1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos_params.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
57 #define DRV_EXTRAVERSION "-k"
59 #define DRV_VERSION "1.4.4" DRV_EXTRAVERSION
60 char e1000e_driver_name
[] = "e1000e";
61 const char e1000e_driver_version
[] = DRV_VERSION
;
63 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
);
65 static const struct e1000_info
*e1000_info_tbl
[] = {
66 [board_82571
] = &e1000_82571_info
,
67 [board_82572
] = &e1000_82572_info
,
68 [board_82573
] = &e1000_82573_info
,
69 [board_82574
] = &e1000_82574_info
,
70 [board_82583
] = &e1000_82583_info
,
71 [board_80003es2lan
] = &e1000_es2_info
,
72 [board_ich8lan
] = &e1000_ich8_info
,
73 [board_ich9lan
] = &e1000_ich9_info
,
74 [board_ich10lan
] = &e1000_ich10_info
,
75 [board_pchlan
] = &e1000_pch_info
,
76 [board_pch2lan
] = &e1000_pch2_info
,
79 struct e1000_reg_info
{
84 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
85 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
86 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
87 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
88 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
90 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
91 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
92 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
93 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
94 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
96 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
98 /* General Registers */
100 {E1000_STATUS
, "STATUS"},
101 {E1000_CTRL_EXT
, "CTRL_EXT"},
103 /* Interrupt Registers */
107 {E1000_RCTL
, "RCTL"},
108 {E1000_RDLEN
, "RDLEN"},
111 {E1000_RDTR
, "RDTR"},
112 {E1000_RXDCTL(0), "RXDCTL"},
114 {E1000_RDBAL
, "RDBAL"},
115 {E1000_RDBAH
, "RDBAH"},
116 {E1000_RDFH
, "RDFH"},
117 {E1000_RDFT
, "RDFT"},
118 {E1000_RDFHS
, "RDFHS"},
119 {E1000_RDFTS
, "RDFTS"},
120 {E1000_RDFPC
, "RDFPC"},
123 {E1000_TCTL
, "TCTL"},
124 {E1000_TDBAL
, "TDBAL"},
125 {E1000_TDBAH
, "TDBAH"},
126 {E1000_TDLEN
, "TDLEN"},
129 {E1000_TIDV
, "TIDV"},
130 {E1000_TXDCTL(0), "TXDCTL"},
131 {E1000_TADV
, "TADV"},
132 {E1000_TARC(0), "TARC"},
133 {E1000_TDFH
, "TDFH"},
134 {E1000_TDFT
, "TDFT"},
135 {E1000_TDFHS
, "TDFHS"},
136 {E1000_TDFTS
, "TDFTS"},
137 {E1000_TDFPC
, "TDFPC"},
139 /* List Terminator */
144 * e1000_regdump - register printout routine
146 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
152 switch (reginfo
->ofs
) {
153 case E1000_RXDCTL(0):
154 for (n
= 0; n
< 2; n
++)
155 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
157 case E1000_TXDCTL(0):
158 for (n
= 0; n
< 2; n
++)
159 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
162 for (n
= 0; n
< 2; n
++)
163 regs
[n
] = __er32(hw
, E1000_TARC(n
));
166 printk(KERN_INFO
"%-15s %08x\n",
167 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
171 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
172 printk(KERN_INFO
"%-15s ", rname
);
173 for (n
= 0; n
< 2; n
++)
174 printk(KERN_CONT
"%08x ", regs
[n
]);
175 printk(KERN_CONT
"\n");
179 * e1000e_dump - Print registers, Tx-ring and Rx-ring
181 static void e1000e_dump(struct e1000_adapter
*adapter
)
183 struct net_device
*netdev
= adapter
->netdev
;
184 struct e1000_hw
*hw
= &adapter
->hw
;
185 struct e1000_reg_info
*reginfo
;
186 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
187 struct e1000_tx_desc
*tx_desc
;
192 struct e1000_buffer
*buffer_info
;
193 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
194 union e1000_rx_desc_packet_split
*rx_desc_ps
;
195 struct e1000_rx_desc
*rx_desc
;
205 if (!netif_msg_hw(adapter
))
208 /* Print netdevice Info */
210 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
211 printk(KERN_INFO
"Device Name state "
212 "trans_start last_rx\n");
213 printk(KERN_INFO
"%-15s %016lX %016lX %016lX\n",
214 netdev
->name
, netdev
->state
, netdev
->trans_start
,
218 /* Print Registers */
219 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
220 printk(KERN_INFO
" Register Name Value\n");
221 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
222 reginfo
->name
; reginfo
++) {
223 e1000_regdump(hw
, reginfo
);
226 /* Print Tx Ring Summary */
227 if (!netdev
|| !netif_running(netdev
))
230 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
231 printk(KERN_INFO
"Queue [NTU] [NTC] [bi(ntc)->dma ]"
232 " leng ntw timestamp\n");
233 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
234 printk(KERN_INFO
" %5d %5X %5X %016llX %04X %3X %016llX\n",
235 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
236 (unsigned long long)buffer_info
->dma
,
238 buffer_info
->next_to_watch
,
239 (unsigned long long)buffer_info
->time_stamp
);
242 if (!netif_msg_tx_done(adapter
))
243 goto rx_ring_summary
;
245 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
247 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
249 * Legacy Transmit Descriptor
250 * +--------------------------------------------------------------+
251 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
252 * +--------------------------------------------------------------+
253 * 8 | Special | CSS | Status | CMD | CSO | Length |
254 * +--------------------------------------------------------------+
255 * 63 48 47 36 35 32 31 24 23 16 15 0
257 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
258 * 63 48 47 40 39 32 31 16 15 8 7 0
259 * +----------------------------------------------------------------+
260 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
261 * +----------------------------------------------------------------+
262 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
263 * +----------------------------------------------------------------+
264 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
266 * Extended Data Descriptor (DTYP=0x1)
267 * +----------------------------------------------------------------+
268 * 0 | Buffer Address [63:0] |
269 * +----------------------------------------------------------------+
270 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
271 * +----------------------------------------------------------------+
272 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 printk(KERN_INFO
"Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
275 " [bi->dma ] leng ntw timestamp bi->skb "
276 "<-- Legacy format\n");
277 printk(KERN_INFO
"Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
278 " [bi->dma ] leng ntw timestamp bi->skb "
279 "<-- Ext Context format\n");
280 printk(KERN_INFO
"Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
281 " [bi->dma ] leng ntw timestamp bi->skb "
282 "<-- Ext Data format\n");
283 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
284 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
285 buffer_info
= &tx_ring
->buffer_info
[i
];
286 u0
= (struct my_u0
*)tx_desc
;
287 printk(KERN_INFO
"T%c[0x%03X] %016llX %016llX %016llX "
288 "%04X %3X %016llX %p",
289 (!(le64_to_cpu(u0
->b
) & (1 << 29)) ? 'l' :
290 ((le64_to_cpu(u0
->b
) & (1 << 20)) ? 'd' : 'c')), i
,
291 (unsigned long long)le64_to_cpu(u0
->a
),
292 (unsigned long long)le64_to_cpu(u0
->b
),
293 (unsigned long long)buffer_info
->dma
,
294 buffer_info
->length
, buffer_info
->next_to_watch
,
295 (unsigned long long)buffer_info
->time_stamp
,
297 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
298 printk(KERN_CONT
" NTC/U\n");
299 else if (i
== tx_ring
->next_to_use
)
300 printk(KERN_CONT
" NTU\n");
301 else if (i
== tx_ring
->next_to_clean
)
302 printk(KERN_CONT
" NTC\n");
304 printk(KERN_CONT
"\n");
306 if (netif_msg_pktdata(adapter
) && buffer_info
->dma
!= 0)
307 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
308 16, 1, phys_to_virt(buffer_info
->dma
),
309 buffer_info
->length
, true);
312 /* Print Rx Ring Summary */
314 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
315 printk(KERN_INFO
"Queue [NTU] [NTC]\n");
316 printk(KERN_INFO
" %5d %5X %5X\n", 0,
317 rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
320 if (!netif_msg_rx_status(adapter
))
323 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
324 switch (adapter
->rx_ps_pages
) {
328 /* [Extended] Packet Split Receive Descriptor Format
330 * +-----------------------------------------------------+
331 * 0 | Buffer Address 0 [63:0] |
332 * +-----------------------------------------------------+
333 * 8 | Buffer Address 1 [63:0] |
334 * +-----------------------------------------------------+
335 * 16 | Buffer Address 2 [63:0] |
336 * +-----------------------------------------------------+
337 * 24 | Buffer Address 3 [63:0] |
338 * +-----------------------------------------------------+
340 printk(KERN_INFO
"R [desc] [buffer 0 63:0 ] "
342 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
343 "[bi->skb] <-- Ext Pkt Split format\n");
344 /* [Extended] Receive Descriptor (Write-Back) Format
346 * 63 48 47 32 31 13 12 8 7 4 3 0
347 * +------------------------------------------------------+
348 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
349 * | Checksum | Ident | | Queue | | Type |
350 * +------------------------------------------------------+
351 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352 * +------------------------------------------------------+
353 * 63 48 47 32 31 20 19 0
355 printk(KERN_INFO
"RWB[desc] [ck ipid mrqhsh] "
357 "[ l3 l2 l1 hs] [reserved ] ---------------- "
358 "[bi->skb] <-- Ext Rx Write-Back format\n");
359 for (i
= 0; i
< rx_ring
->count
; i
++) {
360 buffer_info
= &rx_ring
->buffer_info
[i
];
361 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
362 u1
= (struct my_u1
*)rx_desc_ps
;
364 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
365 if (staterr
& E1000_RXD_STAT_DD
) {
366 /* Descriptor Done */
367 printk(KERN_INFO
"RWB[0x%03X] %016llX "
368 "%016llX %016llX %016llX "
369 "---------------- %p", i
,
370 (unsigned long long)le64_to_cpu(u1
->a
),
371 (unsigned long long)le64_to_cpu(u1
->b
),
372 (unsigned long long)le64_to_cpu(u1
->c
),
373 (unsigned long long)le64_to_cpu(u1
->d
),
376 printk(KERN_INFO
"R [0x%03X] %016llX "
377 "%016llX %016llX %016llX %016llX %p", i
,
378 (unsigned long long)le64_to_cpu(u1
->a
),
379 (unsigned long long)le64_to_cpu(u1
->b
),
380 (unsigned long long)le64_to_cpu(u1
->c
),
381 (unsigned long long)le64_to_cpu(u1
->d
),
382 (unsigned long long)buffer_info
->dma
,
385 if (netif_msg_pktdata(adapter
))
386 print_hex_dump(KERN_INFO
, "",
387 DUMP_PREFIX_ADDRESS
, 16, 1,
388 phys_to_virt(buffer_info
->dma
),
389 adapter
->rx_ps_bsize0
, true);
392 if (i
== rx_ring
->next_to_use
)
393 printk(KERN_CONT
" NTU\n");
394 else if (i
== rx_ring
->next_to_clean
)
395 printk(KERN_CONT
" NTC\n");
397 printk(KERN_CONT
"\n");
402 /* Legacy Receive Descriptor Format
404 * +-----------------------------------------------------+
405 * | Buffer Address [63:0] |
406 * +-----------------------------------------------------+
407 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
408 * +-----------------------------------------------------+
409 * 63 48 47 40 39 32 31 16 15 0
411 printk(KERN_INFO
"Rl[desc] [address 63:0 ] "
412 "[vl er S cks ln] [bi->dma ] [bi->skb] "
413 "<-- Legacy format\n");
414 for (i
= 0; rx_ring
->desc
&& (i
< rx_ring
->count
); i
++) {
415 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
416 buffer_info
= &rx_ring
->buffer_info
[i
];
417 u0
= (struct my_u0
*)rx_desc
;
418 printk(KERN_INFO
"Rl[0x%03X] %016llX %016llX "
420 (unsigned long long)le64_to_cpu(u0
->a
),
421 (unsigned long long)le64_to_cpu(u0
->b
),
422 (unsigned long long)buffer_info
->dma
,
424 if (i
== rx_ring
->next_to_use
)
425 printk(KERN_CONT
" NTU\n");
426 else if (i
== rx_ring
->next_to_clean
)
427 printk(KERN_CONT
" NTC\n");
429 printk(KERN_CONT
"\n");
431 if (netif_msg_pktdata(adapter
))
432 print_hex_dump(KERN_INFO
, "",
435 phys_to_virt(buffer_info
->dma
),
436 adapter
->rx_buffer_len
, true);
445 * e1000_desc_unused - calculate if we have unused descriptors
447 static int e1000_desc_unused(struct e1000_ring
*ring
)
449 if (ring
->next_to_clean
> ring
->next_to_use
)
450 return ring
->next_to_clean
- ring
->next_to_use
- 1;
452 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
456 * e1000_receive_skb - helper function to handle Rx indications
457 * @adapter: board private structure
458 * @status: descriptor status field as written by hardware
459 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
460 * @skb: pointer to sk_buff to be indicated to stack
462 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
463 struct net_device
*netdev
, struct sk_buff
*skb
,
464 u8 status
, __le16 vlan
)
466 u16 tag
= le16_to_cpu(vlan
);
467 skb
->protocol
= eth_type_trans(skb
, netdev
);
469 if (status
& E1000_RXD_STAT_VP
)
470 __vlan_hwaccel_put_tag(skb
, tag
);
472 napi_gro_receive(&adapter
->napi
, skb
);
476 * e1000_rx_checksum - Receive Checksum Offload
477 * @adapter: board private structure
478 * @status_err: receive descriptor status and error fields
479 * @csum: receive descriptor csum field
480 * @sk_buff: socket buffer with received data
482 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
483 u32 csum
, struct sk_buff
*skb
)
485 u16 status
= (u16
)status_err
;
486 u8 errors
= (u8
)(status_err
>> 24);
488 skb_checksum_none_assert(skb
);
490 /* Ignore Checksum bit is set */
491 if (status
& E1000_RXD_STAT_IXSM
)
493 /* TCP/UDP checksum error bit is set */
494 if (errors
& E1000_RXD_ERR_TCPE
) {
495 /* let the stack verify checksum errors */
496 adapter
->hw_csum_err
++;
500 /* TCP/UDP Checksum has not been calculated */
501 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
504 /* It must be a TCP or UDP packet with a valid checksum */
505 if (status
& E1000_RXD_STAT_TCPCS
) {
506 /* TCP checksum is good */
507 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
510 * IP fragment with UDP payload
511 * Hardware complements the payload checksum, so we undo it
512 * and then put the value in host order for further stack use.
