include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / net / e1000e / netdev.c
blob362f70382cdd411483ad95ec26af24b0a08e198e
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos_params.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
55 #include "e1000.h"
57 #define DRV_EXTRAVERSION "-k"
59 #define DRV_VERSION "1.4.4" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
63 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
65 static const struct e1000_info *e1000_info_tbl[] = {
66 [board_82571] = &e1000_82571_info,
67 [board_82572] = &e1000_82572_info,
68 [board_82573] = &e1000_82573_info,
69 [board_82574] = &e1000_82574_info,
70 [board_82583] = &e1000_82583_info,
71 [board_80003es2lan] = &e1000_es2_info,
72 [board_ich8lan] = &e1000_ich8_info,
73 [board_ich9lan] = &e1000_ich9_info,
74 [board_ich10lan] = &e1000_ich10_info,
75 [board_pchlan] = &e1000_pch_info,
76 [board_pch2lan] = &e1000_pch2_info,
79 struct e1000_reg_info {
80 u32 ofs;
81 char *name;
84 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
85 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
86 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
87 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
88 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
90 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
91 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
92 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
93 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
94 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
96 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
98 /* General Registers */
99 {E1000_CTRL, "CTRL"},
100 {E1000_STATUS, "STATUS"},
101 {E1000_CTRL_EXT, "CTRL_EXT"},
103 /* Interrupt Registers */
104 {E1000_ICR, "ICR"},
106 /* Rx Registers */
107 {E1000_RCTL, "RCTL"},
108 {E1000_RDLEN, "RDLEN"},
109 {E1000_RDH, "RDH"},
110 {E1000_RDT, "RDT"},
111 {E1000_RDTR, "RDTR"},
112 {E1000_RXDCTL(0), "RXDCTL"},
113 {E1000_ERT, "ERT"},
114 {E1000_RDBAL, "RDBAL"},
115 {E1000_RDBAH, "RDBAH"},
116 {E1000_RDFH, "RDFH"},
117 {E1000_RDFT, "RDFT"},
118 {E1000_RDFHS, "RDFHS"},
119 {E1000_RDFTS, "RDFTS"},
120 {E1000_RDFPC, "RDFPC"},
122 /* Tx Registers */
123 {E1000_TCTL, "TCTL"},
124 {E1000_TDBAL, "TDBAL"},
125 {E1000_TDBAH, "TDBAH"},
126 {E1000_TDLEN, "TDLEN"},
127 {E1000_TDH, "TDH"},
128 {E1000_TDT, "TDT"},
129 {E1000_TIDV, "TIDV"},
130 {E1000_TXDCTL(0), "TXDCTL"},
131 {E1000_TADV, "TADV"},
132 {E1000_TARC(0), "TARC"},
133 {E1000_TDFH, "TDFH"},
134 {E1000_TDFT, "TDFT"},
135 {E1000_TDFHS, "TDFHS"},
136 {E1000_TDFTS, "TDFTS"},
137 {E1000_TDFPC, "TDFPC"},
139 /* List Terminator */
144 * e1000_regdump - register printout routine
146 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
148 int n = 0;
149 char rname[16];
150 u32 regs[8];
152 switch (reginfo->ofs) {
153 case E1000_RXDCTL(0):
154 for (n = 0; n < 2; n++)
155 regs[n] = __er32(hw, E1000_RXDCTL(n));
156 break;
157 case E1000_TXDCTL(0):
158 for (n = 0; n < 2; n++)
159 regs[n] = __er32(hw, E1000_TXDCTL(n));
160 break;
161 case E1000_TARC(0):
162 for (n = 0; n < 2; n++)
163 regs[n] = __er32(hw, E1000_TARC(n));
164 break;
165 default:
166 printk(KERN_INFO "%-15s %08x\n",
167 reginfo->name, __er32(hw, reginfo->ofs));
168 return;
171 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172 printk(KERN_INFO "%-15s ", rname);
173 for (n = 0; n < 2; n++)
174 printk(KERN_CONT "%08x ", regs[n]);
175 printk(KERN_CONT "\n");
179 * e1000e_dump - Print registers, Tx-ring and Rx-ring
181 static void e1000e_dump(struct e1000_adapter *adapter)
183 struct net_device *netdev = adapter->netdev;
184 struct e1000_hw *hw = &adapter->hw;
185 struct e1000_reg_info *reginfo;
186 struct e1000_ring *tx_ring = adapter->tx_ring;
187 struct e1000_tx_desc *tx_desc;
188 struct my_u0 {
189 u64 a;
190 u64 b;
191 } *u0;
192 struct e1000_buffer *buffer_info;
193 struct e1000_ring *rx_ring = adapter->rx_ring;
194 union e1000_rx_desc_packet_split *rx_desc_ps;
195 struct e1000_rx_desc *rx_desc;
196 struct my_u1 {
197 u64 a;
198 u64 b;
199 u64 c;
200 u64 d;
201 } *u1;
202 u32 staterr;
203 int i = 0;
205 if (!netif_msg_hw(adapter))
206 return;
208 /* Print netdevice Info */
209 if (netdev) {
210 dev_info(&adapter->pdev->dev, "Net device Info\n");
211 printk(KERN_INFO "Device Name state "
212 "trans_start last_rx\n");
213 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
214 netdev->name, netdev->state, netdev->trans_start,
215 netdev->last_rx);
218 /* Print Registers */
219 dev_info(&adapter->pdev->dev, "Register Dump\n");
220 printk(KERN_INFO " Register Name Value\n");
221 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
222 reginfo->name; reginfo++) {
223 e1000_regdump(hw, reginfo);
226 /* Print Tx Ring Summary */
227 if (!netdev || !netif_running(netdev))
228 goto exit;
230 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
231 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
232 " leng ntw timestamp\n");
233 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
234 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
235 0, tx_ring->next_to_use, tx_ring->next_to_clean,
236 (unsigned long long)buffer_info->dma,
237 buffer_info->length,
238 buffer_info->next_to_watch,
239 (unsigned long long)buffer_info->time_stamp);
241 /* Print Tx Ring */
242 if (!netif_msg_tx_done(adapter))
243 goto rx_ring_summary;
245 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
247 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
249 * Legacy Transmit Descriptor
250 * +--------------------------------------------------------------+
251 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
252 * +--------------------------------------------------------------+
253 * 8 | Special | CSS | Status | CMD | CSO | Length |
254 * +--------------------------------------------------------------+
255 * 63 48 47 36 35 32 31 24 23 16 15 0
257 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
258 * 63 48 47 40 39 32 31 16 15 8 7 0
259 * +----------------------------------------------------------------+
260 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
261 * +----------------------------------------------------------------+
262 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
263 * +----------------------------------------------------------------+
264 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
266 * Extended Data Descriptor (DTYP=0x1)
267 * +----------------------------------------------------------------+
268 * 0 | Buffer Address [63:0] |
269 * +----------------------------------------------------------------+
270 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
271 * +----------------------------------------------------------------+
272 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
275 " [bi->dma ] leng ntw timestamp bi->skb "
276 "<-- Legacy format\n");
277 printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
278 " [bi->dma ] leng ntw timestamp bi->skb "
279 "<-- Ext Context format\n");
280 printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
281 " [bi->dma ] leng ntw timestamp bi->skb "
282 "<-- Ext Data format\n");
283 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
284 tx_desc = E1000_TX_DESC(*tx_ring, i);
285 buffer_info = &tx_ring->buffer_info[i];
286 u0 = (struct my_u0 *)tx_desc;
287 printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX "
288 "%04X %3X %016llX %p",
289 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
290 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
291 (unsigned long long)le64_to_cpu(u0->a),
292 (unsigned long long)le64_to_cpu(u0->b),
293 (unsigned long long)buffer_info->dma,
294 buffer_info->length, buffer_info->next_to_watch,
295 (unsigned long long)buffer_info->time_stamp,
296 buffer_info->skb);
297 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
298 printk(KERN_CONT " NTC/U\n");
299 else if (i == tx_ring->next_to_use)
300 printk(KERN_CONT " NTU\n");
301 else if (i == tx_ring->next_to_clean)
302 printk(KERN_CONT " NTC\n");
303 else
304 printk(KERN_CONT "\n");
306 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
307 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
308 16, 1, phys_to_virt(buffer_info->dma),
309 buffer_info->length, true);
312 /* Print Rx Ring Summary */
313 rx_ring_summary:
314 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
315 printk(KERN_INFO "Queue [NTU] [NTC]\n");
316 printk(KERN_INFO " %5d %5X %5X\n", 0,
317 rx_ring->next_to_use, rx_ring->next_to_clean);
319 /* Print Rx Ring */
320 if (!netif_msg_rx_status(adapter))
321 goto exit;
323 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
324 switch (adapter->rx_ps_pages) {
325 case 1:
326 case 2:
327 case 3:
328 /* [Extended] Packet Split Receive Descriptor Format
330 * +-----------------------------------------------------+
331 * 0 | Buffer Address 0 [63:0] |
332 * +-----------------------------------------------------+
333 * 8 | Buffer Address 1 [63:0] |
334 * +-----------------------------------------------------+
335 * 16 | Buffer Address 2 [63:0] |
336 * +-----------------------------------------------------+
337 * 24 | Buffer Address 3 [63:0] |
338 * +-----------------------------------------------------+
340 printk(KERN_INFO "R [desc] [buffer 0 63:0 ] "
341 "[buffer 1 63:0 ] "
342 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
343 "[bi->skb] <-- Ext Pkt Split format\n");
344 /* [Extended] Receive Descriptor (Write-Back) Format
346 * 63 48 47 32 31 13 12 8 7 4 3 0
347 * +------------------------------------------------------+
348 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
349 * | Checksum | Ident | | Queue | | Type |
350 * +------------------------------------------------------+
351 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352 * +------------------------------------------------------+
353 * 63 48 47 32 31 20 19 0
355 printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] "
356 "[vl l0 ee es] "
357 "[ l3 l2 l1 hs] [reserved ] ---------------- "
358 "[bi->skb] <-- Ext Rx Write-Back format\n");
359 for (i = 0; i < rx_ring->count; i++) {
360 buffer_info = &rx_ring->buffer_info[i];
361 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
362 u1 = (struct my_u1 *)rx_desc_ps;
363 staterr =
364 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
365 if (staterr & E1000_RXD_STAT_DD) {
366 /* Descriptor Done */
367 printk(KERN_INFO "RWB[0x%03X] %016llX "
368 "%016llX %016llX %016llX "
369 "---------------- %p", i,
370 (unsigned long long)le64_to_cpu(u1->a),
371 (unsigned long long)le64_to_cpu(u1->b),
372 (unsigned long long)le64_to_cpu(u1->c),
373 (unsigned long long)le64_to_cpu(u1->d),
374 buffer_info->skb);
375 } else {
376 printk(KERN_INFO "R [0x%03X] %016llX "
377 "%016llX %016llX %016llX %016llX %p", i,
378 (unsigned long long)le64_to_cpu(u1->a),
379 (unsigned long long)le64_to_cpu(u1->b),
380 (unsigned long long)le64_to_cpu(u1->c),
381 (unsigned long long)le64_to_cpu(u1->d),
382 (unsigned long long)buffer_info->dma,
383 buffer_info->skb);
385 if (netif_msg_pktdata(adapter))
386 print_hex_dump(KERN_INFO, "",
387 DUMP_PREFIX_ADDRESS, 16, 1,
388 phys_to_virt(buffer_info->dma),
389 adapter->rx_ps_bsize0, true);
392 if (i == rx_ring->next_to_use)
393 printk(KERN_CONT " NTU\n");
394 else if (i == rx_ring->next_to_clean)
395 printk(KERN_CONT " NTC\n");
396 else
397 printk(KERN_CONT "\n");
399 break;
400 default:
401 case 0:
402 /* Legacy Receive Descriptor Format
404 * +-----------------------------------------------------+
405 * | Buffer Address [63:0] |
406 * +-----------------------------------------------------+
407 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
408 * +-----------------------------------------------------+
409 * 63 48 47 40 39 32 31 16 15 0
411 printk(KERN_INFO "Rl[desc] [address 63:0 ] "
412 "[vl er S cks ln] [bi->dma ] [bi->skb] "
413 "<-- Legacy format\n");
414 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
415 rx_desc = E1000_RX_DESC(*rx_ring, i);
416 buffer_info = &rx_ring->buffer_info[i];
417 u0 = (struct my_u0 *)rx_desc;
418 printk(KERN_INFO "Rl[0x%03X] %016llX %016llX "
419 "%016llX %p", i,
420 (unsigned long long)le64_to_cpu(u0->a),
421 (unsigned long long)le64_to_cpu(u0->b),
422 (unsigned long long)buffer_info->dma,
423 buffer_info->skb);
424 if (i == rx_ring->next_to_use)
425 printk(KERN_CONT " NTU\n");
426 else if (i == rx_ring->next_to_clean)
427 printk(KERN_CONT " NTC\n");
428 else
429 printk(KERN_CONT "\n");
431 if (netif_msg_pktdata(adapter))
432 print_hex_dump(KERN_INFO, "",
433 DUMP_PREFIX_ADDRESS,
434 16, 1,
435 phys_to_virt(buffer_info->dma),
436 adapter->rx_buffer_len, true);
440 exit:
441 return;
445 * e1000_desc_unused - calculate if we have unused descriptors
447 static int e1000_desc_unused(struct e1000_ring *ring)
449 if (ring->next_to_clean > ring->next_to_use)
450 return ring->next_to_clean - ring->next_to_use - 1;
452 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
456 * e1000_receive_skb - helper function to handle Rx indications
457 * @adapter: board private structure
458 * @status: descriptor status field as written by hardware
459 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
460 * @skb: pointer to sk_buff to be indicated to stack
462 static void e1000_receive_skb(struct e1000_adapter *adapter,
463 struct net_device *netdev, struct sk_buff *skb,
464 u8 status, __le16 vlan)
466 u16 tag = le16_to_cpu(vlan);
467 skb->protocol = eth_type_trans(skb, netdev);
469 if (status & E1000_RXD_STAT_VP)
470 __vlan_hwaccel_put_tag(skb, tag);
472 napi_gro_receive(&adapter->napi, skb);
476 * e1000_rx_checksum - Receive Checksum Offload
477 * @adapter: board private structure
478 * @status_err: receive descriptor status and error fields
479 * @csum: receive descriptor csum field
480 * @sk_buff: socket buffer with received data
482 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
483 u32 csum, struct sk_buff *skb)
485 u16 status = (u16)status_err;
486 u8 errors = (u8)(status_err >> 24);
488 skb_checksum_none_assert(skb);
490 /* Ignore Checksum bit is set */
491 if (status & E1000_RXD_STAT_IXSM)
492 return;
493 /* TCP/UDP checksum error bit is set */
494 if (errors & E1000_RXD_ERR_TCPE) {
495 /* let the stack verify checksum errors */
496 adapter->hw_csum_err++;
497 return;
500 /* TCP/UDP Checksum has not been calculated */
501 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
502 return;
504 /* It must be a TCP or UDP packet with a valid checksum */
505 if (status & E1000_RXD_STAT_TCPCS) {
506 /* TCP checksum is good */
507 skb->ip_summed = CHECKSUM_UNNECESSARY;
508 } else {
510 * IP fragment with UDP payload
511 * Hardware complements the payload checksum, so we undo it
512 * and then put the value in host order for further stack use.
514 __sum16 sum = (__force __sum16)htons(csum);
515 skb->csum = csum_unfold(~sum);
516 skb->ip_summed = CHECKSUM_COMPLETE;
518 adapter->hw_csum_good++;
522 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
523 * @adapter: address of board private structure
525 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
526 int cleaned_count, gfp_t gfp)
528 struct net_device *netdev = adapter->netdev;
529 struct pci_dev *pdev = adapter->pdev;
530 struct e1000_ring *rx_ring = adapter->rx_ring;
531 struct e1000_rx_desc *rx_desc;
532 struct e1000_buffer *buffer_info;
533 struct sk_buff *skb;
534 unsigned int i;
535 unsigned int bufsz = adapter->rx_buffer_len;
537 i = rx_ring->next_to_use;
538 buffer_info = &rx_ring->buffer_info[i];
540 while (cleaned_count--) {
541 skb = buffer_info->skb;
542 if (skb) {
543 skb_trim(skb, 0);
544 goto map_skb;
547 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
548 if (!skb) {
549 /* Better luck next round */
550 adapter->alloc_rx_buff_failed++;
551 break;
554 buffer_info->skb = skb;
555 map_skb:
556 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
557 adapter->rx_buffer_len,
558 DMA_FROM_DEVICE);
559 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
560 dev_err(&pdev->dev, "Rx DMA map failed\n");
561 adapter->rx_dma_failed++;
562 break;
565 rx_desc = E1000_RX_DESC(*rx_ring, i);
566 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
568 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
570 * Force memory writes to complete before letting h/w
571 * know there are new descriptors to fetch. (Only
572 * applicable for weak-ordered memory model archs,
573 * such as IA-64).
575 wmb();
576 writel(i, adapter->hw.hw_addr + rx_ring->tail);
578 i++;
579 if (i == rx_ring->count)
580 i = 0;
581 buffer_info = &rx_ring->buffer_info[i];
584 rx_ring->next_to_use = i;
588 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
589 * @adapter: address of board private structure
591 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
592 int cleaned_count, gfp_t gfp)
594 struct net_device *netdev = adapter->netdev;
595 struct pci_dev *pdev = adapter->pdev;
596 union e1000_rx_desc_packet_split *rx_desc;
597 struct e1000_ring *rx_ring = adapter->rx_ring;
598 struct e1000_buffer *buffer_info;
599 struct e1000_ps_page *ps_page;
600 struct sk_buff *skb;
601 unsigned int i, j;
603 i = rx_ring->next_to_use;
604 buffer_info = &rx_ring->buffer_info[i];
606 while (cleaned_count--) {
607 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
609 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
610 ps_page = &buffer_info->ps_pages[j];
611 if (j >= adapter->rx_ps_pages) {
612 /* all unused desc entries get hw null ptr */
613 rx_desc->read.buffer_addr[j + 1] =
614 ~cpu_to_le64(0);
615 continue;
617 if (!ps_page->page) {
618 ps_page->page = alloc_page(gfp);
619 if (!ps_page->page) {
620 adapter->alloc_rx_buff_failed++;
621 goto no_buffers;
623 ps_page->dma = dma_map_page(&pdev->dev,
624 ps_page->page,
625 0, PAGE_SIZE,
626 DMA_FROM_DEVICE);
627 if (dma_mapping_error(&pdev->dev,
628 ps_page->dma)) {
629 dev_err(&adapter->pdev->dev,
630 "Rx DMA page map failed\n");
631 adapter->rx_dma_failed++;
632 goto no_buffers;
636 * Refresh the desc even if buffer_addrs
637 * didn't change because each write-back
638 * erases this info.
640 rx_desc->read.buffer_addr[j + 1] =
641 cpu_to_le64(ps_page->dma);
644 skb = __netdev_alloc_skb_ip_align(netdev,
645 adapter->rx_ps_bsize0,
646 gfp);
648 if (!skb) {
649 adapter->alloc_rx_buff_failed++;
650 break;
653 buffer_info->skb = skb;
654 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
655 adapter->rx_ps_bsize0,
656 DMA_FROM_DEVICE);
657 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
658 dev_err(&pdev->dev, "Rx DMA map failed\n");
659 adapter->rx_dma_failed++;
660 /* cleanup skb */
661 dev_kfree_skb_any(skb);
662 buffer_info->skb = NULL;
663 break;
666 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
668 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
670 * Force memory writes to complete before letting h/w
671 * know there are new descriptors to fetch. (Only
672 * applicable for weak-ordered memory model archs,
673 * such as IA-64).
