic_kwq_pending
++;
11202 DP(NETIF_MSG_TIMER
, "L5 SPQE %x %x %x:%x pos %d\n",
11203 spe
->hdr
.conn_and_cmd_data
, spe
->hdr
.type
,
11204 spe
->data
.update_data_addr
.hi
,
11205 spe
->data
.update_data_addr
.lo
,
11206 bp
->cnic_kwq_pending
);
11208 if (bp
->cnic_kwq_prod
== bp
->cnic_kwq_last
)
11209 bp
->cnic_kwq_prod
= bp
->cnic_kwq
;
11211 bp
->cnic_kwq_prod
++;
11214 spin_unlock_bh(&bp
->spq_lock
);
11216 if (bp
->cnic_spq_pending
< bp
->cnic_eth_dev
.max_kwqe_pending
)
11217 bnx2x_cnic_sp_post(bp
, 0);
11222 static int bnx2x_cnic_ctl_send(struct bnx2x
*bp
, struct cnic_ctl_info
*ctl
)
11224 struct cnic_ops
*c_ops
;
11227 mutex_lock(&bp
->cnic_mutex
);
11228 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
11229 lockdep_is_held(&bp
->cnic_mutex
));
11231 rc
= c_ops
->cnic_ctl(bp
->cnic_data
, ctl
);
11232 mutex_unlock(&bp
->cnic_mutex
);
11237 static int bnx2x_cnic_ctl_send_bh(struct bnx2x
*bp
, struct cnic_ctl_info
*ctl
)
11239 struct cnic_ops
*c_ops
;
11243 c_ops
= rcu_dereference(bp
->cnic_ops
);
11245 rc
= c_ops
->cnic_ctl(bp
->cnic_data
, ctl
);
11252 * for commands that have no data
11254 int bnx2x_cnic_notify(struct bnx2x
*bp
, int cmd
)
11256 struct cnic_ctl_info ctl
= {0};
11260 return bnx2x_cnic_ctl_send(bp
, &ctl
);
11263 static void bnx2x_cnic_cfc_comp(struct bnx2x
*bp
, int cid
, u8 err
)
11265 struct cnic_ctl_info ctl
= {0};
11267 /* first we tell CNIC and only then we count this as a completion */
11268 ctl
.cmd
= CNIC_CTL_COMPLETION_CMD
;
11269 ctl
.data
.comp
.cid
= cid
;
11270 ctl
.data
.comp
.error
= err
;
11272 bnx2x_cnic_ctl_send_bh(bp
, &ctl
);
11273 bnx2x_cnic_sp_post(bp
, 0);
11277 /* Called with netif_addr_lock_bh() taken.
11278 * Sets an rx_mode config for an iSCSI ETH client.
11280 * Completion should be checked outside.
11282 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x
*bp
, bool start
)
11284 unsigned long accept_flags
= 0, ramrod_flags
= 0;
11285 u8 cl_id
= bnx2x_cnic_eth_cl_id(bp
, BNX2X_ISCSI_ETH_CL_ID_IDX
);
11286 int sched_state
= BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
;
11289 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11290 * because it's the only way for UIO Queue to accept
11291 * multicasts (in non-promiscuous mode only one Queue per
11292 * function will receive multicast packets (leading in our
11295 __set_bit(BNX2X_ACCEPT_UNICAST
, &accept_flags
);
11296 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &accept_flags
);
11297 __set_bit(BNX2X_ACCEPT_BROADCAST
, &accept_flags
);
11298 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
11300 /* Clear STOP_PENDING bit if START is requested */
11301 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
, &bp
->sp_state
);
11303 sched_state
= BNX2X_FILTER_ISCSI_ETH_START_SCHED
;
11305 /* Clear START_PENDING bit if STOP is requested */
11306 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
, &bp
->sp_state
);
11308 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
))
11309 set_bit(sched_state
, &bp
->sp_state
);
11311 __set_bit(RAMROD_RX