514 __sum16 sum
= (__force __sum16
)htons(csum
);
515 skb
->csum
= csum_unfold(~sum
);
516 skb
->ip_summed
= CHECKSUM_COMPLETE
;
518 adapter
->hw_csum_good
++;
522 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
523 * @adapter: address of board private structure
525 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
526 int cleaned_count
, gfp_t gfp
)
528 struct net_device
*netdev
= adapter
->netdev
;
529 struct pci_dev
*pdev
= adapter
->pdev
;
530 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
531 struct e1000_rx_desc
*rx_desc
;
532 struct e1000_buffer
*buffer_info
;
535 unsigned int bufsz
= adapter
->rx_buffer_len
;
537 i
= rx_ring
->next_to_use
;
538 buffer_info
= &rx_ring
->buffer_info
[i
];
540 while (cleaned_count
--) {
541 skb
= buffer_info
->skb
;
547 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
549 /* Better luck next round */
550 adapter
->alloc_rx_buff_failed
++;
554 buffer_info
->skb
= skb
;
556 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
557 adapter
->rx_buffer_len
,
559 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
560 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
561 adapter
->rx_dma_failed
++;
565 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
566 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
568 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
570 * Force memory writes to complete before letting h/w
571 * know there are new descriptors to fetch. (Only
572 * applicable for weak-ordered memory model archs,
576 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
579 if (i
== rx_ring
->count
)
581 buffer_info
= &rx_ring
->buffer_info
[i
];
584 rx_ring
->next_to_use
= i
;
588 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
589 * @adapter: address of board private structure
591 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
592 int cleaned_count
, gfp_t gfp
)
594 struct net_device
*netdev
= adapter
->netdev
;
595 struct pci_dev
*pdev
= adapter
->pdev
;
596 union e1000_rx_desc_packet_split
*rx_desc
;
597 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
598 struct e1000_buffer
*buffer_info
;
599 struct e1000_ps_page
*ps_page
;
603 i
= rx_ring
->next_to_use
;
604 buffer_info
= &rx_ring
->buffer_info
[i
];
606 while (cleaned_count
--) {
607 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
609 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
610 ps_page
= &buffer_info
->ps_pages
[j
];
611 if (j
>= adapter
->rx_ps_pages
) {
612 /* all unused desc entries get hw null ptr */
613 rx_desc
->read
.buffer_addr
[j
+ 1] =
617 if (!ps_page
->page
) {
618 ps_page
->page
= alloc_page(gfp
);
619 if (!ps_page
->page
) {
620 adapter
->alloc_rx_buff_failed
++;
623 ps_page
->dma
= dma_map_page(&pdev
->dev
,
627 if (dma_mapping_error(&pdev
->dev
,
629 dev_err(&adapter
->pdev
->dev
,
630 "Rx DMA page map failed\n");
631 adapter
->rx_dma_failed
++;
636 * Refresh the desc even if buffer_addrs
637 * didn't change because each write-back
640 rx_desc
->read
.buffer_addr
[j
+ 1] =
641 cpu_to_le64(ps_page
->dma
);
644 skb
= __netdev_alloc_skb_ip_align(netdev
,
645 adapter
->rx_ps_bsize0
,
649 adapter
->alloc_rx_buff_failed
++;
653 buffer_info
->skb
= skb
;
654 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
655 adapter
->rx_ps_bsize0
,
657 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
658 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
659 adapter
->rx_dma_failed
++;
661 dev_kfree_skb_any(skb
);
662 buffer_info
->skb
= NULL
;
666 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
668 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
670 * Force memory writes to complete before letting h/w
671 * know there are new descriptors to fetch. (Only
672 * applicable for weak-ordered memory model archs,
676 writel(i
<< 1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
680 if (i
== rx_ring
->count
)
682 buffer_info
= &rx_ring
->buffer_info
[i
];
686 rx_ring
->next_to_use
= i
;
690 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
691 * @adapter: address of board private structure
692 * @cleaned_count: number of buffers to allocate this pass
695 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
696 int cleaned_count
, gfp_t gfp
)
698 struct net_device
*netdev
= adapter
->netdev
;
699 struct pci_dev
*pdev
= adapter
->pdev
;
700 struct e1000_rx_desc
*rx_desc
;
701 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
702 struct e1000_buffer
*buffer_info
;
705 unsigned int bufsz
= 256 - 16 /* for skb_reserve */;
707 i
= rx_ring
->next_to_use
;
708 buffer_info
= &rx_ring
->buffer_info
[i
];
710 while (cleaned_count
--) {
711 skb
= buffer_info
->skb
;
717 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
718 if (unlikely(!skb
)) {
719 /* Better luck next round */
720 adapter
->alloc_rx_buff_failed
++;
724 buffer_info
->skb
= skb
;
726 /* allocate a new page if necessary */
727 if (!buffer_info
->page
) {
728 buffer_info
->page
= alloc_page(gfp
);
729 if (unlikely(!buffer_info
->page
)) {
730 adapter
->alloc_rx_buff_failed
++;
735 if (!buffer_info
->dma
)
736 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
737 buffer_info
->page
, 0,
741 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
742 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
744 if (unlikely(++i
== rx_ring
->count
))
746 buffer_info
= &rx_ring
->buffer_info
[i
];
749 if (likely(rx_ring
->next_to_use
!= i
)) {
750 rx_ring
->next_to_use
= i
;
751 if (unlikely(i
-- == 0))
752 i
= (rx_ring
->count
- 1);
754 /* Force memory writes to complete before letting h/w
755 * know there are new descriptors to fetch. (Only
756 * applicable for weak-ordered memory model archs,
759 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
764 * e1000_clean_rx_irq - Send received data up the network stack; legacy
765 * @adapter: board private structure
767 * the return value indicates whether actual cleaning was done, there
768 * is no guarantee that everything was cleaned
770 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
771 int *work_done
, int work_to_do
)
773 struct net_device
*netdev
= adapter
->netdev
;
774 struct pci_dev
*pdev
= adapter
->pdev
;
775 struct e1000_hw
*hw
= &adapter
->hw
;
776 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
777 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
778 struct e1000_buffer
*buffer_info
, *next_buffer
;
781 int cleaned_count
= 0;
783 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
785 i
= rx_ring
->next_to_clean
;
786 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
787 buffer_info
= &rx_ring
->buffer_info
[i
];
789 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
793 if (*work_done
>= work_to_do
)
796 rmb(); /* read descriptor and rx_buffer_info after status DD */
798 status
= rx_desc
->status
;
799 skb
= buffer_info
->skb
;
800 buffer_info
->skb
= NULL
;
802 prefetch(skb
->data
- NET_IP_ALIGN
);
805 if (i
== rx_ring
->count
)
807 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
810 next_buffer
= &rx_ring
->buffer_info
[i
];
814 dma_unmap_single(&pdev
->dev
,
816 adapter
->rx_buffer_len
,
818 buffer_info
->dma
= 0;
820 length
= le16_to_cpu(rx_desc
->length
);
823 * !EOP means multiple descriptors were used to store a single
824 * packet, if that's the case we need to toss it. In fact, we
825 * need to toss every packet with the EOP bit clear and the
826 * next frame that _does_ have the EOP bit set, as it is by
827 * definition only a frame fragment
829 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
830 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
832 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
833 /* All receives must fit into a single buffer */
834 e_dbg("Receive packet consumed multiple buffers\n");
836 buffer_info
->skb
= skb
;
837 if (status
& E1000_RXD_STAT_EOP
)
838 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
842 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
844 buffer_info
->skb
= skb
;
848 /* adjust length to remove Ethernet CRC */
849 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
852 total_rx_bytes
+= length
;
856 * code added for copybreak, this should improve
857 * performance for small packets with large amounts
858 * of reassembly being done in the stack
860 if (length
< copybreak
) {
861 struct sk_buff
*new_skb
=
862 netdev_alloc_skb_ip_align(netdev
, length
);
864 skb_copy_to_linear_data_offset(new_skb
,
870 /* save the skb in buffer_info as good */
871 buffer_info
->skb
= skb
;
874 /* else just continue with the old one */
876 /* end copybreak code */
877 skb_put(skb
, length
);
879 /* Receive Checksum Offload */
880 e1000_rx_checksum(adapter
,
882 ((u32
)(rx_desc
->errors
) << 24),
883 le16_to_cpu(rx_desc
->csum
), skb
);
885 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
890 /* return some buffers to hardware, one at a time is too slow */
891 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
892 adapter
->alloc_rx_buf(adapter
, cleaned_count
,
897 /* use prefetched values */
899 buffer_info
= next_buffer
;
901 rx_ring
->next_to_clean
= i
;
903 cleaned_count
= e1000_desc_unused(rx_ring
);
905 adapter
->alloc_rx_buf(adapter
, cleaned_count
, GFP_ATOMIC
);
907 adapter
->total_rx_bytes
+= total_rx_bytes
;
908 adapter
->total_rx_packets
+= total_rx_packets
;
912 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
913 struct e1000_buffer
*buffer_info
)
915 if (buffer_info
->dma
) {
916 if (buffer_info
->mapped_as_page
)
917 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
918 buffer_info
->length
, DMA_TO_DEVICE
);
920 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
921 buffer_info
->length
, DMA_TO_DEVICE
);
922 buffer_info
->dma
= 0;
924 if (buffer_info
->skb
) {
925 dev_kfree_skb_any(buffer_info
->skb
);
926 buffer_info
->skb
= NULL
;
928 buffer_info
->time_stamp
= 0;
931 static void e1000_print_hw_hang(struct work_struct
*work
)
933 struct e1000_adapter
*adapter
= container_of(work
,
934 struct e1000_adapter
,
936 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
937 unsigned int i
= tx_ring
->next_to_clean
;
938 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
939 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
940 struct e1000_hw
*hw
= &adapter
->hw
;
941 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
944 if (test_bit(__E1000_DOWN
, &adapter
->state
))
947 e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
948 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_1000t_status
);
949 e1e_rphy(hw
, PHY_EXT_STATUS
, &phy_ext_status
);
951 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
953 /* detected Hardware unit hang */
954 e_err("Detected Hardware Unit Hang:\n"
957 " next_to_use <%x>\n"
958 " next_to_clean <%x>\n"
959 "buffer_info[next_to_clean]:\n"
960 " time_stamp <%lx>\n"
961 " next_to_watch <%x>\n"
963 " next_to_watch.status <%x>\n"
966 "PHY 1000BASE-T Status <%x>\n"
967 "PHY Extended Status <%x>\n"
969 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
970 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
971 tx_ring
->next_to_use
,
972 tx_ring
->next_to_clean
,
973 tx_ring
->buffer_info
[eop
].time_stamp
,
976 eop_desc
->upper
.fields
.status
,
985 * e1000_clean_tx_irq - Reclaim resources after transmit completes
986 * @adapter: board private structure
988 * the return value indicates whether actual cleaning was done, there
989 * is no guarantee that everything was cleaned
991 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
993 struct net_device
*netdev
= adapter
->netdev
;
994 struct e1000_hw
*hw
= &adapter
->hw
;
995 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
996 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
997 struct e1000_buffer
*buffer_info
;
999 unsigned int count
= 0;
1000 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1002 i
= tx_ring
->next_to_clean
;
1003 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1004 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1006 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1007 (count
< tx_ring
->count
)) {
1008 bool cleaned
= false;
1009 rmb(); /* read buffer_info after eop_desc */
1010 for (; !cleaned
; count
++) {
1011 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1012 buffer_info
= &tx_ring
->buffer_info
[i
];
1013 cleaned
= (i
== eop
);
1016 total_tx_packets
+= buffer_info
->segs
;
1017 total_tx_bytes
+= buffer_info
->bytecount
;
1020 e1000_put_txbuf(adapter
, buffer_info
);
1021 tx_desc
->upper
.data
= 0;
1024 if (i
== tx_ring
->count
)
1028 if (i
== tx_ring
->next_to_use
)
1030 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1031 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1034 tx_ring
->next_to_clean
= i
;
1036 #define TX_WAKE_THRESHOLD 32
1037 if (count
&& netif_carrier_ok(netdev
) &&
1038 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1039 /* Make sure that anybody stopping the queue after this
1040 * sees the new next_to_clean.
1044 if (netif_queue_stopped(netdev
) &&
1045 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1046 netif_wake_queue(netdev
);
1047 ++adapter
->restart_queue
;
1051 if (adapter
->detect_tx_hung
) {
1053 * Detect a transmit hang in hardware, this serializes the
1054 * check with the clearing of time_stamp and movement of i
1056 adapter
->detect_tx_hung
= 0;
1057 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1058 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1059 + (adapter
->tx_timeout_factor
* HZ
)) &&
1060 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
1061 schedule_work(&adapter
->print_hang_task
);
1062 netif_stop_queue(netdev
);
1065 adapter
->total_tx_bytes
+= total_tx_bytes
;
1066 adapter
->total_tx_packets
+= total_tx_packets
;
1067 return count
< tx_ring
->count
;
1071 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1072 * @adapter: board private structure
1074 * the return value indicates whether actual cleaning was done, there
1075 * is no guarantee that everything was cleaned
1077 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
1078 int *work_done
, int work_to_do
)
1080 struct e1000_hw
*hw
= &adapter
->hw
;
1081 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1082 struct net_device
*netdev
= adapter
->netdev
;
1083 struct pci_dev
*pdev
= adapter
->pdev
;
1084 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1085 struct e1000_buffer
*buffer_info
, *next_buffer
;
1086 struct e1000_ps_page
*ps_page
;
1087 struct sk_buff
*skb
;
1089 u32 length
, staterr
;
1090 int cleaned_count
= 0;
1092 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1094 i
= rx_ring
->next_to_clean
;
1095 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1096 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1097 buffer_info
= &rx_ring
->buffer_info
[i
];
1099 while (staterr
& E1000_RXD_STAT_DD
) {
1100 if (*work_done
>= work_to_do
)
1103 skb
= buffer_info
->skb
;
1104 rmb(); /* read descriptor and rx_buffer_info after status DD */
1106 /* in the packet split case this is header only */
1107 prefetch(skb
->data
- NET_IP_ALIGN
);
1110 if (i
== rx_ring
->count
)
1112 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1115 next_buffer
= &rx_ring
->buffer_info
[i
];
1119 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1120 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1121 buffer_info
->dma
= 0;
1123 /* see !EOP comment in other Rx routine */
1124 if (!(staterr
& E1000_RXD_STAT_EOP
))
1125 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1127 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1128 e_dbg("Packet Split buffers didn't pick up the full "
1130 dev_kfree_skb_irq(skb
);
1131 if (staterr
& E1000_RXD_STAT_EOP
)
1132 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1136 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
1137 dev_kfree_skb_irq(skb
);
1141 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1144 e_dbg("Last part of the packet spanning multiple "
1146 dev_kfree_skb_irq(skb
);
1151 skb_put(skb
, length
);
1155 * this looks ugly, but it seems compiler issues make it
1156 * more efficient than reusing j
1158 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1161 * page alloc/put takes too long and effects small packet
1162 * throughput, so unsplit small packets and save the alloc/put
1163 * only valid in softirq (napi) context to call kmap_*
1165 if (l1
&& (l1
<= copybreak
) &&
1166 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1169 ps_page
= &buffer_info
->ps_pages
[0];
1172 * there is no documentation about how to call
1173 * kmap_atomic, so we can't hold the mapping
1176 dma_sync_single_for_cpu(&pdev
->dev
, ps_page
->dma
,
1177 PAGE_SIZE
, DMA_FROM_DEVICE
);
1178 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
1179 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1180 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
1181 dma_sync_single_for_device(&pdev
->dev
, ps_page
->dma
,
1182 PAGE_SIZE
, DMA_FROM_DEVICE
);
1184 /* remove the CRC */
1185 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1193 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1194 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1198 ps_page
= &buffer_info
->ps_pages
[j
];
1199 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1202 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1203 ps_page
->page
= NULL
;
1205 skb
->data_len
+= length
;
1206 skb
->truesize
+= length
;
1209 /* strip the ethernet crc, problem is we're using pages now so
1210 * this whole operation can get a little cpu intensive
1212 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1213 pskb_trim(skb
, skb
->len
- 4);
1216 total_rx_bytes
+= skb
->len
;
1219 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
1220 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
1222 if (rx_desc
->wb
.upper
.header_status
&
1223 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1224 adapter
->rx_hdr_split
++;
1226 e1000_receive_skb(adapter
, netdev
, skb
,
1227 staterr
, rx_desc
->wb
.middle
.vlan
);
1230 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1231 buffer_info
->skb
= NULL
;
1233 /* return some buffers to hardware, one at a time is too slow */
1234 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1235 adapter
->alloc_rx_buf(adapter
, cleaned_count
,
1240 /* use prefetched values */
1242 buffer_info
= next_buffer
;
1244 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1246 rx_ring
->next_to_clean
= i
;
1248 cleaned_count
= e1000_desc_unused(rx_ring
);
1250 adapter
->alloc_rx_buf(adapter
, cleaned_count
, GFP_ATOMIC
);
1252 adapter
->total_rx_bytes
+= total_rx_bytes
;
1253 adapter
->total_rx_packets
+= total_rx_packets
;
1258 * e1000_consume_page - helper function
1260 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1265 skb
->data_len
+= length
;
1266 skb
->truesize
+= length
;
1270 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1271 * @adapter: board private structure
1273 * the return value indicates whether actual cleaning was done, there
1274 * is no guarantee that everything was cleaned
1277 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
1278 int *work_done
, int work_to_do
)
1280 struct net_device
*netdev
= adapter
->netdev
;
1281 struct pci_dev
*pdev
= adapter
->pdev
;
1282 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1283 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
1284 struct e1000_buffer
*buffer_info
, *next_buffer
;
1287 int cleaned_count
= 0;
1288 bool cleaned
= false;
1289 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
1291 i
= rx_ring
->next_to_clean
;
1292 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1293 buffer_info
= &rx_ring
->buffer_info
[i
];
1295 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
1296 struct sk_buff
*skb
;
1299 if (*work_done
>= work_to_do
)
1302 rmb(); /* read descriptor and rx_buffer_info after status DD */
1304 status
= rx_desc
->status
;
1305 skb
= buffer_info
->skb
;
1306 buffer_info
->skb
= NULL
;
1309 if (i
== rx_ring
->count
)
1311 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
1314 next_buffer
= &rx_ring
->buffer_info
[i
];
1318 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1320 buffer_info
->dma
= 0;
1322 length
= le16_to_cpu(rx_desc
->length
);
1324 /* errors is only valid for DD + EOP descriptors */
1325 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
1326 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
1327 /* recycle both page and skb */
1328 buffer_info
->skb
= skb
;
1329 /* an error means any chain goes out the window
1331 if (rx_ring
->rx_skb_top
)
1332 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1333 rx_ring
->rx_skb_top
= NULL
;
1337 #define rxtop (rx_ring->rx_skb_top)
1338 if (!(status
& E1000_RXD_STAT_EOP
)) {
1339 /* this descriptor is only the beginning (or middle) */
1341 /* this is the beginning of a chain */
1343 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1346 /* this is the middle of a chain */
1347 skb_fill_page_desc(rxtop
,
1348 skb_shinfo(rxtop
)->nr_frags
,
1349 buffer_info
->page
, 0, length
);
1350 /* re-use the skb, only consumed the page */
1351 buffer_info
->skb
= skb
;
1353 e1000_consume_page(buffer_info
, rxtop
, length
);
1357 /* end of the chain */
1358 skb_fill_page_desc(rxtop
,
1359 skb_shinfo(rxtop
)->nr_frags
,
1360 buffer_info
->page
, 0, length
);
1361 /* re-use the current skb, we only consumed the
1363 buffer_info
->skb
= skb
;
1366 e1000_consume_page(buffer_info
, skb
, length
);
1368 /* no chain, got EOP, this buf is the packet
1369 * copybreak to save the put_page/alloc_page */
1370 if (length
<= copybreak
&&
1371 skb_tailroom(skb
) >= length
) {
1373 vaddr
= kmap_atomic(buffer_info
->page
,
1374 KM_SKB_DATA_SOFTIRQ
);
1375 memcpy(skb_tail_pointer(skb
), vaddr
,
1377 kunmap_atomic(vaddr
,
1378 KM_SKB_DATA_SOFTIRQ
);
1379 /* re-use the page, so don't erase
1380 * buffer_info->page */
1381 skb_put(skb
, length
);
1383 skb_fill_page_desc(skb
, 0,
1384 buffer_info
->page
, 0,
1386 e1000_consume_page(buffer_info
, skb
,
1392 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1393 e1000_rx_checksum(adapter
,
1395 ((u32
)(rx_desc
->errors
) << 24),
1396 le16_to_cpu(rx_desc
->csum
), skb
);
1398 /* probably a little skewed due to removing CRC */
1399 total_rx_bytes
+= skb
->len
;
1402 /* eth type trans needs skb->data to point to something */
1403 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1404 e_err("pskb_may_pull failed.\n");
1405 dev_kfree_skb_irq(skb
);
1409 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1413 rx_desc
->status
= 0;
1415 /* return some buffers to hardware, one at a time is too slow */
1416 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1417 adapter
->alloc_rx_buf(adapter
, cleaned_count
,
1422 /* use prefetched values */
1424 buffer_info
= next_buffer
;
1426 rx_ring
->next_to_clean
= i
;
1428 cleaned_count
= e1000_desc_unused(rx_ring
);
1430 adapter
->alloc_rx_buf(adapter
, cleaned_count
, GFP_ATOMIC
);
1432 adapter
->total_rx_bytes
+= total_rx_bytes
;
1433 adapter
->total_rx_packets
+= total_rx_packets
;
1438 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1439 * @adapter: board private structure
1441 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1443 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1444 struct e1000_buffer
*buffer_info
;
1445 struct e1000_ps_page
*ps_page
;
1446 struct pci_dev
*pdev
= adapter
->pdev
;
1449 /* Free all the Rx ring sk_buffs */
1450 for (i
= 0; i
< rx_ring
->count
; i
++) {
1451 buffer_info
= &rx_ring
->buffer_info
[i
];
1452 if (buffer_info
->dma
) {
1453 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1454 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1455 adapter
->rx_buffer_len
,
1457 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1458 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1461 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1462 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1463 adapter
->rx_ps_bsize0
,
1465 buffer_info
->dma
= 0;
1468 if (buffer_info
->page
) {
1469 put_page(buffer_info
->page
);
1470 buffer_info
->page
= NULL
;
1473 if (buffer_info
->skb
) {
1474 dev_kfree_skb(buffer_info
->skb
);
1475 buffer_info
->skb
= NULL
;
1478 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1479 ps_page
= &buffer_info
->ps_pages
[j
];
1482 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1485 put_page(ps_page
->page
);
1486 ps_page
->page
= NULL
;
1490 /* there also may be some cached data from a chained receive */
1491 if (rx_ring
->rx_skb_top
) {
1492 dev_kfree_skb(rx_ring
->rx_skb_top
);
1493 rx_ring
->rx_skb_top
= NULL
;
1496 /* Zero out the descriptor ring */
1497 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1499 rx_ring
->next_to_clean
= 0;
1500 rx_ring
->next_to_use
= 0;
1501 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1503 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1504 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1507 static void e1000e_downshift_workaround(struct work_struct
*work
)
1509 struct e1000_adapter
*adapter
= container_of(work
,
1510 struct e1000_adapter
, downshift_task
);
1512 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1515 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1519 * e1000_intr_msi - Interrupt Handler
1520 * @irq: interrupt number
1521 * @data: pointer to a network interface device structure
1523 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1525 struct net_device
*netdev
= data
;
1526 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1527 struct e1000_hw
*hw
= &adapter
->hw
;
1528 u32 icr
= er32(ICR
);
1531 * read ICR disables interrupts using IAM
1534 if (icr
& E1000_ICR_LSC
) {
1535 hw
->mac
.get_link_status
= 1;
1537 * ICH8 workaround-- Call gig speed drop workaround on cable
1538 * disconnect (LSC) before accessing any PHY registers
1540 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1541 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1542 schedule_work(&adapter
->downshift_task
);
1545 * 80003ES2LAN workaround-- For packet buffer work-around on
1546 * link down event; disable receives here in the ISR and reset
1547 * adapter in watchdog
1549 if (netif_carrier_ok(netdev
) &&
1550 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1551 /* disable receives */
1552 u32 rctl
= er32(RCTL
);
1553 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1554 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1556 /* guard against interrupt when we're going down */
1557 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1558 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1561 if (napi_schedule_prep(&adapter
->napi
)) {
1562 adapter
->total_tx_bytes
= 0;
1563 adapter
->total_tx_packets
= 0;
1564 adapter
->total_rx_bytes
= 0;
1565 adapter
->total_rx_packets
= 0;
1566 __napi_schedule(&adapter
->napi
);
1573 * e1000_intr - Interrupt Handler
1574 * @irq: interrupt number
1575 * @data: pointer to a network interface device structure
1577 static irqreturn_t
e1000_intr(int irq
, void *data
)
1579 struct net_device
*netdev
= data
;
1580 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1581 struct e1000_hw
*hw
= &adapter
->hw
;
1582 u32 rctl
, icr
= er32(ICR
);
1584 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1585 return IRQ_NONE
; /* Not our interrupt */
1588 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1589 * not set, then the adapter didn't send an interrupt
1591 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1595 * Interrupt Auto-Mask...upon reading ICR,
1596 * interrupts are masked. No need for the
1600 if (icr
& E1000_ICR_LSC
) {
1601 hw
->mac
.get_link_status
= 1;
1603 * ICH8 workaround-- Call gig speed drop workaround on cable
1604 * disconnect (LSC) before accessing any PHY registers
1606 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1607 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1608 schedule_work(&adapter
->downshift_task
);
1611 * 80003ES2LAN workaround--
1612 * For packet buffer work-around on link down event;
1613 * disable receives here in the ISR and
1614 * reset adapter in watchdog
1616 if (netif_carrier_ok(netdev
) &&
1617 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1618 /* disable receives */
1620 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1621 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1623 /* guard against interrupt when we're going down */
1624 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1625 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1628 if (napi_schedule_prep(&adapter
->napi
)) {
1629 adapter
->total_tx_bytes
= 0;
1630 adapter
->total_tx_packets
= 0;
1631 adapter
->total_rx_bytes
= 0;
1632 adapter
->total_rx_packets
= 0;
1633 __napi_schedule(&adapter
->napi
);
1639 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1641 struct net_device
*netdev
= data
;
1642 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1643 struct e1000_hw
*hw
= &adapter
->hw
;
1644 u32 icr
= er32(ICR
);
1646 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1647 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1648 ew32(IMS
, E1000_IMS_OTHER
);
1652 if (icr
& adapter
->eiac_mask
)
1653 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1655 if (icr
& E1000_ICR_OTHER
) {
1656 if (!(icr
& E1000_ICR_LSC
))
1657 goto no_link_interrupt
;
1658 hw
->mac
.get_link_status
= 1;
1659 /* guard against interrupt when we're going down */
1660 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1661 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1665 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1666 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1672 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1674 struct net_device
*netdev
= data
;
1675 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1676 struct e1000_hw
*hw
= &adapter
->hw
;
1677 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1680 adapter
->total_tx_bytes
= 0;
1681 adapter
->total_tx_packets
= 0;
1683 if (!e1000_clean_tx_irq(adapter
))
1684 /* Ring was not completely cleaned, so fire another interrupt */
1685 ew32(ICS
, tx_ring
->ims_val
);
1690 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1692 struct net_device
*netdev
= data
;
1693 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1695 /* Write the ITR value calculated at the end of the
1696 * previous interrupt.