675 wmb();
676 writel(i << 1, adapter->hw.hw_addr + rx_ring->tail);
679 i++;
680 if (i == rx_ring->count)
681 i = 0;
682 buffer_info = &rx_ring->buffer_info[i];
685 no_buffers:
686 rx_ring->next_to_use = i;
690 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
691 * @adapter: address of board private structure
692 * @cleaned_count: number of buffers to allocate this pass
695 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
696 int cleaned_count, gfp_t gfp)
698 struct net_device *netdev = adapter->netdev;
699 struct pci_dev *pdev = adapter->pdev;
700 struct e1000_rx_desc *rx_desc;
701 struct e1000_ring *rx_ring = adapter->rx_ring;
702 struct e1000_buffer *buffer_info;
703 struct sk_buff *skb;
704 unsigned int i;
705 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
707 i = rx_ring->next_to_use;
708 buffer_info = &rx_ring->buffer_info[i];
710 while (cleaned_count--) {
711 skb = buffer_info->skb;
712 if (skb) {
713 skb_trim(skb, 0);
714 goto check_page;
717 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
718 if (unlikely(!skb)) {
719 /* Better luck next round */
720 adapter->alloc_rx_buff_failed++;
721 break;
724 buffer_info->skb = skb;
725 check_page:
726 /* allocate a new page if necessary */
727 if (!buffer_info->page) {
728 buffer_info->page = alloc_page(gfp);
729 if (unlikely(!buffer_info->page)) {
730 adapter->alloc_rx_buff_failed++;
731 break;
735 if (!buffer_info->dma)
736 buffer_info->dma = dma_map_page(&pdev->dev,
737 buffer_info->page, 0,
738 PAGE_SIZE,
739 DMA_FROM_DEVICE);
741 rx_desc = E1000_RX_DESC(*rx_ring, i);
742 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
744 if (unlikely(++i == rx_ring->count))
745 i = 0;
746 buffer_info = &rx_ring->buffer_info[i];
749 if (likely(rx_ring->next_to_use != i)) {
750 rx_ring->next_to_use = i;
751 if (unlikely(i-- == 0))
752 i = (rx_ring->count - 1);
754 /* Force memory writes to complete before letting h/w
755 * know there are new descriptors to fetch. (Only
756 * applicable for weak-ordered memory model archs,
757 * such as IA-64). */
758 wmb();
759 writel(i, adapter->hw.hw_addr + rx_ring->tail);
764 * e1000_clean_rx_irq - Send received data up the network stack; legacy
765 * @adapter: board private structure
767 * the return value indicates whether actual cleaning was done, there
768 * is no guarantee that everything was cleaned
770 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
771 int *work_done, int work_to_do)
773 struct net_device *netdev = adapter->netdev;
774 struct pci_dev *pdev = adapter->pdev;
775 struct e1000_hw *hw = &adapter->hw;
776 struct e1000_ring *rx_ring = adapter->rx_ring;
777 struct e1000_rx_desc *rx_desc, *next_rxd;
778 struct e1000_buffer *buffer_info, *next_buffer;
779 u32 length;
780 unsigned int i;
781 int cleaned_count = 0;
782 bool cleaned = 0;
783 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
785 i = rx_ring->next_to_clean;
786 rx_desc = E1000_RX_DESC(*rx_ring, i);
787 buffer_info = &rx_ring->buffer_info[i];
789 while (rx_desc->status & E1000_RXD_STAT_DD) {
790 struct sk_buff *skb;
791 u8 status;
793 if (*work_done >= work_to_do)
794 break;
795 (*work_done)++;
796 rmb(); /* read descriptor and rx_buffer_info after status DD */
798 status = rx_desc->status;
799 skb = buffer_info->skb;
800 buffer_info->skb = NULL;
802 prefetch(skb->data - NET_IP_ALIGN);
804 i++;
805 if (i == rx_ring->count)
806 i = 0;
807 next_rxd = E1000_RX_DESC(*rx_ring, i);
808 prefetch(next_rxd);
810 next_buffer = &rx_ring->buffer_info[i];
812 cleaned = 1;
813 cleaned_count++;
814 dma_unmap_single(&pdev->dev,
815 buffer_info->dma,
816 adapter->rx_buffer_len,
817 DMA_FROM_DEVICE);
818 buffer_info->dma = 0;
820 length = le16_to_cpu(rx_desc->length);
823 * !EOP means multiple descriptors were used to store a single
824 * packet, if that's the case we need to toss it. In fact, we
825 * need to toss every packet with the EOP bit clear and the
826 * next frame that _does_ have the EOP bit set, as it is by
827 * definition only a frame fragment
829 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
830 adapter->flags2 |= FLAG2_IS_DISCARDING;
832 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
833 /* All receives must fit into a single buffer */
834 e_dbg("Receive packet consumed multiple buffers\n");
835 /* recycle */
836 buffer_info->skb = skb;
837 if (status & E1000_RXD_STAT_EOP)
838 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
839 goto next_desc;
842 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
843 /* recycle */
844 buffer_info->skb = skb;
845 goto next_desc;
848 /* adjust length to remove Ethernet CRC */
849 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
850 length -= 4;
852 total_rx_bytes += length;
853 total_rx_packets++;
856 * code added for copybreak, this should improve
857 * performance for small packets with large amounts
858 * of reassembly being done in the stack
860 if (length < copybreak) {
861 struct sk_buff *new_skb =
862 netdev_alloc_skb_ip_align(netdev, length);
863 if (new_skb) {
864 skb_copy_to_linear_data_offset(new_skb,
865 -NET_IP_ALIGN,
866 (skb->data -
867 NET_IP_ALIGN),
868 (length +
869 NET_IP_ALIGN));
870 /* save the skb in buffer_info as good */
871 buffer_info->skb = skb;
872 skb = new_skb;
874 /* else just continue with the old one */
876 /* end copybreak code */
877 skb_put(skb, length);
879 /* Receive Checksum Offload */
880 e1000_rx_checksum(adapter,
881 (u32)(status) |
882 ((u32)(rx_desc->errors) << 24),
883 le16_to_cpu(rx_desc->csum), skb);
885 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
887 next_desc:
888 rx_desc->status = 0;
890 /* return some buffers to hardware, one at a time is too slow */
891 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
892 adapter->alloc_rx_buf(adapter, cleaned_count,
893 GFP_ATOMIC);
894 cleaned_count = 0;
897 /* use prefetched values */
898 rx_desc = next_rxd;
899 buffer_info = next_buffer;
901 rx_ring->next_to_clean = i;
903 cleaned_count = e1000_desc_unused(rx_ring);
904 if (cleaned_count)
905 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
907 adapter->total_rx_bytes += total_rx_bytes;
908 adapter->total_rx_packets += total_rx_packets;
909 return cleaned;
912 static void e1000_put_txbuf(struct e1000_adapter *adapter,
913 struct e1000_buffer *buffer_info)
915 if (buffer_info->dma) {
916 if (buffer_info->mapped_as_page)
917 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
918 buffer_info->length, DMA_TO_DEVICE);
919 else
920 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
921 buffer_info->length, DMA_TO_DEVICE);
922 buffer_info->dma = 0;
924 if (buffer_info->skb) {
925 dev_kfree_skb_any(buffer_info->skb);
926 buffer_info->skb = NULL;
928 buffer_info->time_stamp = 0;
931 static void e1000_print_hw_hang(struct work_struct *work)
933 struct e1000_adapter *adapter = container_of(work,
934 struct e1000_adapter,
935 print_hang_task);
936 struct e1000_ring *tx_ring = adapter->tx_ring;
937 unsigned int i = tx_ring->next_to_clean;
938 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
939 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
940 struct e1000_hw *hw = &adapter->hw;
941 u16 phy_status, phy_1000t_status, phy_ext_status;
942 u16 pci_status;
944 if (test_bit(__E1000_DOWN, &adapter->state))
945 return;
947 e1e_rphy(hw, PHY_STATUS, &phy_status);
948 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
949 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
951 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
953 /* detected Hardware unit hang */
954 e_err("Detected Hardware Unit Hang:\n"
955 " TDH <%x>\n"
956 " TDT <%x>\n"
957 " next_to_use <%x>\n"
958 " next_to_clean <%x>\n"
959 "buffer_info[next_to_clean]:\n"
960 " time_stamp <%lx>\n"
961 " next_to_watch <%x>\n"
962 " jiffies <%lx>\n"
963 " next_to_watch.status <%x>\n"
964 "MAC Status <%x>\n"
965 "PHY Status <%x>\n"
966 "PHY 1000BASE-T Status <%x>\n"
967 "PHY Extended Status <%x>\n"
968 "PCI Status <%x>\n",
969 readl(adapter->hw.hw_addr + tx_ring->head),
970 readl(adapter->hw.hw_addr + tx_ring->tail),
971 tx_ring->next_to_use,
972 tx_ring->next_to_clean,
973 tx_ring->buffer_info[eop].time_stamp,
974 eop,
975 jiffies,
976 eop_desc->upper.fields.status,
977 er32(STATUS),
978 phy_status,
979 phy_1000t_status,
980 phy_ext_status,
981 pci_status);
985 * e1000_clean_tx_irq - Reclaim resources after transmit completes
986 * @adapter: board private structure
988 * the return value indicates whether actual cleaning was done, there
989 * is no guarantee that everything was cleaned
991 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
993 struct net_device *netdev = adapter->netdev;
994 struct e1000_hw *hw = &adapter->hw;
995 struct e1000_ring *tx_ring = adapter->tx_ring;
996 struct e1000_tx_desc *tx_desc, *eop_desc;
997 struct e1000_buffer *buffer_info;
998 unsigned int i, eop;
999 unsigned int count = 0;
1000 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1002 i = tx_ring->next_to_clean;
1003 eop = tx_ring->buffer_info[i].next_to_watch;
1004 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1006 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1007 (count < tx_ring->count)) {
1008 bool cleaned = false;
1009 rmb(); /* read buffer_info after eop_desc */
1010 for (; !cleaned; count++) {
1011 tx_desc = E1000_TX_DESC(*tx_ring, i);
1012 buffer_info = &tx_ring->buffer_info[i];
1013 cleaned = (i == eop);
1015 if (cleaned) {
1016 total_tx_packets += buffer_info->segs;
1017 total_tx_bytes += buffer_info->bytecount;
1020 e1000_put_txbuf(adapter, buffer_info);
1021 tx_desc->upper.data = 0;
1023 i++;
1024 if (i == tx_ring->count)
1025 i = 0;
1028 if (i == tx_ring->next_to_use)
1029 break;
1030 eop = tx_ring->buffer_info[i].next_to_watch;
1031 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1034 tx_ring->next_to_clean = i;
1036 #define TX_WAKE_THRESHOLD 32
1037 if (count && netif_carrier_ok(netdev) &&
1038 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1039 /* Make sure that anybody stopping the queue after this
1040 * sees the new next_to_clean.
1042 smp_mb();
1044 if (netif_queue_stopped(netdev) &&
1045 !(test_bit(__E1000_DOWN, &adapter->state))) {
1046 netif_wake_queue(netdev);
1047 ++adapter->restart_queue;
1051 if (adapter->detect_tx_hung) {
1053 * Detect a transmit hang in hardware, this serializes the
1054 * check with the clearing of time_stamp and movement of i
1056 adapter->detect_tx_hung = 0;
1057 if (tx_ring->buffer_info[i].time_stamp &&
1058 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1059 + (adapter->tx_timeout_factor * HZ)) &&
1060 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1061 schedule_work(&adapter->print_hang_task);
1062 netif_stop_queue(netdev);
1065 adapter->total_tx_bytes += total_tx_bytes;
1066 adapter->total_tx_packets += total_tx_packets;
1067 return count < tx_ring->count;
1071 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1072 * @adapter: board private structure
1074 * the return value indicates whether actual cleaning was done, there
1075 * is no guarantee that everything was cleaned
1077 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1078 int *work_done, int work_to_do)
1080 struct e1000_hw *hw = &adapter->hw;
1081 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1082 struct net_device *netdev = adapter->netdev;
1083 struct pci_dev *pdev = adapter->pdev;
1084 struct e1000_ring *rx_ring = adapter->rx_ring;
1085 struct e1000_buffer *buffer_info, *next_buffer;
1086 struct e1000_ps_page *ps_page;
1087 struct sk_buff *skb;
1088 unsigned int i, j;
1089 u32 length, staterr;
1090 int cleaned_count = 0;
1091 bool cleaned = 0;
1092 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1094 i = rx_ring->next_to_clean;
1095 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1096 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1097 buffer_info = &rx_ring->buffer_info[i];
1099 while (staterr & E1000_RXD_STAT_DD) {
1100 if (*work_done >= work_to_do)
1101 break;
1102 (*work_done)++;
1103 skb = buffer_info->skb;
1104 rmb(); /* read descriptor and rx_buffer_info after status DD */
1106 /* in the packet split case this is header only */
1107 prefetch(skb->data - NET_IP_ALIGN);
1109 i++;
1110 if (i == rx_ring->count)
1111 i = 0;
1112 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1113 prefetch(next_rxd);
1115 next_buffer = &rx_ring->buffer_info[i];
1117 cleaned = 1;
1118 cleaned_count++;
1119 dma_unmap_single(&pdev->dev, buffer_info->dma,
1120 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1121 buffer_info->dma = 0;
1123 /* see !EOP comment in other Rx routine */
1124 if (!(staterr & E1000_RXD_STAT_EOP))
1125 adapter->flags2 |= FLAG2_IS_DISCARDING;
1127 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1128 e_dbg("Packet Split buffers didn't pick up the full "
1129 "packet\n");
1130 dev_kfree_skb_irq(skb);
1131 if (staterr & E1000_RXD_STAT_EOP)
1132 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1133 goto next_desc;
1136 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1137 dev_kfree_skb_irq(skb);
1138 goto next_desc;
1141 length = le16_to_cpu(rx_desc->wb.middle.length0);
1143 if (!length) {
1144 e_dbg("Last part of the packet spanning multiple "
1145 "descriptors\n");
1146 dev_kfree_skb_irq(skb);
1147 goto next_desc;
1150 /* Good Receive */
1151 skb_put(skb, length);
1155 * this looks ugly, but it seems compiler issues make it
1156 * more efficient than reusing j
1158 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1161 * page alloc/put takes too long and effects small packet
1162 * throughput, so unsplit small packets and save the alloc/put
1163 * only valid in softirq (napi) context to call kmap_*
1165 if (l1 && (l1 <= copybreak) &&
1166 ((length + l1) <= adapter->rx_ps_bsize0)) {
1167 u8 *vaddr;
1169 ps_page = &buffer_info->ps_pages[0];
1172 * there is no documentation about how to call
1173 * kmap_atomic, so we can't hold the mapping
1174 * very long
1176 dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1177 PAGE_SIZE, DMA_FROM_DEVICE);
1178 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1179 memcpy(skb_tail_pointer(skb), vaddr, l1);
1180 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1181 dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1182 PAGE_SIZE, DMA_FROM_DEVICE);
1184 /* remove the CRC */
1185 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1186 l1 -= 4;
1188 skb_put(skb, l1);
1189 goto copydone;
1190 } /* if */
1193 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1194 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1195 if (!length)
1196 break;
1198 ps_page = &buffer_info->ps_pages[j];
1199 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1200 DMA_FROM_DEVICE);
1201 ps_page->dma = 0;
1202 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1203 ps_page->page = NULL;
1204 skb->len += length;
1205 skb->data_len += length;
1206 skb->truesize += length;
1209 /* strip the ethernet crc, problem is we're using pages now so
1210 * this whole operation can get a little cpu intensive
1212 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1213 pskb_trim(skb, skb->len - 4);
1215 copydone:
1216 total_rx_bytes += skb->len;
1217 total_rx_packets++;
1219 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1220 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1222 if (rx_desc->wb.upper.header_status &
1223 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1224 adapter->rx_hdr_split++;
1226 e1000_receive_skb(adapter, netdev, skb,
1227 staterr, rx_desc->wb.middle.vlan);
1229 next_desc:
1230 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1231 buffer_info->skb = NULL;
1233 /* return some buffers to hardware, one at a time is too slow */
1234 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1235 adapter->alloc_rx_buf(adapter, cleaned_count,
1236 GFP_ATOMIC);
1237 cleaned_count = 0;
1240 /* use prefetched values */
1241 rx_desc = next_rxd;
1242 buffer_info = next_buffer;
1244 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1246 rx_ring->next_to_clean = i;
1248 cleaned_count = e1000_desc_unused(rx_ring);
1249 if (cleaned_count)
1250 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1252 adapter->total_rx_bytes += total_rx_bytes;
1253 adapter->total_rx_packets += total_rx_packets;
1254 return cleaned;
1258 * e1000_consume_page - helper function
1260 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1261 u16 length)
1263 bi->page = NULL;
1264 skb->len += length;
1265 skb->data_len += length;
1266 skb->truesize += length;
1270 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1271 * @adapter: board private structure
1273 * the return value indicates whether actual cleaning was done, there
1274 * is no guarantee that everything was cleaned
1277 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1278 int *work_done, int work_to_do)
1280 struct net_device *netdev = adapter->netdev;
1281 struct pci_dev *pdev = adapter->pdev;
1282 struct e1000_ring *rx_ring = adapter->rx_ring;
1283 struct e1000_rx_desc *rx_desc, *next_rxd;
1284 struct e1000_buffer *buffer_info, *next_buffer;
1285 u32 length;
1286 unsigned int i;
1287 int cleaned_count = 0;
1288 bool cleaned = false;
1289 unsigned int total_rx_bytes=0, total_rx_packets=0;
1291 i = rx_ring->next_to_clean;
1292 rx_desc = E1000_RX_DESC(*rx_ring, i);
1293 buffer_info = &rx_ring->buffer_info[i];
1295 while (rx_desc->status & E1000_RXD_STAT_DD) {
1296 struct sk_buff *skb;
1297 u8 status;
1299 if (*work_done >= work_to_do)
1300 break;
1301 (*work_done)++;
1302 rmb(); /* read descriptor and rx_buffer_info after status DD */
1304 status = rx_desc->status;
1305 skb = buffer_info->skb;
1306 buffer_info->skb = NULL;
1308 ++i;
1309 if (i == rx_ring->count)
1310 i = 0;
1311 next_rxd = E1000_RX_DESC(*rx_ring, i);
1312 prefetch(next_rxd);
1314 next_buffer = &rx_ring->buffer_info[i];
1316 cleaned = true;
1317 cleaned_count++;
1318 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1319 DMA_FROM_DEVICE);
1320 buffer_info->dma = 0;
1322 length = le16_to_cpu(rx_desc->length);
1324 /* errors is only valid for DD + EOP descriptors */
1325 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1326 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1327 /* recycle both page and skb */
1328 buffer_info->skb = skb;
1329 /* an error means any chain goes out the window
1330 * too */
1331 if (rx_ring->rx_skb_top)
1332 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1333 rx_ring->rx_skb_top = NULL;
1334 goto next_desc;
1337 #define rxtop (rx_ring->rx_skb_top)
1338 if (!(status & E1000_RXD_STAT_EOP)) {
1339 /* this descriptor is only the beginning (or middle) */
1340 if (!rxtop) {
1341 /* this is the beginning of a chain */
1342 rxtop = skb;
1343 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1344 0, length);
1345 } else {
1346 /* this is the middle of a chain */
1347 skb_fill_page_desc(rxtop,
1348 skb_shinfo(rxtop)->nr_frags,
1349 buffer_info->page, 0, length);
1350 /* re-use the skb, only consumed the page */
1351 buffer_info->skb = skb;
1353 e1000_consume_page(buffer_info, rxtop, length);
1354 goto next_desc;
1355 } else {
1356 if (rxtop) {
1357 /* end of the chain */
1358 skb_fill_page_desc(rxtop,
1359 skb_shinfo(rxtop)->nr_frags,
1360 buffer_info->page, 0, length);
1361 /* re-use the current skb, we only consumed the
1362 * page */
1363 buffer_info->skb = skb;
1364 skb = rxtop;
1365 rxtop = NULL;
1366 e1000_consume_page(buffer_info, skb, length);
1367 } else {
1368 /* no chain, got EOP, this buf is the packet
1369 * copybreak to save the put_page/alloc_page */
1370 if (length <= copybreak &&
1371 skb_tailroom(skb) >= length) {
1372 u8 *vaddr;
1373 vaddr = kmap_atomic(buffer_info->page,
1374 KM_SKB_DATA_SOFTIRQ);
1375 memcpy(skb_tail_pointer(skb), vaddr,
1376 length);
1377 kunmap_atomic(vaddr,
1378 KM_SKB_DATA_SOFTIRQ);
1379 /* re-use the page, so don't erase
1380 * buffer_info->page */
1381 skb_put(skb, length);
1382 } else {
1383 skb_fill_page_desc(skb, 0,
1384 buffer_info->page, 0,
1385 length);
1386 e1000_consume_page(buffer_info, skb,
1387 length);
1392 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1393 e1000_rx_checksum(adapter,
1394 (u32)(status) |
1395 ((u32)(rx_desc->errors) << 24),
1396 le16_to_cpu(rx_desc->csum), skb);
1398 /* probably a little skewed due to removing CRC */
1399 total_rx_bytes += skb->len;
1400 total_rx_packets++;
1402 /* eth type trans needs skb->data to point to something */
1403 if (!pskb_may_pull(skb, ETH_HLEN)) {
1404 e_err("pskb_may_pull failed.\n");
1405 dev_kfree_skb_irq(skb);
1406 goto next_desc;
1409 e1000_receive_skb(adapter, netdev, skb, status,
1410 rx_desc->special);
1412 next_desc:
1413 rx_desc->status = 0;
1415 /* return some buffers to hardware, one at a time is too slow */
1416 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1417 adapter->alloc_rx_buf(adapter, cleaned_count,
1418 GFP_ATOMIC);
1419 cleaned_count = 0;
1422 /* use prefetched values */
1423 rx_desc = next_rxd;
1424 buffer_info = next_buffer;
1426 rx_ring->next_to_clean = i;
1428 cleaned_count = e1000_desc_unused(rx_ring);
1429 if (cleaned_count)
1430 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1432 adapter->total_rx_bytes += total_rx_bytes;
1433 adapter->total_rx_packets += total_rx_packets;
1434 return cleaned;
1438 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1439 * @adapter: board private structure
1441 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1443 struct e1000_ring *rx_ring = adapter->rx_ring;
1444 struct e1000_buffer *buffer_info;
1445 struct e1000_ps_page *ps_page;
1446 struct pci_dev *pdev = adapter->pdev;
1447 unsigned int i, j;
1449 /* Free all the Rx ring sk_buffs */
1450 for (i = 0; i < rx_ring->count; i++) {
1451 buffer_info = &rx_ring->buffer_info[i];
1452 if (buffer_info->dma) {
1453 if (adapter->clean_rx == e1000_clean_rx_irq)
1454 dma_unmap_single(&pdev->dev, buffer_info->dma,
1455 adapter->rx_buffer_len,
1456 DMA_FROM_DEVICE);
1457 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1458 dma_unmap_page(&pdev->dev, buffer_info->dma,
1459 PAGE_SIZE,
1460 DMA_FROM_DEVICE);
1461 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1462 dma_unmap_single(&pdev->dev, buffer_info->dma,
1463 adapter->rx_ps_bsize0,
1464 DMA_FROM_DEVICE);
1465 buffer_info->dma = 0;
1468 if (buffer_info->page) {
1469 put_page(buffer_info->page);
1470 buffer_info->page = NULL;
1473 if (buffer_info->skb) {
1474 dev_kfree_skb(buffer_info->skb);
1475 buffer_info->skb = NULL;
1478 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1479 ps_page = &buffer_info->ps_pages[j];
1480 if (!ps_page->page)
1481 break;
1482 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1483 DMA_FROM_DEVICE);
1484 ps_page->dma = 0;
1485 put_page(ps_page->page);
1486 ps_page->page = NULL;
1490 /* there also may be some cached data from a chained receive */
1491 if (rx_ring->rx_skb_top) {
1492 dev_kfree_skb(rx_ring->rx_skb_top);
1493 rx_ring->rx_skb_top = NULL;
1496 /* Zero out the descriptor ring */
1497 memset(rx_ring->desc, 0, rx_ring->size);
1499 rx_ring->next_to_clean = 0;
1500 rx_ring->next_to_use = 0;
1501 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1503 writel(0, adapter->hw.hw_addr + rx_ring->head);
1504 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1507 static void e1000e_downshift_workaround(struct work_struct *work)
1509 struct e1000_adapter *adapter = container_of(work,
1510 struct e1000_adapter, downshift_task);
1512 if (test_bit(__E1000_DOWN, &adapter->state))
1513 return;
1515 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1519 * e1000_intr_msi - Interrupt Handler
1520 * @irq: interrupt number
1521 * @data: pointer to a network interface device structure
1523 static irqreturn_t e1000_intr_msi(int irq, void *data)
1525 struct net_device *netdev = data;
1526 struct e1000_adapter *adapter = netdev_priv(netdev);
1527 struct e1000_hw *hw = &adapter->hw;
1528 u32 icr = er32(ICR);
1531 * read ICR disables interrupts using IAM
1534 if (icr & E1000_ICR_LSC) {
1535 hw->mac.get_link_status = 1;
1537 * ICH8 workaround-- Call gig speed drop workaround on cable
1538 * disconnect (LSC) before accessing any PHY registers
1540 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1541 (!(er32(STATUS) & E1000_STATUS_LU)))
1542 schedule_work(&adapter->downshift_task);
1545 * 80003ES2LAN workaround-- For packet buffer work-around on
1546 * link down event; disable receives here in the ISR and reset
1547 * adapter in watchdog
1549 if (netif_carrier_ok(netdev) &&
1550 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1551 /* disable receives */
1552 u32 rctl = er32(RCTL);
1553 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1554 adapter->flags |= FLAG_RX_RESTART_NOW;
1556 /* guard against interrupt when we're going down */
1557 if (!test_bit(__E1000_DOWN, &adapter->state))
1558 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1561 if (napi_schedule_prep(&adapter->napi)) {
1562 adapter->total_tx_bytes = 0;
1563 adapter->total_tx_packets = 0;
1564 adapter->total_rx_bytes = 0;
1565 adapter->total_rx_packets = 0;
1566 __napi_schedule(&adapter->napi);
1569 return IRQ_HANDLED;
1573 * e1000_intr - Interrupt Handler
1574 * @irq: interrupt number
1575 * @data: pointer to a network interface device structure
1577 static irqreturn_t e1000_intr(int irq, void *data)
1579 struct net_device *netdev = data;
1580 struct e1000_adapter *adapter = netdev_priv(netdev);
1581 struct e1000_hw *hw = &adapter->hw;
1582 u32 rctl, icr = er32(ICR);
1584 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1585 return IRQ_NONE; /* Not our interrupt */
1588 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1589 * not set, then the adapter didn't send an interrupt
1591 if (!(icr & E1000_ICR_INT_ASSERTED))
1592 return IRQ_NONE;
1595 * Interrupt Auto-Mask...upon reading ICR,
1596 * interrupts are masked. No need for the
1597 * IMC write
1600 if (icr & E1000_ICR_LSC) {
1601 hw->mac.get_link_status = 1;
1603 * ICH8 workaround-- Call gig speed drop workaround on cable
1604 * disconnect (LSC) before accessing any PHY registers
1606 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1607 (!(er32(STATUS) & E1000_STATUS_LU)))
1608 schedule_work(&adapter->downshift_task);
1611 * 80003ES2LAN workaround--
1612 * For packet buffer work-around on link down event;
1613 * disable receives here in the ISR and
1614 * reset adapter in watchdog
1616 if (netif_carrier_ok(netdev) &&
1617 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1618 /* disable receives */
1619 rctl = er32(RCTL);
1620 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1621 adapter->flags |= FLAG_RX_RESTART_NOW;
1623 /* guard against interrupt when we're going down */
1624 if (!test_bit(__E1000_DOWN, &adapter->state))
1625 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1628 if (napi_schedule_prep(&adapter->napi)) {
1629 adapter->total_tx_bytes = 0;
1630 adapter->total_tx_packets = 0;
1631 adapter->total_rx_bytes = 0;
1632 adapter->total_rx_packets = 0;
1633 __napi_schedule(&adapter->napi);
1636 return IRQ_HANDLED;
1639 static irqreturn_t e1000_msix_other(int irq, void *data)
1641 struct net_device *netdev = data;
1642 struct e1000_adapter *adapter = netdev_priv(netdev);
1643 struct e1000_hw *hw = &adapter->hw;
1644 u32 icr = er32(ICR);
1646 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1647 if (!test_bit(__E1000_DOWN, &adapter->state))
1648 ew32(IMS, E1000_IMS_OTHER);
1649 return IRQ_NONE;
1652 if (icr & adapter->eiac_mask)
1653 ew32(ICS, (icr & adapter->eiac_mask));
1655 if (icr & E1000_ICR_OTHER) {
1656 if (!(icr & E1000_ICR_LSC))
1657 goto no_link_interrupt;
1658 hw->mac.get_link_status = 1;
1659 /* guard against interrupt when we're going down */
1660 if (!test_bit(__E1000_DOWN, &adapter->state))
1661 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1664 no_link_interrupt:
1665 if (!test_bit(__E1000_DOWN, &adapter->state))
1666 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1668 return IRQ_HANDLED;
1672 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1674 struct net_device *netdev = data;
1675 struct e1000_adapter *adapter = netdev_priv(netdev);
1676 struct e1000_hw *hw = &adapter->hw;
1677 struct e1000_ring *tx_ring = adapter->tx_ring;
1680 adapter->total_tx_bytes = 0;
1681 adapter->total_tx_packets = 0;
1683 if (!e1000_clean_tx_irq(adapter))
1684 /* Ring was not completely cleaned, so fire another interrupt */
1685 ew32(ICS, tx_ring->ims_val);
1687 return IRQ_HANDLED;
1690 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1692 struct net_device *netdev = data;
1693 struct e1000_adapter *adapter = netdev_priv(netdev);
1695 /* Write the ITR value calculated at the end of the
1696 * previous interrupt.
