include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / net / vxge / vxge-config.c
blob1520c574cb208770f6a15f6d616260196fc0cb0c
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
27 offset, \
28 &val64); \
29 if (status != VXGE_HW_OK) \
30 return status; \
33 static void
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
36 u64 val64;
38 val64 = readq(&vp_reg->rxmac_vcfg0);
39 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64, &vp_reg->rxmac_vcfg0);
41 val64 = readq(&vp_reg->rxmac_vcfg0);
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
49 struct vxge_hw_vpath_reg __iomem *vp_reg;
50 struct __vxge_hw_virtualpath *vpath;
51 u64 val64, rxd_count, rxd_spat;
52 int count = 0, total_count = 0;
54 vpath = &hldev->virtual_paths[vp_id];
55 vp_reg = vpath->vp_reg;
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
64 val64 = readq(&vp_reg->prc_cfg6);
65 rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67 * leg room.
69 rxd_spat *= 2;
71 do {
72 mdelay(1);
74 rxd_count = readq(&vp_reg->prc_rxd_doorbell);
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
79 val64 = readq(&vp_reg->frm_in_progress_cnt);
80 if ((rxd_count <= rxd_spat) || (val64 > 0))
81 count = 0;
82 else
83 count++;
84 total_count++;
85 } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86 (total_count < VXGE_HW_MAX_POLLING_COUNT));
88 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89 printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90 __func__);
92 return total_count;
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
101 int i, total_count = 0;
103 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105 continue;
107 total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109 break;
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
121 u64 val64;
122 u32 i = 0;
123 enum vxge_hw_status ret = VXGE_HW_FAIL;
125 udelay(10);
127 do {
128 val64 = readq(reg);
129 if (!(val64 & mask))
130 return VXGE_HW_OK;
131 udelay(100);
132 } while (++i <= 9);
134 i = 0;
135 do {
136 val64 = readq(reg);
137 if (!(val64 & mask))
138 return VXGE_HW_OK;
139 mdelay(1);
140 } while (++i <= max_millis);
142 return ret;
145 static inline enum vxge_hw_status
146 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
147 u64 mask, u32 max_millis)
149 __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
150 wmb();
151 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
152 wmb();
154 return __vxge_hw_device_register_poll(addr, mask, max_millis);
157 static enum vxge_hw_status
158 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
159 u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
160 u64 *steer_ctrl)
162 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
163 enum vxge_hw_status status;
164 u64 val64;
165 u32 retry = 0, max_retry = 3;
167 spin_lock(&vpath->lock);
168 if (!vpath->vp_open) {
169 spin_unlock(&vpath->lock);
170 max_retry = 100;
173 writeq(*data0, &vp_reg->rts_access_steer_data0);
174 writeq(*data1, &vp_reg->rts_access_steer_data1);
175 wmb();
177 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
178 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
180 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
181 *steer_ctrl;
183 status = __vxge_hw_pio_mem_write64(val64,
184 &vp_reg->rts_access_steer_ctrl,
185 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
186 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
188 /* The __vxge_hw_device_register_poll can udelay for a significant
189 * amount of time, blocking other process from the CPU. If it delays
190 * for ~5secs, a NMI error can occur. A way around this is to give up
191 * the processor via msleep, but this is not allowed is under lock.
192 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
193 * 1sec and sleep for 10ms until the firmware operation has completed
194 * or timed-out.