1698 if (adapter
->rx_ring
->set_itr
) {
1699 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1700 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1701 adapter
->rx_ring
->set_itr
= 0;
1704 if (napi_schedule_prep(&adapter
->napi
)) {
1705 adapter
->total_rx_bytes
= 0;
1706 adapter
->total_rx_packets
= 0;
1707 __napi_schedule(&adapter
->napi
);
1713 * e1000_configure_msix - Configure MSI-X hardware
1715 * e1000_configure_msix sets up the hardware to properly
1716 * generate MSI-X interrupts.
1718 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1720 struct e1000_hw
*hw
= &adapter
->hw
;
1721 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1722 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1724 u32 ctrl_ext
, ivar
= 0;
1726 adapter
->eiac_mask
= 0;
1728 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1729 if (hw
->mac
.type
== e1000_82574
) {
1730 u32 rfctl
= er32(RFCTL
);
1731 rfctl
|= E1000_RFCTL_ACK_DIS
;
1735 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1736 /* Configure Rx vector */
1737 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1738 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1739 if (rx_ring
->itr_val
)
1740 writel(1000000000 / (rx_ring
->itr_val
* 256),
1741 hw
->hw_addr
+ rx_ring
->itr_register
);
1743 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1744 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1746 /* Configure Tx vector */
1747 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1749 if (tx_ring
->itr_val
)
1750 writel(1000000000 / (tx_ring
->itr_val
* 256),
1751 hw
->hw_addr
+ tx_ring
->itr_register
);
1753 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1754 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1755 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1757 /* set vector for Other Causes, e.g. link changes */
1759 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1760 if (rx_ring
->itr_val
)
1761 writel(1000000000 / (rx_ring
->itr_val
* 256),
1762 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1764 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1766 /* Cause Tx interrupts on every write back */
1771 /* enable MSI-X PBA support */
1772 ctrl_ext
= er32(CTRL_EXT
);
1773 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1775 /* Auto-Mask Other interrupts upon ICR read */
1776 #define E1000_EIAC_MASK_82574 0x01F00000
1777 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1778 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1779 ew32(CTRL_EXT
, ctrl_ext
);
1783 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1785 if (adapter
->msix_entries
) {
1786 pci_disable_msix(adapter
->pdev
);
1787 kfree(adapter
->msix_entries
);
1788 adapter
->msix_entries
= NULL
;
1789 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1790 pci_disable_msi(adapter
->pdev
);
1791 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1796 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1798 * Attempt to configure interrupts using the best available
1799 * capabilities of the hardware and kernel.
1801 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1806 switch (adapter
->int_mode
) {
1807 case E1000E_INT_MODE_MSIX
:
1808 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1809 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
1810 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
1811 sizeof(struct msix_entry
),
1813 if (adapter
->msix_entries
) {
1814 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1815 adapter
->msix_entries
[i
].entry
= i
;
1817 err
= pci_enable_msix(adapter
->pdev
,
1818 adapter
->msix_entries
,
1819 adapter
->num_vectors
);
1823 /* MSI-X failed, so fall through and try MSI */
1824 e_err("Failed to initialize MSI-X interrupts. "
1825 "Falling back to MSI interrupts.\n");
1826 e1000e_reset_interrupt_capability(adapter
);
1828 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1830 case E1000E_INT_MODE_MSI
:
1831 if (!pci_enable_msi(adapter
->pdev
)) {
1832 adapter
->flags
|= FLAG_MSI_ENABLED
;
1834 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1835 e_err("Failed to initialize MSI interrupts. Falling "
1836 "back to legacy interrupts.\n");
1839 case E1000E_INT_MODE_LEGACY
:
1840 /* Don't do anything; this is the system default */
1844 /* store the number of vectors being used */
1845 adapter
->num_vectors
= 1;
1849 * e1000_request_msix - Initialize MSI-X interrupts
1851 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1854 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1856 struct net_device
*netdev
= adapter
->netdev
;
1857 int err
= 0, vector
= 0;
1859 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1860 snprintf(adapter
->rx_ring
->name
,
1861 sizeof(adapter
->rx_ring
->name
) - 1,
1862 "%s-rx-0", netdev
->name
);
1864 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1865 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1866 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1870 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1871 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1874 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1875 snprintf(adapter
->tx_ring
->name
,
1876 sizeof(adapter
->tx_ring
->name
) - 1,
1877 "%s-tx-0", netdev
->name
);
1879 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1880 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1881 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1885 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1886 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1889 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1890 e1000_msix_other
, 0, netdev
->name
, netdev
);
1894 e1000_configure_msix(adapter
);
1901 * e1000_request_irq - initialize interrupts
1903 * Attempts to configure interrupts using the best available
1904 * capabilities of the hardware and kernel.
1906 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1908 struct net_device
*netdev
= adapter
->netdev
;
1911 if (adapter
->msix_entries
) {
1912 err
= e1000_request_msix(adapter
);
1915 /* fall back to MSI */
1916 e1000e_reset_interrupt_capability(adapter
);
1917 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1918 e1000e_set_interrupt_capability(adapter
);
1920 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1921 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
1922 netdev
->name
, netdev
);
1926 /* fall back to legacy interrupt */
1927 e1000e_reset_interrupt_capability(adapter
);
1928 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1931 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
1932 netdev
->name
, netdev
);
1934 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1939 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1941 struct net_device
*netdev
= adapter
->netdev
;
1943 if (adapter
->msix_entries
) {
1946 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1949 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1952 /* Other Causes interrupt vector */
1953 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1957 free_irq(adapter
->pdev
->irq
, netdev
);
1961 * e1000_irq_disable - Mask off interrupt generation on the NIC
1963 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1965 struct e1000_hw
*hw
= &adapter
->hw
;
1968 if (adapter
->msix_entries
)
1969 ew32(EIAC_82574
, 0);
1972 if (adapter
->msix_entries
) {
1974 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1975 synchronize_irq(adapter
->msix_entries
[i
].vector
);
1977 synchronize_irq(adapter
->pdev
->irq
);
1982 * e1000_irq_enable - Enable default interrupt generation settings
1984 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1986 struct e1000_hw
*hw
= &adapter
->hw
;
1988 if (adapter
->msix_entries
) {
1989 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
1990 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
1992 ew32(IMS
, IMS_ENABLE_MASK
);
1998 * e1000e_get_hw_control - get control of the h/w from f/w
1999 * @adapter: address of board private structure
2001 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2002 * For ASF and Pass Through versions of f/w this means that
2003 * the driver is loaded. For AMT version (only with 82573)
2004 * of the f/w this means that the network i/f is open.
2006 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2008 struct e1000_hw
*hw
= &adapter
->hw
;
2012 /* Let firmware know the driver has taken over */
2013 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2015 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2016 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2017 ctrl_ext
= er32(CTRL_EXT
);
2018 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2023 * e1000e_release_hw_control - release control of the h/w to f/w
2024 * @adapter: address of board private structure
2026 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2027 * For ASF and Pass Through versions of f/w this means that the
2028 * driver is no longer loaded. For AMT version (only with 82573) i
2029 * of the f/w this means that the network i/f is closed.
2032 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2034 struct e1000_hw
*hw
= &adapter
->hw
;
2038 /* Let firmware taken over control of h/w */
2039 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2041 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2042 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2043 ctrl_ext
= er32(CTRL_EXT
);
2044 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2049 * @e1000_alloc_ring - allocate memory for a ring structure
2051 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2052 struct e1000_ring
*ring
)
2054 struct pci_dev
*pdev
= adapter
->pdev
;
2056 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2065 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2066 * @adapter: board private structure
2068 * Return 0 on success, negative on failure
2070 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
2072 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2073 int err
= -ENOMEM
, size
;
2075 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2076 tx_ring
->buffer_info
= vzalloc(size
);
2077 if (!tx_ring
->buffer_info
)
2080 /* round up to nearest 4K */
2081 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2082 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2084 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2088 tx_ring
->next_to_use
= 0;
2089 tx_ring
->next_to_clean
= 0;
2093 vfree(tx_ring
->buffer_info
);
2094 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2099 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2100 * @adapter: board private structure
2102 * Returns 0 on success, negative on failure
2104 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
2106 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2107 struct e1000_buffer
*buffer_info
;
2108 int i
, size
, desc_len
, err
= -ENOMEM
;
2110 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2111 rx_ring
->buffer_info
= vzalloc(size
);
2112 if (!rx_ring
->buffer_info
)
2115 for (i
= 0; i
< rx_ring
->count
; i
++) {
2116 buffer_info
= &rx_ring
->buffer_info
[i
];
2117 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2118 sizeof(struct e1000_ps_page
),
2120 if (!buffer_info
->ps_pages
)
2124 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2126 /* Round up to nearest 4K */
2127 rx_ring
->size
= rx_ring
->count
* desc_len
;
2128 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2130 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2134 rx_ring
->next_to_clean
= 0;
2135 rx_ring
->next_to_use
= 0;
2136 rx_ring
->rx_skb_top
= NULL
;
2141 for (i
= 0; i
< rx_ring
->count
; i
++) {
2142 buffer_info
= &rx_ring
->buffer_info
[i
];
2143 kfree(buffer_info
->ps_pages
);
2146 vfree(rx_ring
->buffer_info
);
2147 e_err("Unable to allocate memory for the receive descriptor ring\n");
2152 * e1000_clean_tx_ring - Free Tx Buffers
2153 * @adapter: board private structure
2155 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
2157 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2158 struct e1000_buffer
*buffer_info
;
2162 for (i
= 0; i
< tx_ring
->count
; i
++) {
2163 buffer_info
= &tx_ring
->buffer_info
[i
];
2164 e1000_put_txbuf(adapter
, buffer_info
);
2167 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2168 memset(tx_ring
->buffer_info
, 0, size
);
2170 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2172 tx_ring
->next_to_use
= 0;
2173 tx_ring
->next_to_clean
= 0;
2175 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2176 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2180 * e1000e_free_tx_resources - Free Tx Resources per Queue
2181 * @adapter: board private structure
2183 * Free all transmit software resources
2185 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
2187 struct pci_dev
*pdev
= adapter
->pdev
;
2188 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2190 e1000_clean_tx_ring(adapter
);
2192 vfree(tx_ring
->buffer_info
);
2193 tx_ring
->buffer_info
= NULL
;
2195 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2197 tx_ring
->desc
= NULL
;
2201 * e1000e_free_rx_resources - Free Rx Resources
2202 * @adapter: board private structure
2204 * Free all receive software resources
2207 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
2209 struct pci_dev
*pdev
= adapter
->pdev
;
2210 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2213 e1000_clean_rx_ring(adapter
);
2215 for (i
= 0; i
< rx_ring
->count
; i
++)
2216 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2218 vfree(rx_ring
->buffer_info
);
2219 rx_ring
->buffer_info
= NULL
;
2221 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2223 rx_ring
->desc
= NULL
;
2227 * e1000_update_itr - update the dynamic ITR value based on statistics
2228 * @adapter: pointer to adapter
2229 * @itr_setting: current adapter->itr
2230 * @packets: the number of packets during this measurement interval
2231 * @bytes: the number of bytes during this measurement interval
2233 * Stores a new ITR value based on packets and byte
2234 * counts during the last interrupt. The advantage of per interrupt
2235 * computation is faster updates and more accurate ITR for the current
2236 * traffic pattern. Constants in this function were computed
2237 * based on theoretical maximum wire speed and thresholds were set based
2238 * on testing data as well as attempting to minimize response time
2239 * while increasing bulk throughput. This functionality is controlled
2240 * by the InterruptThrottleRate module parameter.
2242 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2243 u16 itr_setting
, int packets
,
2246 unsigned int retval
= itr_setting
;
2249 goto update_itr_done
;
2251 switch (itr_setting
) {
2252 case lowest_latency
:
2253 /* handle TSO and jumbo frames */
2254 if (bytes
/packets
> 8000)
2255 retval
= bulk_latency
;
2256 else if ((packets
< 5) && (bytes
> 512))
2257 retval
= low_latency
;
2259 case low_latency
: /* 50 usec aka 20000 ints/s */
2260 if (bytes
> 10000) {
2261 /* this if handles the TSO accounting */
2262 if (bytes
/packets
> 8000)
2263 retval
= bulk_latency
;
2264 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2265 retval
= bulk_latency
;
2266 else if ((packets
> 35))
2267 retval
= lowest_latency
;
2268 } else if (bytes
/packets
> 2000) {
2269 retval
= bulk_latency
;
2270 } else if (packets
<= 2 && bytes
< 512) {
2271 retval
= lowest_latency
;
2274 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2275 if (bytes
> 25000) {
2277 retval
= low_latency
;
2278 } else if (bytes
< 6000) {
2279 retval
= low_latency
;
2288 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2290 struct e1000_hw
*hw
= &adapter
->hw
;
2292 u32 new_itr
= adapter
->itr
;
2294 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2295 if (adapter
->link_speed
!= SPEED_1000
) {
2301 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2306 adapter
->tx_itr
= e1000_update_itr(adapter
,
2308 adapter
->total_tx_packets
,
2309 adapter
->total_tx_bytes
);
2310 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2311 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2312 adapter
->tx_itr
= low_latency
;
2314 adapter
->rx_itr
= e1000_update_itr(adapter
,
2316 adapter
->total_rx_packets
,
2317 adapter
->total_rx_bytes
);
2318 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2319 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2320 adapter
->rx_itr
= low_latency
;
2322 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2324 switch (current_itr
) {
2325 /* counts and packets in update_itr are dependent on these numbers */
2326 case lowest_latency
:
2330 new_itr
= 20000; /* aka hwitr = ~200 */
2340 if (new_itr
!= adapter
->itr
) {
2342 * this attempts to bias the interrupt rate towards Bulk
2343 * by adding intermediate steps when interrupt rate is
2346 new_itr
= new_itr
> adapter
->itr
?
