include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / net / cxgb3 / cxgb3_main.c
blob93b41a7ac175cc49f76c147b3f0a1d953e50b9bd
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
62 enum {
63 MAX_TXQ_ENTRIES = 16384,
64 MAX_CTRL_TXQ_ENTRIES = 1024,
65 MAX_RSPQ_ENTRIES = 16384,
66 MAX_RX_BUFFERS = 16384,
67 MAX_RX_JUMBO_BUFFERS = 16384,
68 MIN_TXQ_ENTRIES = 4,
69 MIN_CTRL_TXQ_ENTRIES = 4,
70 MIN_RSPQ_ENTRIES = 32,
71 MIN_FL_ENTRIES = 32
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
80 #define EEPROM_MAGIC 0x38E2F10C
82 #define CH_DEVICE(devid, idx) \
83 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86 CH_DEVICE(0x20, 0), /* PE9000 */
87 CH_DEVICE(0x21, 1), /* T302E */
88 CH_DEVICE(0x22, 2), /* T310E */
89 CH_DEVICE(0x23, 3), /* T320X */
90 CH_DEVICE(0x24, 1), /* T302X */
91 CH_DEVICE(0x25, 3), /* T320E */
92 CH_DEVICE(0x26, 2), /* T310X */
93 CH_DEVICE(0x30, 2), /* T3B10 */
94 CH_DEVICE(0x31, 3), /* T3B20 */
95 CH_DEVICE(0x32, 1), /* T3B02 */
96 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
97 CH_DEVICE(0x36, 3), /* S320E-CR */
98 CH_DEVICE(0x37, 7), /* N320E-G2 */
99 {0,}
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
114 * The driver uses the best interrupt scheme available on a platform in the
115 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
116 * of these schemes the driver may consider as follows:
118 * msi = 2: choose from among all three options
119 * msi = 1: only consider MSI and pin interrupts
120 * msi = 0: force pin interrupts
122 static int msi = 2;
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
128 * The driver enables offload as a default.
129 * To disable it, use ofld_disable = 1.
132 static int ofld_disable = 0;
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
138 * We have work elements that we need to cancel when an interface is taken
139 * down. Normally the work elements would be executed by keventd but that
140 * can deadlock because of linkwatch. If our close method takes the rtnl
141 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143 * for our work to complete. Get our own work queue to solve this.
145 struct workqueue_struct *cxgb3_wq;
148 * link_report - show link status and link speed/duplex
149 * @p: the port whose settings are to be reported
151 * Shows the link status, speed, and duplex of a port.
153 static void link_report(struct net_device *dev)
155 if (!netif_carrier_ok(dev))
156 printk(KERN_INFO "%s: link down\n", dev->name);
157 else {
158 const char *s = "10Mbps";
159 const struct port_info *p = netdev_priv(dev);
161 switch (p->link_config.speed) {
162 case SPEED_10000:
163 s = "10Gbps";
164 break;
165 case SPEED_1000:
166 s = "1000Mbps";
167 break;
168 case SPEED_100:
169 s = "100Mbps";
170 break;
173 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179 struct port_info *pi)
181 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182 F_ENDROPPKT);
183 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189 struct port_info *pi)
191 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192 F_ENDROPPKT, 0);
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
197 struct net_device *dev = adap->port[port_id];
198 struct port_info *pi = netdev_priv(dev);
200 if (state == netif_carrier_ok(dev))
201 return;
203 if (state) {
204 struct cmac *mac = &pi->mac;
206 netif_carrier_on(dev);
208 disable_tx_fifo_drain(adap, pi);
210 /* Clear local faults */
211 t3_xgm_intr_disable(adap, pi->port_id);
212 t3_read_reg(adap, A_XGM_INT_STATUS +
213 pi->mac.offset);
214 t3_write_reg(adap,
215 A_XGM_INT_CAUSE + pi->mac.offset,
216 F_XGM_INT);
218 t3_set_reg_field(adap,
219 A_XGM_INT_ENABLE +
220 pi->mac.offset,
221 F_XGM_INT, F_XGM_INT);
222 t3_xgm_intr_enable(adap, pi->port_id);
224 t3_mac_enable(mac, MAC_DIRECTION_TX);
225 } else {
226 netif_carrier_off(dev);
228 /* Flush TX FIFO */
229 enable_tx_fifo_drain(adap, pi);
231 link_report(dev);
235 * t3_os_link_changed - handle link status changes
236 * @adapter: the adapter associated with the link change
237 * @port_id: the port index whose limk status has changed
238 * @link_stat: the new status of the link
239 * @speed: the new speed setting
240 * @duplex: the new duplex setting
241 * @pause: the new flow-control setting
243 * This is the OS-dependent handler for link status changes. The OS
244 * neutral handler takes care of most of the processing for these events,
245 * then calls this handler for any OS-specific processing.
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248 int speed, int duplex, int pause)
250 struct net_device *dev = adapter->port[port_id];
251 struct port_info *pi = netdev_priv(dev);
252 struct cmac *mac = &pi->mac;
254 /* Skip changes from disabled ports. */
255 if (!netif_running(dev))
256 return;
258 if (link_stat != netif_carrier_ok(dev)) {
259 if (link_stat) {
260 disable_tx_fifo_drain(adapter, pi);
262 t3_mac_enable(mac, MAC_DIRECTION_RX);
264 /* Clear local faults */
265 t3_xgm_intr_disable(adapter, pi->port_id);
266 t3_read_reg(adapter, A_XGM_INT_STATUS +
267 pi->mac.offset);
268 t3_write_reg(adapter,
269 A_XGM_INT_CAUSE + pi->mac.offset,
270 F_XGM_INT);
272 t3_set_reg_field(adapter,
273 A_XGM_INT_ENABLE + pi->mac.offset,
274 F_XGM_INT, F_XGM_INT);
275 t3_xgm_intr_enable(adapter, pi->port_id);
277 netif_carrier_on(dev);
278 } else {
279 netif_carrier_off(dev);
281 t3_xgm_intr_disable(adapter, pi->port_id);
282 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283 t3_set_reg_field(adapter,
284 A_XGM_INT_ENABLE + pi->mac.offset,
285 F_XGM_INT, 0);
287 if (is_10G(adapter))
288 pi->phy.ops->power_down(&pi->phy, 1);
290 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291 t3_mac_disable(mac, MAC_DIRECTION_RX);
292 t3_link_start(&pi->phy, mac, &pi->link_config);
294 /* Flush TX FIFO */
295 enable_tx_fifo_drain(adapter, pi);
298 link_report(dev);
303 * t3_os_phymod_changed - handle PHY module changes
304 * @phy: the PHY reporting the module change
305 * @mod_type: new module type
307 * This is the OS-dependent handler for PHY module changes. It is
308 * invoked when a PHY module is removed or inserted for any OS-specific
309 * processing.
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
313 static const char *mod_str[] = {
314 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
317 const struct net_device *dev = adap->port[port_id];
318 const struct port_info *pi = netdev_priv(dev);
320 if (pi->phy.modtype == phy_modtype_none)
321 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322 else
323 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324 mod_str[pi->phy.modtype]);
327 static void cxgb_set_rxmode(struct net_device *dev)
329 struct port_info *pi = netdev_priv(dev);
331 t3_mac_set_rx_mode(&pi->mac, dev);
335 * link_start - enable a port
336 * @dev: the device to enable
338 * Performs the MAC and PHY actions needed to enable a port.
340 static void link_start(struct net_device *dev)
342 struct port_info *pi = netdev_priv(dev);
343 struct cmac *mac = &pi->mac;
345 t3_mac_reset(mac);
346 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347 t3_mac_set_mtu(mac, dev->mtu);
348 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350 t3_mac_set_rx_mode(mac, dev);
351 t3_link_start(&pi->phy, mac, &pi->link_config);
352 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
355 static inline void cxgb_disable_msi(struct adapter *adapter)
357 if (adapter->flags & USING_MSIX) {
358 pci_disable_msix(adapter->pdev);
359 adapter->flags &= ~USING_MSIX;
360 } else if (adapter->flags & USING_MSI) {
361 pci_disable_msi(adapter->pdev);
362 adapter->flags &= ~USING_MSI;
367 * Interrupt handler for asynchronous events used with MSI-X.
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
371 t3_slow_intr_handler(cookie);
372 return IRQ_HANDLED;
376 * Name the MSI-X interrupts.
378 static void name_msix_vecs(struct adapter *adap)
380 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
382 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383 adap->msix_info[0].desc[n] = 0;
385 for_each_port(adap, j) {
386 struct net_device *d = adap->port[j];
387 const struct port_info *pi = netdev_priv(d);
389 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390 snprintf(adap->msix_info[msi_idx].desc, n,
391 "%s-%d", d->name, pi->first_qset + i);
392 adap->msix_info[msi_idx].desc[n] = 0;
397 static int request_msix_data_irqs(struct adapter *adap)
399 int i, j, err, qidx = 0;
401 for_each_port(adap, i) {
402 int nqsets = adap2pinfo(adap, i)->nqsets;
404 for (j = 0; j < nqsets; ++j) {
405 err = request_irq(adap->msix_info[qidx + 1].vec,
406 t3_intr_handler(adap,
407 adap->sge.qs[qidx].
408 rspq.polling), 0,
409 adap->msix_info[qidx + 1].desc,
410 &adap->sge.qs[qidx]);
411 if (err) {
412 while (--qidx >= 0)
413 free_irq(adap->msix_info[qidx + 1].vec,
414 &adap->sge.qs[qidx]);
415 return err;
417 qidx++;
420 return 0;
423 static void free_irq_resources(struct adapter *adapter)
425 if (adapter->flags & USING_MSIX) {
426 int i, n = 0;
428 free_irq(adapter->msix_info[0].vec, adapter);
429 for_each_port(adapter, i)
430 n += adap2pinfo(adapter, i)->nqsets;
432 for (i = 0; i < n; ++i)
433 free_irq(adapter->msix_info[i + 1].vec,
434 &adapter->sge.qs[i]);
435 } else
436 free_irq(adapter->pdev->irq, adapter);
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440 unsigned long n)
442 int attempts = 10;
444 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445 if (!--attempts)
446 return -ETIMEDOUT;
447 msleep(10);
449 return 0;
452 static int init_tp_parity(struct adapter *adap)
454 int i;
455 struct sk_buff *skb;
456 struct cpl_set_tcb_field *greq;
457 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
459 t3_tp_set_offload_mode(adap, 1);
461 for (i = 0; i < 16; i++) {
462 struct cpl_smt_write_req *req;
464 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465 if (!skb)
466 skb = adap->nofail_skb;
467 if (!skb)
468 goto alloc_skb_fail;
470 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471 memset(req, 0, sizeof(*req));
472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474 req->mtu_idx = NMTUS - 1;
475 req->iff = i;
476 t3_mgmt_tx(adap, skb);
477 if (skb == adap->nofail_skb) {
478 await_mgmt_replies(adap, cnt, i + 1);
479 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480 if (!adap->nofail_skb)
481 goto alloc_skb_fail;
485 for (i = 0; i < 2048; i++) {
486 struct cpl_l2t_write_req *req;
488 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489 if (!skb)
490 skb = adap->nofail_skb;
491 if (!skb)
492 goto alloc_skb_fail;
494 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495 memset(req, 0, sizeof(*req));
496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498 req->params = htonl(V_L2T_W_IDX(i));
499 t3_mgmt_tx(adap, skb);
500 if (skb == adap->nofail_skb) {
501 await_mgmt_replies(adap, cnt, 16 + i + 1);
502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503 if (!adap->nofail_skb)
504 goto alloc_skb_fail;
508 for (i = 0; i < 2048; i++) {
509 struct cpl_rte_write_req *req;
511 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512 if (!skb)
513 skb = adap->nofail_skb;
514 if (!skb)
515 goto alloc_skb_fail;
517 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518 memset(req, 0, sizeof(*req));
519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 t3_mgmt_tx(adap, skb);
523 if (skb == adap->nofail_skb) {
524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 if (!adap->nofail_skb)
527 goto alloc_skb_fail;
531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 if (!skb)
533 skb = adap->nofail_skb;
534 if (!skb)
535 goto alloc_skb_fail;
537 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538 memset(greq, 0, sizeof(*greq));
539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541 greq->mask = cpu_to_be64(1);
542 t3_mgmt_tx(adap, skb);
544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545 if (skb == adap->nofail_skb) {
546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
550 t3_tp_set_offload_mode(adap, 0);
551 return i;
553 alloc_skb_fail:
554 t3_tp_set_offload_mode(adap, 0);
555 return -ENOMEM;
559 * setup_rss - configure RSS
560 * @adap: the adapter
562 * Sets up RSS to distribute packets to multiple receive queues. We
563 * configure the RSS CPU lookup table to distribute to the number of HW
564 * receive queues, and the response queue lookup table to narrow that
565 * down to the response queues actually configured for each port.