196 while ((status != VXGE_HW_OK) && retry++ < max_retry) {
197 if (!vpath->vp_open)
198 msleep(20);
199 status = __vxge_hw_device_register_poll(
200 &vp_reg->rts_access_steer_ctrl,
201 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
202 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
205 if (status != VXGE_HW_OK)
206 goto out;
208 val64 = readq(&vp_reg->rts_access_steer_ctrl);
209 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
210 *data0 = readq(&vp_reg->rts_access_steer_data0);
211 *data1 = readq(&vp_reg->rts_access_steer_data1);
212 *steer_ctrl = val64;
213 } else
214 status = VXGE_HW_FAIL;
216 out:
217 if (vpath->vp_open)
218 spin_unlock(&vpath->lock);
219 return status;
222 enum vxge_hw_status
223 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
224 u32 *minor, u32 *build)
226 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
227 struct __vxge_hw_virtualpath *vpath;
228 enum vxge_hw_status status;
230 vpath = &hldev->virtual_paths[hldev->first_vp_id];
232 status = vxge_hw_vpath_fw_api(vpath,
233 VXGE_HW_FW_UPGRADE_ACTION,
234 VXGE_HW_FW_UPGRADE_MEMO,
235 VXGE_HW_FW_UPGRADE_OFFSET_READ,
236 &data0, &data1, &steer_ctrl);
237 if (status != VXGE_HW_OK)
238 return status;
240 *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
241 *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
242 *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
244 return status;
247 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
249 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
250 struct __vxge_hw_virtualpath *vpath;
251 enum vxge_hw_status status;
252 u32 ret;
254 vpath = &hldev->virtual_paths[hldev->first_vp_id];
256 status = vxge_hw_vpath_fw_api(vpath,
257 VXGE_HW_FW_UPGRADE_ACTION,
258 VXGE_HW_FW_UPGRADE_MEMO,
259 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
260 &data0, &data1, &steer_ctrl);
261 if (status != VXGE_HW_OK) {
262 vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
263 goto exit;
266 ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
267 if (ret != 1) {
268 vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
269 __func__, ret);
270 status = VXGE_HW_FAIL;
273 exit:
274 return status;
277 enum vxge_hw_status
278 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
280 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
281 struct __vxge_hw_virtualpath *vpath;
282 enum vxge_hw_status status;
283 int ret_code, sec_code;
285 vpath = &hldev->virtual_paths[hldev->first_vp_id];
287 /* send upgrade start command */
288 status = vxge_hw_vpath_fw_api(vpath,
289 VXGE_HW_FW_UPGRADE_ACTION,
290 VXGE_HW_FW_UPGRADE_MEMO,
291 VXGE_HW_FW_UPGRADE_OFFSET_START,
292 &data0, &data1, &steer_ctrl);
293 if (status != VXGE_HW_OK) {
294 vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
295 __func__);
296 return status;
299 /* Transfer fw image to adapter 16 bytes at a time */
300 for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
301 steer_ctrl = 0;
303 /* The next 128bits of fwdata to be loaded onto the adapter */
304 data0 = *((u64 *)fwdata);
305 data1 = *((u64 *)fwdata + 1);
307 status = vxge_hw_vpath_fw_api(vpath,
308 VXGE_HW_FW_UPGRADE_ACTION,
309 VXGE_HW_FW_UPGRADE_MEMO,
310 VXGE_HW_FW_UPGRADE_OFFSET_SEND,
311 &data0, &data1, &steer_ctrl);
312 if (status != VXGE_HW_OK) {
313 vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
314 __func__);
315 goto out;
318 ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
319 switch (ret_code) {
320 case VXGE_HW_FW_UPGRADE_OK:
321 /* All OK, send next 16 bytes. */
322 break;
323 case VXGE_FW_UPGRADE_BYTES2SKIP:
324 /* skip bytes in the stream */
325 fwdata += (data0 >> 8) & 0xFFFFFFFF;
326 break;
327 case VXGE_HW_FW_UPGRADE_DONE:
328 goto out;
329 case VXGE_HW_FW_UPGRADE_ERR:
330 sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
331 switch (sec_code) {
332 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
333 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
334 printk(KERN_ERR
335 "corrupted data from .ncf file\n");
336 break;
337 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
341 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
342 printk(KERN_ERR "invalid .ncf file\n");
343 break;
344 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
345 printk(KERN_ERR "buffer overflow\n");
346 break;
347 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
348 printk(KERN_ERR "failed to flash the image\n");
349 break;
350 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
351 printk(KERN_ERR
352 "generic error. Unknown error type\n");
353 break;
354 default:
355 printk(KERN_ERR "Unknown error of type %d\n",
356 sec_code);
357 break;
359 status = VXGE_HW_FAIL;
360 goto out;
361 default:
362 printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
363 status = VXGE_HW_FAIL;
364 goto out;
366 /* point to next 16 bytes */
367 fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
369 out:
370 return status;
373 enum vxge_hw_status
374 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
375 struct eprom_image *img)
377 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
378 struct __vxge_hw_virtualpath *vpath;
379 enum vxge_hw_status status;
380 int i;
382 vpath = &hldev->virtual_paths[hldev->first_vp_id];
384 for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
385 data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
386 data1 = steer_ctrl = 0;
388 status = vxge_hw_vpath_fw_api(vpath,
389 VXGE_HW_FW_API_GET_EPROM_REV,
390 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
391 0, &data0, &data1, &steer_ctrl);
392 if (status != VXGE_HW_OK)
393 break;