2347 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2349 adapter
->itr
= new_itr
;
2350 adapter
->rx_ring
->itr_val
= new_itr
;
2351 if (adapter
->msix_entries
)
2352 adapter
->rx_ring
->set_itr
= 1;
2355 ew32(ITR
, 1000000000 / (new_itr
* 256));
2362 * e1000_alloc_queues - Allocate memory for all rings
2363 * @adapter: board private structure to initialize
2365 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
2367 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2368 if (!adapter
->tx_ring
)
2371 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2372 if (!adapter
->rx_ring
)
2377 e_err("Unable to allocate memory for queues\n");
2378 kfree(adapter
->rx_ring
);
2379 kfree(adapter
->tx_ring
);
2384 * e1000_clean - NAPI Rx polling callback
2385 * @napi: struct associated with this polling callback
2386 * @budget: amount of packets driver is allowed to process this poll
2388 static int e1000_clean(struct napi_struct
*napi
, int budget
)
2390 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
2391 struct e1000_hw
*hw
= &adapter
->hw
;
2392 struct net_device
*poll_dev
= adapter
->netdev
;
2393 int tx_cleaned
= 1, work_done
= 0;
2395 adapter
= netdev_priv(poll_dev
);
2397 if (adapter
->msix_entries
&&
2398 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2401 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2404 adapter
->clean_rx(adapter
, &work_done
, budget
);
2409 /* If budget not fully consumed, exit the polling mode */
2410 if (work_done
< budget
) {
2411 if (adapter
->itr_setting
& 3)
2412 e1000_set_itr(adapter
);
2413 napi_complete(napi
);
2414 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2415 if (adapter
->msix_entries
)
2416 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2418 e1000_irq_enable(adapter
);
2425 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2427 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2428 struct e1000_hw
*hw
= &adapter
->hw
;
2431 /* don't update vlan cookie if already programmed */
2432 if ((adapter
->hw
.mng_cookie
.status
&
2433 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2434 (vid
== adapter
->mng_vlan_id
))
2437 /* add VID to filter table */
2438 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2439 index
= (vid
>> 5) & 0x7F;
2440 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2441 vfta
|= (1 << (vid
& 0x1F));
2442 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2445 set_bit(vid
, adapter
->active_vlans
);
2448 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2450 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2451 struct e1000_hw
*hw
= &adapter
->hw
;
2454 if ((adapter
->hw
.mng_cookie
.status
&
2455 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2456 (vid
== adapter
->mng_vlan_id
)) {
2457 /* release control to f/w */
2458 e1000e_release_hw_control(adapter
);
2462 /* remove VID from filter table */
2463 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2464 index
= (vid
>> 5) & 0x7F;
2465 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2466 vfta
&= ~(1 << (vid
& 0x1F));
2467 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2470 clear_bit(vid
, adapter
->active_vlans
);
2474 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2475 * @adapter: board private structure to initialize
2477 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2479 struct net_device
*netdev
= adapter
->netdev
;
2480 struct e1000_hw
*hw
= &adapter
->hw
;
2483 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2484 /* disable VLAN receive filtering */
2486 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2489 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2490 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2491 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2497 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2498 * @adapter: board private structure to initialize
2500 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2502 struct e1000_hw
*hw
= &adapter
->hw
;
2505 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2506 /* enable VLAN receive filtering */
2508 rctl
|= E1000_RCTL_VFE
;
2509 rctl
&= ~E1000_RCTL_CFIEN
;
2515 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2516 * @adapter: board private structure to initialize
2518 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2520 struct e1000_hw
*hw
= &adapter
->hw
;
2523 /* disable VLAN tag insert/strip */
2525 ctrl
&= ~E1000_CTRL_VME
;
2530 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2531 * @adapter: board private structure to initialize
2533 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2535 struct e1000_hw
*hw
= &adapter
->hw
;
2538 /* enable VLAN tag insert/strip */
2540 ctrl
|= E1000_CTRL_VME
;
2544 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2546 struct net_device
*netdev
= adapter
->netdev
;
2547 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2548 u16 old_vid
= adapter
->mng_vlan_id
;
2550 if (adapter
->hw
.mng_cookie
.status
&
2551 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2552 e1000_vlan_rx_add_vid(netdev
, vid
);
2553 adapter
->mng_vlan_id
= vid
;
2556 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2557 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2560 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2564 e1000_vlan_rx_add_vid(adapter
->netdev
, 0);
2566 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2567 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2570 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2572 struct e1000_hw
*hw
= &adapter
->hw
;
2573 u32 manc
, manc2h
, mdef
, i
, j
;
2575 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2581 * enable receiving management packets to the host. this will probably
2582 * generate destination unreachable messages from the host OS, but
2583 * the packets will be handled on SMBUS
2585 manc
|= E1000_MANC_EN_MNG2HOST
;
2586 manc2h
= er32(MANC2H
);
2588 switch (hw
->mac
.type
) {
2590 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2595 * Check if IPMI pass-through decision filter already exists;
2598 for (i
= 0, j
= 0; i
< 8; i
++) {
2599 mdef
= er32(MDEF(i
));
2601 /* Ignore filters with anything other than IPMI ports */
2602 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2605 /* Enable this decision filter in MANC2H */
2612 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2615 /* Create new decision filter in an empty filter */
2616 for (i
= 0, j
= 0; i
< 8; i
++)
2617 if (er32(MDEF(i
)) == 0) {
2618 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2619 E1000_MDEF_PORT_664
));
2626 e_warn("Unable to create IPMI pass-through filter\n");
2630 ew32(MANC2H
, manc2h
);
2635 * e1000_configure_tx - Configure Transmit Unit after Reset
2636 * @adapter: board private structure
2638 * Configure the Tx unit of the MAC after a reset.
2640 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2642 struct e1000_hw
*hw
= &adapter
->hw
;
2643 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2645 u32 tdlen
, tctl
, tipg
, tarc
;
2648 /* Setup the HW Tx Head and Tail descriptor pointers */
2649 tdba
= tx_ring
->dma
;
2650 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2651 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2652 ew32(TDBAH
, (tdba
>> 32));
2656 tx_ring
->head
= E1000_TDH
;
2657 tx_ring
->tail
= E1000_TDT
;
2659 /* Set the default values for the Tx Inter Packet Gap timer */
2660 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2661 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2662 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2664 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2665 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2667 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2668 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2671 /* Set the Tx Interrupt Delay register */
2672 ew32(TIDV
, adapter
->tx_int_delay
);
2673 /* Tx irq moderation */
2674 ew32(TADV
, adapter
->tx_abs_int_delay
);
2676 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2677 u32 txdctl
= er32(TXDCTL(0));
2678 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2679 E1000_TXDCTL_WTHRESH
);
2681 * set up some performance related parameters to encourage the
2682 * hardware to use the bus more efficiently in bursts, depends
2683 * on the tx_int_delay to be enabled,
2684 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2685 * hthresh = 1 ==> prefetch when one or more available
2686 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2687 * BEWARE: this seems to work but should be considered first if
2688 * there are Tx hangs or other Tx related bugs
2690 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2691 ew32(TXDCTL(0), txdctl
);
2692 /* erratum work around: set txdctl the same for both queues */
2693 ew32(TXDCTL(1), txdctl
);
2696 /* Program the Transmit Control Register */
2698 tctl
&= ~E1000_TCTL_CT
;
2699 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2700 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2702 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2703 tarc
= er32(TARC(0));
2705 * set the speed mode bit, we'll clear it if we're not at
2706 * gigabit link later
2708 #define SPEED_MODE_BIT (1 << 21)
2709 tarc
|= SPEED_MODE_BIT
;
2710 ew32(TARC(0), tarc
);
2713 /* errata: program both queues to unweighted RR */
2714 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2715 tarc
= er32(TARC(0));
2717 ew32(TARC(0), tarc
);
2718 tarc
= er32(TARC(1));
2720 ew32(TARC(1), tarc
);
2723 /* Setup Transmit Descriptor Settings for eop descriptor */
2724 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2726 /* only set IDE if we are delaying interrupts using the timers */
2727 if (adapter
->tx_int_delay
)
2728 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2730 /* enable Report Status bit */
2731 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2735 e1000e_config_collision_dist(hw
);
2739 * e1000_setup_rctl - configure the receive control registers
2740 * @adapter: Board private structure
2742 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2743 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2744 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2746 struct e1000_hw
*hw
= &adapter
->hw
;
2750 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2751 if (hw
->mac
.type
== e1000_pch2lan
) {
2754 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
2755 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
2757 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
2760 e_dbg("failed to enable jumbo frame workaround mode\n");
2763 /* Program MC offset vector base */
2765 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2766 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2767 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2768 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2770 /* Do not Store bad packets */
2771 rctl
&= ~E1000_RCTL_SBP
;
2773 /* Enable Long Packet receive */
2774 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2775 rctl
&= ~E1000_RCTL_LPE
;
2777 rctl
|= E1000_RCTL_LPE
;
2779 /* Some systems expect that the CRC is included in SMBUS traffic. The
2780 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2781 * host memory when this is enabled
2783 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2784 rctl
|= E1000_RCTL_SECRC
;
2786 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2787 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2790 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2792 phy_data
|= (1 << 2);
2793 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2795 e1e_rphy(hw
, 22, &phy_data
);
2797 phy_data
|= (1 << 14);
2798 e1e_wphy(hw
, 0x10, 0x2823);
2799 e1e_wphy(hw
, 0x11, 0x0003);
2800 e1e_wphy(hw
, 22, phy_data
);
2803 /* Setup buffer sizes */
2804 rctl
&= ~E1000_RCTL_SZ_4096
;
2805 rctl
|= E1000_RCTL_BSEX
;
2806 switch (adapter
->rx_buffer_len
) {
2809 rctl
|= E1000_RCTL_SZ_2048
;
2810 rctl
&= ~E1000_RCTL_BSEX
;
2813 rctl
|= E1000_RCTL_SZ_4096
;
2816 rctl
|= E1000_RCTL_SZ_8192
;
2819 rctl
|= E1000_RCTL_SZ_16384
;
2824 * 82571 and greater support packet-split where the protocol
2825 * header is placed in skb->data and the packet data is
2826 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2827 * In the case of a non-split, skb->data is linearly filled,
2828 * followed by the page buffers. Therefore, skb->data is
2829 * sized to hold the largest protocol header.
2831 * allocations using alloc_page take too long for regular MTU
2832 * so only enable packet split for jumbo frames
2834 * Using pages when the page size is greater than 16k wastes
2835 * a lot of memory, since we allocate 3 pages at all times
2838 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2839 if (!(adapter
->flags
& FLAG_HAS_ERT
) && (pages
<= 3) &&
2840 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2841 adapter
->rx_ps_pages
= pages
;
2843 adapter
->rx_ps_pages
= 0;
2845 if (adapter
->rx_ps_pages
) {
2848 /* Configure extra packet-split registers */
2849 rfctl
= er32(RFCTL
);
2850 rfctl
|= E1000_RFCTL_EXTEN
;
2852 * disable packet split support for IPv6 extension headers,
2853 * because some malformed IPv6 headers can hang the Rx
2855 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2856 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2860 /* Enable Packet split descriptors */
2861 rctl
|= E1000_RCTL_DTYP_PS
;
2863 psrctl
|= adapter
->rx_ps_bsize0
>>
2864 E1000_PSRCTL_BSIZE0_SHIFT
;
2866 switch (adapter
->rx_ps_pages
) {
2868 psrctl
|= PAGE_SIZE
<<
2869 E1000_PSRCTL_BSIZE3_SHIFT
;
2871 psrctl
|= PAGE_SIZE
<<
2872 E1000_PSRCTL_BSIZE2_SHIFT
;
2874 psrctl
|= PAGE_SIZE
>>
2875 E1000_PSRCTL_BSIZE1_SHIFT
;
2879 ew32(PSRCTL
, psrctl
);
2883 /* just started the receive unit, no need to restart */
2884 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2888 * e1000_configure_rx - Configure Receive Unit after Reset
2889 * @adapter: board private structure
2891 * Configure the Rx unit of the MAC after a reset.
2893 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2895 struct e1000_hw
*hw
= &adapter
->hw
;
2896 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2898 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2900 if (adapter
->rx_ps_pages
) {
2901 /* this is a 32 byte descriptor */
2902 rdlen
= rx_ring
->count
*
2903 sizeof(union e1000_rx_desc_packet_split
);
2904 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2905 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2906 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2907 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2908 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2909 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2911 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2912 adapter
->clean_rx
= e1000_clean_rx_irq
;
2913 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2916 /* disable receives while setting up the descriptors */
2918 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
2919 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2921 usleep_range(10000, 20000);
2923 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2925 * set the writeback threshold (only takes effect if the RDTR
2926 * is set). set GRAN=1 and write back up to 0x4 worth, and
2927 * enable prefetching of 0x20 Rx descriptors
2933 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
2934 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
2937 * override the delay timers for enabling bursting, only if
2938 * the value was not set by the user via module options
2940 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
2941 adapter
->rx_int_delay
= BURST_RDTR
;
2942 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
2943 adapter
->rx_abs_int_delay
= BURST_RADV
;
2946 /* set the Receive Delay Timer Register */
2947 ew32(RDTR
, adapter
->rx_int_delay
);
2949 /* irq moderation */
2950 ew32(RADV
, adapter
->rx_abs_int_delay
);
2951 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
2952 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2954 ctrl_ext
= er32(CTRL_EXT
);
2955 /* Auto-Mask interrupts upon ICR access */
2956 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2957 ew32(IAM
, 0xffffffff);
2958 ew32(CTRL_EXT
, ctrl_ext
);
2962 * Setup the HW Rx Head and Tail Descriptor Pointers and
2963 * the Base and Length of the Rx Descriptor Ring
2965 rdba
= rx_ring
->dma
;
2966 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
2967 ew32(RDBAH
, (rdba
>> 32));
2971 rx_ring
->head
= E1000_RDH
;
2972 rx_ring
->tail
= E1000_RDT
;
2974 /* Enable Receive Checksum Offload for TCP and UDP */
2975 rxcsum
= er32(RXCSUM
);
2976 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2977 rxcsum
|= E1000_RXCSUM_TUOFL
;
2980 * IPv4 payload checksum for UDP fragments must be
2981 * used in conjunction with packet-split.
2983 if (adapter
->rx_ps_pages
)
2984 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2986 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2987 /* no need to clear IPPCSE as it defaults to 0 */
2989 ew32(RXCSUM
, rxcsum
);
2992 * Enable early receives on supported devices, only takes effect when
2993 * packet size is equal or larger than the specified value (in 8 byte
2994 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2996 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
2997 (adapter
->hw
.mac
.type
== e1000_pch2lan
)) {
2998 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2999 u32 rxdctl
= er32(RXDCTL(0));
3000 ew32(RXDCTL(0), rxdctl
| 0x3);
3001 if (adapter
->flags
& FLAG_HAS_ERT
)
3002 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
3004 * With jumbo frames and early-receive enabled,
3005 * excessive C-state transition latencies result in
3006 * dropped transactions.
3008 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
, 55);
3010 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
,
3011 PM_QOS_DEFAULT_VALUE
);
3015 /* Enable Receives */
3020 * e1000_update_mc_addr_list - Update Multicast addresses
3021 * @hw: pointer to the HW structure
3022 * @mc_addr_list: array of multicast addresses to program
3023 * @mc_addr_count: number of multicast addresses to program
3025 * Updates the Multicast Table Array.
3026 * The caller must have a packed mc_addr_list of multicast addresses.
3028 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
3031 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
);
3035 * e1000_set_multi - Multicast and Promiscuous mode set
3036 * @netdev: network interface device structure
3038 * The set_multi entry point is called whenever the multicast address
3039 * list or the network interface flags are updated. This routine is
3040 * responsible for configuring the hardware for proper multicast,
3041 * promiscuous mode, and all-multi behavior.
3043 static void e1000_set_multi(struct net_device
*netdev
)
3045 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3046 struct e1000_hw
*hw
= &adapter
->hw
;
3047 struct netdev_hw_addr
*ha
;
3051 /* Check for Promiscuous and All Multicast modes */
3055 if (netdev
->flags
& IFF_PROMISC
) {
3056 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3057 rctl
&= ~E1000_RCTL_VFE
;
3058 /* Do not hardware filter VLANs in promisc mode */
3059 e1000e_vlan_filter_disable(adapter
);
3061 if (netdev
->flags
& IFF_ALLMULTI
) {
3062 rctl
|= E1000_RCTL_MPE
;
3063 rctl
&= ~E1000_RCTL_UPE
;
3065 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3067 e1000e_vlan_filter_enable(adapter
);
3072 if (!netdev_mc_empty(netdev
)) {
3075 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
3079 /* prepare a packed array of only addresses. */
3080 netdev_for_each_mc_addr(ha
, netdev
)
3081 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3083 e1000_update_mc_addr_list(hw
, mta_list
, i
);
3087 * if we're called from probe, we might not have
3088 * anything to do here, so clear out the list
3090 e1000_update_mc_addr_list(hw
, NULL
, 0);
3093 if (netdev
->features
& NETIF_F_HW_VLAN_RX
)
3094 e1000e_vlan_strip_enable(adapter
);
3096 e1000e_vlan_strip_disable(adapter
);
3100 * e1000_configure - configure the hardware for Rx and Tx
3101 * @adapter: private board structure
3103 static void e1000_configure(struct e1000_adapter
*adapter
)
3105 e1000_set_multi(adapter
->netdev
);
3107 e1000_restore_vlan(adapter
);
3108 e1000_init_manageability_pt(adapter
);
3110 e1000_configure_tx(adapter
);
3111 e1000_setup_rctl(adapter
);
3112 e1000_configure_rx(adapter
);
3113 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
),
3118 * e1000e_power_up_phy - restore link in case the phy was powered down
3119 * @adapter: address of board private structure
3121 * The phy may be powered down to save power and turn off link when the
3122 * driver is unloaded and wake on lan is not enabled (among others)
3123 * *** this routine MUST be followed by a call to e1000e_reset ***
3125 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3127 if (adapter
->hw
.phy
.ops
.power_up
)
3128 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3130 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3134 * e1000_power_down_phy - Power down the PHY
3136 * Power down the PHY so no link is implied when interface is down.
3137 * The PHY cannot be powered down if management or WoL is active.
3139 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3141 /* WoL is enabled */
3145 if (adapter
->hw
.phy
.ops
.power_down
)
3146 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3150 * e1000e_reset - bring the hardware into a known good state
3152 * This function boots the hardware and enables some settings that
3153 * require a configuration cycle of the hardware - those cannot be
3154 * set/changed during runtime. After reset the device needs to be
3155 * properly configured for Rx, Tx etc.