566 * We always configure the RSS mapping for two ports since the mapping
567 * table has plenty of entries.
569 static void setup_rss(struct adapter *adap)
571 int i;
572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574 u8 cpus[SGE_QSETS + 1];
575 u16 rspq_map[RSS_TABLE_SIZE];
577 for (i = 0; i < SGE_QSETS; ++i)
578 cpus[i] = i;
579 cpus[SGE_QSETS] = 0xff; /* terminator */
581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582 rspq_map[i] = i % nq0;
583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
591 static void ring_dbs(struct adapter *adap)
593 int i, j;
595 for (i = 0; i < SGE_QSETS; i++) {
596 struct sge_qset *qs = &adap->sge.qs[i];
598 if (qs->adap)
599 for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
604 static void init_napi(struct adapter *adap)
606 int i;
608 for (i = 0; i < SGE_QSETS; i++) {
609 struct sge_qset *qs = &adap->sge.qs[i];
611 if (qs->adap)
612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 64);
617 * netif_napi_add() can be called only once per napi_struct because it
618 * adds each new napi_struct to a list. Be careful not to call it a
619 * second time, e.g., during EEH recovery, by making a note of it.
621 adap->flags |= NAPI_INIT;
625 * Wait until all NAPI handlers are descheduled. This includes the handlers of
626 * both netdevices representing interfaces and the dummy ones for the extra
627 * queues.
629 static void quiesce_rx(struct adapter *adap)
631 int i;
633 for (i = 0; i < SGE_QSETS; i++)
634 if (adap->sge.qs[i].adap)
635 napi_disable(&adap->sge.qs[i].napi);
638 static void enable_all_napi(struct adapter *adap)
640 int i;
641 for (i = 0; i < SGE_QSETS; i++)
642 if (adap->sge.qs[i].adap)
643 napi_enable(&adap->sge.qs[i].napi);
647 * setup_sge_qsets - configure SGE Tx/Rx/response queues
648 * @adap: the adapter
650 * Determines how many sets of SGE queues to use and initializes them.
651 * We support multiple queue sets per port if we have MSI-X, otherwise
652 * just one queue set per port.
654 static int setup_sge_qsets(struct adapter *adap)
656 int i, j, err, irq_idx = 0, qset_idx = 0;
657 unsigned int ntxq = SGE_TXQ_PER_SET;
659 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
660 irq_idx = -1;
662 for_each_port(adap, i) {
663 struct net_device *dev = adap->port[i];
664 struct port_info *pi = netdev_priv(dev);
666 pi->qs = &adap->sge.qs[pi->first_qset];
667 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
668 err = t3_sge_alloc_qset(adap, qset_idx, 1,
669 (adap->flags & USING_MSIX) ? qset_idx + 1 :
670 irq_idx,
671 &adap->params.sge.qset[qset_idx], ntxq, dev,
672 netdev_get_tx_queue(dev, j));
673 if (err) {
674 t3_free_sge_resources(adap);
675 return err;
680 return 0;
683 static ssize_t attr_show(struct device *d, char *buf,
684 ssize_t(*format) (struct net_device *, char *))
686 ssize_t len;
688 /* Synchronize with ioctls that may shut down the device */
689 rtnl_lock();
690 len = (*format) (to_net_dev(d), buf);
691 rtnl_unlock();
692 return len;
695 static ssize_t attr_store(struct device *d,
696 const char *buf, size_t len,
697 ssize_t(*set) (struct net_device *, unsigned int),
698 unsigned int min_val, unsigned int max_val)
700 char *endp;
701 ssize_t ret;
702 unsigned int val;
704 if (!capable(CAP_NET_ADMIN))
705 return -EPERM;
707 val = simple_strtoul(buf, &endp, 0);
708 if (endp == buf || val < min_val || val > max_val)
709 return -EINVAL;
711 rtnl_lock();
712 ret = (*set) (to_net_dev(d), val);
713 if (!ret)
714 ret = len;
715 rtnl_unlock();
716 return ret;
719 #define CXGB3_SHOW(name, val_expr) \
720 static ssize_t format_##name(struct net_device *dev, char *buf) \
722 struct port_info *pi = netdev_priv(dev); \
723 struct adapter *adap = pi->adapter; \
724 return sprintf(buf, "%u\n", val_expr); \
726 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
727 char *buf) \
729 return attr_show(d, buf, format_##name); \
732 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
734 struct port_info *pi = netdev_priv(dev);
735 struct adapter *adap = pi->adapter;
736 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
738 if (adap->flags & FULL_INIT_DONE)
739 return -EBUSY;
740 if (val && adap->params.rev == 0)
741 return -EINVAL;
742 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
743 min_tids)
744 return -EINVAL;
745 adap->params.mc5.nfilters = val;
746 return 0;
749 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
750 const char *buf, size_t len)
752 return attr_store(d, buf, len, set_nfilters, 0, ~0);
755 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
757 struct port_info *pi = netdev_priv(dev);
758 struct adapter *adap = pi->adapter;
760 if (adap->flags & FULL_INIT_DONE)
761 return -EBUSY;
762 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
763 MC5_MIN_TIDS)
764 return -EINVAL;
765 adap->params.mc5.nservers = val;
766 return 0;
769 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
770 const char *buf, size_t len)
772 return attr_store(d, buf, len, set_nservers, 0, ~0);
775 #define CXGB3_ATTR_R(name, val_expr) \
776 CXGB3_SHOW(name, val_expr) \
777 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
779 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
780 CXGB3_SHOW(name, val_expr) \
781 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
783 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
784 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
785 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
787 static struct attribute *cxgb3_attrs[] = {
788 &dev_attr_cam_size.attr,
789 &dev_attr_nfilters.attr,
790 &dev_attr_nservers.attr,
791 NULL
794 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
796 static ssize_t tm_attr_show(struct device *d,
797 char *buf, int sched)
799 struct port_info *pi = netdev_priv(to_net_dev(d));
800 struct adapter *adap = pi->adapter;
801 unsigned int v, addr, bpt, cpt;
802 ssize_t len;
804 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
805 rtnl_lock();
806 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
807 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
808 if (sched & 1)
809 v >>= 16;
810 bpt = (v >> 8) & 0xff;
811 cpt = v & 0xff;
812 if (!cpt)
813 len = sprintf(buf, "disabled\n");
814 else {
815 v = (adap->params.vpd.cclk * 1000) / cpt;
816 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
818 rtnl_unlock();
819 return len;
822 static ssize_t tm_attr_store(struct device *d,
823 const char *buf, size_t len, int sched)
825 struct port_info *pi = netdev_priv(to_net_dev(d));
826 struct adapter *adap = pi->adapter;
827 unsigned int val;
828 char *endp;
829 ssize_t ret;
831 if (!capable(CAP_NET_ADMIN))
832 return -EPERM;
834 val = simple_strtoul(buf, &endp, 0);
835 if (endp == buf || val > 10000000)
836 return -EINVAL;
838 rtnl_lock();
839 ret = t3_config_sched(adap, val, sched);
840 if (!ret)
841 ret = len;
842 rtnl_unlock();
843 return ret;
846 #define TM_ATTR(name, sched) \
847 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
848 char *buf) \
850 return tm_attr_show(d, buf, sched); \
852 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
853 const char *buf, size_t len) \
855 return tm_attr_store(d, buf, len, sched); \
857 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
859 TM_ATTR(sched0, 0);
860 TM_ATTR(sched1, 1);
861 TM_ATTR(sched2, 2);
862 TM_ATTR(sched3, 3);
863 TM_ATTR(sched4, 4);
864 TM_ATTR(sched5, 5);
865 TM_ATTR(sched6, 6);
866 TM_ATTR(sched7, 7);
868 static struct attribute *offload_attrs[] = {
869 &dev_attr_sched0.attr,
870 &dev_attr_sched1.attr,
871 &dev_attr_sched2.attr,
872 &dev_attr_sched3.attr,
873 &dev_attr_sched4.attr,
874 &dev_attr_sched5.attr,
875 &dev_attr_sched6.attr,
876 &dev_attr_sched7.attr,
877 NULL
880 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
883 * Sends an sk_buff to an offload queue driver
884 * after dealing with any active network taps.