, &ramrod_flags
);
11312 bnx2x_set_q_rx_mode(bp
, cl_id
, 0, accept_flags
, 0,
11318 static int bnx2x_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*ctl
)
11320 struct bnx2x
*bp
= netdev_priv(dev
);
11323 switch (ctl
->cmd
) {
11324 case DRV_CTL_CTXTBL_WR_CMD
: {
11325 u32 index
= ctl
->data
.io
.offset
;
11326 dma_addr_t addr
= ctl
->data
.io
.dma_addr
;
11328 bnx2x_ilt_wr(bp
, index
, addr
);
11332 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD
: {
11333 int count
= ctl
->data
.credit
.credit_count
;
11335 bnx2x_cnic_sp_post(bp
, count
);
11339 /* rtnl_lock is held. */
11340 case DRV_CTL_START_L2_CMD
: {
11341 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11342 unsigned long sp_bits
= 0;
11344 /* Configure the iSCSI classification object */
11345 bnx2x_init_mac_obj(bp
, &bp
->iscsi_l2_mac_obj
,
11346 cp
->iscsi_l2_client_id
,
11347 cp
->iscsi_l2_cid
, BP_FUNC(bp
),
11348 bnx2x_sp(bp
, mac_rdata
),
11349 bnx2x_sp_mapping(bp
, mac_rdata
),
11350 BNX2X_FILTER_MAC_PENDING
,
11351 &bp
->sp_state
, BNX2X_OBJ_TYPE_RX
,
11354 /* Set iSCSI MAC address */
11355 rc
= bnx2x_set_iscsi_eth_mac_addr(bp
);
11362 /* Start accepting on iSCSI L2 ring */
11364 netif_addr_lock_bh(dev
);
11365 bnx2x_set_iscsi_eth_rx_mode(bp
, true);
11366 netif_addr_unlock_bh(dev
);
11368 /* bits to wait on */
11369 __set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &sp_bits
);
11370 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
, &sp_bits
);
11372 if (!bnx2x_wait_sp_comp(bp
, sp_bits
))
11373 BNX2X_ERR("rx_mode completion timed out!\n");
11378 /* rtnl_lock is held. */
11379 case DRV_CTL_STOP_L2_CMD
: {
11380 unsigned long sp_bits
= 0;
11382 /* Stop accepting on iSCSI L2 ring */
11383 netif_addr_lock_bh(dev
);
11384 bnx2x_set_iscsi_eth_rx_mode(bp
, false);
11385 netif_addr_unlock_bh(dev
);
11387 /* bits to wait on */
11388 __set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &sp_bits
);
11389 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
, &sp_bits
);
11391 if (!bnx2x_wait_sp_comp(bp
, sp_bits
))
11392 BNX2X_ERR("rx_mode completion timed out!\n");
11397 /* Unset iSCSI L2 MAC */
11398 rc
= bnx2x_del_all_macs(bp
, &bp
->iscsi_l2_mac_obj
,
11399 BNX2X_ISCSI_ETH_MAC
, true);
11402 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD
: {
11403 int count
= ctl
->data
.credit
.credit_count
;
11405 smp_mb__before_atomic_inc();
11406 atomic_add(count
, &bp
->cq_spq_left
);
11407 smp_mb__after_atomic_inc();
11412 BNX2X_ERR("unknown command %x\n", ctl
->cmd
);
11419 void bnx2x_setup_cnic_irq_info(struct bnx2x
*bp
)
11421 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11423 if (bp
->flags
& USING_MSIX_FLAG
) {
11424 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
11425 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
11426 cp
->irq_arr
[0].vector
= bp
->msix_table
[1].vector
;
11428 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
11429 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
11431 if (!CHIP_IS_E1x(bp
))
11432 cp
->irq_arr
[0].status_blk