1698 if (adapter->rx_ring->set_itr) {
1699 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1700 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1701 adapter->rx_ring->set_itr = 0;
1704 if (napi_schedule_prep(&adapter->napi)) {
1705 adapter->total_rx_bytes = 0;
1706 adapter->total_rx_packets = 0;
1707 __napi_schedule(&adapter->napi);
1709 return IRQ_HANDLED;
1713 * e1000_configure_msix - Configure MSI-X hardware
1715 * e1000_configure_msix sets up the hardware to properly
1716 * generate MSI-X interrupts.
1718 static void e1000_configure_msix(struct e1000_adapter *adapter)
1720 struct e1000_hw *hw = &adapter->hw;
1721 struct e1000_ring *rx_ring = adapter->rx_ring;
1722 struct e1000_ring *tx_ring = adapter->tx_ring;
1723 int vector = 0;
1724 u32 ctrl_ext, ivar = 0;
1726 adapter->eiac_mask = 0;
1728 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1729 if (hw->mac.type == e1000_82574) {
1730 u32 rfctl = er32(RFCTL);
1731 rfctl |= E1000_RFCTL_ACK_DIS;
1732 ew32(RFCTL, rfctl);
1735 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1736 /* Configure Rx vector */
1737 rx_ring->ims_val = E1000_IMS_RXQ0;
1738 adapter->eiac_mask |= rx_ring->ims_val;
1739 if (rx_ring->itr_val)
1740 writel(1000000000 / (rx_ring->itr_val * 256),
1741 hw->hw_addr + rx_ring->itr_register);
1742 else
1743 writel(1, hw->hw_addr + rx_ring->itr_register);
1744 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1746 /* Configure Tx vector */
1747 tx_ring->ims_val = E1000_IMS_TXQ0;
1748 vector++;
1749 if (tx_ring->itr_val)
1750 writel(1000000000 / (tx_ring->itr_val * 256),
1751 hw->hw_addr + tx_ring->itr_register);
1752 else
1753 writel(1, hw->hw_addr + tx_ring->itr_register);
1754 adapter->eiac_mask |= tx_ring->ims_val;
1755 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1757 /* set vector for Other Causes, e.g. link changes */
1758 vector++;
1759 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1760 if (rx_ring->itr_val)
1761 writel(1000000000 / (rx_ring->itr_val * 256),
1762 hw->hw_addr + E1000_EITR_82574(vector));
1763 else
1764 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1766 /* Cause Tx interrupts on every write back */
1767 ivar |= (1 << 31);
1769 ew32(IVAR, ivar);
1771 /* enable MSI-X PBA support */
1772 ctrl_ext = er32(CTRL_EXT);
1773 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1775 /* Auto-Mask Other interrupts upon ICR read */
1776 #define E1000_EIAC_MASK_82574 0x01F00000
1777 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1778 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1779 ew32(CTRL_EXT, ctrl_ext);
1780 e1e_flush();
1783 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1785 if (adapter->msix_entries) {
1786 pci_disable_msix(adapter->pdev);
1787 kfree(adapter->msix_entries);
1788 adapter->msix_entries = NULL;
1789 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1790 pci_disable_msi(adapter->pdev);
1791 adapter->flags &= ~FLAG_MSI_ENABLED;
1796 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1798 * Attempt to configure interrupts using the best available
1799 * capabilities of the hardware and kernel.
1801 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1803 int err;
1804 int i;
1806 switch (adapter->int_mode) {
1807 case E1000E_INT_MODE_MSIX:
1808 if (adapter->flags & FLAG_HAS_MSIX) {
1809 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1810 adapter->msix_entries = kcalloc(adapter->num_vectors,
1811 sizeof(struct msix_entry),
1812 GFP_KERNEL);
1813 if (adapter->msix_entries) {
1814 for (i = 0; i < adapter->num_vectors; i++)
1815 adapter->msix_entries[i].entry = i;
1817 err = pci_enable_msix(adapter->pdev,
1818 adapter->msix_entries,
1819 adapter->num_vectors);
1820 if (err == 0)
1821 return;
1823 /* MSI-X failed, so fall through and try MSI */
1824 e_err("Failed to initialize MSI-X interrupts. "
1825 "Falling back to MSI interrupts.\n");
1826 e1000e_reset_interrupt_capability(adapter);
1828 adapter->int_mode = E1000E_INT_MODE_MSI;
1829 /* Fall through */
1830 case E1000E_INT_MODE_MSI:
1831 if (!pci_enable_msi(adapter->pdev)) {
1832 adapter->flags |= FLAG_MSI_ENABLED;
1833 } else {
1834 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1835 e_err("Failed to initialize MSI interrupts. Falling "
1836 "back to legacy interrupts.\n");
1838 /* Fall through */
1839 case E1000E_INT_MODE_LEGACY:
1840 /* Don't do anything; this is the system default */
1841 break;
1844 /* store the number of vectors being used */
1845 adapter->num_vectors = 1;
1849 * e1000_request_msix - Initialize MSI-X interrupts
1851 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1852 * kernel.
1854 static int e1000_request_msix(struct e1000_adapter *adapter)
1856 struct net_device *netdev = adapter->netdev;
1857 int err = 0, vector = 0;
1859 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1860 snprintf(adapter->rx_ring->name,
1861 sizeof(adapter->rx_ring->name) - 1,
1862 "%s-rx-0", netdev->name);
1863 else
1864 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1865 err = request_irq(adapter->msix_entries[vector].vector,
1866 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1867 netdev);
1868 if (err)
1869 goto out;
1870 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1871 adapter->rx_ring->itr_val = adapter->itr;
1872 vector++;
1874 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1875 snprintf(adapter->tx_ring->name,
1876 sizeof(adapter->tx_ring->name) - 1,
1877 "%s-tx-0", netdev->name);
1878 else
1879 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1880 err = request_irq(adapter->msix_entries[vector].vector,
1881 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1882 netdev);
1883 if (err)
1884 goto out;
1885 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1886 adapter->tx_ring->itr_val = adapter->itr;
1887 vector++;
1889 err = request_irq(adapter->msix_entries[vector].vector,
1890 e1000_msix_other, 0, netdev->name, netdev);
1891 if (err)
1892 goto out;
1894 e1000_configure_msix(adapter);
1895 return 0;
1896 out:
1897 return err;
1901 * e1000_request_irq - initialize interrupts
1903 * Attempts to configure interrupts using the best available
1904 * capabilities of the hardware and kernel.
1906 static int e1000_request_irq(struct e1000_adapter *adapter)
1908 struct net_device *netdev = adapter->netdev;
1909 int err;
1911 if (adapter->msix_entries) {
1912 err = e1000_request_msix(adapter);
1913 if (!err)
1914 return err;
1915 /* fall back to MSI */
1916 e1000e_reset_interrupt_capability(adapter);
1917 adapter->int_mode = E1000E_INT_MODE_MSI;
1918 e1000e_set_interrupt_capability(adapter);
1920 if (adapter->flags & FLAG_MSI_ENABLED) {
1921 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1922 netdev->name, netdev);
1923 if (!err)
1924 return err;
1926 /* fall back to legacy interrupt */
1927 e1000e_reset_interrupt_capability(adapter);
1928 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1931 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1932 netdev->name, netdev);
1933 if (err)
1934 e_err("Unable to allocate interrupt, Error: %d\n", err);
1936 return err;
1939 static void e1000_free_irq(struct e1000_adapter *adapter)
1941 struct net_device *netdev = adapter->netdev;
1943 if (adapter->msix_entries) {
1944 int vector = 0;
1946 free_irq(adapter->msix_entries[vector].vector, netdev);
1947 vector++;
1949 free_irq(adapter->msix_entries[vector].vector, netdev);
1950 vector++;
1952 /* Other Causes interrupt vector */
1953 free_irq(adapter->msix_entries[vector].vector, netdev);
1954 return;
1957 free_irq(adapter->pdev->irq, netdev);
1961 * e1000_irq_disable - Mask off interrupt generation on the NIC
1963 static void e1000_irq_disable(struct e1000_adapter *adapter)
1965 struct e1000_hw *hw = &adapter->hw;
1967 ew32(IMC, ~0);
1968 if (adapter->msix_entries)
1969 ew32(EIAC_82574, 0);
1970 e1e_flush();
1972 if (adapter->msix_entries) {
1973 int i;
1974 for (i = 0; i < adapter->num_vectors; i++)
1975 synchronize_irq(adapter->msix_entries[i].vector);
1976 } else {
1977 synchronize_irq(adapter->pdev->irq);
1982 * e1000_irq_enable - Enable default interrupt generation settings
1984 static void e1000_irq_enable(struct e1000_adapter *adapter)
1986 struct e1000_hw *hw = &adapter->hw;
1988 if (adapter->msix_entries) {
1989 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1990 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1991 } else {
1992 ew32(IMS, IMS_ENABLE_MASK);
1994 e1e_flush();
1998 * e1000e_get_hw_control - get control of the h/w from f/w
1999 * @adapter: address of board private structure
2001 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2002 * For ASF and Pass Through versions of f/w this means that
2003 * the driver is loaded. For AMT version (only with 82573)
2004 * of the f/w this means that the network i/f is open.
2006 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2008 struct e1000_hw *hw = &adapter->hw;
2009 u32 ctrl_ext;
2010 u32 swsm;
2012 /* Let firmware know the driver has taken over */
2013 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2014 swsm = er32(SWSM);
2015 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2016 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2017 ctrl_ext = er32(CTRL_EXT);
2018 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2023 * e1000e_release_hw_control - release control of the h/w to f/w
2024 * @adapter: address of board private structure
2026 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2027 * For ASF and Pass Through versions of f/w this means that the
2028 * driver is no longer loaded. For AMT version (only with 82573) i
2029 * of the f/w this means that the network i/f is closed.
2032 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2034 struct e1000_hw *hw = &adapter->hw;
2035 u32 ctrl_ext;
2036 u32 swsm;
2038 /* Let firmware taken over control of h/w */
2039 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2040 swsm = er32(SWSM);
2041 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2042 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2043 ctrl_ext = er32(CTRL_EXT);
2044 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2049 * @e1000_alloc_ring - allocate memory for a ring structure
2051 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2052 struct e1000_ring *ring)
2054 struct pci_dev *pdev = adapter->pdev;
2056 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2057 GFP_KERNEL);
2058 if (!ring->desc)
2059 return -ENOMEM;
2061 return 0;
2065 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2066 * @adapter: board private structure
2068 * Return 0 on success, negative on failure
2070 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2072 struct e1000_ring *tx_ring = adapter->tx_ring;
2073 int err = -ENOMEM, size;
2075 size = sizeof(struct e1000_buffer) * tx_ring->count;
2076 tx_ring->buffer_info = vzalloc(size);
2077 if (!tx_ring->buffer_info)
2078 goto err;
2080 /* round up to nearest 4K */
2081 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2082 tx_ring->size = ALIGN(tx_ring->size, 4096);
2084 err = e1000_alloc_ring_dma(adapter, tx_ring);
2085 if (err)
2086 goto err;
2088 tx_ring->next_to_use = 0;
2089 tx_ring->next_to_clean = 0;
2091 return 0;
2092 err:
2093 vfree(tx_ring->buffer_info);
2094 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2095 return err;
2099 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2100 * @adapter: board private structure
2102 * Returns 0 on success, negative on failure
2104 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2106 struct e1000_ring *rx_ring = adapter->rx_ring;
2107 struct e1000_buffer *buffer_info;
2108 int i, size, desc_len, err = -ENOMEM;
2110 size = sizeof(struct e1000_buffer) * rx_ring->count;
2111 rx_ring->buffer_info = vzalloc(size);
2112 if (!rx_ring->buffer_info)
2113 goto err;
2115 for (i = 0; i < rx_ring->count; i++) {
2116 buffer_info = &rx_ring->buffer_info[i];
2117 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2118 sizeof(struct e1000_ps_page),
2119 GFP_KERNEL);
2120 if (!buffer_info->ps_pages)
2121 goto err_pages;
2124 desc_len = sizeof(union e1000_rx_desc_packet_split);
2126 /* Round up to nearest 4K */
2127 rx_ring->size = rx_ring->count * desc_len;
2128 rx_ring->size = ALIGN(rx_ring->size, 4096);
2130 err = e1000_alloc_ring_dma(adapter, rx_ring);
2131 if (err)
2132 goto err_pages;
2134 rx_ring->next_to_clean = 0;
2135 rx_ring->next_to_use = 0;
2136 rx_ring->rx_skb_top = NULL;
2138 return 0;
2140 err_pages:
2141 for (i = 0; i < rx_ring->count; i++) {
2142 buffer_info = &rx_ring->buffer_info[i];
2143 kfree(buffer_info->ps_pages);
2145 err:
2146 vfree(rx_ring->buffer_info);
2147 e_err("Unable to allocate memory for the receive descriptor ring\n");
2148 return err;
2152 * e1000_clean_tx_ring - Free Tx Buffers
2153 * @adapter: board private structure
2155 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2157 struct e1000_ring *tx_ring = adapter->tx_ring;
2158 struct e1000_buffer *buffer_info;
2159 unsigned long size;
2160 unsigned int i;
2162 for (i = 0; i < tx_ring->count; i++) {
2163 buffer_info = &tx_ring->buffer_info[i];
2164 e1000_put_txbuf(adapter, buffer_info);
2167 size = sizeof(struct e1000_buffer) * tx_ring->count;
2168 memset(tx_ring->buffer_info, 0, size);
2170 memset(tx_ring->desc, 0, tx_ring->size);
2172 tx_ring->next_to_use = 0;
2173 tx_ring->next_to_clean = 0;
2175 writel(0, adapter->hw.hw_addr + tx_ring->head);
2176 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2180 * e1000e_free_tx_resources - Free Tx Resources per Queue
2181 * @adapter: board private structure
2183 * Free all transmit software resources
2185 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2187 struct pci_dev *pdev = adapter->pdev;
2188 struct e1000_ring *tx_ring = adapter->tx_ring;
2190 e1000_clean_tx_ring(adapter);
2192 vfree(tx_ring->buffer_info);
2193 tx_ring->buffer_info = NULL;
2195 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2196 tx_ring->dma);
2197 tx_ring->desc = NULL;
2201 * e1000e_free_rx_resources - Free Rx Resources
2202 * @adapter: board private structure
2204 * Free all receive software resources
2207 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2209 struct pci_dev *pdev = adapter->pdev;
2210 struct e1000_ring *rx_ring = adapter->rx_ring;
2211 int i;
2213 e1000_clean_rx_ring(adapter);
2215 for (i = 0; i < rx_ring->count; i++)
2216 kfree(rx_ring->buffer_info[i].ps_pages);
2218 vfree(rx_ring->buffer_info);
2219 rx_ring->buffer_info = NULL;
2221 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2222 rx_ring->dma);
2223 rx_ring->desc = NULL;
2227 * e1000_update_itr - update the dynamic ITR value based on statistics
2228 * @adapter: pointer to adapter
2229 * @itr_setting: current adapter->itr
2230 * @packets: the number of packets during this measurement interval
2231 * @bytes: the number of bytes during this measurement interval
2233 * Stores a new ITR value based on packets and byte
2234 * counts during the last interrupt. The advantage of per interrupt
2235 * computation is faster updates and more accurate ITR for the current
2236 * traffic pattern. Constants in this function were computed
2237 * based on theoretical maximum wire speed and thresholds were set based
2238 * on testing data as well as attempting to minimize response time
2239 * while increasing bulk throughput. This functionality is controlled
2240 * by the InterruptThrottleRate module parameter.
2242 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2243 u16 itr_setting, int packets,
2244 int bytes)
2246 unsigned int retval = itr_setting;
2248 if (packets == 0)
2249 goto update_itr_done;
2251 switch (itr_setting) {
2252 case lowest_latency:
2253 /* handle TSO and jumbo frames */
2254 if (bytes/packets > 8000)
2255 retval = bulk_latency;
2256 else if ((packets < 5) && (bytes > 512))
2257 retval = low_latency;
2258 break;
2259 case low_latency: /* 50 usec aka 20000 ints/s */
2260 if (bytes > 10000) {
2261 /* this if handles the TSO accounting */
2262 if (bytes/packets > 8000)
2263 retval = bulk_latency;
2264 else if ((packets < 10) || ((bytes/packets) > 1200))
2265 retval = bulk_latency;
2266 else if ((packets > 35))
2267 retval = lowest_latency;
2268 } else if (bytes/packets > 2000) {
2269 retval = bulk_latency;
2270 } else if (packets <= 2 && bytes < 512) {
2271 retval = lowest_latency;
2273 break;
2274 case bulk_latency: /* 250 usec aka 4000 ints/s */
2275 if (bytes > 25000) {
2276 if (packets > 35)
2277 retval = low_latency;
2278 } else if (bytes < 6000) {
2279 retval = low_latency;
2281 break;
2284 update_itr_done:
2285 return retval;
2288 static void e1000_set_itr(struct e1000_adapter *adapter)
2290 struct e1000_hw *hw = &adapter->hw;
2291 u16 current_itr;
2292 u32 new_itr = adapter->itr;
2294 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2295 if (adapter->link_speed != SPEED_1000) {
2296 current_itr = 0;
2297 new_itr = 4000;
2298 goto set_itr_now;
2301 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2302 new_itr = 0;
2303 goto set_itr_now;
2306 adapter->tx_itr = e1000_update_itr(adapter,
2307 adapter->tx_itr,
2308 adapter->total_tx_packets,
2309 adapter->total_tx_bytes);
2310 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2311 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2312 adapter->tx_itr = low_latency;
2314 adapter->rx_itr = e1000_update_itr(adapter,
2315 adapter->rx_itr,
2316 adapter->total_rx_packets,
2317 adapter->total_rx_bytes);
2318 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2319 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2320 adapter->rx_itr = low_latency;
2322 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2324 switch (current_itr) {
2325 /* counts and packets in update_itr are dependent on these numbers */
2326 case lowest_latency:
2327 new_itr = 70000;
2328 break;
2329 case low_latency:
2330 new_itr = 20000; /* aka hwitr = ~200 */
2331 break;
2332 case bulk_latency:
2333 new_itr = 4000;
2334 break;
2335 default:
2336 break;
2339 set_itr_now:
2340 if (new_itr != adapter->itr) {
2342 * this attempts to bias the interrupt rate towards Bulk
2343 * by adding intermediate steps when interrupt rate is
2344 * increasing
2346 new_itr = new_itr > adapter->itr ?