3157 void e1000e_reset(struct e1000_adapter
*adapter
)
3159 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3160 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3161 struct e1000_hw
*hw
= &adapter
->hw
;
3162 u32 tx_space
, min_tx_space
, min_rx_space
;
3163 u32 pba
= adapter
->pba
;
3166 /* reset Packet Buffer Allocation to default */
3169 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3171 * To maintain wire speed transmits, the Tx FIFO should be
3172 * large enough to accommodate two full transmit packets,
3173 * rounded up to the next 1KB and expressed in KB. Likewise,
3174 * the Rx FIFO should be large enough to accommodate at least
3175 * one full receive packet and is similarly rounded up and
3179 /* upper 16 bits has Tx packet buffer allocation size in KB */
3180 tx_space
= pba
>> 16;
3181 /* lower 16 bits has Rx packet buffer allocation size in KB */
3184 * the Tx fifo also stores 16 bytes of information about the Tx
3185 * but don't include ethernet FCS because hardware appends it
3187 min_tx_space
= (adapter
->max_frame_size
+
3188 sizeof(struct e1000_tx_desc
) -
3190 min_tx_space
= ALIGN(min_tx_space
, 1024);
3191 min_tx_space
>>= 10;
3192 /* software strips receive CRC, so leave room for it */
3193 min_rx_space
= adapter
->max_frame_size
;
3194 min_rx_space
= ALIGN(min_rx_space
, 1024);
3195 min_rx_space
>>= 10;
3198 * If current Tx allocation is less than the min Tx FIFO size,
3199 * and the min Tx FIFO size is less than the current Rx FIFO
3200 * allocation, take space away from current Rx allocation
3202 if ((tx_space
< min_tx_space
) &&
3203 ((min_tx_space
- tx_space
) < pba
)) {
3204 pba
-= min_tx_space
- tx_space
;
3207 * if short on Rx space, Rx wins and must trump Tx
3208 * adjustment or use Early Receive if available
3210 if ((pba
< min_rx_space
) &&
3211 (!(adapter
->flags
& FLAG_HAS_ERT
)))
3212 /* ERT enabled in e1000_configure_rx */
3220 * flow control settings
3222 * The high water mark must be low enough to fit one full frame
3223 * (or the size used for early receive) above it in the Rx FIFO.
3224 * Set it to the lower of:
3225 * - 90% of the Rx FIFO size, and
3226 * - the full Rx FIFO size minus the early receive size (for parts
3227 * with ERT support assuming ERT set to E1000_ERT_2048), or
3228 * - the full Rx FIFO size minus one full frame
3230 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3231 fc
->pause_time
= 0xFFFF;
3233 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3235 fc
->current_mode
= fc
->requested_mode
;
3237 switch (hw
->mac
.type
) {
3239 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
3240 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
3241 hwm
= min(((pba
<< 10) * 9 / 10),
3242 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
3244 hwm
= min(((pba
<< 10) * 9 / 10),
3245 ((pba
<< 10) - adapter
->max_frame_size
));
3247 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3248 fc
->low_water
= fc
->high_water
- 8;
3252 * Workaround PCH LOM adapter hangs with certain network
3253 * loads. If hangs persist, try disabling Tx flow control.
3255 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3256 fc
->high_water
= 0x3500;
3257 fc
->low_water
= 0x1500;
3259 fc
->high_water
= 0x5000;
3260 fc
->low_water
= 0x3000;
3262 fc
->refresh_time
= 0x1000;
3265 fc
->high_water
= 0x05C20;
3266 fc
->low_water
= 0x05048;
3267 fc
->pause_time
= 0x0650;
3268 fc
->refresh_time
= 0x0400;
3269 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3277 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3278 * fit in receive buffer and early-receive not supported.
3280 if (adapter
->itr_setting
& 0x3) {
3281 if (((adapter
->max_frame_size
* 2) > (pba
<< 10)) &&
3282 !(adapter
->flags
& FLAG_HAS_ERT
)) {
3283 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
3284 dev_info(&adapter
->pdev
->dev
,
3285 "Interrupt Throttle Rate turned off\n");
3286 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
3289 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
3290 dev_info(&adapter
->pdev
->dev
,
3291 "Interrupt Throttle Rate turned on\n");
3292 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
3293 adapter
->itr
= 20000;
3294 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
3298 /* Allow time for pending master requests to run */
3299 mac
->ops
.reset_hw(hw
);
3302 * For parts with AMT enabled, let the firmware know
3303 * that the network interface is in control
3305 if (adapter
->flags
& FLAG_HAS_AMT
)
3306 e1000e_get_hw_control(adapter
);
3310 if (mac
->ops
.init_hw(hw
))
3311 e_err("Hardware Error\n");
3313 e1000_update_mng_vlan(adapter
);
3315 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3316 ew32(VET
, ETH_P_8021Q
);
3318 e1000e_reset_adaptive(hw
);
3320 if (!netif_running(adapter
->netdev
) &&
3321 !test_bit(__E1000_TESTING
, &adapter
->state
)) {
3322 e1000_power_down_phy(adapter
);
3326 e1000_get_phy_info(hw
);
3328 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
3329 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
3332 * speed up time to link by disabling smart power down, ignore
3333 * the return value of this function because there is nothing
3334 * different we would do if it failed
3336 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
3337 phy_data
&= ~IGP02E1000_PM_SPD
;
3338 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
3342 int e1000e_up(struct e1000_adapter
*adapter
)
3344 struct e1000_hw
*hw
= &adapter
->hw
;
3346 /* hardware has been reset, we need to reload some things */
3347 e1000_configure(adapter
);
3349 clear_bit(__E1000_DOWN
, &adapter
->state
);
3351 napi_enable(&adapter
->napi
);
3352 if (adapter
->msix_entries
)
3353 e1000_configure_msix(adapter
);
3354 e1000_irq_enable(adapter
);
3356 netif_start_queue(adapter
->netdev
);
3358 /* fire a link change interrupt to start the watchdog */
3359 if (adapter
->msix_entries
)
3360 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3362 ew32(ICS
, E1000_ICS_LSC
);
3367 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
3369 struct e1000_hw
*hw
= &adapter
->hw
;
3371 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
3374 /* flush pending descriptor writebacks to memory */
3375 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
3376 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
3378 /* execute the writes immediately */
3382 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
3384 void e1000e_down(struct e1000_adapter
*adapter
)
3386 struct net_device
*netdev
= adapter
->netdev
;
3387 struct e1000_hw
*hw
= &adapter
->hw
;
3391 * signal that we're down so the interrupt handler does not
3392 * reschedule our watchdog timer
3394 set_bit(__E1000_DOWN
, &adapter
->state
);
3396 /* disable receives in the hardware */
3398 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3399 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3400 /* flush and sleep below */
3402 netif_stop_queue(netdev
);
3404 /* disable transmits in the hardware */
3406 tctl
&= ~E1000_TCTL_EN
;
3409 /* flush both disables and wait for them to finish */
3411 usleep_range(10000, 20000);
3413 napi_disable(&adapter
->napi
);
3414 e1000_irq_disable(adapter
);
3416 del_timer_sync(&adapter
->watchdog_timer
);
3417 del_timer_sync(&adapter
->phy_info_timer
);
3419 netif_carrier_off(netdev
);
3421 spin_lock(&adapter
->stats64_lock
);
3422 e1000e_update_stats(adapter
);
3423 spin_unlock(&adapter
->stats64_lock
);
3425 e1000e_flush_descriptors(adapter
);
3426 e1000_clean_tx_ring(adapter
);
3427 e1000_clean_rx_ring(adapter
);
3429 adapter
->link_speed
= 0;
3430 adapter
->link_duplex
= 0;
3432 if (!pci_channel_offline(adapter
->pdev
))
3433 e1000e_reset(adapter
);
3436 * TODO: for power management, we could drop the link and
3437 * pci_disable_device here.
3441 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
3444 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3445 usleep_range(1000, 2000);
3446 e1000e_down(adapter
);
3448 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3452 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3453 * @adapter: board private structure to initialize
3455 * e1000_sw_init initializes the Adapter private data structure.
3456 * Fields are initialized based on PCI device information and
3457 * OS network device settings (MTU size).
3459 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
3461 struct net_device
*netdev
= adapter
->netdev
;
3463 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
3464 adapter
->rx_ps_bsize0
= 128;
3465 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3466 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
3468 spin_lock_init(&adapter
->stats64_lock
);
3470 e1000e_set_interrupt_capability(adapter
);
3472 if (e1000_alloc_queues(adapter
))
3475 /* Explicitly disable IRQ since the NIC can be in any state. */
3476 e1000_irq_disable(adapter
);
3478 set_bit(__E1000_DOWN
, &adapter
->state
);
3483 * e1000_intr_msi_test - Interrupt Handler
3484 * @irq: interrupt number
3485 * @data: pointer to a network interface device structure
3487 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
3489 struct net_device
*netdev
= data
;
3490 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3491 struct e1000_hw
*hw
= &adapter
->hw
;
3492 u32 icr
= er32(ICR
);
3494 e_dbg("icr is %08X\n", icr
);
3495 if (icr
& E1000_ICR_RXSEQ
) {
3496 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
3504 * e1000_test_msi_interrupt - Returns 0 for successful test
3505 * @adapter: board private struct
3507 * code flow taken from tg3.c
3509 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
3511 struct net_device
*netdev
= adapter
->netdev
;
3512 struct e1000_hw
*hw
= &adapter
->hw
;
3515 /* poll_enable hasn't been called yet, so don't need disable */
3516 /* clear any pending events */
3519 /* free the real vector and request a test handler */
3520 e1000_free_irq(adapter
);
3521 e1000e_reset_interrupt_capability(adapter
);
3523 /* Assume that the test fails, if it succeeds then the test
3524 * MSI irq handler will unset this flag */
3525 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
3527 err
= pci_enable_msi(adapter
->pdev
);
3529 goto msi_test_failed
;
3531 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
3532 netdev
->name
, netdev
);
3534 pci_disable_msi(adapter
->pdev
);
3535 goto msi_test_failed
;
3540 e1000_irq_enable(adapter
);
3542 /* fire an unusual interrupt on the test handler */
3543 ew32(ICS
, E1000_ICS_RXSEQ
);
3547 e1000_irq_disable(adapter
);
3551 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3552 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3553 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3555 e_dbg("MSI interrupt test succeeded!\n");
3557 free_irq(adapter
->pdev
->irq
, netdev
);
3558 pci_disable_msi(adapter
->pdev
);
3561 e1000e_set_interrupt_capability(adapter
);
3562 return e1000_request_irq(adapter
);
3566 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3567 * @adapter: board private struct
3569 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3571 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3576 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3579 /* disable SERR in case the MSI write causes a master abort */
3580 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3581 if (pci_cmd
& PCI_COMMAND_SERR
)
3582 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3583 pci_cmd
& ~PCI_COMMAND_SERR
);
3585 err
= e1000_test_msi_interrupt(adapter
);
3587 /* re-enable SERR */
3588 if (pci_cmd
& PCI_COMMAND_SERR
) {
3589 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3590 pci_cmd
|= PCI_COMMAND_SERR
;
3591 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3598 * e1000_open - Called when a network interface is made active
3599 * @netdev: network interface device structure
3601 * Returns 0 on success, negative value on failure
3603 * The open entry point is called when a network interface is made
3604 * active by the system (IFF_UP). At this point all resources needed
3605 * for transmit and receive operations are allocated, the interrupt
3606 * handler is registered with the OS, the watchdog timer is started,
3607 * and the stack is notified that the interface is ready.
3609 static int e1000_open(struct net_device
*netdev
)
3611 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3612 struct e1000_hw
*hw
= &adapter
->hw
;
3613 struct pci_dev
*pdev
= adapter
->pdev
;
3616 /* disallow open during test */
3617 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3620 pm_runtime_get_sync(&pdev
->dev
);
3622 netif_carrier_off(netdev
);
3624 /* allocate transmit descriptors */
3625 err
= e1000e_setup_tx_resources(adapter
);
3629 /* allocate receive descriptors */
3630 err
= e1000e_setup_rx_resources(adapter
);
3635 * If AMT is enabled, let the firmware know that the network
3636 * interface is now open and reset the part to a known state.
3638 if (adapter
->flags
& FLAG_HAS_AMT
) {
3639 e1000e_get_hw_control(adapter
);
3640 e1000e_reset(adapter
);
3643 e1000e_power_up_phy(adapter
);
3645 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3646 if ((adapter
->hw
.mng_cookie
.status
&
3647 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3648 e1000_update_mng_vlan(adapter
);
3650 /* DMA latency requirement to workaround early-receive/jumbo issue */
3651 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3652 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3653 pm_qos_add_request(&adapter
->netdev
->pm_qos_req
,
3654 PM_QOS_CPU_DMA_LATENCY
,
3655 PM_QOS_DEFAULT_VALUE
);
3658 * before we allocate an interrupt, we must be ready to handle it.
3659 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3660 * as soon as we call pci_request_irq, so we have to setup our
3661 * clean_rx handler before we do so.
3663 e1000_configure(adapter
);
3665 err
= e1000_request_irq(adapter
);
3670 * Work around PCIe errata with MSI interrupts causing some chipsets to
3671 * ignore e1000e MSI messages, which means we need to test our MSI
3674 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3675 err
= e1000_test_msi(adapter
);
3677 e_err("Interrupt allocation failed\n");
3682 /* From here on the code is the same as e1000e_up() */
3683 clear_bit(__E1000_DOWN
, &adapter
->state
);
3685 napi_enable(&adapter
->napi
);
3687 e1000_irq_enable(adapter
);
3689 netif_start_queue(netdev
);
3691 adapter
->idle_check
= true;
3692 pm_runtime_put(&pdev
->dev
);
3694 /* fire a link status change interrupt to start the watchdog */
3695 if (adapter
->msix_entries
)
3696 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3698 ew32(ICS
, E1000_ICS_LSC
);
3703 e1000e_release_hw_control(adapter
);
3704 e1000_power_down_phy(adapter
);
3705 e1000e_free_rx_resources(adapter
);
3707 e1000e_free_tx_resources(adapter
);
3709 e1000e_reset(adapter
);
3710 pm_runtime_put_sync(&pdev
->dev
);
3716 * e1000_close - Disables a network interface
3717 * @netdev: network interface device structure
3719 * Returns 0, this is not allowed to fail
3721 * The close entry point is called when an interface is de-activated
3722 * by the OS. The hardware is still under the drivers control, but
3723 * needs to be disabled. A global MAC reset is issued to stop the
3724 * hardware, and all transmit and receive resources are freed.
3726 static int e1000_close(struct net_device
*netdev
)
3728 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3729 struct pci_dev
*pdev
= adapter
->pdev
;
3731 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3733 pm_runtime_get_sync(&pdev
->dev
);
3735 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
3736 e1000e_down(adapter
);
3737 e1000_free_irq(adapter
);
3739 e1000_power_down_phy(adapter
);
3741 e1000e_free_tx_resources(adapter
);
3742 e1000e_free_rx_resources(adapter
);
3745 * kill manageability vlan ID if supported, but not if a vlan with
3746 * the same ID is registered on the host OS (let 8021q kill it)
3748 if (adapter
->hw
.mng_cookie
.status
&
3749 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
3750 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3753 * If AMT is enabled, let the firmware know that the network
3754 * interface is now closed
3756 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
3757 !test_bit(__E1000_TESTING
, &adapter
->state
))
3758 e1000e_release_hw_control(adapter
);
3760 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3761 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3762 pm_qos_remove_request(&adapter
->netdev
->pm_qos_req
);
3764 pm_runtime_put_sync(&pdev
->dev
);
3769 * e1000_set_mac - Change the Ethernet Address of the NIC
3770 * @netdev: network interface device structure
3771 * @p: pointer to an address structure
3773 * Returns 0 on success, negative on failure
3775 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3777 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3778 struct sockaddr
*addr
= p
;
3780 if (!is_valid_ether_addr(addr
->sa_data
))
3781 return -EADDRNOTAVAIL
;
3783 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3784 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3786 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3788 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3789 /* activate the work around */
3790 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3793 * Hold a copy of the LAA in RAR[14] This is done so that
3794 * between the time RAR[0] gets clobbered and the time it
3795 * gets fixed (in e1000_watchdog), the actual LAA is in one
3796 * of the RARs and no incoming packets directed to this port
3797 * are dropped. Eventually the LAA will be in RAR[0] and
3800 e1000e_rar_set(&adapter
->hw
,
3801 adapter
->hw
.mac
.addr
,
3802 adapter
->hw
.mac
.rar_entry_count
- 1);
3809 * e1000e_update_phy_task - work thread to update phy
3810 * @work: pointer to our work struct
3812 * this worker thread exists because we must acquire a
3813 * semaphore to read the phy, which we could msleep while
3814 * waiting for it, and we can't msleep in a timer.
3816 static void e1000e_update_phy_task(struct work_struct
*work
)
3818 struct e1000_adapter
*adapter
= container_of(work
,
3819 struct e1000_adapter
, update_phy_task
);
3821 if (test_bit(__E1000_DOWN
, &adapter
->state
))
3824 e1000_get_phy_info(&adapter
->hw
);
3828 * Need to wait a few seconds after link up to get diagnostic information from
3831 static void e1000_update_phy_info(unsigned long data
)
3833 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3835 if (test_bit(__E1000_DOWN
, &adapter
->state
))
3838 schedule_work(&adapter
->update_phy_task
);
3842 * e1000e_update_phy_stats - Update the PHY statistics counters
3843 * @adapter: board private structure
3845 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
3847 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
3849 struct e1000_hw
*hw
= &adapter
->hw
;
3853 ret_val
= hw
->phy
.ops
.acquire(hw
);
3858 * A page set is expensive so check if already on desired page.
3859 * If not, set to the page with the PHY status registers.
3862 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
3866 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
3867 ret_val
= hw
->phy
.ops
.set_page(hw
,
3868 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
3873 /* Single Collision Count */
3874 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
3875 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
3877 adapter
->stats
.scc
+= phy_data
;
3879 /* Excessive Collision Count */
3880 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
3881 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
3883 adapter
->stats
.ecol
+= phy_data
;
3885 /* Multiple Collision Count */
3886 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
3887 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
3889 adapter
->stats
.mcc
+= phy_data
;
3891 /* Late Collision Count */
3892 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
3893 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
3895 adapter
->stats
.latecol
+= phy_data
;
3897 /* Collision Count - also used for adaptive IFS */
3898 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
3899 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
3901 hw
->mac
.collision_delta
= phy_data
;
3904 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
3905 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
3907 adapter
->stats
.dc
+= phy_data
;
3909 /* Transmit with no CRS */
3910 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
3911 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
3913 adapter
->stats
.tncrs
+= phy_data
;
3916 hw
->phy
.ops
.release(hw
);
3920 * e1000e_update_stats - Update the board statistics counters
3921 * @adapter: board private structure
3923 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
3925 struct net_device
*netdev
= adapter
->netdev
;
3926 struct e1000_hw
*hw
= &adapter
->hw
;
3927 struct pci_dev
*pdev
= adapter
->pdev
;
3930 * Prevent stats update while adapter is being reset, or if the pci
3931 * connection is down.