886 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
888 int ret;
890 local_bh_disable();
891 ret = t3_offload_tx(tdev, skb);
892 local_bh_enable();
893 return ret;
896 static int write_smt_entry(struct adapter *adapter, int idx)
898 struct cpl_smt_write_req *req;
899 struct port_info *pi = netdev_priv(adapter->port[idx]);
900 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
902 if (!skb)
903 return -ENOMEM;
905 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
906 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
907 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
908 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
909 req->iff = idx;
910 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
911 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
912 skb->priority = 1;
913 offload_tx(&adapter->tdev, skb);
914 return 0;
917 static int init_smt(struct adapter *adapter)
919 int i;
921 for_each_port(adapter, i)
922 write_smt_entry(adapter, i);
923 return 0;
926 static void init_port_mtus(struct adapter *adapter)
928 unsigned int mtus = adapter->port[0]->mtu;
930 if (adapter->port[1])
931 mtus |= adapter->port[1]->mtu << 16;
932 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
935 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
936 int hi, int port)
938 struct sk_buff *skb;
939 struct mngt_pktsched_wr *req;
940 int ret;
942 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
943 if (!skb)
944 skb = adap->nofail_skb;
945 if (!skb)
946 return -ENOMEM;
948 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
949 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
950 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
951 req->sched = sched;
952 req->idx = qidx;
953 req->min = lo;
954 req->max = hi;
955 req->binding = port;
956 ret = t3_mgmt_tx(adap, skb);
957 if (skb == adap->nofail_skb) {
958 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
959 GFP_KERNEL);
960 if (!adap->nofail_skb)
961 ret = -ENOMEM;
964 return ret;
967 static int bind_qsets(struct adapter *adap)
969 int i, j, err = 0;
971 for_each_port(adap, i) {
972 const struct port_info *pi = adap2pinfo(adap, i);
974 for (j = 0; j < pi->nqsets; ++j) {
975 int ret = send_pktsched_cmd(adap, 1,
976 pi->first_qset + j, -1,
977 -1, i);
978 if (ret)
979 err = ret;
983 return err;
986 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
987 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
988 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
989 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
990 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
991 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
992 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
993 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
994 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
995 MODULE_FIRMWARE(FW_FNAME);
996 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
997 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
998 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
999 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1000 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1002 static inline const char *get_edc_fw_name(int edc_idx)
1004 const char *fw_name = NULL;
1006 switch (edc_idx) {
1007 case EDC_OPT_AEL2005:
1008 fw_name = AEL2005_OPT_EDC_NAME;
1009 break;
1010 case EDC_TWX_AEL2005:
1011 fw_name = AEL2005_TWX_EDC_NAME;
1012 break;
1013 case EDC_TWX_AEL2020:
1014 fw_name = AEL2020_TWX_EDC_NAME;
1015 break;
1017 return fw_name;
1020 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1022 struct adapter *adapter = phy->adapter;
1023 const struct firmware *fw;
1024 char buf[64];
1025 u32 csum;
1026 const __be32 *p;
1027 u16 *cache = phy->phy_cache;
1028 int i, ret;
1030 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1032 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1033 if (ret < 0) {
1034 dev_err(&adapter->pdev->dev,
1035 "could not upgrade firmware: unable to load %s\n",
1036 buf);
1037 return ret;
1040 /* check size, take checksum in account */
1041 if (fw->size > size + 4) {
1042 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1043 (unsigned int)fw->size, size + 4);
1044 ret = -EINVAL;
1047 /* compute checksum */
1048 p = (const __be32 *)fw->data;
1049 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1050 csum += ntohl(p[i]);
1052 if (csum != 0xffffffff) {
1053 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1054 csum);
1055 ret = -EINVAL;
1058 for (i = 0; i < size / 4 ; i++) {
1059 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1060 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1063 release_firmware(fw);
1065 return ret;
1068 static int upgrade_fw(struct adapter *adap)
1070 int ret;
1071 const struct firmware *fw;
1072 struct device *dev = &adap->pdev->dev;
1074 ret = request_firmware(&fw, FW_FNAME, dev);
1075 if (ret < 0) {
1076 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1077 FW_FNAME);
1078 return ret;
1080 ret = t3_load_fw(adap, fw->data, fw->size);
1081 release_firmware(fw);
1083 if (ret == 0)
1084 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1085 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1086 else
1087 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1088 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1090 return ret;
1093 static inline char t3rev2char(struct adapter *adapter)
1095 char rev = 0;
1097 switch(adapter->params.rev) {
1098 case T3_REV_B:
1099 case T3_REV_B2:
1100 rev = 'b';
1101 break;
1102 case T3_REV_C:
1103 rev = 'c';
1104 break;
1106 return rev;
1109 static int update_tpsram(struct adapter *adap)
1111 const struct firmware *tpsram;
1112 char buf[64];
1113 struct device *dev = &adap->pdev->dev;
1114 int ret;
1115 char rev;
1117 rev = t3rev2char(adap);
1118 if (!rev)
1119 return 0;
1121 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1123 ret = request_firmware(&tpsram, buf, dev);
1124 if (ret < 0) {
1125 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1126 buf);
1127 return ret;
1130 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1131 if (ret)
1132 goto release_tpsram;
1134 ret = t3_set_proto_sram(adap, tpsram->data);
1135 if (ret == 0)
1136 dev_info(dev,
1137 "successful update of protocol engine "
1138 "to %d.%d.%d\n",
1139 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1140 else
1141 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1142 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1143 if (ret)
1144 dev_err(dev, "loading protocol SRAM failed\n");
1146 release_tpsram:
1147 release_firmware(tpsram);
1149 return ret;
1153 * cxgb_up - enable the adapter
1154 * @adapter: adapter being enabled
1156 * Called when the first port is enabled, this function performs the
1157 * actions necessary to make an adapter operational, such as completing
1158 * the initialization of HW modules, and enabling interrupts.
1160 * Must be called with the rtnl lock held.
1162 static int cxgb_up(struct adapter *adap)
1164 int err;
1166 if (!(adap->flags & FULL_INIT_DONE)) {
1167 err = t3_check_fw_version(adap);
1168 if (err == -EINVAL) {
1169 err = upgrade_fw(adap);
1170 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1171 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1172 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1175 err = t3_check_tpsram_version(adap);
1176 if (err == -EINVAL) {
1177 err = update_tpsram(adap);
1178 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1179 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1180 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1184 * Clear interrupts now to catch errors if t3_init_hw fails.
1185 * We clear them again later as initialization may trigger
1186 * conditions that can interrupt.
1188 t3_intr_clear(adap);
1190 err = t3_init_hw(adap, 0);
1191 if (err)
1192 goto out;
1194 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1195 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1197 err = setup_sge_qsets(adap);
1198 if (err)
1199 goto out;
1201 setup_rss(adap);
1202 if (!(adap->flags & NAPI_INIT))
1203 init_napi(adap);
1205 t3_start_sge_timers(adap);
1206 adap->flags |= FULL_INIT_DONE;
1209 t3_intr_clear(adap);
1211 if (adap->flags & USING_MSIX) {
1212 name_msix_vecs(adap);
1213 err = request_irq(adap->msix_info[0].vec,
1214 t3_async_intr_handler, 0,
1215 adap->msix_info[0].desc, adap);
1216 if (err)
1217 goto irq_err;
1219 err = request_msix_data_irqs(adap);
1220 if (err) {
1221 free_irq(adap->msix_info[0].vec, adap);
1222 goto irq_err;
1224 } else if ((err = request_irq(adap->pdev->irq,
1225 t3_intr_handler(adap,
1226 adap->sge.qs[0].rspq.
1227 polling),
1228 (adap->flags & USING_MSI) ?
1229 0 : IRQF_SHARED,
1230 adap->name, adap)))
1231 goto irq_err;
1233 enable_all_napi(adap);
1234 t3_sge_start(adap);
1235 t3_intr_enable(adap);
1237 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1238 is_offload(adap) && init_tp_parity(adap) == 0)
1239 adap->flags |= TP_PARITY_INIT;
1241 if (adap->flags & TP_PARITY_INIT) {
1242 t3_write_reg(adap, A_TP_INT_CAUSE,
1243 F_CMCACHEPERR | F_ARPLUTPERR);
1244 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1247 if (!(adap->flags & QUEUES_BOUND)) {
1248 int ret = bind_qsets(adap);
1250 if (ret < 0) {
1251 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1252 t3_intr_disable(adap);
1253 free_irq_resources(adap);
1254 err = ret;
1255 goto out;
1257 adap->flags |= QUEUES_BOUND;
1260 out:
1261 return err;
1262 irq_err:
1263 CH_ERR(adap, "request_irq failed, err %d\n", err);
1264 goto out;
1268 * Release resources when all the ports and offloading have been stopped.
1270 static void cxgb_down(struct adapter *adapter, int on_wq)
1272 t3_sge_stop(adapter);
1273 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1274 t3_intr_disable(adapter);
1275 spin_unlock_irq(&adapter->work_lock);
1277 free_irq_resources(adapter);
1278 quiesce_rx(adapter);
1279 t3_sge_stop(adapter);
1280 if (!on_wq)
1281 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1284 static void schedule_chk_task(struct adapter *adap)
1286 unsigned int timeo;
1288 timeo = adap->params.linkpoll_period ?
1289 (HZ * adap->params.linkpoll_period) / 10 :
1290 adap->params.stats_update_period * HZ;
1291 if (timeo)
1292 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1295 static int offload_open(struct net_device *dev)
1297 struct port_info *pi = netdev_priv(dev);
1298 struct adapter *adapter = pi->adapter;
1299 struct t3cdev *tdev = dev2t3cdev(dev);
1300 int adap_up = adapter->open_device_map & PORT_MASK;
1301 int err;
1303 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1304 return 0;
1306 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1307 goto out;
1309 t3_tp_set_offload_mode(adapter, 1);
1310 tdev->lldev = adapter->port[0];
1311 err = cxgb3_offload_activate(adapter);
1312 if (err)
1313 goto out;
1315 init_port_mtus(adapter);
1316 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1317 adapter->params.b_wnd,
1318 adapter->params.rev == 0 ?
1319 adapter->port[0]->mtu : 0xffff);
1320 init_smt(adapter);
1322 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1323 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1325 /* Call back all registered clients */
1326 cxgb3_add_clients(tdev);
1328 out:
1329 /* restore them in case the offload module has changed them */
1330 if (err) {
1331 t3_tp_set_offload_mode(adapter, 0);
1332 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1333 cxgb3_set_dummy_ops(tdev);
1335 return err;
1338 static int offload_close(struct t3cdev *tdev)
1340 struct adapter *adapter = tdev2adap(tdev);
1341 struct t3c_data *td = T3C_DATA(tdev);
1343 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1344 return 0;
1346 /* Call back all registered clients */
1347 cxgb3_remove_clients(tdev);
1349 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1351 /* Flush work scheduled while releasing TIDs */
1352 flush_work_sync(&td->tid_release_task);
1354 tdev->lldev = NULL;
1355 cxgb3_set_dummy_ops(tdev);
1356 t3_tp_set_offload_mode(adapter, 0);
1357 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1359 if (!adapter->open_device_map)
1360 cxgb_down(adapter, 0);
1362 cxgb3_offload_deactivate(adapter);
1363 return 0;