2347 min(adapter->itr + (new_itr >> 2), new_itr) :
2348 new_itr;
2349 adapter->itr = new_itr;
2350 adapter->rx_ring->itr_val = new_itr;
2351 if (adapter->msix_entries)
2352 adapter->rx_ring->set_itr = 1;
2353 else
2354 if (new_itr)
2355 ew32(ITR, 1000000000 / (new_itr * 256));
2356 else
2357 ew32(ITR, 0);
2362 * e1000_alloc_queues - Allocate memory for all rings
2363 * @adapter: board private structure to initialize
2365 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2367 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2368 if (!adapter->tx_ring)
2369 goto err;
2371 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2372 if (!adapter->rx_ring)
2373 goto err;
2375 return 0;
2376 err:
2377 e_err("Unable to allocate memory for queues\n");
2378 kfree(adapter->rx_ring);
2379 kfree(adapter->tx_ring);
2380 return -ENOMEM;
2384 * e1000_clean - NAPI Rx polling callback
2385 * @napi: struct associated with this polling callback
2386 * @budget: amount of packets driver is allowed to process this poll
2388 static int e1000_clean(struct napi_struct *napi, int budget)
2390 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2391 struct e1000_hw *hw = &adapter->hw;
2392 struct net_device *poll_dev = adapter->netdev;
2393 int tx_cleaned = 1, work_done = 0;
2395 adapter = netdev_priv(poll_dev);
2397 if (adapter->msix_entries &&
2398 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2399 goto clean_rx;
2401 tx_cleaned = e1000_clean_tx_irq(adapter);
2403 clean_rx:
2404 adapter->clean_rx(adapter, &work_done, budget);
2406 if (!tx_cleaned)
2407 work_done = budget;
2409 /* If budget not fully consumed, exit the polling mode */
2410 if (work_done < budget) {
2411 if (adapter->itr_setting & 3)
2412 e1000_set_itr(adapter);
2413 napi_complete(napi);
2414 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2415 if (adapter->msix_entries)
2416 ew32(IMS, adapter->rx_ring->ims_val);
2417 else
2418 e1000_irq_enable(adapter);
2422 return work_done;
2425 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2427 struct e1000_adapter *adapter = netdev_priv(netdev);
2428 struct e1000_hw *hw = &adapter->hw;
2429 u32 vfta, index;
2431 /* don't update vlan cookie if already programmed */
2432 if ((adapter->hw.mng_cookie.status &
2433 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2434 (vid == adapter->mng_vlan_id))
2435 return;
2437 /* add VID to filter table */
2438 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2439 index = (vid >> 5) & 0x7F;
2440 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2441 vfta |= (1 << (vid & 0x1F));
2442 hw->mac.ops.write_vfta(hw, index, vfta);
2445 set_bit(vid, adapter->active_vlans);
2448 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2450 struct e1000_adapter *adapter = netdev_priv(netdev);
2451 struct e1000_hw *hw = &adapter->hw;
2452 u32 vfta, index;
2454 if ((adapter->hw.mng_cookie.status &
2455 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2456 (vid == adapter->mng_vlan_id)) {
2457 /* release control to f/w */
2458 e1000e_release_hw_control(adapter);
2459 return;
2462 /* remove VID from filter table */
2463 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2464 index = (vid >> 5) & 0x7F;
2465 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2466 vfta &= ~(1 << (vid & 0x1F));
2467 hw->mac.ops.write_vfta(hw, index, vfta);
2470 clear_bit(vid, adapter->active_vlans);
2474 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2475 * @adapter: board private structure to initialize
2477 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2479 struct net_device *netdev = adapter->netdev;
2480 struct e1000_hw *hw = &adapter->hw;
2481 u32 rctl;
2483 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2484 /* disable VLAN receive filtering */
2485 rctl = er32(RCTL);
2486 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2487 ew32(RCTL, rctl);
2489 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2490 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2491 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2497 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2498 * @adapter: board private structure to initialize
2500 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2502 struct e1000_hw *hw = &adapter->hw;
2503 u32 rctl;
2505 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2506 /* enable VLAN receive filtering */
2507 rctl = er32(RCTL);
2508 rctl |= E1000_RCTL_VFE;
2509 rctl &= ~E1000_RCTL_CFIEN;
2510 ew32(RCTL, rctl);
2515 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2516 * @adapter: board private structure to initialize
2518 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2520 struct e1000_hw *hw = &adapter->hw;
2521 u32 ctrl;
2523 /* disable VLAN tag insert/strip */
2524 ctrl = er32(CTRL);
2525 ctrl &= ~E1000_CTRL_VME;
2526 ew32(CTRL, ctrl);
2530 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2531 * @adapter: board private structure to initialize
2533 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2535 struct e1000_hw *hw = &adapter->hw;
2536 u32 ctrl;
2538 /* enable VLAN tag insert/strip */
2539 ctrl = er32(CTRL);
2540 ctrl |= E1000_CTRL_VME;
2541 ew32(CTRL, ctrl);
2544 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2546 struct net_device *netdev = adapter->netdev;
2547 u16 vid = adapter->hw.mng_cookie.vlan_id;
2548 u16 old_vid = adapter->mng_vlan_id;
2550 if (adapter->hw.mng_cookie.status &
2551 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2552 e1000_vlan_rx_add_vid(netdev, vid);
2553 adapter->mng_vlan_id = vid;
2556 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2557 e1000_vlan_rx_kill_vid(netdev, old_vid);
2560 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2562 u16 vid;
2564 e1000_vlan_rx_add_vid(adapter->netdev, 0);
2566 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2567 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2570 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2572 struct e1000_hw *hw = &adapter->hw;
2573 u32 manc, manc2h, mdef, i, j;
2575 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2576 return;
2578 manc = er32(MANC);
2581 * enable receiving management packets to the host. this will probably
2582 * generate destination unreachable messages from the host OS, but
2583 * the packets will be handled on SMBUS
2585 manc |= E1000_MANC_EN_MNG2HOST;
2586 manc2h = er32(MANC2H);
2588 switch (hw->mac.type) {
2589 default:
2590 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2591 break;
2592 case e1000_82574:
2593 case e1000_82583:
2595 * Check if IPMI pass-through decision filter already exists;
2596 * if so, enable it.
2598 for (i = 0, j = 0; i < 8; i++) {
2599 mdef = er32(MDEF(i));
2601 /* Ignore filters with anything other than IPMI ports */
2602 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2603 continue;
2605 /* Enable this decision filter in MANC2H */
2606 if (mdef)
2607 manc2h |= (1 << i);
2609 j |= mdef;
2612 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2613 break;
2615 /* Create new decision filter in an empty filter */
2616 for (i = 0, j = 0; i < 8; i++)
2617 if (er32(MDEF(i)) == 0) {
2618 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2619 E1000_MDEF_PORT_664));
2620 manc2h |= (1 << 1);
2621 j++;
2622 break;
2625 if (!j)
2626 e_warn("Unable to create IPMI pass-through filter\n");
2627 break;
2630 ew32(MANC2H, manc2h);
2631 ew32(MANC, manc);
2635 * e1000_configure_tx - Configure Transmit Unit after Reset
2636 * @adapter: board private structure
2638 * Configure the Tx unit of the MAC after a reset.
2640 static void e1000_configure_tx(struct e1000_adapter *adapter)
2642 struct e1000_hw *hw = &adapter->hw;
2643 struct e1000_ring *tx_ring = adapter->tx_ring;
2644 u64 tdba;
2645 u32 tdlen, tctl, tipg, tarc;
2646 u32 ipgr1, ipgr2;
2648 /* Setup the HW Tx Head and Tail descriptor pointers */
2649 tdba = tx_ring->dma;
2650 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2651 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2652 ew32(TDBAH, (tdba >> 32));
2653 ew32(TDLEN, tdlen);
2654 ew32(TDH, 0);
2655 ew32(TDT, 0);
2656 tx_ring->head = E1000_TDH;
2657 tx_ring->tail = E1000_TDT;
2659 /* Set the default values for the Tx Inter Packet Gap timer */
2660 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2661 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2662 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2664 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2665 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2667 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2668 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2669 ew32(TIPG, tipg);
2671 /* Set the Tx Interrupt Delay register */
2672 ew32(TIDV, adapter->tx_int_delay);
2673 /* Tx irq moderation */
2674 ew32(TADV, adapter->tx_abs_int_delay);
2676 if (adapter->flags2 & FLAG2_DMA_BURST) {
2677 u32 txdctl = er32(TXDCTL(0));
2678 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2679 E1000_TXDCTL_WTHRESH);
2681 * set up some performance related parameters to encourage the
2682 * hardware to use the bus more efficiently in bursts, depends
2683 * on the tx_int_delay to be enabled,
2684 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2685 * hthresh = 1 ==> prefetch when one or more available
2686 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2687 * BEWARE: this seems to work but should be considered first if
2688 * there are Tx hangs or other Tx related bugs
2690 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2691 ew32(TXDCTL(0), txdctl);
2692 /* erratum work around: set txdctl the same for both queues */
2693 ew32(TXDCTL(1), txdctl);
2696 /* Program the Transmit Control Register */
2697 tctl = er32(TCTL);
2698 tctl &= ~E1000_TCTL_CT;
2699 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2700 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2702 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2703 tarc = er32(TARC(0));
2705 * set the speed mode bit, we'll clear it if we're not at
2706 * gigabit link later
2708 #define SPEED_MODE_BIT (1 << 21)
2709 tarc |= SPEED_MODE_BIT;
2710 ew32(TARC(0), tarc);
2713 /* errata: program both queues to unweighted RR */
2714 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2715 tarc = er32(TARC(0));
2716 tarc |= 1;
2717 ew32(TARC(0), tarc);
2718 tarc = er32(TARC(1));
2719 tarc |= 1;
2720 ew32(TARC(1), tarc);
2723 /* Setup Transmit Descriptor Settings for eop descriptor */
2724 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2726 /* only set IDE if we are delaying interrupts using the timers */
2727 if (adapter->tx_int_delay)
2728 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2730 /* enable Report Status bit */
2731 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2733 ew32(TCTL, tctl);
2735 e1000e_config_collision_dist(hw);
2739 * e1000_setup_rctl - configure the receive control registers
2740 * @adapter: Board private structure
2742 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2743 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2744 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2746 struct e1000_hw *hw = &adapter->hw;
2747 u32 rctl, rfctl;
2748 u32 pages = 0;
2750 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2751 if (hw->mac.type == e1000_pch2lan) {
2752 s32 ret_val;
2754 if (adapter->netdev->mtu > ETH_DATA_LEN)
2755 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2756 else
2757 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2759 if (ret_val)
2760 e_dbg("failed to enable jumbo frame workaround mode\n");
2763 /* Program MC offset vector base */
2764 rctl = er32(RCTL);
2765 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2766 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2767 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2768 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2770 /* Do not Store bad packets */
2771 rctl &= ~E1000_RCTL_SBP;
2773 /* Enable Long Packet receive */
2774 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2775 rctl &= ~E1000_RCTL_LPE;
2776 else
2777 rctl |= E1000_RCTL_LPE;
2779 /* Some systems expect that the CRC is included in SMBUS traffic. The
2780 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2781 * host memory when this is enabled
2783 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2784 rctl |= E1000_RCTL_SECRC;
2786 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2787 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2788 u16 phy_data;
2790 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2791 phy_data &= 0xfff8;
2792 phy_data |= (1 << 2);
2793 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2795 e1e_rphy(hw, 22, &phy_data);
2796 phy_data &= 0x0fff;
2797 phy_data |= (1 << 14);
2798 e1e_wphy(hw, 0x10, 0x2823);
2799 e1e_wphy(hw, 0x11, 0x0003);
2800 e1e_wphy(hw, 22, phy_data);
2803 /* Setup buffer sizes */
2804 rctl &= ~E1000_RCTL_SZ_4096;
2805 rctl |= E1000_RCTL_BSEX;
2806 switch (adapter->rx_buffer_len) {
2807 case 2048:
2808 default:
2809 rctl |= E1000_RCTL_SZ_2048;
2810 rctl &= ~E1000_RCTL_BSEX;
2811 break;
2812 case 4096:
2813 rctl |= E1000_RCTL_SZ_4096;
2814 break;
2815 case 8192:
2816 rctl |= E1000_RCTL_SZ_8192;
2817 break;
2818 case 16384:
2819 rctl |= E1000_RCTL_SZ_16384;
2820 break;
2824 * 82571 and greater support packet-split where the protocol
2825 * header is placed in skb->data and the packet data is
2826 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2827 * In the case of a non-split, skb->data is linearly filled,
2828 * followed by the page buffers. Therefore, skb->data is
2829 * sized to hold the largest protocol header.
2831 * allocations using alloc_page take too long for regular MTU
2832 * so only enable packet split for jumbo frames
2834 * Using pages when the page size is greater than 16k wastes
2835 * a lot of memory, since we allocate 3 pages at all times
2836 * per packet.
2838 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2839 if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2840 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2841 adapter->rx_ps_pages = pages;
2842 else
2843 adapter->rx_ps_pages = 0;
2845 if (adapter->rx_ps_pages) {
2846 u32 psrctl = 0;
2848 /* Configure extra packet-split registers */
2849 rfctl = er32(RFCTL);
2850 rfctl |= E1000_RFCTL_EXTEN;
2852 * disable packet split support for IPv6 extension headers,
2853 * because some malformed IPv6 headers can hang the Rx
2855 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2856 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2858 ew32(RFCTL, rfctl);
2860 /* Enable Packet split descriptors */
2861 rctl |= E1000_RCTL_DTYP_PS;
2863 psrctl |= adapter->rx_ps_bsize0 >>
2864 E1000_PSRCTL_BSIZE0_SHIFT;
2866 switch (adapter->rx_ps_pages) {
2867 case 3:
2868 psrctl |= PAGE_SIZE <<
2869 E1000_PSRCTL_BSIZE3_SHIFT;
2870 case 2:
2871 psrctl |= PAGE_SIZE <<
2872 E1000_PSRCTL_BSIZE2_SHIFT;
2873 case 1:
2874 psrctl |= PAGE_SIZE >>
2875 E1000_PSRCTL_BSIZE1_SHIFT;
2876 break;
2879 ew32(PSRCTL, psrctl);
2882 ew32(RCTL, rctl);
2883 /* just started the receive unit, no need to restart */
2884 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2888 * e1000_configure_rx - Configure Receive Unit after Reset
2889 * @adapter: board private structure
2891 * Configure the Rx unit of the MAC after a reset.
2893 static void e1000_configure_rx(struct e1000_adapter *adapter)
2895 struct e1000_hw *hw = &adapter->hw;
2896 struct e1000_ring *rx_ring = adapter->rx_ring;
2897 u64 rdba;
2898 u32 rdlen, rctl, rxcsum, ctrl_ext;
2900 if (adapter->rx_ps_pages) {
2901 /* this is a 32 byte descriptor */
2902 rdlen = rx_ring->count *
2903 sizeof(union e1000_rx_desc_packet_split);
2904 adapter->clean_rx = e1000_clean_rx_irq_ps;
2905 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2906 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2907 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2908 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2909 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2910 } else {
2911 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2912 adapter->clean_rx = e1000_clean_rx_irq;
2913 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2916 /* disable receives while setting up the descriptors */
2917 rctl = er32(RCTL);
2918 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
2919 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2920 e1e_flush();
2921 usleep_range(10000, 20000);
2923 if (adapter->flags2 & FLAG2_DMA_BURST) {
2925 * set the writeback threshold (only takes effect if the RDTR
2926 * is set). set GRAN=1 and write back up to 0x4 worth, and
2927 * enable prefetching of 0x20 Rx descriptors
2928 * granularity = 01
2929 * wthresh = 04,
2930 * hthresh = 04,
2931 * pthresh = 0x20
2933 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
2934 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
2937 * override the delay timers for enabling bursting, only if
2938 * the value was not set by the user via module options
2940 if (adapter->rx_int_delay == DEFAULT_RDTR)
2941 adapter->rx_int_delay = BURST_RDTR;
2942 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
2943 adapter->rx_abs_int_delay = BURST_RADV;
2946 /* set the Receive Delay Timer Register */
2947 ew32(RDTR, adapter->rx_int_delay);
2949 /* irq moderation */
2950 ew32(RADV, adapter->rx_abs_int_delay);
2951 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2952 ew32(ITR, 1000000000 / (adapter->itr * 256));
2954 ctrl_ext = er32(CTRL_EXT);
2955 /* Auto-Mask interrupts upon ICR access */
2956 ctrl_ext |= E1000_CTRL_EXT_IAME;
2957 ew32(IAM, 0xffffffff);
2958 ew32(CTRL_EXT, ctrl_ext);
2959 e1e_flush();
2962 * Setup the HW Rx Head and Tail Descriptor Pointers and
2963 * the Base and Length of the Rx Descriptor Ring
2965 rdba = rx_ring->dma;
2966 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2967 ew32(RDBAH, (rdba >> 32));
2968 ew32(RDLEN, rdlen);
2969 ew32(RDH, 0);
2970 ew32(RDT, 0);
2971 rx_ring->head = E1000_RDH;
2972 rx_ring->tail = E1000_RDT;
2974 /* Enable Receive Checksum Offload for TCP and UDP */
2975 rxcsum = er32(RXCSUM);
2976 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2977 rxcsum |= E1000_RXCSUM_TUOFL;
2980 * IPv4 payload checksum for UDP fragments must be
2981 * used in conjunction with packet-split.
2983 if (adapter->rx_ps_pages)
2984 rxcsum |= E1000_RXCSUM_IPPCSE;
2985 } else {
2986 rxcsum &= ~E1000_RXCSUM_TUOFL;
2987 /* no need to clear IPPCSE as it defaults to 0 */
2989 ew32(RXCSUM, rxcsum);
2992 * Enable early receives on supported devices, only takes effect when
2993 * packet size is equal or larger than the specified value (in 8 byte
2994 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2996 if ((adapter->flags & FLAG_HAS_ERT) ||
2997 (adapter->hw.mac.type == e1000_pch2lan)) {
2998 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2999 u32 rxdctl = er32(RXDCTL(0));
3000 ew32(RXDCTL(0), rxdctl | 0x3);
3001 if (adapter->flags & FLAG_HAS_ERT)
3002 ew32(ERT, E1000_ERT_2048 | (1 << 13));
3004 * With jumbo frames and early-receive enabled,
3005 * excessive C-state transition latencies result in
3006 * dropped transactions.
3008 pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3009 } else {
3010 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3011 PM_QOS_DEFAULT_VALUE);
3015 /* Enable Receives */
3016 ew32(RCTL, rctl);
3020 * e1000_update_mc_addr_list - Update Multicast addresses
3021 * @hw: pointer to the HW structure
3022 * @mc_addr_list: array of multicast addresses to program
3023 * @mc_addr_count: number of multicast addresses to program
3025 * Updates the Multicast Table Array.
3026 * The caller must have a packed mc_addr_list of multicast addresses.
3028 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3029 u32 mc_addr_count)
3031 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3035 * e1000_set_multi - Multicast and Promiscuous mode set
3036 * @netdev: network interface device structure
3038 * The set_multi entry point is called whenever the multicast address
3039 * list or the network interface flags are updated. This routine is
3040 * responsible for configuring the hardware for proper multicast,
3041 * promiscuous mode, and all-multi behavior.
3043 static void e1000_set_multi(struct net_device *netdev)
3045 struct e1000_adapter *adapter = netdev_priv(netdev);
3046 struct e1000_hw *hw = &adapter->hw;
3047 struct netdev_hw_addr *ha;
3048 u8 *mta_list;
3049 u32 rctl;
3051 /* Check for Promiscuous and All Multicast modes */
3053 rctl = er32(RCTL);
3055 if (netdev->flags & IFF_PROMISC) {
3056 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3057 rctl &= ~E1000_RCTL_VFE;
3058 /* Do not hardware filter VLANs in promisc mode */
3059 e1000e_vlan_filter_disable(adapter);
3060 } else {
3061 if (netdev->flags & IFF_ALLMULTI) {
3062 rctl |= E1000_RCTL_MPE;
3063 rctl &= ~E1000_RCTL_UPE;
3064 } else {
3065 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3067 e1000e_vlan_filter_enable(adapter);
3070 ew32(RCTL, rctl);
3072 if (!netdev_mc_empty(netdev)) {
3073 int i = 0;
3075 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3076 if (!mta_list)
3077 return;
3079 /* prepare a packed array of only addresses. */
3080 netdev_for_each_mc_addr(ha, netdev)
3081 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3083 e1000_update_mc_addr_list(hw, mta_list, i);
3084 kfree(mta_list);
3085 } else {
3087 * if we're called from probe, we might not have
3088 * anything to do here, so clear out the list
3090 e1000_update_mc_addr_list(hw, NULL, 0);
3093 if (netdev->features & NETIF_F_HW_VLAN_RX)
3094 e1000e_vlan_strip_enable(adapter);
3095 else
3096 e1000e_vlan_strip_disable(adapter);
3100 * e1000_configure - configure the hardware for Rx and Tx
3101 * @adapter: private board structure
3103 static void e1000_configure(struct e1000_adapter *adapter)
3105 e1000_set_multi(adapter->netdev);
3107 e1000_restore_vlan(adapter);
3108 e1000_init_manageability_pt(adapter);
3110 e1000_configure_tx(adapter);
3111 e1000_setup_rctl(adapter);
3112 e1000_configure_rx(adapter);
3113 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
3114 GFP_KERNEL);
3118 * e1000e_power_up_phy - restore link in case the phy was powered down
3119 * @adapter: address of board private structure
3121 * The phy may be powered down to save power and turn off link when the
3122 * driver is unloaded and wake on lan is not enabled (among others)
3123 * *** this routine MUST be followed by a call to e1000e_reset ***
3125 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3127 if (adapter->hw.phy.ops.power_up)
3128 adapter->hw.phy.ops.power_up(&adapter->hw);
3130 adapter->hw.mac.ops.setup_link(&adapter->hw);
3134 * e1000_power_down_phy - Power down the PHY
3136 * Power down the PHY so no link is implied when interface is down.
3137 * The PHY cannot be powered down if management or WoL is active.
3139 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3141 /* WoL is enabled */
3142 if (adapter->wol)
3143 return;
3145 if (adapter->hw.phy.ops.power_down)
3146 adapter->hw.phy.ops.power_down(&adapter->hw);
3150 * e1000e_reset - bring the hardware into a known good state
3152 * This function boots the hardware and enables some settings that
3153 * require a configuration cycle of the hardware - those cannot be
3154 * set/changed during runtime. After reset the device needs to be
3155 * properly configured for Rx, Tx etc.
3157 void e1000e_reset(struct e1000_adapter *adapter)
3159 struct e1000_mac_info *mac = &adapter->hw.mac;
3160 struct e1000_fc_info *fc = &adapter->hw.fc;
3161 struct e1000_hw *hw = &adapter->hw;
3162 u32 tx_space, min_tx_space, min_rx_space;
3163 u32 pba = adapter->pba;
3164 u16 hwm;
3166 /* reset Packet Buffer Allocation to default */
3167 ew32(PBA, pba);
3169 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3171 * To maintain wire speed transmits, the Tx FIFO should be
3172 * large enough to accommodate two full transmit packets,
3173 * rounded up to the next 1KB and expressed in KB. Likewise,
3174 * the Rx FIFO should be large enough to accommodate at least
3175 * one full receive packet and is similarly rounded up and
3176 * expressed in KB.