395 img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
396 img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
397 img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
398 img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
401 return status;
405 * __vxge_hw_channel_free - Free memory allocated for channel
406 * This function deallocates memory from the channel and various arrays
407 * in the channel
409 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
411 kfree(channel->work_arr);
412 kfree(channel->free_arr);
413 kfree(channel->reserve_arr);
414 kfree(channel->orig_arr);
415 kfree(channel);
419 * __vxge_hw_channel_initialize - Initialize a channel
420 * This function initializes a channel by properly setting the
421 * various references
423 static enum vxge_hw_status
424 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
426 u32 i;
427 struct __vxge_hw_virtualpath *vpath;
429 vpath = channel->vph->vpath;
431 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
432 for (i = 0; i < channel->length; i++)
433 channel->orig_arr[i] = channel->reserve_arr[i];
436 switch (channel->type) {
437 case VXGE_HW_CHANNEL_TYPE_FIFO:
438 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
439 channel->stats = &((struct __vxge_hw_fifo *)
440 channel)->stats->common_stats;
441 break;
442 case VXGE_HW_CHANNEL_TYPE_RING:
443 vpath->ringh = (struct __vxge_hw_ring *)channel;
444 channel->stats = &((struct __vxge_hw_ring *)
445 channel)->stats->common_stats;
446 break;
447 default:
448 break;
451 return VXGE_HW_OK;
455 * __vxge_hw_channel_reset - Resets a channel
456 * This function resets a channel by properly setting the various references
458 static enum vxge_hw_status
459 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
461 u32 i;
463 for (i = 0; i < channel->length; i++) {
464 if (channel->reserve_arr != NULL)
465 channel->reserve_arr[i] = channel->orig_arr[i];
466 if (channel->free_arr != NULL)
467 channel->free_arr[i] = NULL;
468 if (channel->work_arr != NULL)
469 channel->work_arr[i] = NULL;
471 channel->free_ptr = channel->length;
472 channel->reserve_ptr = channel->length;
473 channel->reserve_top = 0;
474 channel->post_index = 0;
475 channel->compl_index = 0;
477 return VXGE_HW_OK;
481 * __vxge_hw_device_pci_e_init
482 * Initialize certain PCI/PCI-X configuration registers
483 * with recommended values. Save config space for future hw resets.
485 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
487 u16 cmd = 0;
489 /* Set the PErr Repconse bit and SERR in PCI command register. */
490 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
491 cmd |= 0x140;
492 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
494 pci_save_state(hldev->pdev);
497 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
498 * in progress
499 * This routine checks the vpath reset in progress register is turned zero
501 static enum vxge_hw_status
502 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
504 enum vxge_hw_status status;
505 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
506 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
507 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
508 return status;
512 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
513 * Set the swapper bits appropriately for the lagacy section.
515 static enum vxge_hw_status
516 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
518 u64 val64;
519 enum vxge_hw_status status = VXGE_HW_OK;
521 val64 = readq(&legacy_reg->toc_swapper_fb);
523 wmb();
525 switch (val64) {
526 case VXGE_HW_SWAPPER_INITIAL_VALUE:
527 return status;
529 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
530 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
531 &legacy_reg->pifm_rd_swap_en);
532 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
533 &legacy_reg->pifm_rd_flip_en);
534 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
535 &legacy_reg->pifm_wr_swap_en);
536 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
537 &legacy_reg->pifm_wr_flip_en);
538 break;
540 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
541 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
542 &legacy_reg->pifm_rd_swap_en);
543 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
544 &legacy_reg->pifm_wr_swap_en);
545 break;
547 case VXGE_HW_SWAPPER_BIT_FLIPPED:
548 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
549 &legacy_reg->pifm_rd_flip_en);
550 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
551 &legacy_reg->pifm_wr_flip_en);
552 break;
555 wmb();
557 val64 = readq(&legacy_reg->toc_swapper_fb);
559 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
560 status = VXGE_HW_ERR_SWAPPER_CTRL;
562 return status;
566 * __vxge_hw_device_toc_get
567 * This routine sets the swapper and reads the toc pointer and returns the
568 * memory mapped address of the toc
570 static struct vxge_hw_toc_reg __iomem *
571 __vxge_hw_device_toc_get(void __iomem *bar0)
573 u64 val64;
574 struct vxge_hw_toc_reg __iomem *toc = NULL;
575 enum vxge_hw_status status;
577 struct vxge_hw_legacy_reg __iomem *legacy_reg =
578 (struct vxge_hw_legacy_reg __iomem *)bar0;
580 status = __vxge_hw_legacy_swapper_set(legacy_reg);
581 if (status != VXGE_HW_OK)
582 goto exit;
584 val64 = readq(&legacy_reg->toc_first_pointer);
585 toc = bar0 + val64;
586 exit:
587 return toc;
591 * __vxge_hw_device_reg_addr_get
592 * This routine sets the swapper and reads the toc pointer and initializes the
593 * register location pointers in the device object. It waits until the ric is
594 * completed initializing registers.