3933 if (adapter
->link_speed
== 0)
3935 if (pci_channel_offline(pdev
))
3938 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3939 adapter
->stats
.gprc
+= er32(GPRC
);
3940 adapter
->stats
.gorc
+= er32(GORCL
);
3941 er32(GORCH
); /* Clear gorc */
3942 adapter
->stats
.bprc
+= er32(BPRC
);
3943 adapter
->stats
.mprc
+= er32(MPRC
);
3944 adapter
->stats
.roc
+= er32(ROC
);
3946 adapter
->stats
.mpc
+= er32(MPC
);
3948 /* Half-duplex statistics */
3949 if (adapter
->link_duplex
== HALF_DUPLEX
) {
3950 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
3951 e1000e_update_phy_stats(adapter
);
3953 adapter
->stats
.scc
+= er32(SCC
);
3954 adapter
->stats
.ecol
+= er32(ECOL
);
3955 adapter
->stats
.mcc
+= er32(MCC
);
3956 adapter
->stats
.latecol
+= er32(LATECOL
);
3957 adapter
->stats
.dc
+= er32(DC
);
3959 hw
->mac
.collision_delta
= er32(COLC
);
3961 if ((hw
->mac
.type
!= e1000_82574
) &&
3962 (hw
->mac
.type
!= e1000_82583
))
3963 adapter
->stats
.tncrs
+= er32(TNCRS
);
3965 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3968 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3969 adapter
->stats
.xontxc
+= er32(XONTXC
);
3970 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3971 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3972 adapter
->stats
.gptc
+= er32(GPTC
);
3973 adapter
->stats
.gotc
+= er32(GOTCL
);
3974 er32(GOTCH
); /* Clear gotc */
3975 adapter
->stats
.rnbc
+= er32(RNBC
);
3976 adapter
->stats
.ruc
+= er32(RUC
);
3978 adapter
->stats
.mptc
+= er32(MPTC
);
3979 adapter
->stats
.bptc
+= er32(BPTC
);
3981 /* used for adaptive IFS */
3983 hw
->mac
.tx_packet_delta
= er32(TPT
);
3984 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3986 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3987 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3988 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3989 adapter
->stats
.tsctc
+= er32(TSCTC
);
3990 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3992 /* Fill out the OS statistics structure */
3993 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3994 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3999 * RLEC on some newer hardware can be incorrect so build
4000 * our own version based on RUC and ROC
4002 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4003 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4004 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4005 adapter
->stats
.cexterr
;
4006 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4008 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4009 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4010 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4013 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
4014 adapter
->stats
.latecol
;
4015 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4016 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4017 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4019 /* Tx Dropped needs to be maintained elsewhere */
4021 /* Management Stats */
4022 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4023 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4024 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4028 * e1000_phy_read_status - Update the PHY register status snapshot
4029 * @adapter: board private structure
4031 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4033 struct e1000_hw
*hw
= &adapter
->hw
;
4034 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4036 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
4037 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4040 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
4041 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
4042 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
4043 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
4044 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
4045 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
4046 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
4047 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
4049 e_warn("Error reading PHY register\n");
4052 * Do not read PHY registers if link is not up
4053 * Set values to typical power-on defaults
4055 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4056 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4057 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4059 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4060 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4062 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4063 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4065 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4069 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4071 struct e1000_hw
*hw
= &adapter
->hw
;
4072 u32 ctrl
= er32(CTRL
);
4074 /* Link status message must follow this format for user tools */
4075 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
4076 "Flow Control: %s\n",
4077 adapter
->netdev
->name
,
4078 adapter
->link_speed
,
4079 (adapter
->link_duplex
== FULL_DUPLEX
) ?
4080 "Full Duplex" : "Half Duplex",
4081 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
4083 ((ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
4084 ((ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None")));
4087 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
4089 struct e1000_hw
*hw
= &adapter
->hw
;
4090 bool link_active
= 0;
4094 * get_link_status is set on LSC (link status) interrupt or
4095 * Rx sequence error interrupt. get_link_status will stay
4096 * false until the check_for_link establishes link
4097 * for copper adapters ONLY
4099 switch (hw
->phy
.media_type
) {
4100 case e1000_media_type_copper
:
4101 if (hw
->mac
.get_link_status
) {
4102 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4103 link_active
= !hw
->mac
.get_link_status
;
4108 case e1000_media_type_fiber
:
4109 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4110 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
4112 case e1000_media_type_internal_serdes
:
4113 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4114 link_active
= adapter
->hw
.mac
.serdes_has_link
;
4117 case e1000_media_type_unknown
:
4121 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
4122 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
4123 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4124 e_info("Gigabit has been disabled, downgrading speed\n");
4130 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
4132 /* make sure the receive unit is started */
4133 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4134 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
4135 struct e1000_hw
*hw
= &adapter
->hw
;
4136 u32 rctl
= er32(RCTL
);
4137 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4138 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
4142 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
4144 struct e1000_hw
*hw
= &adapter
->hw
;
4147 * With 82574 controllers, PHY needs to be checked periodically
4148 * for hung state and reset, if two calls return true
4150 if (e1000_check_phy_82574(hw
))
4151 adapter
->phy_hang_count
++;
4153 adapter
->phy_hang_count
= 0;
4155 if (adapter
->phy_hang_count
> 1) {
4156 adapter
->phy_hang_count
= 0;
4157 schedule_work(&adapter
->reset_task
);
4162 * e1000_watchdog - Timer Call-back
4163 * @data: pointer to adapter cast into an unsigned long
4165 static void e1000_watchdog(unsigned long data
)
4167 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
4169 /* Do the rest outside of interrupt context */
4170 schedule_work(&adapter
->watchdog_task
);
4172 /* TODO: make this use queue_delayed_work() */
4175 static void e1000_watchdog_task(struct work_struct
*work
)
4177 struct e1000_adapter
*adapter
= container_of(work
,
4178 struct e1000_adapter
, watchdog_task
);
4179 struct net_device
*netdev
= adapter
->netdev
;
4180 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4181 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
4182 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4183 struct e1000_hw
*hw
= &adapter
->hw
;
4186 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4189 link
= e1000e_has_link(adapter
);
4190 if ((netif_carrier_ok(netdev
)) && link
) {
4191 /* Cancel scheduled suspend requests. */
4192 pm_runtime_resume(netdev
->dev
.parent
);
4194 e1000e_enable_receives(adapter
);
4198 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
4199 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
4200 e1000_update_mng_vlan(adapter
);
4203 if (!netif_carrier_ok(netdev
)) {
4206 /* Cancel scheduled suspend requests. */
4207 pm_runtime_resume(netdev
->dev
.parent
);
4209 /* update snapshot of PHY registers on LSC */
4210 e1000_phy_read_status(adapter
);
4211 mac
->ops
.get_link_up_info(&adapter
->hw
,
4212 &adapter
->link_speed
,
4213 &adapter
->link_duplex
);
4214 e1000_print_link_info(adapter
);
4216 * On supported PHYs, check for duplex mismatch only
4217 * if link has autonegotiated at 10/100 half
4219 if ((hw
->phy
.type
== e1000_phy_igp_3
||
4220 hw
->phy
.type
== e1000_phy_bm
) &&
4221 (hw
->mac
.autoneg
== true) &&
4222 (adapter
->link_speed
== SPEED_10
||
4223 adapter
->link_speed
== SPEED_100
) &&
4224 (adapter
->link_duplex
== HALF_DUPLEX
)) {
4227 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
4229 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
4230 e_info("Autonegotiated half duplex but"
4231 " link partner cannot autoneg. "
4232 " Try forcing full duplex if "
4233 "link gets many collisions.\n");
4236 /* adjust timeout factor according to speed/duplex */
4237 adapter
->tx_timeout_factor
= 1;
4238 switch (adapter
->link_speed
) {
4241 adapter
->tx_timeout_factor
= 16;
4245 adapter
->tx_timeout_factor
= 10;
4250 * workaround: re-program speed mode bit after
4253 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
4256 tarc0
= er32(TARC(0));
4257 tarc0
&= ~SPEED_MODE_BIT
;
4258 ew32(TARC(0), tarc0
);
4262 * disable TSO for pcie and 10/100 speeds, to avoid
4263 * some hardware issues
4265 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
4266 switch (adapter
->link_speed
) {
4269 e_info("10/100 speed: disabling TSO\n");
4270 netdev
->features
&= ~NETIF_F_TSO
;
4271 netdev
->features
&= ~NETIF_F_TSO6
;
4274 netdev
->features
|= NETIF_F_TSO
;
4275 netdev
->features
|= NETIF_F_TSO6
;
4284 * enable transmits in the hardware, need to do this
4285 * after setting TARC(0)
4288 tctl
|= E1000_TCTL_EN
;
4292 * Perform any post-link-up configuration before
4293 * reporting link up.
4295 if (phy
->ops
.cfg_on_link_up
)
4296 phy
->ops
.cfg_on_link_up(hw
);
4298 netif_carrier_on(netdev
);
4300 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4301 mod_timer(&adapter
->phy_info_timer
,
4302 round_jiffies(jiffies
+ 2 * HZ
));
4305 if (netif_carrier_ok(netdev
)) {
4306 adapter
->link_speed
= 0;
4307 adapter
->link_duplex
= 0;
4308 /* Link status message must follow this format */
4309 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
4310 adapter
->netdev
->name
);
4311 netif_carrier_off(netdev
);
4312 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4313 mod_timer(&adapter
->phy_info_timer
,
4314 round_jiffies(jiffies
+ 2 * HZ
));
4316 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
4317 schedule_work(&adapter
->reset_task
);
4319 pm_schedule_suspend(netdev
->dev
.parent
,
4325 spin_lock(&adapter
->stats64_lock
);
4326 e1000e_update_stats(adapter
);
4328 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
4329 adapter
->tpt_old
= adapter
->stats
.tpt
;
4330 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
4331 adapter
->colc_old
= adapter
->stats
.colc
;
4333 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
4334 adapter
->gorc_old
= adapter
->stats
.gorc
;
4335 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
4336 adapter
->gotc_old
= adapter
->stats
.gotc
;
4337 spin_unlock(&adapter
->stats64_lock
);
4339 e1000e_update_adaptive(&adapter
->hw
);
4341 if (!netif_carrier_ok(netdev
) &&
4342 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
)) {
4344 * We've lost link, so the controller stops DMA,
4345 * but we've got queued Tx work that's never going
4346 * to get done, so reset controller to flush Tx.
4347 * (Do the reset outside of interrupt context).
4349 schedule_work(&adapter
->reset_task
);
4350 /* return immediately since reset is imminent */
4354 /* Simple mode for Interrupt Throttle Rate (ITR) */
4355 if (adapter
->itr_setting
== 4) {
4357 * Symmetric Tx/Rx gets a reduced ITR=2000;
4358 * Total asymmetrical Tx or Rx gets ITR=8000;
4359 * everyone else is between 2000-8000.
4361 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
4362 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
4363 adapter
->gotc
- adapter
->gorc
:
4364 adapter
->gorc
- adapter
->gotc
) / 10000;
4365 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
4367 ew32(ITR
, 1000000000 / (itr
* 256));
4370 /* Cause software interrupt to ensure Rx ring is cleaned */
4371 if (adapter
->msix_entries
)
4372 ew32(ICS
, adapter
->rx_ring
->ims_val
);
4374 ew32(ICS
, E1000_ICS_RXDMT0
);
4376 /* flush pending descriptors to memory before detecting Tx hang */
4377 e1000e_flush_descriptors(adapter
);
4379 /* Force detection of hung controller every watchdog period */
4380 adapter
->detect_tx_hung
= 1;
4383 * With 82571 controllers, LAA may be overwritten due to controller
4384 * reset from the other port. Set the appropriate LAA in RAR[0]
4386 if (e1000e_get_laa_state_82571(hw
))
4387 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
4389 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
4390 e1000e_check_82574_phy_workaround(adapter
);
4392 /* Reset the timer */
4393 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4394 mod_timer(&adapter
->watchdog_timer
,
4395 round_jiffies(jiffies
+ 2 * HZ
));
4398 #define E1000_TX_FLAGS_CSUM 0x00000001
4399 #define E1000_TX_FLAGS_VLAN 0x00000002
4400 #define E1000_TX_FLAGS_TSO 0x00000004
4401 #define E1000_TX_FLAGS_IPV4 0x00000008
4402 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4403 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4405 static int e1000_tso(struct e1000_adapter
*adapter
,
4406 struct sk_buff
*skb
)
4408 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4409 struct e1000_context_desc
*context_desc
;
4410 struct e1000_buffer
*buffer_info
;
4413 u16 ipcse
= 0, tucse
, mss
;
4414 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
4416 if (!skb_is_gso(skb
))
4419 if (skb_header_cloned(skb
)) {
4420 int err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4426 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4427 mss
= skb_shinfo(skb
)->gso_size
;
4428 if (skb
->protocol
== htons(ETH_P_IP
)) {
4429 struct iphdr
*iph
= ip_hdr(skb
);
4432 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
4434 cmd_length
= E1000_TXD_CMD_IP
;
4435 ipcse
= skb_transport_offset(skb
) - 1;
4436 } else if (skb_is_gso_v6(skb
)) {
4437 ipv6_hdr(skb
)->payload_len
= 0;
4438 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4439 &ipv6_hdr(skb
)->daddr
,
4443 ipcss
= skb_network_offset(skb
);
4444 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
4445 tucss
= skb_transport_offset(skb
);
4446 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
4449 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
4450 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
4452 i
= tx_ring
->next_to_use
;
4453 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4454 buffer_info
= &tx_ring
->buffer_info
[i
];
4456 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
4457 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
4458 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
4459 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
4460 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
4461 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
4462 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
4463 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
4464 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
4466 buffer_info
->time_stamp
= jiffies
;
4467 buffer_info
->next_to_watch
= i
;
4470 if (i
== tx_ring
->count
)
4472 tx_ring
->next_to_use
= i
;
4477 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
4479 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4480 struct e1000_context_desc
*context_desc
;
4481 struct e1000_buffer
*buffer_info
;
4484 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
4487 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
4490 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
4491 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
4493 protocol
= skb
->protocol
;
4496 case cpu_to_be16(ETH_P_IP
):
4497 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
4498 cmd_len
|= E1000_TXD_CMD_TCP
;
4500 case cpu_to_be16(ETH_P_IPV6
):
4501 /* XXX not handling all IPV6 headers */
4502 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
4503 cmd_len
|= E1000_TXD_CMD_TCP
;
4506 if (unlikely(net_ratelimit()))
4507 e_warn("checksum_partial proto=%x!\n",
4508 be16_to_cpu(protocol
));
4512 css
= skb_checksum_start_offset(skb
);
4514 i
= tx_ring
->next_to_use
;
4515 buffer_info
= &tx_ring
->buffer_info
[i
];
4516 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4518 context_desc
->lower_setup
.ip_config
= 0;
4519 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
4520 context_desc
->upper_setup
.tcp_fields
.tucso
=
4521 css
+ skb
->csum_offset
;
4522 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
4523 context_desc
->tcp_seg_setup
.data
= 0;
4524 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
4526 buffer_info
->time_stamp
= jiffies
;
4527 buffer_info
->next_to_watch
= i
;
4530 if (i
== tx_ring
->count
)
4532 tx_ring
->next_to_use
= i
;
4537 #define E1000_MAX_PER_TXD 8192
4538 #define E1000_MAX_TXD_PWR 12
4540 static int e1000_tx_map(struct e1000_adapter
*adapter
,
4541 struct sk_buff
*skb
, unsigned int first
,
4542 unsigned int max_per_txd
, unsigned int nr_frags
,
4545 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4546 struct pci_dev
*pdev
= adapter
->pdev
;
4547 struct e1000_buffer
*buffer_info
;
4548 unsigned int len
= skb_headlen(skb
);
4549 unsigned int offset
= 0, size
, count
= 0, i
;
4550 unsigned int f
, bytecount
, segs
;
4552 i
= tx_ring
->next_to_use
;
4555 buffer_info
= &tx_ring
->buffer_info
[i
];
4556 size
= min(len
, max_per_txd
);
4558 buffer_info
->length
= size
;
4559 buffer_info
->time_stamp
= jiffies
;
4560 buffer_info
->next_to_watch
= i
;
4561 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4563 size
, DMA_TO_DEVICE
);
4564 buffer_info
->mapped_as_page
= false;
4565 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4574 if (i
== tx_ring
->count
)
4579 for (f
= 0; f
< nr_frags
; f
++) {
4580 struct skb_frag_struct
*frag
;
4582 frag
= &skb_shinfo(skb
)->frags
[f
];
4584 offset
= frag
->page_offset
;
4588 if (i
== tx_ring
->count
)
4591 buffer_info
= &tx_ring
->buffer_info
[i
];
4592 size
= min(len
, max_per_txd
);
4594 buffer_info
->length
= size
;
4595 buffer_info
->time_stamp
= jiffies
;
4596 buffer_info
->next_to_watch
= i
;
4597 buffer_info
->dma
= dma_map_page(&pdev
->dev
, frag
->page
,
4600 buffer_info
->mapped_as_page
= true;
4601 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4610 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
4611 /* multiply data chunks by size of headers */
4612 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
4614 tx_ring
->buffer_info
[i
].skb
= skb
;
4615 tx_ring
->buffer_info
[i
].segs
= segs
;
4616 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
4617 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
4622 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
4623 buffer_info
->dma
= 0;
4629 i
+= tx_ring
->count
;
4631 buffer_info
= &tx_ring
->buffer_info
[i
];
4632 e1000_put_txbuf(adapter
, buffer_info
);
4638 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
4639 int tx_flags
, int count
)
4641 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4642 struct e1000_tx_desc
*tx_desc
= NULL
;
4643 struct e1000_buffer
*buffer_info
;
4644 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
4647 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
4648 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
4650 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4652 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
4653 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
4656 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
4657 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
4658 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4661 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
4662 txd_lower
|= E1000_TXD_CMD_VLE
;
4663 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
4666 i
= tx_ring
->next_to_use
;
4669 buffer_info
= &tx_ring
->buffer_info
[i
];
4670 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4671 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4672 tx_desc
->lower
.data
=
4673 cpu_to_le32(txd_lower
| buffer_info
->length
);
4674 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4677 if (i
== tx_ring
->count
)
4679 } while (--count
> 0);
4681 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4684 * Force memory writes to complete before letting h/w
4685 * know there are new descriptors to fetch. (Only
4686 * applicable for weak-ordered memory model archs,
4691 tx_ring
->next_to_use
= i
;
4692 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4694 * we need this if more than one processor can write to our tail
4695 * at a time, it synchronizes IO on IA64/Altix systems
4700 #define MINIMUM_DHCP_PACKET_SIZE 282
4701 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4702 struct sk_buff
*skb
)
4704 struct e1000_hw
*hw
= &adapter
->hw
;
4707 if (vlan_tx_tag_present(skb
)) {
4708 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
4709 (adapter
->hw
.mng_cookie
.status
&
4710 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4714 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4717 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4721 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4724 if (ip
->protocol
!= IPPROTO_UDP
)
4727 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4728 if (ntohs(udp
->dest
) != 67)
4731 offset
= (u8
*)udp
+ 8 - skb
->data
;
4732 length
= skb
->len
- offset
;
4733 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4739 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4741 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4743 netif_stop_queue(netdev
);
4745 * Herbert's original patch had:
4746 * smp_mb__after_netif_stop_queue();
4747 * but since that doesn't exist yet, just open code it.