3178 pba = er32(PBA);
3179 /* upper 16 bits has Tx packet buffer allocation size in KB */
3180 tx_space = pba >> 16;
3181 /* lower 16 bits has Rx packet buffer allocation size in KB */
3182 pba &= 0xffff;
3184 * the Tx fifo also stores 16 bytes of information about the Tx
3185 * but don't include ethernet FCS because hardware appends it
3187 min_tx_space = (adapter->max_frame_size +
3188 sizeof(struct e1000_tx_desc) -
3189 ETH_FCS_LEN) * 2;
3190 min_tx_space = ALIGN(min_tx_space, 1024);
3191 min_tx_space >>= 10;
3192 /* software strips receive CRC, so leave room for it */
3193 min_rx_space = adapter->max_frame_size;
3194 min_rx_space = ALIGN(min_rx_space, 1024);
3195 min_rx_space >>= 10;
3198 * If current Tx allocation is less than the min Tx FIFO size,
3199 * and the min Tx FIFO size is less than the current Rx FIFO
3200 * allocation, take space away from current Rx allocation
3202 if ((tx_space < min_tx_space) &&
3203 ((min_tx_space - tx_space) < pba)) {
3204 pba -= min_tx_space - tx_space;
3207 * if short on Rx space, Rx wins and must trump Tx
3208 * adjustment or use Early Receive if available
3210 if ((pba < min_rx_space) &&
3211 (!(adapter->flags & FLAG_HAS_ERT)))
3212 /* ERT enabled in e1000_configure_rx */
3213 pba = min_rx_space;
3216 ew32(PBA, pba);
3220 * flow control settings
3222 * The high water mark must be low enough to fit one full frame
3223 * (or the size used for early receive) above it in the Rx FIFO.
3224 * Set it to the lower of:
3225 * - 90% of the Rx FIFO size, and
3226 * - the full Rx FIFO size minus the early receive size (for parts
3227 * with ERT support assuming ERT set to E1000_ERT_2048), or
3228 * - the full Rx FIFO size minus one full frame
3230 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3231 fc->pause_time = 0xFFFF;
3232 else
3233 fc->pause_time = E1000_FC_PAUSE_TIME;
3234 fc->send_xon = 1;
3235 fc->current_mode = fc->requested_mode;
3237 switch (hw->mac.type) {
3238 default:
3239 if ((adapter->flags & FLAG_HAS_ERT) &&
3240 (adapter->netdev->mtu > ETH_DATA_LEN))
3241 hwm = min(((pba << 10) * 9 / 10),
3242 ((pba << 10) - (E1000_ERT_2048 << 3)));
3243 else
3244 hwm = min(((pba << 10) * 9 / 10),
3245 ((pba << 10) - adapter->max_frame_size));
3247 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3248 fc->low_water = fc->high_water - 8;
3249 break;
3250 case e1000_pchlan:
3252 * Workaround PCH LOM adapter hangs with certain network
3253 * loads. If hangs persist, try disabling Tx flow control.
3255 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3256 fc->high_water = 0x3500;
3257 fc->low_water = 0x1500;
3258 } else {
3259 fc->high_water = 0x5000;
3260 fc->low_water = 0x3000;
3262 fc->refresh_time = 0x1000;
3263 break;
3264 case e1000_pch2lan:
3265 fc->high_water = 0x05C20;
3266 fc->low_water = 0x05048;
3267 fc->pause_time = 0x0650;
3268 fc->refresh_time = 0x0400;
3269 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3270 pba = 14;
3271 ew32(PBA, pba);
3273 break;
3277 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3278 * fit in receive buffer and early-receive not supported.
3280 if (adapter->itr_setting & 0x3) {
3281 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3282 !(adapter->flags & FLAG_HAS_ERT)) {
3283 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3284 dev_info(&adapter->pdev->dev,
3285 "Interrupt Throttle Rate turned off\n");
3286 adapter->flags2 |= FLAG2_DISABLE_AIM;
3287 ew32(ITR, 0);
3289 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3290 dev_info(&adapter->pdev->dev,
3291 "Interrupt Throttle Rate turned on\n");
3292 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3293 adapter->itr = 20000;
3294 ew32(ITR, 1000000000 / (adapter->itr * 256));
3298 /* Allow time for pending master requests to run */
3299 mac->ops.reset_hw(hw);
3302 * For parts with AMT enabled, let the firmware know
3303 * that the network interface is in control
3305 if (adapter->flags & FLAG_HAS_AMT)
3306 e1000e_get_hw_control(adapter);
3308 ew32(WUC, 0);
3310 if (mac->ops.init_hw(hw))
3311 e_err("Hardware Error\n");
3313 e1000_update_mng_vlan(adapter);
3315 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3316 ew32(VET, ETH_P_8021Q);
3318 e1000e_reset_adaptive(hw);
3320 if (!netif_running(adapter->netdev) &&
3321 !test_bit(__E1000_TESTING, &adapter->state)) {
3322 e1000_power_down_phy(adapter);
3323 return;
3326 e1000_get_phy_info(hw);
3328 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3329 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3330 u16 phy_data = 0;
3332 * speed up time to link by disabling smart power down, ignore
3333 * the return value of this function because there is nothing
3334 * different we would do if it failed
3336 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3337 phy_data &= ~IGP02E1000_PM_SPD;
3338 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3342 int e1000e_up(struct e1000_adapter *adapter)
3344 struct e1000_hw *hw = &adapter->hw;
3346 /* hardware has been reset, we need to reload some things */
3347 e1000_configure(adapter);
3349 clear_bit(__E1000_DOWN, &adapter->state);
3351 napi_enable(&adapter->napi);
3352 if (adapter->msix_entries)
3353 e1000_configure_msix(adapter);
3354 e1000_irq_enable(adapter);
3356 netif_start_queue(adapter->netdev);
3358 /* fire a link change interrupt to start the watchdog */
3359 if (adapter->msix_entries)
3360 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3361 else
3362 ew32(ICS, E1000_ICS_LSC);
3364 return 0;
3367 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3369 struct e1000_hw *hw = &adapter->hw;
3371 if (!(adapter->flags2 & FLAG2_DMA_BURST))
3372 return;
3374 /* flush pending descriptor writebacks to memory */
3375 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3376 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3378 /* execute the writes immediately */
3379 e1e_flush();
3382 static void e1000e_update_stats(struct e1000_adapter *adapter);
3384 void e1000e_down(struct e1000_adapter *adapter)
3386 struct net_device *netdev = adapter->netdev;
3387 struct e1000_hw *hw = &adapter->hw;
3388 u32 tctl, rctl;
3391 * signal that we're down so the interrupt handler does not
3392 * reschedule our watchdog timer
3394 set_bit(__E1000_DOWN, &adapter->state);
3396 /* disable receives in the hardware */
3397 rctl = er32(RCTL);
3398 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3399 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3400 /* flush and sleep below */
3402 netif_stop_queue(netdev);
3404 /* disable transmits in the hardware */
3405 tctl = er32(TCTL);
3406 tctl &= ~E1000_TCTL_EN;
3407 ew32(TCTL, tctl);
3409 /* flush both disables and wait for them to finish */
3410 e1e_flush();
3411 usleep_range(10000, 20000);
3413 napi_disable(&adapter->napi);
3414 e1000_irq_disable(adapter);
3416 del_timer_sync(&adapter->watchdog_timer);
3417 del_timer_sync(&adapter->phy_info_timer);
3419 netif_carrier_off(netdev);
3421 spin_lock(&adapter->stats64_lock);
3422 e1000e_update_stats(adapter);
3423 spin_unlock(&adapter->stats64_lock);
3425 e1000e_flush_descriptors(adapter);
3426 e1000_clean_tx_ring(adapter);
3427 e1000_clean_rx_ring(adapter);
3429 adapter->link_speed = 0;
3430 adapter->link_duplex = 0;
3432 if (!pci_channel_offline(adapter->pdev))
3433 e1000e_reset(adapter);
3436 * TODO: for power management, we could drop the link and
3437 * pci_disable_device here.
3441 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3443 might_sleep();
3444 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3445 usleep_range(1000, 2000);
3446 e1000e_down(adapter);
3447 e1000e_up(adapter);
3448 clear_bit(__E1000_RESETTING, &adapter->state);
3452 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3453 * @adapter: board private structure to initialize
3455 * e1000_sw_init initializes the Adapter private data structure.
3456 * Fields are initialized based on PCI device information and
3457 * OS network device settings (MTU size).
3459 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3461 struct net_device *netdev = adapter->netdev;
3463 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3464 adapter->rx_ps_bsize0 = 128;
3465 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3466 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3468 spin_lock_init(&adapter->stats64_lock);
3470 e1000e_set_interrupt_capability(adapter);
3472 if (e1000_alloc_queues(adapter))
3473 return -ENOMEM;
3475 /* Explicitly disable IRQ since the NIC can be in any state. */
3476 e1000_irq_disable(adapter);
3478 set_bit(__E1000_DOWN, &adapter->state);
3479 return 0;
3483 * e1000_intr_msi_test - Interrupt Handler
3484 * @irq: interrupt number
3485 * @data: pointer to a network interface device structure
3487 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3489 struct net_device *netdev = data;
3490 struct e1000_adapter *adapter = netdev_priv(netdev);
3491 struct e1000_hw *hw = &adapter->hw;
3492 u32 icr = er32(ICR);
3494 e_dbg("icr is %08X\n", icr);
3495 if (icr & E1000_ICR_RXSEQ) {
3496 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3497 wmb();
3500 return IRQ_HANDLED;
3504 * e1000_test_msi_interrupt - Returns 0 for successful test
3505 * @adapter: board private struct
3507 * code flow taken from tg3.c
3509 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3511 struct net_device *netdev = adapter->netdev;
3512 struct e1000_hw *hw = &adapter->hw;
3513 int err;
3515 /* poll_enable hasn't been called yet, so don't need disable */
3516 /* clear any pending events */
3517 er32(ICR);
3519 /* free the real vector and request a test handler */
3520 e1000_free_irq(adapter);
3521 e1000e_reset_interrupt_capability(adapter);
3523 /* Assume that the test fails, if it succeeds then the test
3524 * MSI irq handler will unset this flag */
3525 adapter->flags |= FLAG_MSI_TEST_FAILED;
3527 err = pci_enable_msi(adapter->pdev);
3528 if (err)
3529 goto msi_test_failed;
3531 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3532 netdev->name, netdev);
3533 if (err) {
3534 pci_disable_msi(adapter->pdev);
3535 goto msi_test_failed;
3538 wmb();
3540 e1000_irq_enable(adapter);
3542 /* fire an unusual interrupt on the test handler */
3543 ew32(ICS, E1000_ICS_RXSEQ);
3544 e1e_flush();
3545 msleep(50);
3547 e1000_irq_disable(adapter);
3549 rmb();
3551 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3552 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3553 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3554 } else
3555 e_dbg("MSI interrupt test succeeded!\n");
3557 free_irq(adapter->pdev->irq, netdev);
3558 pci_disable_msi(adapter->pdev);
3560 msi_test_failed:
3561 e1000e_set_interrupt_capability(adapter);
3562 return e1000_request_irq(adapter);
3566 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3567 * @adapter: board private struct
3569 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3571 static int e1000_test_msi(struct e1000_adapter *adapter)
3573 int err;
3574 u16 pci_cmd;
3576 if (!(adapter->flags & FLAG_MSI_ENABLED))
3577 return 0;
3579 /* disable SERR in case the MSI write causes a master abort */
3580 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3581 if (pci_cmd & PCI_COMMAND_SERR)
3582 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3583 pci_cmd & ~PCI_COMMAND_SERR);
3585 err = e1000_test_msi_interrupt(adapter);
3587 /* re-enable SERR */
3588 if (pci_cmd & PCI_COMMAND_SERR) {
3589 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3590 pci_cmd |= PCI_COMMAND_SERR;
3591 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3594 return err;
3598 * e1000_open - Called when a network interface is made active
3599 * @netdev: network interface device structure
3601 * Returns 0 on success, negative value on failure
3603 * The open entry point is called when a network interface is made
3604 * active by the system (IFF_UP). At this point all resources needed
3605 * for transmit and receive operations are allocated, the interrupt
3606 * handler is registered with the OS, the watchdog timer is started,
3607 * and the stack is notified that the interface is ready.
3609 static int e1000_open(struct net_device *netdev)
3611 struct e1000_adapter *adapter = netdev_priv(netdev);
3612 struct e1000_hw *hw = &adapter->hw;
3613 struct pci_dev *pdev = adapter->pdev;
3614 int err;
3616 /* disallow open during test */
3617 if (test_bit(__E1000_TESTING, &adapter->state))
3618 return -EBUSY;
3620 pm_runtime_get_sync(&pdev->dev);
3622 netif_carrier_off(netdev);
3624 /* allocate transmit descriptors */
3625 err = e1000e_setup_tx_resources(adapter);
3626 if (err)
3627 goto err_setup_tx;
3629 /* allocate receive descriptors */
3630 err = e1000e_setup_rx_resources(adapter);
3631 if (err)
3632 goto err_setup_rx;
3635 * If AMT is enabled, let the firmware know that the network
3636 * interface is now open and reset the part to a known state.
3638 if (adapter->flags & FLAG_HAS_AMT) {
3639 e1000e_get_hw_control(adapter);
3640 e1000e_reset(adapter);
3643 e1000e_power_up_phy(adapter);
3645 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3646 if ((adapter->hw.mng_cookie.status &
3647 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3648 e1000_update_mng_vlan(adapter);
3650 /* DMA latency requirement to workaround early-receive/jumbo issue */
3651 if ((adapter->flags & FLAG_HAS_ERT) ||
3652 (adapter->hw.mac.type == e1000_pch2lan))
3653 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3654 PM_QOS_CPU_DMA_LATENCY,
3655 PM_QOS_DEFAULT_VALUE);
3658 * before we allocate an interrupt, we must be ready to handle it.
3659 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3660 * as soon as we call pci_request_irq, so we have to setup our
3661 * clean_rx handler before we do so.
3663 e1000_configure(adapter);
3665 err = e1000_request_irq(adapter);
3666 if (err)
3667 goto err_req_irq;
3670 * Work around PCIe errata with MSI interrupts causing some chipsets to
3671 * ignore e1000e MSI messages, which means we need to test our MSI
3672 * interrupt now
3674 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3675 err = e1000_test_msi(adapter);
3676 if (err) {
3677 e_err("Interrupt allocation failed\n");
3678 goto err_req_irq;
3682 /* From here on the code is the same as e1000e_up() */
3683 clear_bit(__E1000_DOWN, &adapter->state);
3685 napi_enable(&adapter->napi);
3687 e1000_irq_enable(adapter);
3689 netif_start_queue(netdev);
3691 adapter->idle_check = true;
3692 pm_runtime_put(&pdev->dev);
3694 /* fire a link status change interrupt to start the watchdog */
3695 if (adapter->msix_entries)
3696 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3697 else
3698 ew32(ICS, E1000_ICS_LSC);
3700 return 0;
3702 err_req_irq:
3703 e1000e_release_hw_control(adapter);
3704 e1000_power_down_phy(adapter);
3705 e1000e_free_rx_resources(adapter);
3706 err_setup_rx:
3707 e1000e_free_tx_resources(adapter);
3708 err_setup_tx:
3709 e1000e_reset(adapter);
3710 pm_runtime_put_sync(&pdev->dev);
3712 return err;
3716 * e1000_close - Disables a network interface
3717 * @netdev: network interface device structure
3719 * Returns 0, this is not allowed to fail
3721 * The close entry point is called when an interface is de-activated
3722 * by the OS. The hardware is still under the drivers control, but
3723 * needs to be disabled. A global MAC reset is issued to stop the
3724 * hardware, and all transmit and receive resources are freed.
3726 static int e1000_close(struct net_device *netdev)
3728 struct e1000_adapter *adapter = netdev_priv(netdev);
3729 struct pci_dev *pdev = adapter->pdev;
3731 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3733 pm_runtime_get_sync(&pdev->dev);
3735 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3736 e1000e_down(adapter);
3737 e1000_free_irq(adapter);
3739 e1000_power_down_phy(adapter);
3741 e1000e_free_tx_resources(adapter);
3742 e1000e_free_rx_resources(adapter);
3745 * kill manageability vlan ID if supported, but not if a vlan with
3746 * the same ID is registered on the host OS (let 8021q kill it)
3748 if (adapter->hw.mng_cookie.status &
3749 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3750 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3753 * If AMT is enabled, let the firmware know that the network
3754 * interface is now closed
3756 if ((adapter->flags & FLAG_HAS_AMT) &&
3757 !test_bit(__E1000_TESTING, &adapter->state))
3758 e1000e_release_hw_control(adapter);
3760 if ((adapter->flags & FLAG_HAS_ERT) ||
3761 (adapter->hw.mac.type == e1000_pch2lan))
3762 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3764 pm_runtime_put_sync(&pdev->dev);
3766 return 0;
3769 * e1000_set_mac - Change the Ethernet Address of the NIC
3770 * @netdev: network interface device structure
3771 * @p: pointer to an address structure
3773 * Returns 0 on success, negative on failure
3775 static int e1000_set_mac(struct net_device *netdev, void *p)
3777 struct e1000_adapter *adapter = netdev_priv(netdev);
3778 struct sockaddr *addr = p;
3780 if (!is_valid_ether_addr(addr->sa_data))
3781 return -EADDRNOTAVAIL;
3783 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3784 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3786 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3788 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3789 /* activate the work around */
3790 e1000e_set_laa_state_82571(&adapter->hw, 1);
3793 * Hold a copy of the LAA in RAR[14] This is done so that
3794 * between the time RAR[0] gets clobbered and the time it
3795 * gets fixed (in e1000_watchdog), the actual LAA is in one
3796 * of the RARs and no incoming packets directed to this port
3797 * are dropped. Eventually the LAA will be in RAR[0] and
3798 * RAR[14]
3800 e1000e_rar_set(&adapter->hw,
3801 adapter->hw.mac.addr,
3802 adapter->hw.mac.rar_entry_count - 1);
3805 return 0;
3809 * e1000e_update_phy_task - work thread to update phy
3810 * @work: pointer to our work struct
3812 * this worker thread exists because we must acquire a
3813 * semaphore to read the phy, which we could msleep while
3814 * waiting for it, and we can't msleep in a timer.
3816 static void e1000e_update_phy_task(struct work_struct *work)
3818 struct e1000_adapter *adapter = container_of(work,
3819 struct e1000_adapter, update_phy_task);
3821 if (test_bit(__E1000_DOWN, &adapter->state))
3822 return;
3824 e1000_get_phy_info(&adapter->hw);
3828 * Need to wait a few seconds after link up to get diagnostic information from
3829 * the phy
3831 static void e1000_update_phy_info(unsigned long data)
3833 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3835 if (test_bit(__E1000_DOWN, &adapter->state))
3836 return;
3838 schedule_work(&adapter->update_phy_task);
3842 * e1000e_update_phy_stats - Update the PHY statistics counters
3843 * @adapter: board private structure
3845 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
3847 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3849 struct e1000_hw *hw = &adapter->hw;
3850 s32 ret_val;
3851 u16 phy_data;
3853 ret_val = hw->phy.ops.acquire(hw);
3854 if (ret_val)
3855 return;
3858 * A page set is expensive so check if already on desired page.
3859 * If not, set to the page with the PHY status registers.
3861 hw->phy.addr = 1;
3862 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3863 &phy_data);
3864 if (ret_val)
3865 goto release;
3866 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
3867 ret_val = hw->phy.ops.set_page(hw,
3868 HV_STATS_PAGE << IGP_PAGE_SHIFT);
3869 if (ret_val)
3870 goto release;
3873 /* Single Collision Count */
3874 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3875 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3876 if (!ret_val)
3877 adapter->stats.scc += phy_data;
3879 /* Excessive Collision Count */
3880 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3881 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3882 if (!ret_val)
3883 adapter->stats.ecol += phy_data;
3885 /* Multiple Collision Count */
3886 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3887 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3888 if (!ret_val)
3889 adapter->stats.mcc += phy_data;
3891 /* Late Collision Count */
3892 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
3893 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
3894 if (!ret_val)
3895 adapter->stats.latecol += phy_data;
3897 /* Collision Count - also used for adaptive IFS */
3898 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
3899 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
3900 if (!ret_val)
3901 hw->mac.collision_delta = phy_data;
3903 /* Defer Count */
3904 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
3905 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
3906 if (!ret_val)
3907 adapter->stats.dc += phy_data;
3909 /* Transmit with no CRS */
3910 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
3911 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
3912 if (!ret_val)
3913 adapter->stats.tncrs += phy_data;
3915 release:
3916 hw->phy.ops.release(hw);
3920 * e1000e_update_stats - Update the board statistics counters
3921 * @adapter: board private structure
3923 static void e1000e_update_stats(struct e1000_adapter *adapter)
3925 struct net_device *netdev = adapter->netdev;
3926 struct e1000_hw *hw = &adapter->hw;
3927 struct pci_dev *pdev = adapter->pdev;
3930 * Prevent stats update while adapter is being reset, or if the pci
3931 * connection is down.