1366 static int cxgb_open(struct net_device *dev)
1368 struct port_info *pi = netdev_priv(dev);
1369 struct adapter *adapter = pi->adapter;
1370 int other_ports = adapter->open_device_map & PORT_MASK;
1371 int err;
1373 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1374 return err;
1376 set_bit(pi->port_id, &adapter->open_device_map);
1377 if (is_offload(adapter) && !ofld_disable) {
1378 err = offload_open(dev);
1379 if (err)
1380 printk(KERN_WARNING
1381 "Could not initialize offload capabilities\n");
1384 netif_set_real_num_tx_queues(dev, pi->nqsets);
1385 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1386 if (err)
1387 return err;
1388 link_start(dev);
1389 t3_port_intr_enable(adapter, pi->port_id);
1390 netif_tx_start_all_queues(dev);
1391 if (!other_ports)
1392 schedule_chk_task(adapter);
1394 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1395 return 0;
1398 static int __cxgb_close(struct net_device *dev, int on_wq)
1400 struct port_info *pi = netdev_priv(dev);
1401 struct adapter *adapter = pi->adapter;
1404 if (!adapter->open_device_map)
1405 return 0;
1407 /* Stop link fault interrupts */
1408 t3_xgm_intr_disable(adapter, pi->port_id);
1409 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1411 t3_port_intr_disable(adapter, pi->port_id);
1412 netif_tx_stop_all_queues(dev);
1413 pi->phy.ops->power_down(&pi->phy, 1);
1414 netif_carrier_off(dev);
1415 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1417 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1418 clear_bit(pi->port_id, &adapter->open_device_map);
1419 spin_unlock_irq(&adapter->work_lock);
1421 if (!(adapter->open_device_map & PORT_MASK))
1422 cancel_delayed_work_sync(&adapter->adap_check_task);
1424 if (!adapter->open_device_map)
1425 cxgb_down(adapter, on_wq);
1427 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1428 return 0;
1431 static int cxgb_close(struct net_device *dev)
1433 return __cxgb_close(dev, 0);
1436 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1438 struct port_info *pi = netdev_priv(dev);
1439 struct adapter *adapter = pi->adapter;
1440 struct net_device_stats *ns = &pi->netstats;
1441 const struct mac_stats *pstats;
1443 spin_lock(&adapter->stats_lock);
1444 pstats = t3_mac_update_stats(&pi->mac);
1445 spin_unlock(&adapter->stats_lock);
1447 ns->tx_bytes = pstats->tx_octets;
1448 ns->tx_packets = pstats->tx_frames;
1449 ns->rx_bytes = pstats->rx_octets;
1450 ns->rx_packets = pstats->rx_frames;
1451 ns->multicast = pstats->rx_mcast_frames;
1453 ns->tx_errors = pstats->tx_underrun;
1454 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1455 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1456 pstats->rx_fifo_ovfl;
1458 /* detailed rx_errors */
1459 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1460 ns->rx_over_errors = 0;
1461 ns->rx_crc_errors = pstats->rx_fcs_errs;
1462 ns->rx_frame_errors = pstats->rx_symbol_errs;
1463 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1464 ns->rx_missed_errors = pstats->rx_cong_drops;
1466 /* detailed tx_errors */
1467 ns->tx_aborted_errors = 0;
1468 ns->tx_carrier_errors = 0;
1469 ns->tx_fifo_errors = pstats->tx_underrun;
1470 ns->tx_heartbeat_errors = 0;
1471 ns->tx_window_errors = 0;
1472 return ns;
1475 static u32 get_msglevel(struct net_device *dev)
1477 struct port_info *pi = netdev_priv(dev);
1478 struct adapter *adapter = pi->adapter;
1480 return adapter->msg_enable;
1483 static void set_msglevel(struct net_device *dev, u32 val)
1485 struct port_info *pi = netdev_priv(dev);
1486 struct adapter *adapter = pi->adapter;
1488 adapter->msg_enable = val;
1491 static char stats_strings[][ETH_GSTRING_LEN] = {
1492 "TxOctetsOK ",
1493 "TxFramesOK ",
1494 "TxMulticastFramesOK",
1495 "TxBroadcastFramesOK",
1496 "TxPauseFrames ",
1497 "TxUnderrun ",
1498 "TxExtUnderrun ",
1500 "TxFrames64 ",
1501 "TxFrames65To127 ",
1502 "TxFrames128To255 ",
1503 "TxFrames256To511 ",
1504 "TxFrames512To1023 ",
1505 "TxFrames1024To1518 ",
1506 "TxFrames1519ToMax ",
1508 "RxOctetsOK ",
1509 "RxFramesOK ",
1510 "RxMulticastFramesOK",
1511 "RxBroadcastFramesOK",
1512 "RxPauseFrames ",
1513 "RxFCSErrors ",
1514 "RxSymbolErrors ",
1515 "RxShortErrors ",
1516 "RxJabberErrors ",
1517 "RxLengthErrors ",
1518 "RxFIFOoverflow ",
1520 "RxFrames64 ",
1521 "RxFrames65To127 ",
1522 "RxFrames128To255 ",
1523 "RxFrames256To511 ",
1524 "RxFrames512To1023 ",
1525 "RxFrames1024To1518 ",
1526 "RxFrames1519ToMax ",
1528 "PhyFIFOErrors ",
1529 "TSO ",
1530 "VLANextractions ",
1531 "VLANinsertions ",
1532 "TxCsumOffload ",
1533 "RxCsumGood ",
1534 "LroAggregated ",
1535 "LroFlushed ",
1536 "LroNoDesc ",
1537 "RxDrops ",
1539 "CheckTXEnToggled ",
1540 "CheckResets ",
1542 "LinkFaults ",
1545 static int get_sset_count(struct net_device *dev, int sset)
1547 switch (sset) {
1548 case ETH_SS_STATS:
1549 return ARRAY_SIZE(stats_strings);
1550 default:
1551 return -EOPNOTSUPP;
1555 #define T3_REGMAP_SIZE (3 * 1024)
1557 static int get_regs_len(struct net_device *dev)
1559 return T3_REGMAP_SIZE;
1562 static int get_eeprom_len(struct net_device *dev)
1564 return EEPROMSIZE;
1567 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1569 struct port_info *pi = netdev_priv(dev);
1570 struct adapter *adapter = pi->adapter;
1571 u32 fw_vers = 0;
1572 u32 tp_vers = 0;
1574 spin_lock(&adapter->stats_lock);
1575 t3_get_fw_version(adapter, &fw_vers);
1576 t3_get_tp_version(adapter, &tp_vers);
1577 spin_unlock(&adapter->stats_lock);
1579 strcpy(info->driver, DRV_NAME);
1580 strcpy(info->version, DRV_VERSION);
1581 strcpy(info->bus_info, pci_name(adapter->pdev));
1582 if (!fw_vers)
1583 strcpy(info->fw_version, "N/A");
1584 else {
1585 snprintf(info->fw_version, sizeof(info->fw_version),
1586 "%s %u.%u.%u TP %u.%u.%u",
1587 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1588 G_FW_VERSION_MAJOR(fw_vers),
1589 G_FW_VERSION_MINOR(fw_vers),
1590 G_FW_VERSION_MICRO(fw_vers),
1591 G_TP_VERSION_MAJOR(tp_vers),
1592 G_TP_VERSION_MINOR(tp_vers),
1593 G_TP_VERSION_MICRO(tp_vers));
1597 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1599 if (stringset == ETH_SS_STATS)
1600 memcpy(data, stats_strings, sizeof(stats_strings));
1603 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1604 struct port_info *p, int idx)
1606 int i;
1607 unsigned long tot = 0;
1609 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1610 tot += adapter->sge.qs[i].port_stats[idx];
1611 return tot;
1614 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1615 u64 *data)
1617 struct port_info *pi = netdev_priv(dev);
1618 struct adapter *adapter = pi->adapter;
1619 const struct mac_stats *s;
1621 spin_lock(&adapter->stats_lock);
1622 s = t3_mac_update_stats(&pi->mac);
1623 spin_unlock(&adapter->stats_lock);
1625 *data++ = s->tx_octets;
1626 *data++ = s->tx_frames;
1627 *data++ = s->tx_mcast_frames;
1628 *data++ = s->tx_bcast_frames;
1629 *data++ = s->tx_pause;
1630 *data++ = s->tx_underrun;
1631 *data++ = s->tx_fifo_urun;
1633 *data++ = s->tx_frames_64;
1634 *data++ = s->tx_frames_65_127;
1635 *data++ = s->tx_frames_128_255;
1636 *data++ = s->tx_frames_256_511;
1637 *data++ = s->tx_frames_512_1023;
1638 *data++ = s->tx_frames_1024_1518;
1639 *data++ = s->tx_frames_1519_max;
1641 *data++ = s->rx_octets;
1642 *data++ = s->rx_frames;
1643 *data++ = s->rx_mcast_frames;
1644 *data++ = s->rx_bcast_frames;
1645 *data++ = s->rx_pause;
1646 *data++ = s->rx_fcs_errs;
1647 *data++ = s->rx_symbol_errs;
1648 *data++ = s->rx_short;
1649 *data++ = s->rx_jabber;
1650 *data++ = s->rx_too_long;
1651 *data++ = s->rx_fifo_ovfl;
1653 *data++ = s->rx_frames_64;
1654 *data++ = s->rx_frames_65_127;
1655 *data++ = s->rx_frames_128_255;
1656 *data++ = s->rx_frames_256_511;
1657 *data++ = s->rx_frames_512_1023;
1658 *data++ = s->rx_frames_1024_1518;
1659 *data++ = s->rx_frames_1519_max;
1661 *data++ = pi->phy.fifo_errors;
1663 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1664 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1665 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1666 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1667 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1668 *data++ = 0;
1669 *data++ = 0;
1670 *data++ = 0;
1671 *data++ = s->rx_cong_drops;
1673 *data++ = s->num_toggled;
1674 *data++ = s->num_resets;
1676 *data++ = s->link_faults;
1679 static inline void reg_block_dump(struct adapter *ap, void *buf,
1680 unsigned int start, unsigned int end)
1682 u32 *p = buf + start;
1684 for (; start <= end; start += sizeof(u32))
1685 *p++ = t3_read_reg(ap, start);
1688 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1689 void *buf)
1691 struct port_info *pi = netdev_priv(dev);
1692 struct adapter *ap = pi->adapter;
1695 * Version scheme:
1696 * bits 0..9: chip version
1697 * bits 10..15: chip revision
1698 * bit 31: set for PCIe cards
1700 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1703 * We skip the MAC statistics registers because they are clear-on-read.
1704 * Also reading multi-register stats would need to synchronize with the
1705 * periodic mac stats accumulation. Hard to justify the complexity.
1707 memset(buf, 0, T3_REGMAP_SIZE);
1708 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1709 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1710 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1711 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1712 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1713 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1714 XGM_REG(A_XGM_SERDES_STAT3, 1));
1715 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1716 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1719 static int restart_autoneg(struct net_device *dev)
1721 struct port_info *p = netdev_priv(dev);
1723 if (!netif_running(dev))
1724 return -EAGAIN;
1725 if (p->link_config.autoneg != AUTONEG_ENABLE)
1726 return -EINVAL;
1727 p->phy.ops->autoneg_restart(&p->phy);
1728 return 0;
1731 static int set_phys_id(struct net_device *dev,
1732 enum ethtool_phys_id_state state)
1734 struct port_info *pi = netdev_priv(dev);
1735 struct adapter *adapter = pi->adapter;
1737 switch (state) {
1738 case ETHTOOL_ID_ACTIVE:
1739 return 1; /* cycle on/off once per second */
1741 case ETHTOOL_ID_OFF:
1742 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1743 break;
1745 case ETHTOOL_ID_ON:
1746 case ETHTOOL_ID_INACTIVE:
1747 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1748 F_GPIO0_OUT_VAL);
1751 return 0;
1754 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1756 struct port_info *p = netdev_priv(dev);
1758 cmd->supported = p->link_config.supported;
1759 cmd->advertising = p->link_config.advertising;
1761 if (netif_carrier_ok(dev)) {
1762 ethtool_cmd_speed_set(cmd, p->link_config.speed);
1763 cmd->duplex = p->link_config.duplex;
1764 } else {
1765 ethtool_cmd_speed_set(cmd, -1);
1766 cmd->duplex = -1;
1769 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1770 cmd->phy_address = p->phy.mdio.prtad;
1771 cmd->transceiver = XCVR_EXTERNAL;
1772 cmd->autoneg = p->link_config.autoneg;
1773 cmd->maxtxpkt = 0;
1774 cmd->maxrxpkt = 0;
1775 return 0;
1778 static int speed_duplex_to_caps(int speed, int duplex)
1780 int cap = 0;
1782 switch (speed) {
1783 case SPEED_10:
1784 if (duplex == DUPLEX_FULL)
1785 cap = SUPPORTED_10baseT_Full;
1786 else
1787 cap = SUPPORTED_10baseT_Half;
1788 break;
1789 case SPEED_100:
1790 if (duplex == DUPLEX_FULL)
1791 cap = SUPPORTED_100baseT_Full;
1792 else
1793 cap = SUPPORTED_100baseT_Half;
1794 break;
1795 case SPEED_1000:
1796 if (duplex == DUPLEX_FULL)
1797 cap = SUPPORTED_1000baseT_Full;
1798 else
1799 cap = SUPPORTED_1000baseT_Half;
1800 break;
1801 case SPEED_10000:
1802 if (duplex == DUPLEX_FULL)
1803 cap = SUPPORTED_10000baseT_Full;
1805 return cap;
1808 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1809 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1810 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1811 ADVERTISED_10000baseT_Full)
1813 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1815 struct port_info *p = netdev_priv(dev);
1816 struct link_config *lc = &p->link_config;
1818 if (!(lc->supported & SUPPORTED_Autoneg)) {
1820 * PHY offers a single speed/duplex. See if that's what's
1821 * being requested.