4752 * We need to check again in a case another CPU has just
4753 * made room available.
4755 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4759 netif_start_queue(netdev
);
4760 ++adapter
->restart_queue
;
4764 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4766 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4768 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4770 return __e1000_maybe_stop_tx(netdev
, size
);
4773 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4774 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4775 struct net_device
*netdev
)
4777 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4778 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4780 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4781 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4782 unsigned int tx_flags
= 0;
4783 unsigned int len
= skb_headlen(skb
);
4784 unsigned int nr_frags
;
4790 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4791 dev_kfree_skb_any(skb
);
4792 return NETDEV_TX_OK
;
4795 if (skb
->len
<= 0) {
4796 dev_kfree_skb_any(skb
);
4797 return NETDEV_TX_OK
;
4800 mss
= skb_shinfo(skb
)->gso_size
;
4802 * The controller does a simple calculation to
4803 * make sure there is enough room in the FIFO before
4804 * initiating the DMA for each buffer. The calc is:
4805 * 4 = ceil(buffer len/mss). To make sure we don't
4806 * overrun the FIFO, adjust the max buffer len if mss
4811 max_per_txd
= min(mss
<< 2, max_per_txd
);
4812 max_txd_pwr
= fls(max_per_txd
) - 1;
4815 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4816 * points to just header, pull a few bytes of payload from
4817 * frags into skb->data
4819 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4821 * we do this workaround for ES2LAN, but it is un-necessary,
4822 * avoiding it could save a lot of cycles
4824 if (skb
->data_len
&& (hdr_len
== len
)) {
4825 unsigned int pull_size
;
4827 pull_size
= min((unsigned int)4, skb
->data_len
);
4828 if (!__pskb_pull_tail(skb
, pull_size
)) {
4829 e_err("__pskb_pull_tail failed.\n");
4830 dev_kfree_skb_any(skb
);
4831 return NETDEV_TX_OK
;
4833 len
= skb_headlen(skb
);
4837 /* reserve a descriptor for the offload context */
4838 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4842 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4844 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4845 for (f
= 0; f
< nr_frags
; f
++)
4846 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
4849 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4850 e1000_transfer_dhcp_info(adapter
, skb
);
4853 * need: count + 2 desc gap to keep tail from touching
4854 * head, otherwise try next time
4856 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4857 return NETDEV_TX_BUSY
;
4859 if (vlan_tx_tag_present(skb
)) {
4860 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4861 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4864 first
= tx_ring
->next_to_use
;
4866 tso
= e1000_tso(adapter
, skb
);
4868 dev_kfree_skb_any(skb
);
4869 return NETDEV_TX_OK
;
4873 tx_flags
|= E1000_TX_FLAGS_TSO
;
4874 else if (e1000_tx_csum(adapter
, skb
))
4875 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4878 * Old method was to assume IPv4 packet by default if TSO was enabled.
4879 * 82571 hardware supports TSO capabilities for IPv6 as well...
4880 * no longer assume, we must.
4882 if (skb
->protocol
== htons(ETH_P_IP
))
4883 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4885 /* if count is 0 then mapping error has occurred */
4886 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4888 e1000_tx_queue(adapter
, tx_flags
, count
);
4889 /* Make sure there is space in the ring for the next send. */
4890 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4893 dev_kfree_skb_any(skb
);
4894 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4895 tx_ring
->next_to_use
= first
;
4898 return NETDEV_TX_OK
;
4902 * e1000_tx_timeout - Respond to a Tx Hang
4903 * @netdev: network interface device structure
4905 static void e1000_tx_timeout(struct net_device
*netdev
)
4907 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4909 /* Do the reset outside of interrupt context */
4910 adapter
->tx_timeout_count
++;
4911 schedule_work(&adapter
->reset_task
);
4914 static void e1000_reset_task(struct work_struct
*work
)
4916 struct e1000_adapter
*adapter
;
4917 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
4919 /* don't run the task if already down */
4920 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4923 if (!((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4924 (adapter
->flags
& FLAG_RX_RESTART_NOW
))) {
4925 e1000e_dump(adapter
);
4926 e_err("Reset adapter\n");
4928 e1000e_reinit_locked(adapter
);
4932 * e1000_get_stats64 - Get System Network Statistics
4933 * @netdev: network interface device structure
4934 * @stats: rtnl_link_stats64 pointer
4936 * Returns the address of the device statistics structure.
4938 struct rtnl_link_stats64
*e1000e_get_stats64(struct net_device
*netdev
,
4939 struct rtnl_link_stats64
*stats
)
4941 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4943 memset(stats
, 0, sizeof(struct rtnl_link_stats64
));
4944 spin_lock(&adapter
->stats64_lock
);
4945 e1000e_update_stats(adapter
);
4946 /* Fill out the OS statistics structure */
4947 stats
->rx_bytes
= adapter
->stats
.gorc
;
4948 stats
->rx_packets
= adapter
->stats
.gprc
;
4949 stats
->tx_bytes
= adapter
->stats
.gotc
;
4950 stats
->tx_packets
= adapter
->stats
.gptc
;
4951 stats
->multicast
= adapter
->stats
.mprc
;
4952 stats
->collisions
= adapter
->stats
.colc
;
4957 * RLEC on some newer hardware can be incorrect so build
4958 * our own version based on RUC and ROC
4960 stats
->rx_errors
= adapter
->stats
.rxerrc
+
4961 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4962 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4963 adapter
->stats
.cexterr
;
4964 stats
->rx_length_errors
= adapter
->stats
.ruc
+
4966 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
4967 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
4968 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
4971 stats
->tx_errors
= adapter
->stats
.ecol
+
4972 adapter
->stats
.latecol
;
4973 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
4974 stats
->tx_window_errors
= adapter
->stats
.latecol
;
4975 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
4977 /* Tx Dropped needs to be maintained elsewhere */
4979 spin_unlock(&adapter
->stats64_lock
);
4984 * e1000_change_mtu - Change the Maximum Transfer Unit
4985 * @netdev: network interface device structure
4986 * @new_mtu: new value for maximum frame size
4988 * Returns 0 on success, negative on failure
4990 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
4992 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4993 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4995 /* Jumbo frame support */
4996 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
4997 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
4998 e_err("Jumbo Frames not supported.\n");
5002 /* Supported frame sizes */
5003 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
5004 (max_frame
> adapter
->max_hw_frame_size
)) {
5005 e_err("Unsupported MTU setting\n");
5009 /* Jumbo frame workaround on 82579 requires CRC be stripped */
5010 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
5011 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5012 (new_mtu
> ETH_DATA_LEN
)) {
5013 e_err("Jumbo Frames not supported on 82579 when CRC "
5014 "stripping is disabled.\n");
5018 /* 82573 Errata 17 */
5019 if (((adapter
->hw
.mac
.type
== e1000_82573
) ||
5020 (adapter
->hw
.mac
.type
== e1000_82574
)) &&
5021 (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
5022 adapter
->flags2
|= FLAG2_DISABLE_ASPM_L1
;
5023 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L1
);
5026 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5027 usleep_range(1000, 2000);
5028 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5029 adapter
->max_frame_size
= max_frame
;
5030 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5031 netdev
->mtu
= new_mtu
;
5032 if (netif_running(netdev
))
5033 e1000e_down(adapter
);
5036 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5037 * means we reserve 2 more, this pushes us to allocate from the next
5039 * i.e. RXBUFFER_2048 --> size-4096 slab
5040 * However with the new *_jumbo_rx* routines, jumbo receives will use
5044 if (max_frame
<= 2048)
5045 adapter
->rx_buffer_len
= 2048;
5047 adapter
->rx_buffer_len
= 4096;
5049 /* adjust allocation if LPE protects us, and we aren't using SBP */
5050 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
5051 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
5052 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
5055 if (netif_running(netdev
))
5058 e1000e_reset(adapter
);
5060 clear_bit(__E1000_RESETTING
, &adapter
->state
);
5065 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
5068 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5069 struct mii_ioctl_data
*data
= if_mii(ifr
);
5071 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
5076 data
->phy_id
= adapter
->hw
.phy
.addr
;
5079 e1000_phy_read_status(adapter
);
5081 switch (data
->reg_num
& 0x1F) {
5083 data
->val_out
= adapter
->phy_regs
.bmcr
;
5086 data
->val_out
= adapter
->phy_regs
.bmsr
;
5089 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
5092 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
5095 data
->val_out
= adapter
->phy_regs
.advertise
;
5098 data
->val_out
= adapter
->phy_regs
.lpa
;
5101 data
->val_out
= adapter
->phy_regs
.expansion
;
5104 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
5107 data
->val_out
= adapter
->phy_regs
.stat1000
;
5110 data
->val_out
= adapter
->phy_regs
.estatus
;
5123 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5129 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
5135 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
5137 struct e1000_hw
*hw
= &adapter
->hw
;
5139 u16 phy_reg
, wuc_enable
;
5142 /* copy MAC RARs to PHY RARs */
5143 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
5145 retval
= hw
->phy
.ops
.acquire(hw
);
5147 e_err("Could not acquire PHY\n");
5151 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5152 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5156 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5157 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
5158 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
5159 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
5160 (u16
)(mac_reg
& 0xFFFF));
5161 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
5162 (u16
)((mac_reg
>> 16) & 0xFFFF));
5165 /* configure PHY Rx Control register */
5166 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
5167 mac_reg
= er32(RCTL
);
5168 if (mac_reg
& E1000_RCTL_UPE
)
5169 phy_reg
|= BM_RCTL_UPE
;
5170 if (mac_reg
& E1000_RCTL_MPE
)
5171 phy_reg
|= BM_RCTL_MPE
;
5172 phy_reg
&= ~(BM_RCTL_MO_MASK
);
5173 if (mac_reg
& E1000_RCTL_MO_3
)
5174 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
5175 << BM_RCTL_MO_SHIFT
);
5176 if (mac_reg
& E1000_RCTL_BAM
)
5177 phy_reg
|= BM_RCTL_BAM
;
5178 if (mac_reg
& E1000_RCTL_PMCF
)
5179 phy_reg
|= BM_RCTL_PMCF
;
5180 mac_reg
= er32(CTRL
);
5181 if (mac_reg
& E1000_CTRL_RFCE
)
5182 phy_reg
|= BM_RCTL_RFCE
;
5183 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
5185 /* enable PHY wakeup in MAC register */
5187 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
5189 /* configure and enable PHY wakeup in PHY registers */
5190 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
5191 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
5193 /* activate PHY wakeup */
5194 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
5195 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5197 e_err("Could not set PHY Host Wakeup bit\n");
5199 hw
->phy
.ops
.release(hw
);
5204 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
5207 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5208 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5209 struct e1000_hw
*hw
= &adapter
->hw
;
5210 u32 ctrl
, ctrl_ext
, rctl
, status
;
5211 /* Runtime suspend should only enable wakeup for link changes */
5212 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
5215 netif_device_detach(netdev
);
5217 if (netif_running(netdev
)) {
5218 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
5219 e1000e_down(adapter
);
5220 e1000_free_irq(adapter
);
5222 e1000e_reset_interrupt_capability(adapter
);
5224 retval
= pci_save_state(pdev
);
5228 status
= er32(STATUS
);
5229 if (status
& E1000_STATUS_LU
)
5230 wufc
&= ~E1000_WUFC_LNKC
;
5233 e1000_setup_rctl(adapter
);
5234 e1000_set_multi(netdev
);
5236 /* turn on all-multi mode if wake on multicast is enabled */
5237 if (wufc
& E1000_WUFC_MC
) {
5239 rctl
|= E1000_RCTL_MPE
;
5244 /* advertise wake from D3Cold */
5245 #define E1000_CTRL_ADVD3WUC 0x00100000
5246 /* phy power management enable */
5247 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5248 ctrl
|= E1000_CTRL_ADVD3WUC
;
5249 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
5250 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
5253 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
5254 adapter
->hw
.phy
.media_type
==
5255 e1000_media_type_internal_serdes
) {
5256 /* keep the laser running in D3 */
5257 ctrl_ext
= er32(CTRL_EXT
);
5258 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
5259 ew32(CTRL_EXT
, ctrl_ext
);
5262 if (adapter
->flags
& FLAG_IS_ICH
)
5263 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
5265 /* Allow time for pending master requests to run */
5266 e1000e_disable_pcie_master(&adapter
->hw
);
5268 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5269 /* enable wakeup by the PHY */
5270 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
5274 /* enable wakeup by the MAC */
5276 ew32(WUC
, E1000_WUC_PME_EN
);
5283 *enable_wake
= !!wufc
;
5285 /* make sure adapter isn't asleep if manageability is enabled */
5286 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
5287 (hw
->mac
.ops
.check_mng_mode(hw
)))
5288 *enable_wake
= true;
5290 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
5291 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
5294 * Release control of h/w to f/w. If f/w is AMT enabled, this
5295 * would have already happened in close and is redundant.
5297 e1000e_release_hw_control(adapter
);
5299 pci_disable_device(pdev
);
5304 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
5306 if (sleep
&& wake
) {
5307 pci_prepare_to_sleep(pdev
);
5311 pci_wake_from_d3(pdev
, wake
);
5312 pci_set_power_state(pdev
, PCI_D3hot
);
5315 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
5318 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5319 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5322 * The pci-e switch on some quad port adapters will report a
5323 * correctable error when the MAC transitions from D0 to D3. To
5324 * prevent this we need to mask off the correctable errors on the
5325 * downstream port of the pci-e switch.
5327 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
5328 struct pci_dev
*us_dev
= pdev
->bus
->self
;
5329 int pos
= pci_pcie_cap(us_dev
);
5332 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
5333 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
5334 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
5336 e1000_power_off(pdev
, sleep
, wake
);
5338 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
5340 e1000_power_off(pdev
, sleep
, wake
);
5344 #ifdef CONFIG_PCIEASPM
5345 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5347 pci_disable_link_state_locked(pdev
, state
);
5350 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5356 * Both device and parent should have the same ASPM setting.
5357 * Disable ASPM in downstream component first and then upstream.
5359 pos
= pci_pcie_cap(pdev
);
5360 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5362 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5364 if (!pdev
->bus
->self
)
5367 pos
= pci_pcie_cap(pdev
->bus
->self
);
5368 pci_read_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5370 pci_write_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5373 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5375 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
5376 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
5377 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
5379 __e1000e_disable_aspm(pdev
, state
);
5383 static bool e1000e_pm_ready(struct e1000_adapter
*adapter
)
5385 return !!adapter
->tx_ring
->buffer_info
;
5388 static int __e1000_resume(struct pci_dev
*pdev
)
5390 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5391 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5392 struct e1000_hw
*hw
= &adapter
->hw
;
5393 u16 aspm_disable_flag
= 0;
5396 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5397 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5398 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5399 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5400 if (aspm_disable_flag
)
5401 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5403 pci_set_power_state(pdev
, PCI_D0
);
5404 pci_restore_state(pdev
);
5405 pci_save_state(pdev
);
5407 e1000e_set_interrupt_capability(adapter
);
5408 if (netif_running(netdev
)) {
5409 err
= e1000_request_irq(adapter
);
5414 if (hw
->mac
.type
== e1000_pch2lan
)
5415 e1000_resume_workarounds_pchlan(&adapter
->hw
);
5417 e1000e_power_up_phy(adapter
);
5419 /* report the system wakeup cause from S3/S4 */
5420 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5423 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
5425 e_info("PHY Wakeup cause - %s\n",
5426 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
5427 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
5428 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
5429 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
5430 phy_data
& E1000_WUS_LNKC
? "Link Status "
5431 " Change" : "other");
5433 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
5435 u32 wus
= er32(WUS
);
5437 e_info("MAC Wakeup cause - %s\n",
5438 wus
& E1000_WUS_EX
? "Unicast Packet" :
5439 wus
& E1000_WUS_MC
? "Multicast Packet" :
5440 wus
& E1000_WUS_BC
? "Broadcast Packet" :
5441 wus
& E1000_WUS_MAG
? "Magic Packet" :
5442 wus
& E1000_WUS_LNKC
? "Link Status Change" :
5448 e1000e_reset(adapter
);
5450 e1000_init_manageability_pt(adapter
);
5452 if (netif_running(netdev
))
5455 netif_device_attach(netdev
);
5458 * If the controller has AMT, do not set DRV_LOAD until the interface
5459 * is up. For all other cases, let the f/w know that the h/w is now
5460 * under the control of the driver.
5462 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5463 e1000e_get_hw_control(adapter
);
5468 #ifdef CONFIG_PM_SLEEP
5469 static int e1000_suspend(struct device
*dev
)
5471 struct pci_dev
*pdev
= to_pci_dev(dev
);
5475 retval
= __e1000_shutdown(pdev
, &wake
, false);
5477 e1000_complete_shutdown(pdev
, true, wake
);
5482 static int e1000_resume(struct device
*dev
)
5484 struct pci_dev
*pdev
= to_pci_dev(dev
);
5485 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5486 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5488 if (e1000e_pm_ready(adapter
))
5489 adapter
->idle_check
= true;
5491 return __e1000_resume(pdev
);
5493 #endif /* CONFIG_PM_SLEEP */
5495 #ifdef CONFIG_PM_RUNTIME
5496 static int e1000_runtime_suspend(struct device
*dev
)
5498 struct pci_dev
*pdev
= to_pci_dev(dev
);
5499 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5500 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5502 if (e1000e_pm_ready(adapter
)) {
5505 __e1000_shutdown(pdev
, &wake
, true);
5511 static int e1000_idle(struct device
*dev
)
5513 struct pci_dev
*pdev
= to_pci_dev(dev
);
5514 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5515 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5517 if (!e1000e_pm_ready(adapter
))
5520 if (adapter
->idle_check
) {
5521 adapter
->idle_check
= false;
5522 if (!e1000e_has_link(adapter
))
5523 pm_schedule_suspend(dev
, MSEC_PER_SEC
);
5529 static int e1000_runtime_resume(struct device
*dev
)
5531 struct pci_dev
*pdev
= to_pci_dev(dev
);
5532 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5533 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5535 if (!e1000e_pm_ready(adapter
))
5538 adapter
->idle_check
= !dev
->power
.runtime_auto
;
5539 return __e1000_resume(pdev
);
5541 #endif /* CONFIG_PM_RUNTIME */
5542 #endif /* CONFIG_PM */
5544 static void e1000_shutdown(struct pci_dev
*pdev
)
5548 __e1000_shutdown(pdev
, &wake
, false);
5550 if (system_state
== SYSTEM_POWER_OFF
)
5551 e1000_complete_shutdown(pdev
, false, wake
);
5554 #ifdef CONFIG_NET_POLL_CONTROLLER
5556 static irqreturn_t
e1000_intr_msix(int irq
, void *data
)
5558 struct net_device
*netdev
= data
;
5559 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5561 if (adapter
->msix_entries
) {
5562 int vector
, msix_irq
;
5565 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5566 disable_irq(msix_irq
);
5567 e1000_intr_msix_rx(msix_irq
, netdev
);
5568 enable_irq(msix_irq
);
5571 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5572 disable_irq(msix_irq
);
5573 e1000_intr_msix_tx(msix_irq
, netdev
);
5574 enable_irq(msix_irq
);
5577 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5578 disable_irq(msix_irq
);
5579 e1000_msix_other(msix_irq
, netdev
);
5580 enable_irq(msix_irq
);
5587 * Polling 'interrupt' - used by things like netconsole to send skbs
5588 * without having to re-enable interrupts. It's not called while
5589 * the interrupt routine is executing.