3933 if (adapter->link_speed == 0)
3934 return;
3935 if (pci_channel_offline(pdev))
3936 return;
3938 adapter->stats.crcerrs += er32(CRCERRS);
3939 adapter->stats.gprc += er32(GPRC);
3940 adapter->stats.gorc += er32(GORCL);
3941 er32(GORCH); /* Clear gorc */
3942 adapter->stats.bprc += er32(BPRC);
3943 adapter->stats.mprc += er32(MPRC);
3944 adapter->stats.roc += er32(ROC);
3946 adapter->stats.mpc += er32(MPC);
3948 /* Half-duplex statistics */
3949 if (adapter->link_duplex == HALF_DUPLEX) {
3950 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3951 e1000e_update_phy_stats(adapter);
3952 } else {
3953 adapter->stats.scc += er32(SCC);
3954 adapter->stats.ecol += er32(ECOL);
3955 adapter->stats.mcc += er32(MCC);
3956 adapter->stats.latecol += er32(LATECOL);
3957 adapter->stats.dc += er32(DC);
3959 hw->mac.collision_delta = er32(COLC);
3961 if ((hw->mac.type != e1000_82574) &&
3962 (hw->mac.type != e1000_82583))
3963 adapter->stats.tncrs += er32(TNCRS);
3965 adapter->stats.colc += hw->mac.collision_delta;
3968 adapter->stats.xonrxc += er32(XONRXC);
3969 adapter->stats.xontxc += er32(XONTXC);
3970 adapter->stats.xoffrxc += er32(XOFFRXC);
3971 adapter->stats.xofftxc += er32(XOFFTXC);
3972 adapter->stats.gptc += er32(GPTC);
3973 adapter->stats.gotc += er32(GOTCL);
3974 er32(GOTCH); /* Clear gotc */
3975 adapter->stats.rnbc += er32(RNBC);
3976 adapter->stats.ruc += er32(RUC);
3978 adapter->stats.mptc += er32(MPTC);
3979 adapter->stats.bptc += er32(BPTC);
3981 /* used for adaptive IFS */
3983 hw->mac.tx_packet_delta = er32(TPT);
3984 adapter->stats.tpt += hw->mac.tx_packet_delta;
3986 adapter->stats.algnerrc += er32(ALGNERRC);
3987 adapter->stats.rxerrc += er32(RXERRC);
3988 adapter->stats.cexterr += er32(CEXTERR);
3989 adapter->stats.tsctc += er32(TSCTC);
3990 adapter->stats.tsctfc += er32(TSCTFC);
3992 /* Fill out the OS statistics structure */
3993 netdev->stats.multicast = adapter->stats.mprc;
3994 netdev->stats.collisions = adapter->stats.colc;
3996 /* Rx Errors */
3999 * RLEC on some newer hardware can be incorrect so build
4000 * our own version based on RUC and ROC
4002 netdev->stats.rx_errors = adapter->stats.rxerrc +
4003 adapter->stats.crcerrs + adapter->stats.algnerrc +
4004 adapter->stats.ruc + adapter->stats.roc +
4005 adapter->stats.cexterr;
4006 netdev->stats.rx_length_errors = adapter->stats.ruc +
4007 adapter->stats.roc;
4008 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4009 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4010 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4012 /* Tx Errors */
4013 netdev->stats.tx_errors = adapter->stats.ecol +
4014 adapter->stats.latecol;
4015 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4016 netdev->stats.tx_window_errors = adapter->stats.latecol;
4017 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4019 /* Tx Dropped needs to be maintained elsewhere */
4021 /* Management Stats */
4022 adapter->stats.mgptc += er32(MGTPTC);
4023 adapter->stats.mgprc += er32(MGTPRC);
4024 adapter->stats.mgpdc += er32(MGTPDC);
4028 * e1000_phy_read_status - Update the PHY register status snapshot
4029 * @adapter: board private structure
4031 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4033 struct e1000_hw *hw = &adapter->hw;
4034 struct e1000_phy_regs *phy = &adapter->phy_regs;
4036 if ((er32(STATUS) & E1000_STATUS_LU) &&
4037 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4038 int ret_val;
4040 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4041 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4042 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4043 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4044 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4045 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4046 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4047 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4048 if (ret_val)
4049 e_warn("Error reading PHY register\n");
4050 } else {
4052 * Do not read PHY registers if link is not up
4053 * Set values to typical power-on defaults
4055 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4056 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4057 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4058 BMSR_ERCAP);
4059 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4060 ADVERTISE_ALL | ADVERTISE_CSMA);
4061 phy->lpa = 0;
4062 phy->expansion = EXPANSION_ENABLENPAGE;
4063 phy->ctrl1000 = ADVERTISE_1000FULL;
4064 phy->stat1000 = 0;
4065 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4069 static void e1000_print_link_info(struct e1000_adapter *adapter)
4071 struct e1000_hw *hw = &adapter->hw;
4072 u32 ctrl = er32(CTRL);
4074 /* Link status message must follow this format for user tools */
4075 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4076 "Flow Control: %s\n",
4077 adapter->netdev->name,
4078 adapter->link_speed,
4079 (adapter->link_duplex == FULL_DUPLEX) ?
4080 "Full Duplex" : "Half Duplex",
4081 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4082 "Rx/Tx" :
4083 ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
4084 ((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
4087 static bool e1000e_has_link(struct e1000_adapter *adapter)
4089 struct e1000_hw *hw = &adapter->hw;
4090 bool link_active = 0;
4091 s32 ret_val = 0;
4094 * get_link_status is set on LSC (link status) interrupt or
4095 * Rx sequence error interrupt. get_link_status will stay
4096 * false until the check_for_link establishes link
4097 * for copper adapters ONLY
4099 switch (hw->phy.media_type) {
4100 case e1000_media_type_copper:
4101 if (hw->mac.get_link_status) {
4102 ret_val = hw->mac.ops.check_for_link(hw);
4103 link_active = !hw->mac.get_link_status;
4104 } else {
4105 link_active = 1;
4107 break;
4108 case e1000_media_type_fiber:
4109 ret_val = hw->mac.ops.check_for_link(hw);
4110 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4111 break;
4112 case e1000_media_type_internal_serdes:
4113 ret_val = hw->mac.ops.check_for_link(hw);
4114 link_active = adapter->hw.mac.serdes_has_link;
4115 break;
4116 default:
4117 case e1000_media_type_unknown:
4118 break;
4121 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4122 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4123 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4124 e_info("Gigabit has been disabled, downgrading speed\n");
4127 return link_active;
4130 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4132 /* make sure the receive unit is started */
4133 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4134 (adapter->flags & FLAG_RX_RESTART_NOW)) {
4135 struct e1000_hw *hw = &adapter->hw;
4136 u32 rctl = er32(RCTL);
4137 ew32(RCTL, rctl | E1000_RCTL_EN);
4138 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4142 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4144 struct e1000_hw *hw = &adapter->hw;
4147 * With 82574 controllers, PHY needs to be checked periodically
4148 * for hung state and reset, if two calls return true
4150 if (e1000_check_phy_82574(hw))
4151 adapter->phy_hang_count++;
4152 else
4153 adapter->phy_hang_count = 0;
4155 if (adapter->phy_hang_count > 1) {
4156 adapter->phy_hang_count = 0;
4157 schedule_work(&adapter->reset_task);
4162 * e1000_watchdog - Timer Call-back
4163 * @data: pointer to adapter cast into an unsigned long
4165 static void e1000_watchdog(unsigned long data)
4167 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4169 /* Do the rest outside of interrupt context */
4170 schedule_work(&adapter->watchdog_task);
4172 /* TODO: make this use queue_delayed_work() */
4175 static void e1000_watchdog_task(struct work_struct *work)
4177 struct e1000_adapter *adapter = container_of(work,
4178 struct e1000_adapter, watchdog_task);
4179 struct net_device *netdev = adapter->netdev;
4180 struct e1000_mac_info *mac = &adapter->hw.mac;
4181 struct e1000_phy_info *phy = &adapter->hw.phy;
4182 struct e1000_ring *tx_ring = adapter->tx_ring;
4183 struct e1000_hw *hw = &adapter->hw;
4184 u32 link, tctl;
4186 if (test_bit(__E1000_DOWN, &adapter->state))
4187 return;
4189 link = e1000e_has_link(adapter);
4190 if ((netif_carrier_ok(netdev)) && link) {
4191 /* Cancel scheduled suspend requests. */
4192 pm_runtime_resume(netdev->dev.parent);
4194 e1000e_enable_receives(adapter);
4195 goto link_up;
4198 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4199 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4200 e1000_update_mng_vlan(adapter);
4202 if (link) {
4203 if (!netif_carrier_ok(netdev)) {
4204 bool txb2b = 1;
4206 /* Cancel scheduled suspend requests. */
4207 pm_runtime_resume(netdev->dev.parent);
4209 /* update snapshot of PHY registers on LSC */
4210 e1000_phy_read_status(adapter);
4211 mac->ops.get_link_up_info(&adapter->hw,
4212 &adapter->link_speed,
4213 &adapter->link_duplex);
4214 e1000_print_link_info(adapter);
4216 * On supported PHYs, check for duplex mismatch only
4217 * if link has autonegotiated at 10/100 half
4219 if ((hw->phy.type == e1000_phy_igp_3 ||
4220 hw->phy.type == e1000_phy_bm) &&
4221 (hw->mac.autoneg == true) &&
4222 (adapter->link_speed == SPEED_10 ||
4223 adapter->link_speed == SPEED_100) &&
4224 (adapter->link_duplex == HALF_DUPLEX)) {
4225 u16 autoneg_exp;
4227 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4229 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4230 e_info("Autonegotiated half duplex but"
4231 " link partner cannot autoneg. "
4232 " Try forcing full duplex if "
4233 "link gets many collisions.\n");
4236 /* adjust timeout factor according to speed/duplex */
4237 adapter->tx_timeout_factor = 1;
4238 switch (adapter->link_speed) {
4239 case SPEED_10:
4240 txb2b = 0;
4241 adapter->tx_timeout_factor = 16;
4242 break;
4243 case SPEED_100:
4244 txb2b = 0;
4245 adapter->tx_timeout_factor = 10;
4246 break;
4250 * workaround: re-program speed mode bit after
4251 * link-up event
4253 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4254 !txb2b) {
4255 u32 tarc0;
4256 tarc0 = er32(TARC(0));
4257 tarc0 &= ~SPEED_MODE_BIT;
4258 ew32(TARC(0), tarc0);
4262 * disable TSO for pcie and 10/100 speeds, to avoid
4263 * some hardware issues
4265 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4266 switch (adapter->link_speed) {
4267 case SPEED_10:
4268 case SPEED_100:
4269 e_info("10/100 speed: disabling TSO\n");
4270 netdev->features &= ~NETIF_F_TSO;
4271 netdev->features &= ~NETIF_F_TSO6;
4272 break;
4273 case SPEED_1000:
4274 netdev->features |= NETIF_F_TSO;
4275 netdev->features |= NETIF_F_TSO6;
4276 break;
4277 default:
4278 /* oops */
4279 break;
4284 * enable transmits in the hardware, need to do this
4285 * after setting TARC(0)
4287 tctl = er32(TCTL);
4288 tctl |= E1000_TCTL_EN;
4289 ew32(TCTL, tctl);
4292 * Perform any post-link-up configuration before
4293 * reporting link up.
4295 if (phy->ops.cfg_on_link_up)
4296 phy->ops.cfg_on_link_up(hw);
4298 netif_carrier_on(netdev);
4300 if (!test_bit(__E1000_DOWN, &adapter->state))
4301 mod_timer(&adapter->phy_info_timer,
4302 round_jiffies(jiffies + 2 * HZ));
4304 } else {
4305 if (netif_carrier_ok(netdev)) {
4306 adapter->link_speed = 0;
4307 adapter->link_duplex = 0;
4308 /* Link status message must follow this format */
4309 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4310 adapter->netdev->name);
4311 netif_carrier_off(netdev);
4312 if (!test_bit(__E1000_DOWN, &adapter->state))
4313 mod_timer(&adapter->phy_info_timer,
4314 round_jiffies(jiffies + 2 * HZ));
4316 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4317 schedule_work(&adapter->reset_task);
4318 else
4319 pm_schedule_suspend(netdev->dev.parent,
4320 LINK_TIMEOUT);
4324 link_up:
4325 spin_lock(&adapter->stats64_lock);
4326 e1000e_update_stats(adapter);
4328 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4329 adapter->tpt_old = adapter->stats.tpt;
4330 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4331 adapter->colc_old = adapter->stats.colc;
4333 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4334 adapter->gorc_old = adapter->stats.gorc;
4335 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4336 adapter->gotc_old = adapter->stats.gotc;
4337 spin_unlock(&adapter->stats64_lock);
4339 e1000e_update_adaptive(&adapter->hw);
4341 if (!netif_carrier_ok(netdev) &&
4342 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4344 * We've lost link, so the controller stops DMA,
4345 * but we've got queued Tx work that's never going
4346 * to get done, so reset controller to flush Tx.
4347 * (Do the reset outside of interrupt context).
4349 schedule_work(&adapter->reset_task);
4350 /* return immediately since reset is imminent */
4351 return;
4354 /* Simple mode for Interrupt Throttle Rate (ITR) */
4355 if (adapter->itr_setting == 4) {
4357 * Symmetric Tx/Rx gets a reduced ITR=2000;
4358 * Total asymmetrical Tx or Rx gets ITR=8000;
4359 * everyone else is between 2000-8000.
4361 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4362 u32 dif = (adapter->gotc > adapter->gorc ?
4363 adapter->gotc - adapter->gorc :
4364 adapter->gorc - adapter->gotc) / 10000;
4365 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4367 ew32(ITR, 1000000000 / (itr * 256));
4370 /* Cause software interrupt to ensure Rx ring is cleaned */
4371 if (adapter->msix_entries)
4372 ew32(ICS, adapter->rx_ring->ims_val);
4373 else
4374 ew32(ICS, E1000_ICS_RXDMT0);
4376 /* flush pending descriptors to memory before detecting Tx hang */
4377 e1000e_flush_descriptors(adapter);
4379 /* Force detection of hung controller every watchdog period */
4380 adapter->detect_tx_hung = 1;
4383 * With 82571 controllers, LAA may be overwritten due to controller
4384 * reset from the other port. Set the appropriate LAA in RAR[0]
4386 if (e1000e_get_laa_state_82571(hw))
4387 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4389 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4390 e1000e_check_82574_phy_workaround(adapter);
4392 /* Reset the timer */
4393 if (!test_bit(__E1000_DOWN, &adapter->state))
4394 mod_timer(&adapter->watchdog_timer,
4395 round_jiffies(jiffies + 2 * HZ));
4398 #define E1000_TX_FLAGS_CSUM 0x00000001
4399 #define E1000_TX_FLAGS_VLAN 0x00000002
4400 #define E1000_TX_FLAGS_TSO 0x00000004
4401 #define E1000_TX_FLAGS_IPV4 0x00000008
4402 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4403 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4405 static int e1000_tso(struct e1000_adapter *adapter,
4406 struct sk_buff *skb)
4408 struct e1000_ring *tx_ring = adapter->tx_ring;
4409 struct e1000_context_desc *context_desc;
4410 struct e1000_buffer *buffer_info;
4411 unsigned int i;
4412 u32 cmd_length = 0;
4413 u16 ipcse = 0, tucse, mss;
4414 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4416 if (!skb_is_gso(skb))
4417 return 0;
4419 if (skb_header_cloned(skb)) {
4420 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4422 if (err)
4423 return err;
4426 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4427 mss = skb_shinfo(skb)->gso_size;
4428 if (skb->protocol == htons(ETH_P_IP)) {
4429 struct iphdr *iph = ip_hdr(skb);
4430 iph->tot_len = 0;
4431 iph->check = 0;
4432 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4433 0, IPPROTO_TCP, 0);
4434 cmd_length = E1000_TXD_CMD_IP;
4435 ipcse = skb_transport_offset(skb) - 1;
4436 } else if (skb_is_gso_v6(skb)) {
4437 ipv6_hdr(skb)->payload_len = 0;
4438 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4439 &ipv6_hdr(skb)->daddr,
4440 0, IPPROTO_TCP, 0);
4441 ipcse = 0;
4443 ipcss = skb_network_offset(skb);
4444 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4445 tucss = skb_transport_offset(skb);
4446 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4447 tucse = 0;
4449 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4450 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4452 i = tx_ring->next_to_use;
4453 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4454 buffer_info = &tx_ring->buffer_info[i];
4456 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4457 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4458 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4459 context_desc->upper_setup.tcp_fields.tucss = tucss;
4460 context_desc->upper_setup.tcp_fields.tucso = tucso;
4461 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4462 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4463 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4464 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4466 buffer_info->time_stamp = jiffies;
4467 buffer_info->next_to_watch = i;
4469 i++;
4470 if (i == tx_ring->count)
4471 i = 0;
4472 tx_ring->next_to_use = i;
4474 return 1;
4477 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4479 struct e1000_ring *tx_ring = adapter->tx_ring;
4480 struct e1000_context_desc *context_desc;
4481 struct e1000_buffer *buffer_info;
4482 unsigned int i;
4483 u8 css;
4484 u32 cmd_len = E1000_TXD_CMD_DEXT;
4485 __be16 protocol;
4487 if (skb->ip_summed != CHECKSUM_PARTIAL)
4488 return 0;
4490 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4491 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4492 else
4493 protocol = skb->protocol;
4495 switch (protocol) {
4496 case cpu_to_be16(ETH_P_IP):
4497 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4498 cmd_len |= E1000_TXD_CMD_TCP;
4499 break;
4500 case cpu_to_be16(ETH_P_IPV6):
4501 /* XXX not handling all IPV6 headers */
4502 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4503 cmd_len |= E1000_TXD_CMD_TCP;
4504 break;
4505 default:
4506 if (unlikely(net_ratelimit()))
4507 e_warn("checksum_partial proto=%x!\n",
4508 be16_to_cpu(protocol));
4509 break;
4512 css = skb_checksum_start_offset(skb);
4514 i = tx_ring->next_to_use;
4515 buffer_info = &tx_ring->buffer_info[i];
4516 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4518 context_desc->lower_setup.ip_config = 0;
4519 context_desc->upper_setup.tcp_fields.tucss = css;
4520 context_desc->upper_setup.tcp_fields.tucso =
4521 css + skb->csum_offset;
4522 context_desc->upper_setup.tcp_fields.tucse = 0;
4523 context_desc->tcp_seg_setup.data = 0;
4524 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4526 buffer_info->time_stamp = jiffies;
4527 buffer_info->next_to_watch = i;
4529 i++;
4530 if (i == tx_ring->count)
4531 i = 0;
4532 tx_ring->next_to_use = i;
4534 return 1;
4537 #define E1000_MAX_PER_TXD 8192
4538 #define E1000_MAX_TXD_PWR 12
4540 static int e1000_tx_map(struct e1000_adapter *adapter,
4541 struct sk_buff *skb, unsigned int first,
4542 unsigned int max_per_txd, unsigned int nr_frags,
4543 unsigned int mss)
4545 struct e1000_ring *tx_ring = adapter->tx_ring;
4546 struct pci_dev *pdev = adapter->pdev;
4547 struct e1000_buffer *buffer_info;
4548 unsigned int len = skb_headlen(skb);
4549 unsigned int offset = 0, size, count = 0, i;
4550 unsigned int f, bytecount, segs;
4552 i = tx_ring->next_to_use;
4554 while (len) {
4555 buffer_info = &tx_ring->buffer_info[i];
4556 size = min(len, max_per_txd);
4558 buffer_info->length = size;
4559 buffer_info->time_stamp = jiffies;
4560 buffer_info->next_to_watch = i;
4561 buffer_info->dma = dma_map_single(&pdev->dev,
4562 skb->data + offset,
4563 size, DMA_TO_DEVICE);
4564 buffer_info->mapped_as_page = false;
4565 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4566 goto dma_error;
4568 len -= size;
4569 offset += size;
4570 count++;
4572 if (len) {
4573 i++;
4574 if (i == tx_ring->count)
4575 i = 0;
4579 for (f = 0; f < nr_frags; f++) {
4580 struct skb_frag_struct *frag;
4582 frag = &skb_shinfo(skb)->frags[f];
4583 len = frag->size;
4584 offset = frag->page_offset;
4586 while (len) {
4587 i++;
4588 if (i == tx_ring->count)
4589 i = 0;
4591 buffer_info = &tx_ring->buffer_info[i];
4592 size = min(len, max_per_txd);
4594 buffer_info->length = size;
4595 buffer_info->time_stamp = jiffies;
4596 buffer_info->next_to_watch = i;
4597 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4598 offset, size,
4599 DMA_TO_DEVICE);
4600 buffer_info->mapped_as_page = true;
4601 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4602 goto dma_error;
4604 len -= size;
4605 offset += size;
4606 count++;
4610 segs = skb_shinfo(skb)->gso_segs ? : 1;
4611 /* multiply data chunks by size of headers */
4612 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4614 tx_ring->buffer_info[i].skb = skb;
4615 tx_ring->buffer_info[i].segs = segs;
4616 tx_ring->buffer_info[i].bytecount = bytecount;
4617 tx_ring->buffer_info[first].next_to_watch = i;
4619 return count;
4621 dma_error:
4622 dev_err(&pdev->dev, "Tx DMA map failed\n");
4623 buffer_info->dma = 0;
4624 if (count)
4625 count--;
4627 while (count--) {
4628 if (i == 0)
4629 i += tx_ring->count;
4630 i--;
4631 buffer_info = &tx_ring->buffer_info[i];
4632 e1000_put_txbuf(adapter, buffer_info);
4635 return 0;
4638 static void e1000_tx_queue(struct e1000_adapter *adapter,
4639 int tx_flags, int count)
4641 struct e1000_ring *tx_ring = adapter->tx_ring;
4642 struct e1000_tx_desc *tx_desc = NULL;
4643 struct e1000_buffer *buffer_info;
4644 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4645 unsigned int i;
4647 if (tx_flags & E1000_TX_FLAGS_TSO) {
4648 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4649 E1000_TXD_CMD_TSE;
4650 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4652 if (tx_flags & E1000_TX_FLAGS_IPV4)
4653 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4656 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4657 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4658 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4661 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4662 txd_lower |= E1000_TXD_CMD_VLE;
4663 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4666 i = tx_ring->next_to_use;
4668 do {
4669 buffer_info = &tx_ring->buffer_info[i];
4670 tx_desc = E1000_TX_DESC(*tx_ring, i);
4671 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4672 tx_desc->lower.data =
4673 cpu_to_le32(txd_lower | buffer_info->length);
4674 tx_desc->upper.data = cpu_to_le32(txd_upper);
4676 i++;
4677 if (i == tx_ring->count)
4678 i = 0;
4679 } while (--count > 0);
4681 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4684 * Force memory writes to complete before letting h/w
4685 * know there are new descriptors to fetch. (Only
4686 * applicable for weak-ordered memory model archs,
4687 * such as IA-64).
4689 wmb();
4691 tx_ring->next_to_use = i;
4692 writel(i, adapter->hw.hw_addr + tx_ring->tail);
4694 * we need this if more than one processor can write to our tail
4695 * at a time, it synchronizes IO on IA64/Altix systems
4697 mmiowb();
4700 #define MINIMUM_DHCP_PACKET_SIZE 282
4701 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4702 struct sk_buff *skb)
4704 struct e1000_hw *hw = &adapter->hw;
4705 u16 length, offset;
4707 if (vlan_tx_tag_present(skb)) {
4708 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4709 (adapter->hw.mng_cookie.status &
4710 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4711 return 0;
4714 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4715 return 0;
4717 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4718 return 0;
4721 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4722 struct udphdr *udp;
4724 if (ip->protocol != IPPROTO_UDP)
4725 return 0;
4727 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4728 if (ntohs(udp->dest) != 67)
4729 return 0;
4731 offset = (u8 *)udp + 8 - skb->data;
4732 length = skb->len - offset;
4733 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4736 return 0;
4739 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4741 struct e1000_adapter *adapter = netdev_priv(netdev);
4743 netif_stop_queue(netdev);
4745 * Herbert's original patch had:
4746 * smp_mb__after_netif_stop_queue();
4747 * but since that doesn't exist yet, just open code it.
4749 smp_mb();
4752 * We need to check again in a case another CPU has just
4753 * made room available.