1823 if (cmd->autoneg == AUTONEG_DISABLE) {
1824 u32 speed = ethtool_cmd_speed(cmd);
1825 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1826 if (lc->supported & cap)
1827 return 0;
1829 return -EINVAL;
1832 if (cmd->autoneg == AUTONEG_DISABLE) {
1833 u32 speed = ethtool_cmd_speed(cmd);
1834 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1836 if (!(lc->supported & cap) || (speed == SPEED_1000))
1837 return -EINVAL;
1838 lc->requested_speed = speed;
1839 lc->requested_duplex = cmd->duplex;
1840 lc->advertising = 0;
1841 } else {
1842 cmd->advertising &= ADVERTISED_MASK;
1843 cmd->advertising &= lc->supported;
1844 if (!cmd->advertising)
1845 return -EINVAL;
1846 lc->requested_speed = SPEED_INVALID;
1847 lc->requested_duplex = DUPLEX_INVALID;
1848 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1850 lc->autoneg = cmd->autoneg;
1851 if (netif_running(dev))
1852 t3_link_start(&p->phy, &p->mac, lc);
1853 return 0;
1856 static void get_pauseparam(struct net_device *dev,
1857 struct ethtool_pauseparam *epause)
1859 struct port_info *p = netdev_priv(dev);
1861 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1862 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1863 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1866 static int set_pauseparam(struct net_device *dev,
1867 struct ethtool_pauseparam *epause)
1869 struct port_info *p = netdev_priv(dev);
1870 struct link_config *lc = &p->link_config;
1872 if (epause->autoneg == AUTONEG_DISABLE)
1873 lc->requested_fc = 0;
1874 else if (lc->supported & SUPPORTED_Autoneg)
1875 lc->requested_fc = PAUSE_AUTONEG;
1876 else
1877 return -EINVAL;
1879 if (epause->rx_pause)
1880 lc->requested_fc |= PAUSE_RX;
1881 if (epause->tx_pause)
1882 lc->requested_fc |= PAUSE_TX;
1883 if (lc->autoneg == AUTONEG_ENABLE) {
1884 if (netif_running(dev))
1885 t3_link_start(&p->phy, &p->mac, lc);
1886 } else {
1887 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1888 if (netif_running(dev))
1889 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1891 return 0;
1894 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1896 struct port_info *pi = netdev_priv(dev);
1897 struct adapter *adapter = pi->adapter;
1898 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1900 e->rx_max_pending = MAX_RX_BUFFERS;
1901 e->rx_mini_max_pending = 0;
1902 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1903 e->tx_max_pending = MAX_TXQ_ENTRIES;
1905 e->rx_pending = q->fl_size;
1906 e->rx_mini_pending = q->rspq_size;
1907 e->rx_jumbo_pending = q->jumbo_size;
1908 e->tx_pending = q->txq_size[0];
1911 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1913 struct port_info *pi = netdev_priv(dev);
1914 struct adapter *adapter = pi->adapter;
1915 struct qset_params *q;
1916 int i;
1918 if (e->rx_pending > MAX_RX_BUFFERS ||
1919 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1920 e->tx_pending > MAX_TXQ_ENTRIES ||
1921 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1922 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1923 e->rx_pending < MIN_FL_ENTRIES ||
1924 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1925 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1926 return -EINVAL;
1928 if (adapter->flags & FULL_INIT_DONE)
1929 return -EBUSY;
1931 q = &adapter->params.sge.qset[pi->first_qset];
1932 for (i = 0; i < pi->nqsets; ++i, ++q) {
1933 q->rspq_size = e->rx_mini_pending;
1934 q->fl_size = e->rx_pending;
1935 q->jumbo_size = e->rx_jumbo_pending;
1936 q->txq_size[0] = e->tx_pending;
1937 q->txq_size[1] = e->tx_pending;
1938 q->txq_size[2] = e->tx_pending;
1940 return 0;
1943 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1945 struct port_info *pi = netdev_priv(dev);
1946 struct adapter *adapter = pi->adapter;
1947 struct qset_params *qsp;
1948 struct sge_qset *qs;
1949 int i;
1951 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1952 return -EINVAL;
1954 for (i = 0; i < pi->nqsets; i++) {
1955 qsp = &adapter->params.sge.qset[i];
1956 qs = &adapter->sge.qs[i];
1957 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1958 t3_update_qset_coalesce(qs, qsp);
1961 return 0;
1964 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1966 struct port_info *pi = netdev_priv(dev);
1967 struct adapter *adapter = pi->adapter;
1968 struct qset_params *q = adapter->params.sge.qset;
1970 c->rx_coalesce_usecs = q->coalesce_usecs;
1971 return 0;
1974 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1975 u8 * data)
1977 struct port_info *pi = netdev_priv(dev);
1978 struct adapter *adapter = pi->adapter;
1979 int i, err = 0;
1981 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1982 if (!buf)
1983 return -ENOMEM;
1985 e->magic = EEPROM_MAGIC;
1986 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1987 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1989 if (!err)
1990 memcpy(data, buf + e->offset, e->len);
1991 kfree(buf);
1992 return err;
1995 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1996 u8 * data)
1998 struct port_info *pi = netdev_priv(dev);
1999 struct adapter *adapter = pi->adapter;
2000 u32 aligned_offset, aligned_len;
2001 __le32 *p;
2002 u8 *buf;
2003 int err;
2005 if (eeprom->magic != EEPROM_MAGIC)
2006 return -EINVAL;
2008 aligned_offset = eeprom->offset & ~3;
2009 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2011 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2012 buf = kmalloc(aligned_len, GFP_KERNEL);
2013 if (!buf)
2014 return -ENOMEM;
2015 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2016 if (!err && aligned_len > 4)
2017 err = t3_seeprom_read(adapter,
2018 aligned_offset + aligned_len - 4,
2019 (__le32 *) & buf[aligned_len - 4]);
2020 if (err)
2021 goto out;
2022 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2023 } else
2024 buf = data;
2026 err = t3_seeprom_wp(adapter, 0);
2027 if (err)
2028 goto out;
2030 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2031 err = t3_seeprom_write(adapter, aligned_offset, *p);
2032 aligned_offset += 4;
2035 if (!err)
2036 err = t3_seeprom_wp(adapter, 1);
2037 out:
2038 if (buf != data)
2039 kfree(buf);
2040 return err;
2043 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2045 wol->supported = 0;
2046 wol->wolopts = 0;
2047 memset(&wol->sopass, 0, sizeof(wol->sopass));
2050 static const struct ethtool_ops cxgb_ethtool_ops = {
2051 .get_settings = get_settings,
2052 .set_settings = set_settings,
2053 .get_drvinfo = get_drvinfo,
2054 .get_msglevel = get_msglevel,
2055 .set_msglevel = set_msglevel,
2056 .get_ringparam = get_sge_param,
2057 .set_ringparam = set_sge_param,
2058 .get_coalesce = get_coalesce,
2059 .set_coalesce = set_coalesce,
2060 .get_eeprom_len = get_eeprom_len,
2061 .get_eeprom = get_eeprom,
2062 .set_eeprom = set_eeprom,
2063 .get_pauseparam = get_pauseparam,
2064 .set_pauseparam = set_pauseparam,
2065 .get_link = ethtool_op_get_link,
2066 .get_strings = get_strings,
2067 .set_phys_id = set_phys_id,
2068 .nway_reset = restart_autoneg,
2069 .get_sset_count = get_sset_count,
2070 .get_ethtool_stats = get_stats,
2071 .get_regs_len = get_regs_len,
2072 .get_regs = get_regs,
2073 .get_wol = get_wol,
2076 static int in_range(int val, int lo, int hi)
2078 return val < 0 || (val <= hi && val >= lo);
2081 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2083 struct port_info *pi = netdev_priv(dev);
2084 struct adapter *adapter = pi->adapter;
2085 u32 cmd;
2086 int ret;
2088 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2089 return -EFAULT;
2091 switch (cmd) {
2092 case CHELSIO_SET_QSET_PARAMS:{
2093 int i;
2094 struct qset_params *q;
2095 struct ch_qset_params t;
2096 int q1 = pi->first_qset;
2097 int nqsets = pi->nqsets;
2099 if (!capable(CAP_NET_ADMIN))
2100 return -EPERM;
2101 if (copy_from_user(&t, useraddr, sizeof(t)))
2102 return -EFAULT;
2103 if (t.qset_idx >= SGE_QSETS)
2104 return -EINVAL;
2105 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2106 !in_range(t.cong_thres, 0, 255) ||
2107 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2108 MAX_TXQ_ENTRIES) ||
2109 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2110 MAX_TXQ_ENTRIES) ||
2111 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2112 MAX_CTRL_TXQ_ENTRIES) ||
2113 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2114 MAX_RX_BUFFERS) ||
2115 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2116 MAX_RX_JUMBO_BUFFERS) ||
2117 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2118 MAX_RSPQ_ENTRIES))
2119 return -EINVAL;
2121 if ((adapter->flags & FULL_INIT_DONE) &&
2122 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2123 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2124 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2125 t.polling >= 0 || t.cong_thres >= 0))
2126 return -EBUSY;
2128 /* Allow setting of any available qset when offload enabled */
2129 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2130 q1 = 0;
2131 for_each_port(adapter, i) {
2132 pi = adap2pinfo(adapter, i);
2133 nqsets += pi->first_qset + pi->nqsets;
2137 if (t.qset_idx < q1)
2138 return -EINVAL;
2139 if (t.qset_idx > q1 + nqsets - 1)
2140 return -EINVAL;
2142 q = &adapter->params.sge.qset[t.qset_idx];
2144 if (t.rspq_size >= 0)
2145 q->rspq_size = t.rspq_size;
2146 if (t.fl_size[0] >= 0)
2147 q->fl_size = t.fl_size[0];
2148 if (t.fl_size[1] >= 0)
2149 q->jumbo_size = t.fl_size[1];
2150 if (t.txq_size[0] >= 0)
2151 q->txq_size[0] = t.txq_size[0];
2152 if (t.txq_size[1] >= 0)
2153 q->txq_size[1] = t.txq_size[1];
2154 if (t.txq_size[2] >= 0)
2155 q->txq_size[2] = t.txq_size[2];
2156 if (t.cong_thres >= 0)
2157 q->cong_thres = t.cong_thres;
2158 if (t.intr_lat >= 0) {
2159 struct sge_qset *qs =
2160 &adapter->sge.qs[t.qset_idx];
2162 q->coalesce_usecs = t.intr_lat;
2163 t3_update_qset_coalesce(qs, q);
2165 if (t.polling >= 0) {
2166 if (adapter->flags & USING_MSIX)
2167 q->polling = t.polling;
2168 else {
2169 /* No polling with INTx for T3A */
2170 if (adapter->params.rev == 0 &&
2171 !(adapter->flags & USING_MSI))
2172 t.polling = 0;
2174 for (i = 0; i < SGE_QSETS; i++) {
2175 q = &adapter->params.sge.