5591 static void e1000_netpoll(struct net_device
*netdev
)
5593 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5595 switch (adapter
->int_mode
) {
5596 case E1000E_INT_MODE_MSIX
:
5597 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
5599 case E1000E_INT_MODE_MSI
:
5600 disable_irq(adapter
->pdev
->irq
);
5601 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
5602 enable_irq(adapter
->pdev
->irq
);
5604 default: /* E1000E_INT_MODE_LEGACY */
5605 disable_irq(adapter
->pdev
->irq
);
5606 e1000_intr(adapter
->pdev
->irq
, netdev
);
5607 enable_irq(adapter
->pdev
->irq
);
5614 * e1000_io_error_detected - called when PCI error is detected
5615 * @pdev: Pointer to PCI device
5616 * @state: The current pci connection state
5618 * This function is called after a PCI bus error affecting
5619 * this device has been detected.
5621 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5622 pci_channel_state_t state
)
5624 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5625 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5627 netif_device_detach(netdev
);
5629 if (state
== pci_channel_io_perm_failure
)
5630 return PCI_ERS_RESULT_DISCONNECT
;
5632 if (netif_running(netdev
))
5633 e1000e_down(adapter
);
5634 pci_disable_device(pdev
);
5636 /* Request a slot slot reset. */
5637 return PCI_ERS_RESULT_NEED_RESET
;
5641 * e1000_io_slot_reset - called after the pci bus has been reset.
5642 * @pdev: Pointer to PCI device
5644 * Restart the card from scratch, as if from a cold-boot. Implementation
5645 * resembles the first-half of the e1000_resume routine.
5647 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5649 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5650 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5651 struct e1000_hw
*hw
= &adapter
->hw
;
5652 u16 aspm_disable_flag
= 0;
5654 pci_ers_result_t result
;
5656 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5657 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5658 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5659 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5660 if (aspm_disable_flag
)
5661 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5663 err
= pci_enable_device_mem(pdev
);
5666 "Cannot re-enable PCI device after reset.\n");
5667 result
= PCI_ERS_RESULT_DISCONNECT
;
5669 pci_set_master(pdev
);
5670 pdev
->state_saved
= true;
5671 pci_restore_state(pdev
);
5673 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5674 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5676 e1000e_reset(adapter
);
5678 result
= PCI_ERS_RESULT_RECOVERED
;
5681 pci_cleanup_aer_uncorrect_error_status(pdev
);
5687 * e1000_io_resume - called when traffic can start flowing again.
5688 * @pdev: Pointer to PCI device
5690 * This callback is called when the error recovery driver tells us that
5691 * its OK to resume normal operation. Implementation resembles the
5692 * second-half of the e1000_resume routine.
5694 static void e1000_io_resume(struct pci_dev
*pdev
)
5696 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5697 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5699 e1000_init_manageability_pt(adapter
);
5701 if (netif_running(netdev
)) {
5702 if (e1000e_up(adapter
)) {
5704 "can't bring device back up after reset\n");
5709 netif_device_attach(netdev
);
5712 * If the controller has AMT, do not set DRV_LOAD until the interface
5713 * is up. For all other cases, let the f/w know that the h/w is now
5714 * under the control of the driver.
5716 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5717 e1000e_get_hw_control(adapter
);
5721 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
5723 struct e1000_hw
*hw
= &adapter
->hw
;
5724 struct net_device
*netdev
= adapter
->netdev
;
5726 u8 pba_str
[E1000_PBANUM_LENGTH
];
5728 /* print bus type/speed/width info */
5729 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5731 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
5735 e_info("Intel(R) PRO/%s Network Connection\n",
5736 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
5737 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
5738 E1000_PBANUM_LENGTH
);
5740 strncpy((char *)pba_str
, "Unknown", sizeof(pba_str
) - 1);
5741 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5742 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
5745 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
5747 struct e1000_hw
*hw
= &adapter
->hw
;
5751 if (hw
->mac
.type
!= e1000_82573
)
5754 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
5755 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
5756 /* Deep Smart Power Down (DSPD) */
5757 dev_warn(&adapter
->pdev
->dev
,
5758 "Warning: detected DSPD enabled in EEPROM\n");
5762 static const struct net_device_ops e1000e_netdev_ops
= {
5763 .ndo_open
= e1000_open
,
5764 .ndo_stop
= e1000_close
,
5765 .ndo_start_xmit
= e1000_xmit_frame
,
5766 .ndo_get_stats64
= e1000e_get_stats64
,
5767 .ndo_set_multicast_list
= e1000_set_multi
,
5768 .ndo_set_mac_address
= e1000_set_mac
,
5769 .ndo_change_mtu
= e1000_change_mtu
,
5770 .ndo_do_ioctl
= e1000_ioctl
,
5771 .ndo_tx_timeout
= e1000_tx_timeout
,
5772 .ndo_validate_addr
= eth_validate_addr
,
5774 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
5775 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
5776 #ifdef CONFIG_NET_POLL_CONTROLLER
5777 .ndo_poll_controller
= e1000_netpoll
,
5782 * e1000_probe - Device Initialization Routine
5783 * @pdev: PCI device information struct
5784 * @ent: entry in e1000_pci_tbl
5786 * Returns 0 on success, negative on failure
5788 * e1000_probe initializes an adapter identified by a pci_dev structure.
5789 * The OS initialization, configuring of the adapter private structure,
5790 * and a hardware reset occur.
5792 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
5793 const struct pci_device_id
*ent
)
5795 struct net_device
*netdev
;
5796 struct e1000_adapter
*adapter
;
5797 struct e1000_hw
*hw
;
5798 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
5799 resource_size_t mmio_start
, mmio_len
;
5800 resource_size_t flash_start
, flash_len
;
5802 static int cards_found
;
5803 u16 aspm_disable_flag
= 0;
5804 int i
, err
, pci_using_dac
;
5805 u16 eeprom_data
= 0;
5806 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
5808 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5809 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5810 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5811 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5812 if (aspm_disable_flag
)
5813 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5815 err
= pci_enable_device_mem(pdev
);
5820 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5822 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5826 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
5828 err
= dma_set_coherent_mask(&pdev
->dev
,
5831 dev_err(&pdev
->dev
, "No usable DMA "
5832 "configuration, aborting\n");
5838 err
= pci_request_selected_regions_exclusive(pdev
,
5839 pci_select_bars(pdev
, IORESOURCE_MEM
),
5840 e1000e_driver_name
);
5844 /* AER (Advanced Error Reporting) hooks */
5845 pci_enable_pcie_error_reporting(pdev
);
5847 pci_set_master(pdev
);
5848 /* PCI config space info */
5849 err
= pci_save_state(pdev
);
5851 goto err_alloc_etherdev
;
5854 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5856 goto err_alloc_etherdev
;
5858 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5860 netdev
->irq
= pdev
->irq
;
5862 pci_set_drvdata(pdev
, netdev
);
5863 adapter
= netdev_priv(netdev
);
5865 adapter
->netdev
= netdev
;
5866 adapter
->pdev
= pdev
;
5868 adapter
->pba
= ei
->pba
;
5869 adapter
->flags
= ei
->flags
;
5870 adapter
->flags2
= ei
->flags2
;
5871 adapter
->hw
.adapter
= adapter
;
5872 adapter
->hw
.mac
.type
= ei
->mac
;
5873 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5874 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5876 mmio_start
= pci_resource_start(pdev
, 0);
5877 mmio_len
= pci_resource_len(pdev
, 0);
5880 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
5881 if (!adapter
->hw
.hw_addr
)
5884 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
5885 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
5886 flash_start
= pci_resource_start(pdev
, 1);
5887 flash_len
= pci_resource_len(pdev
, 1);
5888 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
5889 if (!adapter
->hw
.flash_address
)
5893 /* construct the net_device struct */
5894 netdev
->netdev_ops
= &e1000e_netdev_ops
;
5895 e1000e_set_ethtool_ops(netdev
);
5896 netdev
->watchdog_timeo
= 5 * HZ
;
5897 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
5898 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
5900 netdev
->mem_start
= mmio_start
;
5901 netdev
->mem_end
= mmio_start
+ mmio_len
;
5903 adapter
->bd_number
= cards_found
++;
5905 e1000e_check_options(adapter
);
5907 /* setup adapter struct */
5908 err
= e1000_sw_init(adapter
);
5912 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
5913 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
5914 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
5916 err
= ei
->get_variants(adapter
);
5920 if ((adapter
->flags
& FLAG_IS_ICH
) &&
5921 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
5922 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
5924 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
5926 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
5928 /* Copper options */
5929 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
5930 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
5931 adapter
->hw
.phy
.disable_polarity_correction
= 0;
5932 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
5935 if (e1000_check_reset_block(&adapter
->hw
))
5936 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5938 netdev
->features
= NETIF_F_SG
|
5940 NETIF_F_HW_VLAN_TX
|
5943 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
5944 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
5946 netdev
->features
|= NETIF_F_TSO
;
5947 netdev
->features
|= NETIF_F_TSO6
;
5949 netdev
->vlan_features
|= NETIF_F_TSO
;
5950 netdev
->vlan_features
|= NETIF_F_TSO6
;
5951 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
5952 netdev
->vlan_features
|= NETIF_F_SG
;
5954 if (pci_using_dac
) {
5955 netdev
->features
|= NETIF_F_HIGHDMA
;
5956 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
5959 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
5960 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
5963 * before reading the NVM, reset the controller to
5964 * put the device in a known good starting state
5966 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
5969 * systems with ASPM and others may see the checksum fail on the first
5970 * attempt. Let's give it a few tries
5973 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
5976 e_err("The NVM Checksum Is Not Valid\n");
5982 e1000_eeprom_checks(adapter
);
5984 /* copy the MAC address */
5985 if (e1000e_read_mac_addr(&adapter
->hw
))
5986 e_err("NVM Read Error while reading MAC address\n");
5988 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5989 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5991 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
5992 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
5997 init_timer(&adapter
->watchdog_timer
);
5998 adapter
->watchdog_timer
.function
= e1000_watchdog
;
5999 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
6001 init_timer(&adapter
->phy_info_timer
);
6002 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
6003 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
6005 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
6006 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
6007 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
6008 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
6009 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
6011 /* Initialize link parameters. User can change them with ethtool */
6012 adapter
->hw
.mac
.autoneg
= 1;
6013 adapter
->fc_autoneg
= 1;
6014 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
6015 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
6016 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
6018 /* ring size defaults */
6019 adapter
->rx_ring
->count
= 256;
6020 adapter
->tx_ring
->count
= 256;
6023 * Initial Wake on LAN setting - If APM wake is enabled in
6024 * the EEPROM, enable the ACPI Magic Packet filter
6026 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
6027 /* APME bit in EEPROM is mapped to WUC.APME */
6028 eeprom_data
= er32(WUC
);
6029 eeprom_apme_mask
= E1000_WUC_APME
;
6030 if ((hw
->mac
.type
> e1000_ich10lan
) &&
6031 (eeprom_data
& E1000_WUC_PHY_WAKE
))
6032 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
6033 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
6034 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
6035 (adapter
->hw
.bus
.func
== 1))
6036 e1000_read_nvm(&adapter
->hw
,
6037 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
6039 e1000_read_nvm(&adapter
->hw
,
6040 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
6043 /* fetch WoL from EEPROM */
6044 if (eeprom_data
& eeprom_apme_mask
)
6045 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
6048 * now that we have the eeprom settings, apply the special cases
6049 * where the eeprom may be wrong or the board simply won't support
6050 * wake on lan on a particular port
6052 if (!(adapter
->flags
& FLAG_HAS_WOL
))
6053 adapter
->eeprom_wol
= 0;
6055 /* initialize the wol settings based on the eeprom settings */
6056 adapter
->wol
= adapter
->eeprom_wol
;
6057 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
6059 /* save off EEPROM version number */
6060 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
6062 /* reset the hardware with the new settings */
6063 e1000e_reset(adapter
);
6066 * If the controller has AMT, do not set DRV_LOAD until the interface
6067 * is up. For all other cases, let the f/w know that the h/w is now
6068 * under the control of the driver.
6070 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6071 e1000e_get_hw_control(adapter
);
6073 strncpy(netdev
->name
, "eth%d", sizeof(netdev
->name
) - 1);
6074 err
= register_netdev(netdev
);
6078 /* carrier off reporting is important to ethtool even BEFORE open */
6079 netif_carrier_off(netdev
);
6081 e1000_print_device_info(adapter
);
6083 if (pci_dev_run_wake(pdev
))
6084 pm_runtime_put_noidle(&pdev
->dev
);
6089 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6090 e1000e_release_hw_control(adapter
);
6092 if (!e1000_check_reset_block(&adapter
->hw
))
6093 e1000_phy_hw_reset(&adapter
->hw
);
6095 kfree(adapter
->tx_ring
);
6096 kfree(adapter
->rx_ring
);
6098 if (adapter
->hw
.flash_address
)
6099 iounmap(adapter
->hw
.flash_address
);
6100 e1000e_reset_interrupt_capability(adapter
);
6102 iounmap(adapter
->hw
.hw_addr
);
6104 free_netdev(netdev
);
6106 pci_release_selected_regions(pdev
,
6107 pci_select_bars(pdev
, IORESOURCE_MEM
));
6110 pci_disable_device(pdev
);
6115 * e1000_remove - Device Removal Routine
6116 * @pdev: PCI device information struct
6118 * e1000_remove is called by the PCI subsystem to alert the driver
6119 * that it should release a PCI device. The could be caused by a
6120 * Hot-Plug event, or because the driver is going to be removed from
6123 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
6125 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6126 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6127 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
6130 * The timers may be rescheduled, so explicitly disable them
6131 * from being rescheduled.
6134 set_bit(__E1000_DOWN
, &adapter
->state
);
6135 del_timer_sync(&adapter
->watchdog_timer
);
6136 del_timer_sync(&adapter
->phy_info_timer
);
6138 cancel_work_sync(&adapter
->reset_task
);
6139 cancel_work_sync(&adapter
->watchdog_task
);
6140 cancel_work_sync(&adapter
->downshift_task
);
6141 cancel_work_sync(&adapter
->update_phy_task
);
6142 cancel_work_sync(&adapter
->print_hang_task
);
6144 if (!(netdev
->flags
& IFF_UP
))
6145 e1000_power_down_phy(adapter
);
6147 /* Don't lie to e1000_close() down the road. */
6149 clear_bit(__E1000_DOWN
, &adapter
->state
);
6150 unregister_netdev(netdev
);
6152 if (pci_dev_run_wake(pdev
))
6153 pm_runtime_get_noresume(&pdev
->dev
);
6156 * Release control of h/w to f/w. If f/w is AMT enabled, this
6157 * would have already happened in close and is redundant.
6159 e1000e_release_hw_control(adapter
);
6161 e1000e_reset_interrupt_capability(adapter
);
6162 kfree(adapter
->tx_ring
);
6163 kfree(adapter
->rx_ring
);
6165 iounmap(adapter
->hw
.hw_addr
);
6166 if (adapter
->hw
.flash_address
)
6167 iounmap(adapter
->hw
.flash_address
);
6168 pci_release_selected_regions(pdev
,
6169 pci_select_bars(pdev
, IORESOURCE_MEM
));
6171 free_netdev(netdev
);
6174 pci_disable_pcie_error_reporting(pdev
);
6176 pci_disable_device(pdev
);
6179 /* PCI Error Recovery (ERS) */
6180 static struct pci_error_handlers e1000_err_handler
= {
6181 .error_detected
= e1000_io_error_detected
,
6182 .slot_reset
= e1000_io_slot_reset
,
6183 .resume
= e1000_io_resume
,
6186 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
6187 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
6188 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
6189 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
6190 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
6191 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
6192 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
6193 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
6194 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
6195 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
6197 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
6198 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
6199 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
6200 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
6202 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
6203 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
6204 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
6206 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
6207 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
6208 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
6210 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
6211 board_80003es2lan
},
6212 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
6213 board_80003es2lan
},
6214 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
6215 board_80003es2lan
},
6216 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
6217 board_80003es2lan
},
6219 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
6220 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
6221 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
6222 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
6223 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
6224 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
6225 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
6226 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
6228 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
6229 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
6230 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
6231 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
6232 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
6233 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
6234 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
6235 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
6236 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
6238 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
6239 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
6240 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
6242 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
6243 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
6244 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
6246 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
6247 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
6248 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
6249 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
6251 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
6252 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
6254 { } /* terminate list */
6256 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
6259 static const struct dev_pm_ops e1000_pm_ops
= {
6260 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend
, e1000_resume
)
6261 SET_RUNTIME_PM_OPS(e1000_runtime_suspend
,
6262 e1000_runtime_resume
, e1000_idle
)
6266 /* PCI Device API Driver */
6267 static struct pci_driver e1000_driver
= {
6268 .name
= e1000e_driver_name
,
6269 .id_table
= e1000_pci_tbl
,
6270 .probe
= e1000_probe
,
6271 .remove
= __devexit_p(e1000_remove
),
6273 .driver
.pm
= &e1000_pm_ops
,
6275 .shutdown
= e1000_shutdown
,
6276 .err_handler
= &e1000_err_handler
6280 * e1000_init_module - Driver Registration Routine
6282 * e1000_init_module is the first routine called when the driver is
6283 * loaded. All it does is register with the PCI subsystem.
6285 static int __init
e1000_init_module(void)
6288 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6289 e1000e_driver_version
);
6290 pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6291 ret
= pci_register_driver(&e1000_driver
);
6295 module_init(e1000_init_module
);
6298 * e1000_exit_module - Driver Exit Cleanup Routine
6300 * e1000_exit_module is called just before the driver is removed
6303 static void __exit
e1000_exit_module(void)
6305 pci_unregister_driver(&e1000_driver
);
6307 module_exit(e1000_exit_module
);
6310 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6311 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6312 MODULE_LICENSE("GPL");
6313 MODULE_VERSION(DRV_VERSION
);