4755 if (e1000_desc_unused(adapter->tx_ring) < size)
4756 return -EBUSY;
4758 /* A reprieve! */
4759 netif_start_queue(netdev);
4760 ++adapter->restart_queue;
4761 return 0;
4764 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4766 struct e1000_adapter *adapter = netdev_priv(netdev);
4768 if (e1000_desc_unused(adapter->tx_ring) >= size)
4769 return 0;
4770 return __e1000_maybe_stop_tx(netdev, size);
4773 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4774 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4775 struct net_device *netdev)
4777 struct e1000_adapter *adapter = netdev_priv(netdev);
4778 struct e1000_ring *tx_ring = adapter->tx_ring;
4779 unsigned int first;
4780 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4781 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4782 unsigned int tx_flags = 0;
4783 unsigned int len = skb_headlen(skb);
4784 unsigned int nr_frags;
4785 unsigned int mss;
4786 int count = 0;
4787 int tso;
4788 unsigned int f;
4790 if (test_bit(__E1000_DOWN, &adapter->state)) {
4791 dev_kfree_skb_any(skb);
4792 return NETDEV_TX_OK;
4795 if (skb->len <= 0) {
4796 dev_kfree_skb_any(skb);
4797 return NETDEV_TX_OK;
4800 mss = skb_shinfo(skb)->gso_size;
4802 * The controller does a simple calculation to
4803 * make sure there is enough room in the FIFO before
4804 * initiating the DMA for each buffer. The calc is:
4805 * 4 = ceil(buffer len/mss). To make sure we don't
4806 * overrun the FIFO, adjust the max buffer len if mss
4807 * drops.
4809 if (mss) {
4810 u8 hdr_len;
4811 max_per_txd = min(mss << 2, max_per_txd);
4812 max_txd_pwr = fls(max_per_txd) - 1;
4815 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4816 * points to just header, pull a few bytes of payload from
4817 * frags into skb->data
4819 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4821 * we do this workaround for ES2LAN, but it is un-necessary,
4822 * avoiding it could save a lot of cycles
4824 if (skb->data_len && (hdr_len == len)) {
4825 unsigned int pull_size;
4827 pull_size = min((unsigned int)4, skb->data_len);
4828 if (!__pskb_pull_tail(skb, pull_size)) {
4829 e_err("__pskb_pull_tail failed.\n");
4830 dev_kfree_skb_any(skb);
4831 return NETDEV_TX_OK;
4833 len = skb_headlen(skb);
4837 /* reserve a descriptor for the offload context */
4838 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4839 count++;
4840 count++;
4842 count += TXD_USE_COUNT(len, max_txd_pwr);
4844 nr_frags = skb_shinfo(skb)->nr_frags;
4845 for (f = 0; f < nr_frags; f++)
4846 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4847 max_txd_pwr);
4849 if (adapter->hw.mac.tx_pkt_filtering)
4850 e1000_transfer_dhcp_info(adapter, skb);
4853 * need: count + 2 desc gap to keep tail from touching
4854 * head, otherwise try next time
4856 if (e1000_maybe_stop_tx(netdev, count + 2))
4857 return NETDEV_TX_BUSY;
4859 if (vlan_tx_tag_present(skb)) {
4860 tx_flags |= E1000_TX_FLAGS_VLAN;
4861 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4864 first = tx_ring->next_to_use;
4866 tso = e1000_tso(adapter, skb);
4867 if (tso < 0) {
4868 dev_kfree_skb_any(skb);
4869 return NETDEV_TX_OK;
4872 if (tso)
4873 tx_flags |= E1000_TX_FLAGS_TSO;
4874 else if (e1000_tx_csum(adapter, skb))
4875 tx_flags |= E1000_TX_FLAGS_CSUM;
4878 * Old method was to assume IPv4 packet by default if TSO was enabled.
4879 * 82571 hardware supports TSO capabilities for IPv6 as well...
4880 * no longer assume, we must.
4882 if (skb->protocol == htons(ETH_P_IP))
4883 tx_flags |= E1000_TX_FLAGS_IPV4;
4885 /* if count is 0 then mapping error has occurred */
4886 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4887 if (count) {
4888 e1000_tx_queue(adapter, tx_flags, count);
4889 /* Make sure there is space in the ring for the next send. */
4890 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4892 } else {
4893 dev_kfree_skb_any(skb);
4894 tx_ring->buffer_info[first].time_stamp = 0;
4895 tx_ring->next_to_use = first;
4898 return NETDEV_TX_OK;
4902 * e1000_tx_timeout - Respond to a Tx Hang
4903 * @netdev: network interface device structure
4905 static void e1000_tx_timeout(struct net_device *netdev)
4907 struct e1000_adapter *adapter = netdev_priv(netdev);
4909 /* Do the reset outside of interrupt context */
4910 adapter->tx_timeout_count++;
4911 schedule_work(&adapter->reset_task);
4914 static void e1000_reset_task(struct work_struct *work)
4916 struct e1000_adapter *adapter;
4917 adapter = container_of(work, struct e1000_adapter, reset_task);
4919 /* don't run the task if already down */
4920 if (test_bit(__E1000_DOWN, &adapter->state))
4921 return;
4923 if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4924 (adapter->flags & FLAG_RX_RESTART_NOW))) {
4925 e1000e_dump(adapter);
4926 e_err("Reset adapter\n");
4928 e1000e_reinit_locked(adapter);
4932 * e1000_get_stats64 - Get System Network Statistics
4933 * @netdev: network interface device structure
4934 * @stats: rtnl_link_stats64 pointer
4936 * Returns the address of the device statistics structure.
4938 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
4939 struct rtnl_link_stats64 *stats)
4941 struct e1000_adapter *adapter = netdev_priv(netdev);
4943 memset(stats, 0, sizeof(struct rtnl_link_stats64));
4944 spin_lock(&adapter->stats64_lock);
4945 e1000e_update_stats(adapter);
4946 /* Fill out the OS statistics structure */
4947 stats->rx_bytes = adapter->stats.gorc;
4948 stats->rx_packets = adapter->stats.gprc;
4949 stats->tx_bytes = adapter->stats.gotc;
4950 stats->tx_packets = adapter->stats.gptc;
4951 stats->multicast = adapter->stats.mprc;
4952 stats->collisions = adapter->stats.colc;
4954 /* Rx Errors */
4957 * RLEC on some newer hardware can be incorrect so build
4958 * our own version based on RUC and ROC
4960 stats->rx_errors = adapter->stats.rxerrc +
4961 adapter->stats.crcerrs + adapter->stats.algnerrc +
4962 adapter->stats.ruc + adapter->stats.roc +
4963 adapter->stats.cexterr;
4964 stats->rx_length_errors = adapter->stats.ruc +
4965 adapter->stats.roc;
4966 stats->rx_crc_errors = adapter->stats.crcerrs;
4967 stats->rx_frame_errors = adapter->stats.algnerrc;
4968 stats->rx_missed_errors = adapter->stats.mpc;
4970 /* Tx Errors */
4971 stats->tx_errors = adapter->stats.ecol +
4972 adapter->stats.latecol;
4973 stats->tx_aborted_errors = adapter->stats.ecol;
4974 stats->tx_window_errors = adapter->stats.latecol;
4975 stats->tx_carrier_errors = adapter->stats.tncrs;
4977 /* Tx Dropped needs to be maintained elsewhere */
4979 spin_unlock(&adapter->stats64_lock);
4980 return stats;
4984 * e1000_change_mtu - Change the Maximum Transfer Unit
4985 * @netdev: network interface device structure
4986 * @new_mtu: new value for maximum frame size
4988 * Returns 0 on success, negative on failure
4990 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4992 struct e1000_adapter *adapter = netdev_priv(netdev);
4993 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4995 /* Jumbo frame support */
4996 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4997 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4998 e_err("Jumbo Frames not supported.\n");
4999 return -EINVAL;
5002 /* Supported frame sizes */
5003 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5004 (max_frame > adapter->max_hw_frame_size)) {
5005 e_err("Unsupported MTU setting\n");
5006 return -EINVAL;
5009 /* Jumbo frame workaround on 82579 requires CRC be stripped */
5010 if ((adapter->hw.mac.type == e1000_pch2lan) &&
5011 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5012 (new_mtu > ETH_DATA_LEN)) {
5013 e_err("Jumbo Frames not supported on 82579 when CRC "
5014 "stripping is disabled.\n");
5015 return -EINVAL;
5018 /* 82573 Errata 17 */
5019 if (((adapter->hw.mac.type == e1000_82573) ||
5020 (adapter->hw.mac.type == e1000_82574)) &&
5021 (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5022 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5023 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5026 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5027 usleep_range(1000, 2000);
5028 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5029 adapter->max_frame_size = max_frame;
5030 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5031 netdev->mtu = new_mtu;
5032 if (netif_running(netdev))
5033 e1000e_down(adapter);
5036 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5037 * means we reserve 2 more, this pushes us to allocate from the next
5038 * larger slab size.
5039 * i.e. RXBUFFER_2048 --> size-4096 slab
5040 * However with the new *_jumbo_rx* routines, jumbo receives will use
5041 * fragmented skbs
5044 if (max_frame <= 2048)
5045 adapter->rx_buffer_len = 2048;
5046 else
5047 adapter->rx_buffer_len = 4096;
5049 /* adjust allocation if LPE protects us, and we aren't using SBP */
5050 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5051 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5052 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5053 + ETH_FCS_LEN;
5055 if (netif_running(netdev))
5056 e1000e_up(adapter);
5057 else
5058 e1000e_reset(adapter);
5060 clear_bit(__E1000_RESETTING, &adapter->state);
5062 return 0;
5065 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5066 int cmd)
5068 struct e1000_adapter *adapter = netdev_priv(netdev);
5069 struct mii_ioctl_data *data = if_mii(ifr);
5071 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5072 return -EOPNOTSUPP;
5074 switch (cmd) {
5075 case SIOCGMIIPHY:
5076 data->phy_id = adapter->hw.phy.addr;
5077 break;
5078 case SIOCGMIIREG:
5079 e1000_phy_read_status(adapter);
5081 switch (data->reg_num & 0x1F) {
5082 case MII_BMCR:
5083 data->val_out = adapter->phy_regs.bmcr;
5084 break;
5085 case MII_BMSR:
5086 data->val_out = adapter->phy_regs.bmsr;
5087 break;
5088 case MII_PHYSID1:
5089 data->val_out = (adapter->hw.phy.id >> 16);
5090 break;
5091 case MII_PHYSID2:
5092 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5093 break;
5094 case MII_ADVERTISE:
5095 data->val_out = adapter->phy_regs.advertise;
5096 break;
5097 case MII_LPA:
5098 data->val_out = adapter->phy_regs.lpa;
5099 break;
5100 case MII_EXPANSION:
5101 data->val_out = adapter->phy_regs.expansion;
5102 break;
5103 case MII_CTRL1000:
5104 data->val_out = adapter->phy_regs.ctrl1000;
5105 break;
5106 case MII_STAT1000:
5107 data->val_out = adapter->phy_regs.stat1000;
5108 break;
5109 case MII_ESTATUS:
5110 data->val_out = adapter->phy_regs.estatus;
5111 break;
5112 default:
5113 return -EIO;
5115 break;
5116 case SIOCSMIIREG:
5117 default:
5118 return -EOPNOTSUPP;
5120 return 0;
5123 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5125 switch (cmd) {
5126 case SIOCGMIIPHY:
5127 case SIOCGMIIREG:
5128 case SIOCSMIIREG:
5129 return e1000_mii_ioctl(netdev, ifr, cmd);
5130 default:
5131 return -EOPNOTSUPP;
5135 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5137 struct e1000_hw *hw = &adapter->hw;
5138 u32 i, mac_reg;
5139 u16 phy_reg, wuc_enable;
5140 int retval = 0;
5142 /* copy MAC RARs to PHY RARs */
5143 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5145 retval = hw->phy.ops.acquire(hw);
5146 if (retval) {
5147 e_err("Could not acquire PHY\n");
5148 return retval;
5151 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5152 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5153 if (retval)
5154 goto out;
5156 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5157 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5158 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5159 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5160 (u16)(mac_reg & 0xFFFF));
5161 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5162 (u16)((mac_reg >> 16) & 0xFFFF));
5165 /* configure PHY Rx Control register */
5166 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5167 mac_reg = er32(RCTL);
5168 if (mac_reg & E1000_RCTL_UPE)
5169 phy_reg |= BM_RCTL_UPE;
5170 if (mac_reg & E1000_RCTL_MPE)
5171 phy_reg |= BM_RCTL_MPE;
5172 phy_reg &= ~(BM_RCTL_MO_MASK);
5173 if (mac_reg & E1000_RCTL_MO_3)
5174 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5175 << BM_RCTL_MO_SHIFT);
5176 if (mac_reg & E1000_RCTL_BAM)
5177 phy_reg |= BM_RCTL_BAM;
5178 if (mac_reg & E1000_RCTL_PMCF)
5179 phy_reg |= BM_RCTL_PMCF;
5180 mac_reg = er32(CTRL);
5181 if (mac_reg & E1000_CTRL_RFCE)
5182 phy_reg |= BM_RCTL_RFCE;
5183 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5185 /* enable PHY wakeup in MAC register */
5186 ew32(WUFC, wufc);
5187 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5189 /* configure and enable PHY wakeup in PHY registers */
5190 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5191 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5193 /* activate PHY wakeup */
5194 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5195 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5196 if (retval)
5197 e_err("Could not set PHY Host Wakeup bit\n");
5198 out:
5199 hw->phy.ops.release(hw);
5201 return retval;
5204 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5205 bool runtime)
5207 struct net_device *netdev = pci_get_drvdata(pdev);
5208 struct e1000_adapter *adapter = netdev_priv(netdev);
5209 struct e1000_hw *hw = &adapter->hw;
5210 u32 ctrl, ctrl_ext, rctl, status;
5211 /* Runtime suspend should only enable wakeup for link changes */
5212 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5213 int retval = 0;
5215 netif_device_detach(netdev);
5217 if (netif_running(netdev)) {
5218 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5219 e1000e_down(adapter);
5220 e1000_free_irq(adapter);
5222 e1000e_reset_interrupt_capability(adapter);
5224 retval = pci_save_state(pdev);
5225 if (retval)
5226 return retval;
5228 status = er32(STATUS);
5229 if (status & E1000_STATUS_LU)
5230 wufc &= ~E1000_WUFC_LNKC;
5232 if (wufc) {
5233 e1000_setup_rctl(adapter);
5234 e1000_set_multi(netdev);
5236 /* turn on all-multi mode if wake on multicast is enabled */
5237 if (wufc & E1000_WUFC_MC) {
5238 rctl = er32(RCTL);
5239 rctl |= E1000_RCTL_MPE;
5240 ew32(RCTL, rctl);
5243 ctrl = er32(CTRL);
5244 /* advertise wake from D3Cold */
5245 #define E1000_CTRL_ADVD3WUC 0x00100000
5246 /* phy power management enable */
5247 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5248 ctrl |= E1000_CTRL_ADVD3WUC;
5249 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5250 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5251 ew32(CTRL, ctrl);
5253 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5254 adapter->hw.phy.media_type ==
5255 e1000_media_type_internal_serdes) {
5256 /* keep the laser running in D3 */
5257 ctrl_ext = er32(CTRL_EXT);
5258 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5259 ew32(CTRL_EXT, ctrl_ext);
5262 if (adapter->flags & FLAG_IS_ICH)
5263 e1000_suspend_workarounds_ich8lan(&adapter->hw);
5265 /* Allow time for pending master requests to run */
5266 e1000e_disable_pcie_master(&adapter->hw);
5268 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5269 /* enable wakeup by the PHY */
5270 retval = e1000_init_phy_wakeup(adapter, wufc);
5271 if (retval)
5272 return retval;
5273 } else {
5274 /* enable wakeup by the MAC */
5275 ew32(WUFC, wufc);
5276 ew32(WUC, E1000_WUC_PME_EN);
5278 } else {
5279 ew32(WUC, 0);
5280 ew32(WUFC, 0);
5283 *enable_wake = !!wufc;
5285 /* make sure adapter isn't asleep if manageability is enabled */
5286 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5287 (hw->mac.ops.check_mng_mode(hw)))
5288 *enable_wake = true;
5290 if (adapter->hw.phy.type == e1000_phy_igp_3)
5291 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5294 * Release control of h/w to f/w. If f/w is AMT enabled, this
5295 * would have already happened in close and is redundant.
5297 e1000e_release_hw_control(adapter);
5299 pci_disable_device(pdev);
5301 return 0;
5304 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5306 if (sleep && wake) {
5307 pci_prepare_to_sleep(pdev);
5308 return;
5311 pci_wake_from_d3(pdev, wake);
5312 pci_set_power_state(pdev, PCI_D3hot);
5315 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5316 bool wake)
5318 struct net_device *netdev = pci_get_drvdata(pdev);
5319 struct e1000_adapter *adapter = netdev_priv(netdev);
5322 * The pci-e switch on some quad port adapters will report a
5323 * correctable error when the MAC transitions from D0 to D3. To
5324 * prevent this we need to mask off the correctable errors on the
5325 * downstream port of the pci-e switch.
5327 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5328 struct pci_dev *us_dev = pdev->bus->self;
5329 int pos = pci_pcie_cap(us_dev);
5330 u16 devctl;
5332 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5333 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5334 (devctl & ~PCI_EXP_DEVCTL_CERE));
5336 e1000_power_off(pdev, sleep, wake);
5338 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5339 } else {
5340 e1000_power_off(pdev, sleep, wake);
5344 #ifdef CONFIG_PCIEASPM
5345 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5347 pci_disable_link_state_locked(pdev, state);
5349 #else
5350 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5352 int pos;
5353 u16 reg16;
5356 * Both device and parent should have the same ASPM setting.
5357 * Disable ASPM in downstream component first and then upstream.
5359 pos = pci_pcie_cap(pdev);
5360 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5361 reg16 &= ~state;
5362 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5364 if (!pdev->bus->self)
5365 return;
5367 pos = pci_pcie_cap(pdev->bus->self);
5368 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5369 reg16 &= ~state;
5370 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5372 #endif
5373 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5375 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5376 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5377 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5379 __e1000e_disable_aspm(pdev, state);
5382 #ifdef CONFIG_PM
5383 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5385 return !!adapter->tx_ring->buffer_info;
5388 static int __e1000_resume(struct pci_dev *pdev)
5390 struct net_device *netdev = pci_get_drvdata(pdev);
5391 struct e1000_adapter *adapter = netdev_priv(netdev);
5392 struct e1000_hw *hw = &adapter->hw;
5393 u16 aspm_disable_flag = 0;
5394 u32 err;
5396 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5397 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5398 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5399 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5400 if (aspm_disable_flag)
5401 e1000e_disable_aspm(pdev, aspm_disable_flag);
5403 pci_set_power_state(pdev, PCI_D0);
5404 pci_restore_state(pdev);
5405 pci_save_state(pdev);
5407 e1000e_set_interrupt_capability(adapter);
5408 if (netif_running(netdev)) {
5409 err = e1000_request_irq(adapter);
5410 if (err)
5411 return err;
5414 if (hw->mac.type == e1000_pch2lan)
5415 e1000_resume_workarounds_pchlan(&adapter->hw);
5417 e1000e_power_up_phy(adapter);
5419 /* report the system wakeup cause from S3/S4 */
5420 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5421 u16 phy_data;
5423 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5424 if (phy_data) {
5425 e_info("PHY Wakeup cause - %s\n",
5426 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5427 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5428 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5429 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5430 phy_data & E1000_WUS_LNKC ? "Link Status "
5431 " Change" : "other");
5433 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5434 } else {
5435 u32 wus = er32(WUS);
5436 if (wus) {
5437 e_info("MAC Wakeup cause - %s\n",
5438 wus & E1000_WUS_EX ? "Unicast Packet" :
5439 wus & E1000_WUS_MC ? "Multicast Packet" :
5440 wus & E1000_WUS_BC ? "Broadcast Packet" :
5441 wus & E1000_WUS_MAG ? "Magic Packet" :
5442 wus & E1000_WUS_LNKC ? "Link Status Change" :
5443 "other");
5445 ew32(WUS, ~0);
5448 e1000e_reset(adapter);
5450 e1000_init_manageability_pt(adapter);
5452 if (netif_running(netdev))
5453 e1000e_up(adapter);
5455 netif_device_attach(netdev);
5458 * If the controller has AMT, do not set DRV_LOAD until the interface
5459 * is up. For all other cases, let the f/w know that the h/w is now
5460 * under the control of the driver.
5462 if (!(adapter->flags & FLAG_HAS_AMT))
5463 e1000e_get_hw_control(adapter);
5465 return 0;
5468 #ifdef CONFIG_PM_SLEEP
5469 static int e1000_suspend(struct device *dev)
5471 struct pci_dev *pdev = to_pci_dev(dev);
5472 int retval;
5473 bool wake;
5475 retval = __e1000_shutdown(pdev, &wake, false);
5476 if (!retval)
5477 e1000_complete_shutdown(pdev, true, wake);
5479 return retval;
5482 static int e1000_resume(struct device *dev)
5484 struct pci_dev *pdev = to_pci_dev(dev);
5485 struct net_device *netdev = pci_get_drvdata(pdev);
5486 struct e1000_adapter *adapter = netdev_priv(netdev);
5488 if (e1000e_pm_ready(adapter))
5489 adapter->idle_check = true;
5491 return __e1000_resume(pdev);
5493 #endif /* CONFIG_PM_SLEEP */
5495 #ifdef CONFIG_PM_RUNTIME
5496 static int e1000_runtime_suspend(struct device *dev)
5498 struct pci_dev *pdev = to_pci_dev(dev);
5499 struct net_device *netdev = pci_get_drvdata(pdev);
5500 struct e1000_adapter *adapter = netdev_priv(netdev);
5502 if (e1000e_pm_ready(adapter)) {
5503 bool wake;
5505 __e1000_shutdown(pdev, &wake, true);
5508 return 0;
5511 static int e1000_idle(struct device *dev)
5513 struct pci_dev *pdev = to_pci_dev(dev);
5514 struct net_device *netdev = pci_get_drvdata(pdev);
5515 struct e1000_adapter *adapter = netdev_priv(netdev);
5517 if (!e1000e_pm_ready(adapter))
5518 return 0;
5520 if (adapter->idle_check) {
5521 adapter->idle_check = false;
5522 if (!e1000e_has_link(adapter))
5523 pm_schedule_suspend(dev, MSEC_PER_SEC);
5526 return -EBUSY;
5529 static int e1000_runtime_resume(struct device *dev)
5531 struct pci_dev *pdev = to_pci_dev(dev);
5532 struct net_device *netdev = pci_get_drvdata(pdev);
5533 struct e1000_adapter *adapter = netdev_priv(netdev);
5535 if (!e1000e_pm_ready(adapter))
5536 return 0;
5538 adapter->idle_check = !dev->power.runtime_auto;
5539 return __e1000_resume(pdev);
5541 #endif /* CONFIG_PM_RUNTIME */
5542 #endif /* CONFIG_PM */
5544 static void e1000_shutdown(struct pci_dev *pdev)
5546 bool wake = false;
5548 __e1000_shutdown(pdev, &wake, false);
5550 if (system_state == SYSTEM_POWER_OFF)
5551 e1000_complete_shutdown(pdev, false, wake);
5554 #ifdef CONFIG_NET_POLL_CONTROLLER
5556 static irqreturn_t e1000_intr_msix(int irq, void *data)
5558 struct net_device *netdev = data;
5559 struct e1000_adapter *adapter = netdev_priv(netdev);
5561 if (adapter->msix_entries) {
5562 int vector, msix_irq;
5564 vector = 0;
5565 msix_irq = adapter->msix_entries[vector].vector;
5566 disable_irq(msix_irq);
5567 e1000_intr_msix_rx(msix_irq, netdev);
5568 enable_irq(msix_irq);
5570 vector++;
5571 msix_irq = adapter->msix_entries[vector].vector;
5572 disable_irq(msix_irq);
5573 e1000_intr_msix_tx(msix_irq, netdev);
5574 enable_irq(msix_irq);
5576 vector++;
5577 msix_irq = adapter->msix_entries[vector].vector;
5578 disable_irq(msix_irq);
5579 e1000_msix_other(msix_irq, netdev);
5580 enable_irq(msix_irq);
5583 return IRQ_HANDLED;
5587 * Polling 'interrupt' - used by things like netconsole to send skbs
5588 * without having to re-enable interrupts. It's not called while
5589 * the interrupt routine is executing.