2176 qset[i];
2177 q->polling = t.polling;
2182 if (t.lro >= 0) {
2183 if (t.lro)
2184 dev->wanted_features |= NETIF_F_GRO;
2185 else
2186 dev->wanted_features &= ~NETIF_F_GRO;
2187 netdev_update_features(dev);
2190 break;
2192 case CHELSIO_GET_QSET_PARAMS:{
2193 struct qset_params *q;
2194 struct ch_qset_params t;
2195 int q1 = pi->first_qset;
2196 int nqsets = pi->nqsets;
2197 int i;
2199 if (copy_from_user(&t, useraddr, sizeof(t)))
2200 return -EFAULT;
2202 /* Display qsets for all ports when offload enabled */
2203 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2204 q1 = 0;
2205 for_each_port(adapter, i) {
2206 pi = adap2pinfo(adapter, i);
2207 nqsets = pi->first_qset + pi->nqsets;
2211 if (t.qset_idx >= nqsets)
2212 return -EINVAL;
2214 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2215 t.rspq_size = q->rspq_size;
2216 t.txq_size[0] = q->txq_size[0];
2217 t.txq_size[1] = q->txq_size[1];
2218 t.txq_size[2] = q->txq_size[2];
2219 t.fl_size[0] = q->fl_size;
2220 t.fl_size[1] = q->jumbo_size;
2221 t.polling = q->polling;
2222 t.lro = !!(dev->features & NETIF_F_GRO);
2223 t.intr_lat = q->coalesce_usecs;
2224 t.cong_thres = q->cong_thres;
2225 t.qnum = q1;
2227 if (adapter->flags & USING_MSIX)
2228 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2229 else
2230 t.vector = adapter->pdev->irq;
2232 if (copy_to_user(useraddr, &t, sizeof(t)))
2233 return -EFAULT;
2234 break;
2236 case CHELSIO_SET_QSET_NUM:{
2237 struct ch_reg edata;
2238 unsigned int i, first_qset = 0, other_qsets = 0;
2240 if (!capable(CAP_NET_ADMIN))
2241 return -EPERM;
2242 if (adapter->flags & FULL_INIT_DONE)
2243 return -EBUSY;
2244 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2245 return -EFAULT;
2246 if (edata.val < 1 ||
2247 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2248 return -EINVAL;
2250 for_each_port(adapter, i)
2251 if (adapter->port[i] && adapter->port[i] != dev)
2252 other_qsets += adap2pinfo(adapter, i)->nqsets;
2254 if (edata.val + other_qsets > SGE_QSETS)
2255 return -EINVAL;
2257 pi->nqsets = edata.val;
2259 for_each_port(adapter, i)
2260 if (adapter->port[i]) {
2261 pi = adap2pinfo(adapter, i);
2262 pi->first_qset = first_qset;
2263 first_qset += pi->nqsets;
2265 break;
2267 case CHELSIO_GET_QSET_NUM:{
2268 struct ch_reg edata;
2270 memset(&edata, 0, sizeof(struct ch_reg));
2272 edata.cmd = CHELSIO_GET_QSET_NUM;
2273 edata.val = pi->nqsets;
2274 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2275 return -EFAULT;
2276 break;
2278 case CHELSIO_LOAD_FW:{
2279 u8 *fw_data;
2280 struct ch_mem_range t;
2282 if (!capable(CAP_SYS_RAWIO))
2283 return -EPERM;
2284 if (copy_from_user(&t, useraddr, sizeof(t)))
2285 return -EFAULT;
2286 /* Check t.len sanity ? */
2287 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2288 if (IS_ERR(fw_data))
2289 return PTR_ERR(fw_data);
2291 ret = t3_load_fw(adapter, fw_data, t.len);
2292 kfree(fw_data);
2293 if (ret)
2294 return ret;
2295 break;
2297 case CHELSIO_SETMTUTAB:{
2298 struct ch_mtus m;
2299 int i;
2301 if (!is_offload(adapter))
2302 return -EOPNOTSUPP;
2303 if (!capable(CAP_NET_ADMIN))
2304 return -EPERM;
2305 if (offload_running(adapter))
2306 return -EBUSY;
2307 if (copy_from_user(&m, useraddr, sizeof(m)))
2308 return -EFAULT;
2309 if (m.nmtus != NMTUS)
2310 return -EINVAL;
2311 if (m.mtus[0] < 81) /* accommodate SACK */
2312 return -EINVAL;
2314 /* MTUs must be in ascending order */
2315 for (i = 1; i < NMTUS; ++i)
2316 if (m.mtus[i] < m.mtus[i - 1])
2317 return -EINVAL;
2319 memcpy(adapter->params.mtus, m.mtus,
2320 sizeof(adapter->params.mtus));
2321 break;
2323 case CHELSIO_GET_PM:{
2324 struct tp_params *p = &adapter->params.tp;
2325 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2327 if (!is_offload(adapter))
2328 return -EOPNOTSUPP;
2329 m.tx_pg_sz = p->tx_pg_size;
2330 m.tx_num_pg = p->tx_num_pgs;
2331 m.rx_pg_sz = p->rx_pg_size;
2332 m.rx_num_pg = p->rx_num_pgs;
2333 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2334 if (copy_to_user(useraddr, &m, sizeof(m)))
2335 return -EFAULT;
2336 break;
2338 case CHELSIO_SET_PM:{
2339 struct ch_pm m;
2340 struct tp_params *p = &adapter->params.tp;
2342 if (!is_offload(adapter))
2343 return -EOPNOTSUPP;
2344 if (!capable(CAP_NET_ADMIN))
2345 return -EPERM;
2346 if (adapter->flags & FULL_INIT_DONE)
2347 return -EBUSY;
2348 if (copy_from_user(&m, useraddr, sizeof(m)))
2349 return -EFAULT;
2350 if (!is_power_of_2(m.rx_pg_sz) ||
2351 !is_power_of_2(m.tx_pg_sz))
2352 return -EINVAL; /* not power of 2 */
2353 if (!(m.rx_pg_sz & 0x14000))
2354 return -EINVAL; /* not 16KB or 64KB */
2355 if (!(m.tx_pg_sz & 0x1554000))
2356 return -EINVAL;
2357 if (m.tx_num_pg == -1)
2358 m.tx_num_pg = p->tx_num_pgs;
2359 if (m.rx_num_pg == -1)
2360 m.rx_num_pg = p->rx_num_pgs;
2361 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2362 return -EINVAL;
2363 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2364 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2365 return -EINVAL;
2366 p->rx_pg_size = m.rx_pg_sz;
2367 p->tx_pg_size = m.tx_pg_sz;
2368 p->rx_num_pgs = m.rx_num_pg;
2369 p->tx_num_pgs = m.tx_num_pg;
2370 break;
2372 case CHELSIO_GET_MEM:{
2373 struct ch_mem_range t;
2374 struct mc7 *mem;
2375 u64 buf[32];
2377 if (!is_offload(adapter))
2378 return -EOPNOTSUPP;
2379 if (!(adapter->flags & FULL_INIT_DONE))
2380 return -EIO; /* need the memory controllers */
2381 if (copy_from_user(&t, useraddr, sizeof(t)))
2382 return -EFAULT;
2383 if ((t.addr & 7) || (t.len & 7))
2384 return -EINVAL;
2385 if (t.mem_id == MEM_CM)
2386 mem = &adapter->cm;
2387 else if (t.mem_id == MEM_PMRX)
2388 mem = &adapter->pmrx;
2389 else if (t.mem_id == MEM_PMTX)
2390 mem = &adapter->pmtx;
2391 else
2392 return -EINVAL;
2395 * Version scheme:
2396 * bits 0..9: chip version
2397 * bits 10..15: chip revision
2399 t.version = 3 | (adapter->params.rev << 10);
2400 if (copy_to_user(useraddr, &t, sizeof(t)))
2401 return -EFAULT;
2404 * Read 256 bytes at a time as len can be large and we don't
2405 * want to use huge intermediate buffers.
2407 useraddr += sizeof(t); /* advance to start of buffer */
2408 while (t.len) {
2409 unsigned int chunk =
2410 min_t(unsigned int, t.len, sizeof(buf));
2412 ret =
2413 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2414 buf);
2415 if (ret)
2416 return ret;
2417 if (copy_to_user(useraddr, buf, chunk))
2418 return -EFAULT;
2419 useraddr += chunk;
2420 t.addr += chunk;
2421 t.len -= chunk;
2423 break;
2425 case CHELSIO_SET_TRACE_FILTER:{
2426 struct ch_trace t;
2427 const struct trace_params *tp;
2429 if (!capable(CAP_NET_ADMIN))
2430 return -EPERM;
2431 if (!offload_running(adapter))
2432 return -EAGAIN;
2433 if (copy_from_user(&t, useraddr, sizeof(t)))
2434 return -EFAULT;
2436 tp = (const struct trace_params *)&t.sip;
2437 if (t.config_tx)
2438 t3_config_trace_filter(adapter, tp, 0,
2439 t.invert_match,
2440 t.trace_tx);
2441 if (t.config_rx)
2442 t3_config_trace_filter(adapter, tp, 1,
2443 t.invert_match,
2444 t.trace_rx);
2445 break;
2447 default:
2448 return -EOPNOTSUPP;
2450 return 0;
2453 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2455 struct mii_ioctl_data *data = if_mii(req);
2456 struct port_info *pi = netdev_priv(dev);
2457 struct adapter *adapter = pi->adapter;
2459 switch (cmd) {
2460 case SIOCGMIIREG:
2461 case SIOCSMIIREG:
2462 /* Convert phy_id from older PRTAD/DEVAD format */
2463 if (is_10G(adapter) &&
2464 !mdio_phy_id_is_c45(data->phy_id) &&
2465 (data->phy_id & 0x1f00) &&
2466 !(data->phy_id & 0xe0e0))
2467 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2468 data->phy_id & 0x1f);
2469 /* FALLTHRU */
2470 case SIOCGMIIPHY:
2471 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2472 case SIOCCHIOCTL:
2473 return cxgb_extension_ioctl(dev, req->ifr_data);
2474 default:
2475 return -EOPNOTSUPP;
2479 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2481 struct port_info *pi = netdev_priv(dev);
2482 struct adapter *adapter = pi->adapter;
2483 int ret;
2485 if (new_mtu < 81) /* accommodate SACK */
2486 return -EINVAL;
2487 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2488 return ret;
2489 dev->mtu = new_mtu;
2490 init_port_mtus(adapter);
2491 if (adapter->params.rev == 0 && offload_running(adapter))
2492 t3_load_mtus(adapter, adapter->params.mtus,
2493 adapter->params.a_wnd, adapter->params.b_wnd,
2494 adapter->port[0]->mtu);
2495 return 0;
2498 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2500 struct port_info *pi = netdev_priv(dev);
2501 struct adapter *adapter = pi->adapter;
2502 struct sockaddr *addr = p;
2504 if (!is_valid_ether_addr(addr->sa_data))
2505 return -EINVAL;
2507 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2508 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2509 if (offload_running(adapter))
2510 write_smt_entry(adapter, pi->port_id);
2511 return 0;
2515 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2516 * @adap: the adapter
2517 * @p: the port
2519 * Ensures that current Rx processing on any of the queues associated with
2520 * the given port completes before returning. We do this by acquiring and
2521 * releasing the locks of the response queues associated with the port.
2523 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2525 int i;
2527 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2528 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2530 spin_lock_irq(&q->lock);
2531 spin_unlock_irq(&q->lock);
2535 static void cxgb_vlan_mode(struct net_device *dev, u32 features)
2537 struct port_info *pi = netdev_priv(dev);
2538 struct adapter *adapter = pi->adapter;
2540 if (adapter->params.rev > 0) {
2541 t3_set_vlan_accel(adapter, 1 << pi->port_id,
2542 features & NETIF_F_HW_VLAN_RX);
2543 } else {
2544 /* single control for all ports */
2545 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_RX;
2547 for_each_port(adapter, i)
2548 have_vlans |=
2549 adapter->port[i]->features & NETIF_F_HW_VLAN_RX;
2551 t3_set_vlan_accel(adapter, 1, have_vlans);
2553 t3_synchronize_rx(adapter, pi);
2556 static u32 cxgb_fix_features(struct net_device *dev, u32 features)
2559 * Since there is no support for separate rx/tx vlan accel
2560 * enable/disable make sure tx flag is always in same state as rx.
2562 if (features & NETIF_F_HW_VLAN_RX)
2563 features |= NETIF_F_HW_VLAN_TX;
2564 else
2565 features &= ~NETIF_F_HW_VLAN_TX;
2567 return features;
2570 static int cxgb_set_features(struct net_device *dev, u32 features)
2572 u32 changed = dev->features ^ features;
2574 if (changed & NETIF_F_HW_VLAN_RX)
2575 cxgb_vlan_mode(dev, features);
2577 return 0;
2580 #ifdef CONFIG_NET_POLL_CONTROLLER
2581 static void cxgb_netpoll(struct net_device *dev)
2583 struct port_info *pi = netdev_priv(dev);
2584 struct adapter *adapter = pi->adapter;
2585 int qidx;
2587 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2588 struct sge_qset *qs = &adapter->sge.qs[qidx];
2589 void *source;
2591 if (adapter->flags & USING_MSIX)
2592 source = qs;
2593 else
2594 source = adapter;
2596 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2599 #endif
2602 * Periodic accumulation of MAC statistics.