= (void *)bp
->cnic_sb
.e2_sb
;
11434 cp
->irq_arr
[0].status_blk
= (void *)bp
->cnic_sb
.e1x_sb
;
11436 cp
->irq_arr
[0].status_blk_num
= bnx2x_cnic_fw_sb_id(bp
);
11437 cp
->irq_arr
[0].status_blk_num2
= bnx2x_cnic_igu_sb_id(bp
);
11438 cp
->irq_arr
[1].status_blk
= bp
->def_status_blk
;
11439 cp
->irq_arr
[1].status_blk_num
= DEF_SB_ID
;
11440 cp
->irq_arr
[1].status_blk_num2
= DEF_SB_IGU_ID
;
11445 static int bnx2x_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
11448 struct bnx2x
*bp
= netdev_priv(dev
);
11449 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11454 bp
->cnic_kwq
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
11458 bp
->cnic_kwq_cons
= bp
->cnic_kwq
;
11459 bp
->cnic_kwq_prod
= bp
->cnic_kwq
;
11460 bp
->cnic_kwq_last
= bp
->cnic_kwq
+ MAX_SP_DESC_CNT
;
11462 bp
->cnic_spq_pending
= 0;
11463 bp
->cnic_kwq_pending
= 0;
11465 bp
->cnic_data
= data
;
11468 cp
->drv_state
|= CNIC_DRV_STATE_REGD
;
11469 cp
->iro_arr
= bp
->iro_arr
;
11471 bnx2x_setup_cnic_irq_info(bp
);
11473 rcu_assign_pointer(bp
->cnic_ops
, ops
);
11478 static int bnx2x_unregister_cnic(struct net_device
*dev
)
11480 struct bnx2x
*bp
= netdev_priv(dev
);
11481 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11483 mutex_lock(&bp
->cnic_mutex
);
11485 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
11486 mutex_unlock(&bp
->cnic_mutex
);
11488 kfree(bp
->cnic_kwq
);
11489 bp
->cnic_kwq
= NULL
;
11494 struct cnic_eth_dev
*bnx2x_cnic_probe(struct net_device
*dev
)
11496 struct bnx2x
*bp
= netdev_priv(dev
);
11497 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11499 /* If both iSCSI and FCoE are disabled - return NULL in
11500 * order to indicate CNIC that it should not try to work
11501 * with this device.
11503 if (NO_ISCSI(bp
) && NO_FCOE(bp
))
11506 cp
->drv_owner
= THIS_MODULE
;
11507 cp
->chip_id
= CHIP_ID(bp
);
11508 cp
->pdev
= bp
->pdev
;
11509 cp
->io_base
= bp
->regview
;
11510 cp
->io_base2
= bp
->doorbells
;
11511 cp
->max_kwqe_pending
= 8;
11512 cp
->ctx_blk_size
= CDU_ILT_PAGE_SZ
;
11513 cp
->ctx_tbl_offset
= FUNC_ILT_BASE(BP_FUNC(bp
)) +
11514 bnx2x_cid_ilt_lines(bp
);
11515 cp
->ctx_tbl_len
= CNIC_ILT_LINES
;
11516 cp
->starting_cid
= bnx2x_cid_ilt_lines(bp
) * ILT_PAGE_CIDS
;
11517 cp
->drv_submit_kwqes_16
= bnx2x_cnic_sp_queue
;
11518 cp
->drv_ctl
= bnx2x_drv_ctl
;
11519 cp
->drv_register_cnic
= bnx2x_register_cnic
;
11520 cp
->drv_unregister_cnic
= bnx2x_unregister_cnic
;
11521 cp
->fcoe_init_cid
= BNX2X_FCOE_ETH_CID
;
11522 cp
->iscsi_l2_client_id
=
11523 bnx2x_cnic_eth_cl_id(bp
, BNX2X_ISCSI_ETH_CL_ID_IDX
);
11524 cp
->iscsi_l2_cid
= BNX2X_ISCSI_ETH_CID
;
11526 if (NO_ISCSI_OOO(bp
))
11527 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI_OOO
;
11530 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI
;
11533 cp
->drv_state
|= CNIC_DRV_STATE_NO_FCOE
;
11535 DP(BNX2X_MSG_SP
, "page_size %d, tbl_offset %d, tbl_lines %d, "
11536 "starting cid %d\n",
11538 cp
->ctx_tbl_offset
,
11543 EXPORT_SYMBOL(bnx2x_cnic_probe
);
11545 #endif /* BCM_CNIC */