5591 static void e1000_netpoll(struct net_device *netdev)
5593 struct e1000_adapter *adapter = netdev_priv(netdev);
5595 switch (adapter->int_mode) {
5596 case E1000E_INT_MODE_MSIX:
5597 e1000_intr_msix(adapter->pdev->irq, netdev);
5598 break;
5599 case E1000E_INT_MODE_MSI:
5600 disable_irq(adapter->pdev->irq);
5601 e1000_intr_msi(adapter->pdev->irq, netdev);
5602 enable_irq(adapter->pdev->irq);
5603 break;
5604 default: /* E1000E_INT_MODE_LEGACY */
5605 disable_irq(adapter->pdev->irq);
5606 e1000_intr(adapter->pdev->irq, netdev);
5607 enable_irq(adapter->pdev->irq);
5608 break;
5611 #endif
5614 * e1000_io_error_detected - called when PCI error is detected
5615 * @pdev: Pointer to PCI device
5616 * @state: The current pci connection state
5618 * This function is called after a PCI bus error affecting
5619 * this device has been detected.
5621 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5622 pci_channel_state_t state)
5624 struct net_device *netdev = pci_get_drvdata(pdev);
5625 struct e1000_adapter *adapter = netdev_priv(netdev);
5627 netif_device_detach(netdev);
5629 if (state == pci_channel_io_perm_failure)
5630 return PCI_ERS_RESULT_DISCONNECT;
5632 if (netif_running(netdev))
5633 e1000e_down(adapter);
5634 pci_disable_device(pdev);
5636 /* Request a slot slot reset. */
5637 return PCI_ERS_RESULT_NEED_RESET;
5641 * e1000_io_slot_reset - called after the pci bus has been reset.
5642 * @pdev: Pointer to PCI device
5644 * Restart the card from scratch, as if from a cold-boot. Implementation
5645 * resembles the first-half of the e1000_resume routine.
5647 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5649 struct net_device *netdev = pci_get_drvdata(pdev);
5650 struct e1000_adapter *adapter = netdev_priv(netdev);
5651 struct e1000_hw *hw = &adapter->hw;
5652 u16 aspm_disable_flag = 0;
5653 int err;
5654 pci_ers_result_t result;
5656 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5657 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5658 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5659 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5660 if (aspm_disable_flag)
5661 e1000e_disable_aspm(pdev, aspm_disable_flag);
5663 err = pci_enable_device_mem(pdev);
5664 if (err) {
5665 dev_err(&pdev->dev,
5666 "Cannot re-enable PCI device after reset.\n");
5667 result = PCI_ERS_RESULT_DISCONNECT;
5668 } else {
5669 pci_set_master(pdev);
5670 pdev->state_saved = true;
5671 pci_restore_state(pdev);
5673 pci_enable_wake(pdev, PCI_D3hot, 0);
5674 pci_enable_wake(pdev, PCI_D3cold, 0);
5676 e1000e_reset(adapter);
5677 ew32(WUS, ~0);
5678 result = PCI_ERS_RESULT_RECOVERED;
5681 pci_cleanup_aer_uncorrect_error_status(pdev);
5683 return result;
5687 * e1000_io_resume - called when traffic can start flowing again.
5688 * @pdev: Pointer to PCI device
5690 * This callback is called when the error recovery driver tells us that
5691 * its OK to resume normal operation. Implementation resembles the
5692 * second-half of the e1000_resume routine.
5694 static void e1000_io_resume(struct pci_dev *pdev)
5696 struct net_device *netdev = pci_get_drvdata(pdev);
5697 struct e1000_adapter *adapter = netdev_priv(netdev);
5699 e1000_init_manageability_pt(adapter);
5701 if (netif_running(netdev)) {
5702 if (e1000e_up(adapter)) {
5703 dev_err(&pdev->dev,
5704 "can't bring device back up after reset\n");
5705 return;
5709 netif_device_attach(netdev);
5712 * If the controller has AMT, do not set DRV_LOAD until the interface
5713 * is up. For all other cases, let the f/w know that the h/w is now
5714 * under the control of the driver.
5716 if (!(adapter->flags & FLAG_HAS_AMT))
5717 e1000e_get_hw_control(adapter);
5721 static void e1000_print_device_info(struct e1000_adapter *adapter)
5723 struct e1000_hw *hw = &adapter->hw;
5724 struct net_device *netdev = adapter->netdev;
5725 u32 ret_val;
5726 u8 pba_str[E1000_PBANUM_LENGTH];
5728 /* print bus type/speed/width info */
5729 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5730 /* bus width */
5731 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5732 "Width x1"),
5733 /* MAC address */
5734 netdev->dev_addr);
5735 e_info("Intel(R) PRO/%s Network Connection\n",
5736 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5737 ret_val = e1000_read_pba_string_generic(hw, pba_str,
5738 E1000_PBANUM_LENGTH);
5739 if (ret_val)
5740 strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5741 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5742 hw->mac.type, hw->phy.type, pba_str);
5745 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5747 struct e1000_hw *hw = &adapter->hw;
5748 int ret_val;
5749 u16 buf = 0;
5751 if (hw->mac.type != e1000_82573)
5752 return;
5754 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5755 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5756 /* Deep Smart Power Down (DSPD) */
5757 dev_warn(&adapter->pdev->dev,
5758 "Warning: detected DSPD enabled in EEPROM\n");
5762 static const struct net_device_ops e1000e_netdev_ops = {
5763 .ndo_open = e1000_open,
5764 .ndo_stop = e1000_close,
5765 .ndo_start_xmit = e1000_xmit_frame,
5766 .ndo_get_stats64 = e1000e_get_stats64,
5767 .ndo_set_multicast_list = e1000_set_multi,
5768 .ndo_set_mac_address = e1000_set_mac,
5769 .ndo_change_mtu = e1000_change_mtu,
5770 .ndo_do_ioctl = e1000_ioctl,
5771 .ndo_tx_timeout = e1000_tx_timeout,
5772 .ndo_validate_addr = eth_validate_addr,
5774 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
5775 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
5776 #ifdef CONFIG_NET_POLL_CONTROLLER
5777 .ndo_poll_controller = e1000_netpoll,
5778 #endif
5782 * e1000_probe - Device Initialization Routine
5783 * @pdev: PCI device information struct
5784 * @ent: entry in e1000_pci_tbl
5786 * Returns 0 on success, negative on failure
5788 * e1000_probe initializes an adapter identified by a pci_dev structure.
5789 * The OS initialization, configuring of the adapter private structure,
5790 * and a hardware reset occur.
5792 static int __devinit e1000_probe(struct pci_dev *pdev,
5793 const struct pci_device_id *ent)
5795 struct net_device *netdev;
5796 struct e1000_adapter *adapter;
5797 struct e1000_hw *hw;
5798 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5799 resource_size_t mmio_start, mmio_len;
5800 resource_size_t flash_start, flash_len;
5802 static int cards_found;
5803 u16 aspm_disable_flag = 0;
5804 int i, err, pci_using_dac;
5805 u16 eeprom_data = 0;
5806 u16 eeprom_apme_mask = E1000_EEPROM_APME;
5808 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
5809 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5810 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5811 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5812 if (aspm_disable_flag)
5813 e1000e_disable_aspm(pdev, aspm_disable_flag);
5815 err = pci_enable_device_mem(pdev);
5816 if (err)
5817 return err;
5819 pci_using_dac = 0;
5820 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5821 if (!err) {
5822 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5823 if (!err)
5824 pci_using_dac = 1;
5825 } else {
5826 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5827 if (err) {
5828 err = dma_set_coherent_mask(&pdev->dev,
5829 DMA_BIT_MASK(32));
5830 if (err) {
5831 dev_err(&pdev->dev, "No usable DMA "
5832 "configuration, aborting\n");
5833 goto err_dma;
5838 err = pci_request_selected_regions_exclusive(pdev,
5839 pci_select_bars(pdev, IORESOURCE_MEM),
5840 e1000e_driver_name);
5841 if (err)
5842 goto err_pci_reg;
5844 /* AER (Advanced Error Reporting) hooks */
5845 pci_enable_pcie_error_reporting(pdev);
5847 pci_set_master(pdev);
5848 /* PCI config space info */
5849 err = pci_save_state(pdev);
5850 if (err)
5851 goto err_alloc_etherdev;
5853 err = -ENOMEM;
5854 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5855 if (!netdev)
5856 goto err_alloc_etherdev;
5858 SET_NETDEV_DEV(netdev, &pdev->dev);
5860 netdev->irq = pdev->irq;
5862 pci_set_drvdata(pdev, netdev);
5863 adapter = netdev_priv(netdev);
5864 hw = &adapter->hw;
5865 adapter->netdev = netdev;
5866 adapter->pdev = pdev;
5867 adapter->ei = ei;
5868 adapter->pba = ei->pba;
5869 adapter->flags = ei->flags;
5870 adapter->flags2 = ei->flags2;
5871 adapter->hw.adapter = adapter;
5872 adapter->hw.mac.type = ei->mac;
5873 adapter->max_hw_frame_size = ei->max_hw_frame_size;
5874 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5876 mmio_start = pci_resource_start(pdev, 0);
5877 mmio_len = pci_resource_len(pdev, 0);
5879 err = -EIO;
5880 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5881 if (!adapter->hw.hw_addr)
5882 goto err_ioremap;
5884 if ((adapter->flags & FLAG_HAS_FLASH) &&
5885 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5886 flash_start = pci_resource_start(pdev, 1);
5887 flash_len = pci_resource_len(pdev, 1);
5888 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5889 if (!adapter->hw.flash_address)
5890 goto err_flashmap;
5893 /* construct the net_device struct */
5894 netdev->netdev_ops = &e1000e_netdev_ops;
5895 e1000e_set_ethtool_ops(netdev);
5896 netdev->watchdog_timeo = 5 * HZ;
5897 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5898 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5900 netdev->mem_start = mmio_start;
5901 netdev->mem_end = mmio_start + mmio_len;
5903 adapter->bd_number = cards_found++;
5905 e1000e_check_options(adapter);
5907 /* setup adapter struct */
5908 err = e1000_sw_init(adapter);
5909 if (err)
5910 goto err_sw_init;
5912 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5913 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5914 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5916 err = ei->get_variants(adapter);
5917 if (err)
5918 goto err_hw_init;
5920 if ((adapter->flags & FLAG_IS_ICH) &&
5921 (adapter->flags & FLAG_READ_ONLY_NVM))
5922 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5924 hw->mac.ops.get_bus_info(&adapter->hw);
5926 adapter->hw.phy.autoneg_wait_to_complete = 0;
5928 /* Copper options */
5929 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5930 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5931 adapter->hw.phy.disable_polarity_correction = 0;
5932 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5935 if (e1000_check_reset_block(&adapter->hw))
5936 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5938 netdev->features = NETIF_F_SG |
5939 NETIF_F_HW_CSUM |
5940 NETIF_F_HW_VLAN_TX |
5941 NETIF_F_HW_VLAN_RX;
5943 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5944 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5946 netdev->features |= NETIF_F_TSO;
5947 netdev->features |= NETIF_F_TSO6;
5949 netdev->vlan_features |= NETIF_F_TSO;
5950 netdev->vlan_features |= NETIF_F_TSO6;
5951 netdev->vlan_features |= NETIF_F_HW_CSUM;
5952 netdev->vlan_features |= NETIF_F_SG;
5954 if (pci_using_dac) {
5955 netdev->features |= NETIF_F_HIGHDMA;
5956 netdev->vlan_features |= NETIF_F_HIGHDMA;
5959 if (e1000e_enable_mng_pass_thru(&adapter->hw))
5960 adapter->flags |= FLAG_MNG_PT_ENABLED;
5963 * before reading the NVM, reset the controller to
5964 * put the device in a known good starting state
5966 adapter->hw.mac.ops.reset_hw(&adapter->hw);
5969 * systems with ASPM and others may see the checksum fail on the first
5970 * attempt. Let's give it a few tries
5972 for (i = 0;; i++) {
5973 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5974 break;
5975 if (i == 2) {
5976 e_err("The NVM Checksum Is Not Valid\n");
5977 err = -EIO;
5978 goto err_eeprom;
5982 e1000_eeprom_checks(adapter);
5984 /* copy the MAC address */
5985 if (e1000e_read_mac_addr(&adapter->hw))
5986 e_err("NVM Read Error while reading MAC address\n");
5988 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5989 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5991 if (!is_valid_ether_addr(netdev->perm_addr)) {
5992 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5993 err = -EIO;
5994 goto err_eeprom;
5997 init_timer(&adapter->watchdog_timer);
5998 adapter->watchdog_timer.function = e1000_watchdog;
5999 adapter->watchdog_timer.data = (unsigned long) adapter;
6001 init_timer(&adapter->phy_info_timer);
6002 adapter->phy_info_timer.function = e1000_update_phy_info;
6003 adapter->phy_info_timer.data = (unsigned long) adapter;
6005 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6006 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6007 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6008 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6009 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6011 /* Initialize link parameters. User can change them with ethtool */
6012 adapter->hw.mac.autoneg = 1;
6013 adapter->fc_autoneg = 1;
6014 adapter->hw.fc.requested_mode = e1000_fc_default;
6015 adapter->hw.fc.current_mode = e1000_fc_default;
6016 adapter->hw.phy.autoneg_advertised = 0x2f;
6018 /* ring size defaults */
6019 adapter->rx_ring->count = 256;
6020 adapter->tx_ring->count = 256;
6023 * Initial Wake on LAN setting - If APM wake is enabled in
6024 * the EEPROM, enable the ACPI Magic Packet filter
6026 if (adapter->flags & FLAG_APME_IN_WUC) {
6027 /* APME bit in EEPROM is mapped to WUC.APME */
6028 eeprom_data = er32(WUC);
6029 eeprom_apme_mask = E1000_WUC_APME;
6030 if ((hw->mac.type > e1000_ich10lan) &&
6031 (eeprom_data & E1000_WUC_PHY_WAKE))
6032 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6033 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6034 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6035 (adapter->hw.bus.func == 1))
6036 e1000_read_nvm(&adapter->hw,
6037 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
6038 else
6039 e1000_read_nvm(&adapter->hw,
6040 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6043 /* fetch WoL from EEPROM */
6044 if (eeprom_data & eeprom_apme_mask)
6045 adapter->eeprom_wol |= E1000_WUFC_MAG;
6048 * now that we have the eeprom settings, apply the special cases
6049 * where the eeprom may be wrong or the board simply won't support
6050 * wake on lan on a particular port
6052 if (!(adapter->flags & FLAG_HAS_WOL))
6053 adapter->eeprom_wol = 0;
6055 /* initialize the wol settings based on the eeprom settings */
6056 adapter->wol = adapter->eeprom_wol;
6057 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6059 /* save off EEPROM version number */
6060 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6062 /* reset the hardware with the new settings */
6063 e1000e_reset(adapter);
6066 * If the controller has AMT, do not set DRV_LOAD until the interface
6067 * is up. For all other cases, let the f/w know that the h/w is now
6068 * under the control of the driver.
6070 if (!(adapter->flags & FLAG_HAS_AMT))
6071 e1000e_get_hw_control(adapter);
6073 strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6074 err = register_netdev(netdev);
6075 if (err)
6076 goto err_register;
6078 /* carrier off reporting is important to ethtool even BEFORE open */
6079 netif_carrier_off(netdev);
6081 e1000_print_device_info(adapter);
6083 if (pci_dev_run_wake(pdev))
6084 pm_runtime_put_noidle(&pdev->dev);
6086 return 0;
6088 err_register:
6089 if (!(adapter->flags & FLAG_HAS_AMT))
6090 e1000e_release_hw_control(adapter);
6091 err_eeprom:
6092 if (!e1000_check_reset_block(&adapter->hw))
6093 e1000_phy_hw_reset(&adapter->hw);
6094 err_hw_init:
6095 kfree(adapter->tx_ring);
6096 kfree(adapter->rx_ring);
6097 err_sw_init:
6098 if (adapter->hw.flash_address)
6099 iounmap(adapter->hw.flash_address);
6100 e1000e_reset_interrupt_capability(adapter);
6101 err_flashmap:
6102 iounmap(adapter->hw.hw_addr);
6103 err_ioremap:
6104 free_netdev(netdev);
6105 err_alloc_etherdev:
6106 pci_release_selected_regions(pdev,
6107 pci_select_bars(pdev, IORESOURCE_MEM));
6108 err_pci_reg:
6109 err_dma:
6110 pci_disable_device(pdev);
6111 return err;
6115 * e1000_remove - Device Removal Routine
6116 * @pdev: PCI device information struct
6118 * e1000_remove is called by the PCI subsystem to alert the driver
6119 * that it should release a PCI device. The could be caused by a
6120 * Hot-Plug event, or because the driver is going to be removed from
6121 * memory.
6123 static void __devexit e1000_remove(struct pci_dev *pdev)
6125 struct net_device *netdev = pci_get_drvdata(pdev);
6126 struct e1000_adapter *adapter = netdev_priv(netdev);
6127 bool down = test_bit(__E1000_DOWN, &adapter->state);
6130 * The timers may be rescheduled, so explicitly disable them
6131 * from being rescheduled.
6133 if (!down)
6134 set_bit(__E1000_DOWN, &adapter->state);
6135 del_timer_sync(&adapter->watchdog_timer);
6136 del_timer_sync(&adapter->phy_info_timer);
6138 cancel_work_sync(&adapter->reset_task);
6139 cancel_work_sync(&adapter->watchdog_task);
6140 cancel_work_sync(&adapter->downshift_task);
6141 cancel_work_sync(&adapter->update_phy_task);
6142 cancel_work_sync(&adapter->print_hang_task);
6144 if (!(netdev->flags & IFF_UP))
6145 e1000_power_down_phy(adapter);
6147 /* Don't lie to e1000_close() down the road. */
6148 if (!down)
6149 clear_bit(__E1000_DOWN, &adapter->state);
6150 unregister_netdev(netdev);
6152 if (pci_dev_run_wake(pdev))
6153 pm_runtime_get_noresume(&pdev->dev);
6156 * Release control of h/w to f/w. If f/w is AMT enabled, this
6157 * would have already happened in close and is redundant.
6159 e1000e_release_hw_control(adapter);
6161 e1000e_reset_interrupt_capability(adapter);
6162 kfree(adapter->tx_ring);
6163 kfree(adapter->rx_ring);
6165 iounmap(adapter->hw.hw_addr);
6166 if (adapter->hw.flash_address)
6167 iounmap(adapter->hw.flash_address);
6168 pci_release_selected_regions(pdev,
6169 pci_select_bars(pdev, IORESOURCE_MEM));
6171 free_netdev(netdev);
6173 /* AER disable */
6174 pci_disable_pcie_error_reporting(pdev);
6176 pci_disable_device(pdev);
6179 /* PCI Error Recovery (ERS) */
6180 static struct pci_error_handlers e1000_err_handler = {
6181 .error_detected = e1000_io_error_detected,
6182 .slot_reset = e1000_io_slot_reset,
6183 .resume = e1000_io_resume,
6186 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6187 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6188 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6189 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6190 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6191 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6192 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6193 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6194 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6195 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6197 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6198 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6199 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6200 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6202 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6203 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6204 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6206 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6207 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6208 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6210 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6211 board_80003es2lan },
6212 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6213 board_80003es2lan },
6214 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6215 board_80003es2lan },
6216 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6217 board_80003es2lan },
6219 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6220 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6221 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6222 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6223 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6224 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6225 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6226 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6228 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6229 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6230 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6231 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6232 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6233 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6234 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6235 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6236 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6238 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6239 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6240 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6242 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6243 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6244 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6246 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6247 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6248 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6249 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6251 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6252 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6254 { } /* terminate list */
6256 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6258 #ifdef CONFIG_PM
6259 static const struct dev_pm_ops e1000_pm_ops = {
6260 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6261 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6262 e1000_runtime_resume, e1000_idle)
6264 #endif
6266 /* PCI Device API Driver */
6267 static struct pci_driver e1000_driver = {
6268 .name = e1000e_driver_name,
6269 .id_table = e1000_pci_tbl,
6270 .probe = e1000_probe,
6271 .remove = __devexit_p(e1000_remove),
6272 #ifdef CONFIG_PM
6273 .driver.pm = &e1000_pm_ops,
6274 #endif
6275 .shutdown = e1000_shutdown,
6276 .err_handler = &e1000_err_handler
6280 * e1000_init_module - Driver Registration Routine
6282 * e1000_init_module is the first routine called when the driver is
6283 * loaded. All it does is register with the PCI subsystem.
6285 static int __init e1000_init_module(void)
6287 int ret;
6288 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6289 e1000e_driver_version);
6290 pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6291 ret = pci_register_driver(&e1000_driver);
6293 return ret;
6295 module_init(e1000_init_module);
6298 * e1000_exit_module - Driver Exit Cleanup Routine
6300 * e1000_exit_module is called just before the driver is removed
6301 * from memory.
6303 static void __exit e1000_exit_module(void)
6305 pci_unregister_driver(&e1000_driver);
6307 module_exit(e1000_exit_module);
6310 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6311 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6312 MODULE_LICENSE("GPL");
6313 MODULE_VERSION(DRV_VERSION);
6315 /* e1000_main.c */