2604 static void mac_stats_update(struct adapter *adapter)
2606 int i;
2608 for_each_port(adapter, i) {
2609 struct net_device *dev = adapter->port[i];
2610 struct port_info *p = netdev_priv(dev);
2612 if (netif_running(dev)) {
2613 spin_lock(&adapter->stats_lock);
2614 t3_mac_update_stats(&p->mac);
2615 spin_unlock(&adapter->stats_lock);
2620 static void check_link_status(struct adapter *adapter)
2622 int i;
2624 for_each_port(adapter, i) {
2625 struct net_device *dev = adapter->port[i];
2626 struct port_info *p = netdev_priv(dev);
2627 int link_fault;
2629 spin_lock_irq(&adapter->work_lock);
2630 link_fault = p->link_fault;
2631 spin_unlock_irq(&adapter->work_lock);
2633 if (link_fault) {
2634 t3_link_fault(adapter, i);
2635 continue;
2638 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2639 t3_xgm_intr_disable(adapter, i);
2640 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2642 t3_link_changed(adapter, i);
2643 t3_xgm_intr_enable(adapter, i);
2648 static void check_t3b2_mac(struct adapter *adapter)
2650 int i;
2652 if (!rtnl_trylock()) /* synchronize with ifdown */
2653 return;
2655 for_each_port(adapter, i) {
2656 struct net_device *dev = adapter->port[i];
2657 struct port_info *p = netdev_priv(dev);
2658 int status;
2660 if (!netif_running(dev))
2661 continue;
2663 status = 0;
2664 if (netif_running(dev) && netif_carrier_ok(dev))
2665 status = t3b2_mac_watchdog_task(&p->mac);
2666 if (status == 1)
2667 p->mac.stats.num_toggled++;
2668 else if (status == 2) {
2669 struct cmac *mac = &p->mac;
2671 t3_mac_set_mtu(mac, dev->mtu);
2672 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2673 cxgb_set_rxmode(dev);
2674 t3_link_start(&p->phy, mac, &p->link_config);
2675 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2676 t3_port_intr_enable(adapter, p->port_id);
2677 p->mac.stats.num_resets++;
2680 rtnl_unlock();
2684 static void t3_adap_check_task(struct work_struct *work)
2686 struct adapter *adapter = container_of(work, struct adapter,
2687 adap_check_task.work);
2688 const struct adapter_params *p = &adapter->params;
2689 int port;
2690 unsigned int v, status, reset;
2692 adapter->check_task_cnt++;
2694 check_link_status(adapter);
2696 /* Accumulate MAC stats if needed */
2697 if (!p->linkpoll_period ||
2698 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2699 p->stats_update_period) {
2700 mac_stats_update(adapter);
2701 adapter->check_task_cnt = 0;
2704 if (p->rev == T3_REV_B2)
2705 check_t3b2_mac(adapter);
2708 * Scan the XGMAC's to check for various conditions which we want to
2709 * monitor in a periodic polling manner rather than via an interrupt
2710 * condition. This is used for conditions which would otherwise flood
2711 * the system with interrupts and we only really need to know that the
2712 * conditions are "happening" ... For each condition we count the
2713 * detection of the condition and reset it for the next polling loop.
2715 for_each_port(adapter, port) {
2716 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2717 u32 cause;
2719 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2720 reset = 0;
2721 if (cause & F_RXFIFO_OVERFLOW) {
2722 mac->stats.rx_fifo_ovfl++;
2723 reset |= F_RXFIFO_OVERFLOW;
2726 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2730 * We do the same as above for FL_EMPTY interrupts.
2732 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2733 reset = 0;
2735 if (status & F_FLEMPTY) {
2736 struct sge_qset *qs = &adapter->sge.qs[0];
2737 int i = 0;
2739 reset |= F_FLEMPTY;
2741 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2742 0xffff;
2744 while (v) {
2745 qs->fl[i].empty += (v & 1);
2746 if (i)
2747 qs++;
2748 i ^= 1;
2749 v >>= 1;
2753 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2755 /* Schedule the next check update if any port is active. */
2756 spin_lock_irq(&adapter->work_lock);
2757 if (adapter->open_device_map & PORT_MASK)
2758 schedule_chk_task(adapter);
2759 spin_unlock_irq(&adapter->work_lock);
2762 static void db_full_task(struct work_struct *work)
2764 struct adapter *adapter = container_of(work, struct adapter,
2765 db_full_task);
2767 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2770 static void db_empty_task(struct work_struct *work)
2772 struct adapter *adapter = container_of(work, struct adapter,
2773 db_empty_task);
2775 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2778 static void db_drop_task(struct work_struct *work)
2780 struct adapter *adapter = container_of(work, struct adapter,
2781 db_drop_task);
2782 unsigned long delay = 1000;
2783 unsigned short r;
2785 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2788 * Sleep a while before ringing the driver qset dbs.
2789 * The delay is between 1000-2023 usecs.
2791 get_random_bytes(&r, 2);
2792 delay += r & 1023;
2793 set_current_state(TASK_UNINTERRUPTIBLE);
2794 schedule_timeout(usecs_to_jiffies(delay));
2795 ring_dbs(adapter);
2799 * Processes external (PHY) interrupts in process context.
2801 static void ext_intr_task(struct work_struct *work)
2803 struct adapter *adapter = container_of(work, struct adapter,
2804 ext_intr_handler_task);
2805 int i;
2807 /* Disable link fault interrupts */
2808 for_each_port(adapter, i) {
2809 struct net_device *dev = adapter->port[i];
2810 struct port_info *p = netdev_priv(dev);
2812 t3_xgm_intr_disable(adapter, i);
2813 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2816 /* Re-enable link fault interrupts */
2817 t3_phy_intr_handler(adapter);
2819 for_each_port(adapter, i)
2820 t3_xgm_intr_enable(adapter, i);
2822 /* Now reenable external interrupts */
2823 spin_lock_irq(&adapter->work_lock);
2824 if (adapter->slow_intr_mask) {
2825 adapter->slow_intr_mask |= F_T3DBG;
2826 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2827 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2828 adapter->slow_intr_mask);
2830 spin_unlock_irq(&adapter->work_lock);
2834 * Interrupt-context handler for external (PHY) interrupts.
2836 void t3_os_ext_intr_handler(struct adapter *adapter)
2839 * Schedule a task to handle external interrupts as they may be slow
2840 * and we use a mutex to protect MDIO registers. We disable PHY
2841 * interrupts in the meantime and let the task reenable them when
2842 * it's done.
2844 spin_lock(&adapter->work_lock);
2845 if (adapter->slow_intr_mask) {
2846 adapter->slow_intr_mask &= ~F_T3DBG;
2847 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2848 adapter->slow_intr_mask);
2849 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2851 spin_unlock(&adapter->work_lock);
2854 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2856 struct net_device *netdev = adapter->port[port_id];
2857 struct port_info *pi = netdev_priv(netdev);
2859 spin_lock(&adapter->work_lock);
2860 pi->link_fault = 1;
2861 spin_unlock(&adapter->work_lock);
2864 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2866 int i, ret = 0;
2868 if (is_offload(adapter) &&
2869 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2870 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2871 offload_close(&adapter->tdev);
2874 /* Stop all ports */
2875 for_each_port(adapter, i) {
2876 struct net_device *netdev = adapter->port[i];
2878 if (netif_running(netdev))
2879 __cxgb_close(netdev, on_wq);
2882 /* Stop SGE timers */
2883 t3_stop_sge_timers(adapter);
2885 adapter->flags &= ~FULL_INIT_DONE;
2887 if (reset)
2888 ret = t3_reset_adapter(adapter);
2890 pci_disable_device(adapter->pdev);
2892 return ret;
2895 static int t3_reenable_adapter(struct adapter *adapter)
2897 if (pci_enable_device(adapter->pdev)) {
2898 dev_err(&adapter->pdev->dev,
2899 "Cannot re-enable PCI device after reset.\n");
2900 goto err;
2902 pci_set_master(adapter->pdev);
2903 pci_restore_state(adapter->pdev);
2904 pci_save_state(adapter->pdev);
2906 /* Free sge resources */
2907 t3_free_sge_resources(adapter);
2909 if (t3_replay_prep_adapter(adapter))
2910 goto err;
2912 return 0;
2913 err:
2914 return -1;
2917 static void t3_resume_ports(struct adapter *adapter)
2919 int i;
2921 /* Restart the ports */
2922 for_each_port(adapter, i) {
2923 struct net_device *netdev = adapter->port[i];
2925 if (netif_running(netdev)) {
2926 if (cxgb_open(netdev)) {
2927 dev_err(&adapter->pdev->dev,
2928 "can't bring device back up"
2929 " after reset\n");
2930 continue;
2935 if (is_offload(adapter) && !ofld_disable)
2936 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2940 * processes a fatal error.
2941 * Bring the ports down, reset the chip, bring the ports back up.
2943 static void fatal_error_task(struct work_struct *work)
2945 struct adapter *adapter = container_of(work, struct adapter,
2946 fatal_error_handler_task);
2947 int err = 0;
2949 rtnl_lock();
2950 err = t3_adapter_error(adapter, 1, 1);
2951 if (!err)
2952 err = t3_reenable_adapter(adapter);
2953 if (!err)
2954 t3_resume_ports(adapter);
2956 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2957 rtnl_unlock();
2960 void t3_fatal_err(struct adapter *adapter)
2962 unsigned int fw_status[4];
2964 if (adapter->flags & FULL_INIT_DONE) {
2965 t3_sge_stop(adapter);
2966 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2967 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2968 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2969 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2971 spin_lock(&adapter->work_lock);
2972 t3_intr_disable(adapter);
2973 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2974 spin_unlock(&adapter->work_lock);
2976 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2977 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2978 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2979 fw_status[0], fw_status[1],
2980 fw_status[2], fw_status[3]);
2984 * t3_io_error_detected - called when PCI error is detected
2985 * @pdev: Pointer to PCI device
2986 * @state: The current pci connection state
2988 * This function is called after a PCI bus error affecting
2989 * this device has been detected.
2991 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2992 pci_channel_state_t state)
2994 struct adapter *adapter = pci_get_drvdata(pdev);
2996 if (state == pci_channel_io_perm_failure)
2997 return PCI_ERS_RESULT_DISCONNECT;
2999 t3_adapter_error(adapter, 0, 0);
3001 /* Request a slot reset. */
3002 return PCI_ERS_RESULT_NEED_RESET;
3006 * t3_io_slot_reset - called after the pci bus has been reset.
3007 * @pdev: Pointer to PCI device
3009 * Restart the card from scratch, as if from a cold-boot.
3011 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3013 struct adapter *adapter = pci_get_drvdata(pdev);
3015 if (!t3_reenable_adapter(adapter))
3016 return PCI_ERS_RESULT_RECOVERED;
3018 return PCI_ERS_RESULT_DISCONNECT;
3022 * t3_io_resume - called when traffic can start flowing again.
3023 * @pdev: Pointer to PCI device
3025 * This callback is called when the error recovery driver tells us that
3026 * its OK to resume normal operation.
3028 static void t3_io_resume(struct pci_dev *pdev)
3030 struct adapter *adapter = pci_get_drvdata(pdev);
3032 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3033 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3035 t3_resume_ports(adapter);
3038 static struct pci_error_handlers t3_err_handler = {
3039 .error_detected = t3_io_error_detected,
3040 .slot_reset = t3_io_slot_reset,
3041 .resume = t3_io_resume,
3045 * Set the number of qsets based on the number of CPUs and the number of ports,
3046 * not to exceed the number of available qsets, assuming there are enough qsets
3047 * per port in HW.
3049 static void set_nqsets(struct adapter *adap)
3051 int i, j = 0;
3052 int num_cpus = num_online_cpus();
3053 int hwports = adap->params.nports;
3054 int nqsets = adap->msix_nvectors - 1;
3056 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3057 if (hwports == 2 &&
3058 (hwports * nqsets > SGE_QSETS ||
3059 num_cpus >= nqsets / hwports))
3060 nqsets /= hwports;
3061 if (nqsets > num_cpus)
3062 nqsets = num_cpus;
3063 if (nqsets < 1 || hwports == 4)
3064 nqsets = 1;
3065 } else
3066 nqsets = 1;
3068 for_each_port(adap, i) {
3069 struct port_info *pi = adap2pinfo(adap, i);
3071 pi->first_qset = j;
3072 pi->nqsets = nqsets;
3073 j = pi->first_qset + nqsets;
3075 dev_info(&adap->pdev->dev,
3076 "Port %d using %d queue sets.\n", i, nqsets);
3080 static int __devinit cxgb_enable_msix(struct adapter *adap)
3082 struct msix_entry entries[SGE_QSETS + 1];
3083 int vectors;
3084 int i, err;
3086 vectors = ARRAY_SIZE(entries);
3087 for (i = 0; i < vectors; ++i)
3088 entries[i].entry = i;
3090 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3091 vectors = err;
3093 if (err < 0)
3094 pci_disable_msix(adap->pdev);
3096 if (!err && vectors < (adap->params.nports + 1)) {
3097 pci_disable_msix(adap->pdev);
3098 err = -1;
3101 if (!err) {
3102 for (i = 0; i < vectors; ++i)
3103 adap->msix_info[i].vec = entries[i].vector;
3104 adap->msix_nvectors = vectors;
3107 return err;
3110 static void __devinit print_port_info(struct adapter *adap,
3111 const struct adapter_info *ai)
3113 static const char *pci_variant[] = {
3114 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3117 int i;
3118 char buf[80];
3120 if (is_pcie(adap))
3121 snprintf(buf, sizeof(buf), "%s x%d",
3122 pci_variant[adap->params.pci.variant],
3123 adap->params.pci.width);
3124 else
3125 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3126 pci_variant[adap->params.pci.variant],
3127 adap->params.pci.speed, adap->params.pci.width);
3129 for_each_port(adap, i) {
3130 struct net_device *dev = adap->port[i];
3131 const struct port_info *pi = netdev_priv(dev);
3133 if (!test_bit(i, &adap->registered_device_map))
3134 continue;
3135 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3136 dev->name, ai->desc, pi->phy.desc,
3137 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3138 (adap->flags & USING_MSIX) ? " MSI-X" :
3139 (adap->flags & USING_MSI) ? " MSI" : "");
3140 if (adap->name == dev->name && adap->params.vpd.mclk)
3141 printk(KERN_INFO
3142 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3143 adap->name, t3_mc7_size(&adap->cm) >> 20,
3144 t3_mc7_size(&adap->pmtx) >> 20,
3145 t3_mc7_size(&adap->pmrx) >> 20,
3146 adap->params.vpd.sn);
3150 static const struct net_device_ops cxgb_netdev_ops = {
3151 .ndo_open = cxgb_open,
3152 .ndo_stop = cxgb_close,
3153 .ndo_start_xmit = t3_eth_xmit,
3154 .ndo_get_stats = cxgb_get_stats,
3155 .ndo_validate_addr = eth_validate_addr,
3156 .ndo_set_multicast_list = cxgb_set_rxmode,
3157 .ndo_do_ioctl = cxgb_ioctl,
3158 .ndo_change_mtu = cxgb_change_mtu,
3159 .ndo_set_mac_address = cxgb_set_mac_addr,
3160 .ndo_fix_features = cxgb_fix_features,
3161 .ndo_set_features = cxgb_set_features,
3162 #ifdef CONFIG_NET_POLL_CONTROLLER
3163 .ndo_poll_controller = cxgb_netpoll,
3164 #endif
3167 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3169 struct port_info *pi = netdev_priv(dev);
3171 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3172 pi->iscsic.mac_addr[3] |= 0x80;
3175 static int __devinit init_one(struct pci_dev *pdev,
3176 const struct pci_device_id *ent)
3178 static int version_printed;
3180 int i, err, pci_using_dac = 0;
3181 resource_size_t mmio_start, mmio_len;
3182 const struct adapter_info *ai;
3183 struct adapter *adapter = NULL;
3184 struct port_info *pi;
3186 if (!version_printed) {
3187 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3188 ++version_printed;
3191 if (!cxgb3_wq) {
3192 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3193 if (!cxgb3_wq) {
3194 printk(KERN_ERR DRV_NAME
3195 ": cannot initialize work queue\n");
3196 return -ENOMEM;
3200 err = pci_enable_device(pdev);
3201 if (err) {
3202 dev_err(&pdev->dev, "cannot enable PCI device\n");
3203 goto out;
3206 err = pci_request_regions(pdev, DRV_NAME);
3207 if (err) {
3208 /* Just info, some other driver may have claimed the device. */
3209 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3210 goto out_disable_device;
3213 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3214 pci_using_dac = 1;
3215 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3216 if (err) {
3217 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3218 "coherent allocations\n");
3219 goto out_release_regions;
3221 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3222 dev_err(&pdev->dev, "no usable DMA configuration\n");
3223 goto out_release_regions;
3226 pci_set_master(pdev);
3227 pci_save_state(pdev);
3229 mmio_start = pci_resource_start(pdev, 0);
3230 mmio_len = pci_resource_len(pdev, 0);
3231 ai = t3_get_adapter_info(ent->driver_data);
3233 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3234 if (!adapter) {
3235 err = -ENOMEM;
3236 goto out_release_regions;
3239 adapter->nofail_skb =
3240 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3241 if (!adapter->nofail_skb) {
3242 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3243 err = -ENOMEM;
3244 goto out_free_adapter;
3247 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3248 if (!adapter->regs) {
3249 dev_err(&pdev->dev, "cannot map device registers\n");
3250 err = -ENOMEM;
3251 goto out_free_adapter;
3254 adapter->pdev = pdev;
3255 adapter->name = pci_name(pdev);
3256 adapter->msg_enable = dflt_msg_enable;
3257 adapter->mmio_len = mmio_len;
3259 mutex_init(&adapter->mdio_lock);
3260 spin_lock_init(&adapter->work_lock);
3261 spin_lock_init(&adapter->stats_lock);
3263 INIT_LIST_HEAD(&adapter->adapter_list);
3264 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3265 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3267 INIT_WORK(&adapter->db_full_task, db_full_task);
3268 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3269 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3271 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3273 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3274 struct net_device *netdev;
3276 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3277 if (!netdev) {
3278 err = -ENOMEM;
3279 goto out_free_dev;
3282 SET_NETDEV_DEV(netdev, &pdev->dev);
3284 adapter->port[i] = netdev;
3285 pi = netdev_priv(netdev);
3286 pi->adapter = adapter;
3287 pi->port_id = i;
3288 netif_carrier_off(netdev);
3289 netdev->irq = pdev->irq;
3290 netdev->mem_start = mmio_start;
3291 netdev->mem_end = mmio_start + mmio_len - 1;
3292 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3293 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX;
3294 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_TX;
3295 if (pci_using_dac)
3296 netdev->features |= NETIF_F_HIGHDMA;
3298 netdev->netdev_ops = &cxgb_netdev_ops;
3299 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3302 pci_set_drvdata(pdev, adapter);
3303 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3304 err = -ENODEV;
3305 goto out_free_dev;
3309 * The card is now ready to go. If any errors occur during device
3310 * registration we do not fail the whole card but rather proceed only
3311 * with the ports we manage to register successfully. However we must
3312 * register at least one net device.
3314 for_each_port(adapter, i) {
3315 err = register_netdev(adapter->port[i]);
3316 if (err)
3317 dev_warn(&pdev->dev,
3318 "cannot register net device %s, skipping\n",
3319 adapter->port[i]->name);
3320 else {
3322 * Change the name we use for messages to the name of
3323 * the first successfully registered interface.
3325 if (!adapter->registered_device_map)
3326 adapter->name = adapter->port[i]->name;
3328 __set_bit(i, &adapter->registered_device_map);
3331 if (!adapter->registered_device_map) {
3332 dev_err(&pdev->dev, "could not register any net devices\n");
3333 goto out_free_dev;
3336 for_each_port(adapter, i)
3337 cxgb3_init_iscsi_mac(adapter->port[i]);
3339 /* Driver's ready. Reflect it on LEDs */
3340 t3_led_ready(adapter);
3342 if (is_offload(adapter)) {
3343 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3344 cxgb3_adapter_ofld(adapter);
3347 /* See what interrupts we'll be using */
3348 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3349 adapter->flags |= USING_MSIX;
3350 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3351 adapter->flags |= USING_MSI;
3353 set_nqsets(adapter);
3355 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3356 &cxgb3_attr_group);
3358 for_each_port(adapter, i)
3359 cxgb_vlan_mode(adapter->port[i], adapter->port[i]->features);
3361 print_port_info(adapter, ai);
3362 return 0;
3364 out_free_dev:
3365 iounmap(adapter->regs);
3366 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3367 if (adapter->port[i])
3368 free_netdev(adapter->port[i]);
3370 out_free_adapter:
3371 kfree(adapter);
3373 out_release_regions:
3374 pci_release_regions(pdev);
3375 out_disable_device:
3376 pci_disable_device(pdev);
3377 pci_set_drvdata(pdev, NULL);
3378 out:
3379 return err;
3382 static void __devexit remove_one(struct pci_dev *pdev)
3384 struct adapter *adapter = pci_get_drvdata(pdev);
3386 if (adapter) {
3387 int i;
3389 t3_sge_stop(adapter);
3390 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3391 &cxgb3_attr_group);
3393 if (is_offload(adapter)) {
3394 cxgb3_adapter_unofld(adapter);
3395 if (test_bit(OFFLOAD_DEVMAP_BIT,
3396 &adapter->open_device_map))
3397 offload_close(&adapter->tdev);
3400 for_each_port(adapter, i)
3401 if (test_bit(i, &adapter->registered_device_map))
3402 unregister_netdev(adapter->port[i]);
3404 t3_stop_sge_timers(adapter);
3405 t3_free_sge_resources(adapter);
3406 cxgb_disable_msi(adapter);
3408 for_each_port(adapter, i)
3409 if (adapter->port[i])
3410 free_netdev(adapter->port[i]);
3412 iounmap(adapter->regs);
3413 if (adapter->nofail_skb)
3414 kfree_skb(adapter->nofail_skb);
3415 kfree(adapter);
3416 pci_release_regions(pdev);
3417 pci_disable_device(pdev);
3418 pci_set_drvdata(pdev, NULL);
3422 static struct pci_driver driver = {
3423 .name = DRV_NAME,
3424 .id_table = cxgb3_pci_tbl,
3425 .probe = init_one,
3426 .remove = __devexit_p(remove_one),
3427 .err_handler = &t3_err_handler,
3430 static int __init cxgb3_init_module(void)
3432 int ret;
3434 cxgb3_offload_init();
3436 ret = pci_register_driver(&driver);
3437 return ret;
3440 static void __exit cxgb3_cleanup_module(void)
3442 pci_unregister_driver(&driver);
3443 if (cxgb3_wq)
3444 destroy_workqueue(cxgb3_wq);
3447 module_init(cxgb3_init_module);
3448 module_exit(cxgb3_cleanup_module);