596 static enum vxge_hw_status
597 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
599 u64 val64;
600 u32 i;
601 enum vxge_hw_status status = VXGE_HW_OK;
603 hldev->legacy_reg = hldev->bar0;
605 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
606 if (hldev->toc_reg == NULL) {
607 status = VXGE_HW_FAIL;
608 goto exit;
611 val64 = readq(&hldev->toc_reg->toc_common_pointer);
612 hldev->common_reg = hldev->bar0 + val64;
614 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
615 hldev->mrpcim_reg = hldev->bar0 + val64;
617 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
618 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
619 hldev->srpcim_reg[i] = hldev->bar0 + val64;
622 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
623 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
624 hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
627 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
628 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
629 hldev->vpath_reg[i] = hldev->bar0 + val64;
632 val64 = readq(&hldev->toc_reg->toc_kdfc);
634 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
635 case 0:
636 hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
637 break;
638 default:
639 break;
642 status = __vxge_hw_device_vpath_reset_in_prog_check(
643 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
644 exit:
645 return status;
649 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
650 * This routine returns the Access Rights of the driver
652 static u32
653 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
655 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
657 switch (host_type) {
658 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
659 if (func_id == 0) {
660 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
661 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
663 break;
664 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
665 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
666 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
667 break;
668 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
669 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
670 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
671 break;
672 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
673 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
674 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
675 break;
676 case VXGE_HW_SR_VH_FUNCTION0:
677 case VXGE_HW_VH_NORMAL_FUNCTION:
678 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
679 break;
682 return access_rights;
685 * __vxge_hw_device_is_privilaged
686 * This routine checks if the device function is privilaged or not
689 enum vxge_hw_status
690 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
692 if (__vxge_hw_device_access_rights_get(host_type,
693 func_id) &
694 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
695 return VXGE_HW_OK;
696 else
697 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
701 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
702 * Returns the function number of the vpath.
704 static u32
705 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
707 u64 val64;
709 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
711 return
712 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
716 * __vxge_hw_device_host_info_get
717 * This routine returns the host type assignments
719 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
721 u64 val64;
722 u32 i;
724 val64 = readq(&hldev->common_reg->host_type_assignments);
726 hldev->host_type =
727 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
729 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
731 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
732 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
733 continue;
735 hldev->func_id =
736 __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
738 hldev->access_rights = __vxge_hw_device_access_rights_get(
739 hldev->host_type, hldev->func_id);
741 hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
742 hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
744 hldev->first_vp_id = i;
745 break;
750 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
751 * link width and signalling rate.
753 static enum vxge_hw_status
754 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
756 struct pci_dev *dev = hldev->pdev;
757 u16 lnk;
759 /* Get the negotiated link width and speed from PCI config space */
760 pci_read_config_word(dev, dev->pcie_cap + PCI_EXP_LNKSTA, &lnk);
762 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
763 return VXGE_HW_ERR_INVALID_PCI_INFO;
765 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
766 case PCIE_LNK_WIDTH_RESRV:
767 case PCIE_LNK_X1:
768 case PCIE_LNK_X2:
769 case PCIE_LNK_X4:
770 case PCIE_LNK_X8:
771 break;
772 default:
773 return VXGE_HW_ERR_INVALID_PCI_INFO;
776 return VXGE_HW_OK;
780 * __vxge_hw_device_initialize
781 * Initialize Titan-V hardware.
783 static enum vxge_hw_status
784 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
786 enum vxge_hw_status status = VXGE_HW_OK;
788 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
789 hldev->func_id)) {
790 /* Validate the pci-e link width and speed */
791 status = __vxge_hw_verify_pci_e_info(hldev);
792 if (status != VXGE_HW_OK)
793 goto exit;
796 exit:
797 return status;
801 * __vxge_hw_vpath_fw_ver_get - Get the fw version
802 * Returns FW Version
804 static enum vxge_hw_status
805 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
806 struct vxge_hw_device_hw_info *hw_info)
808 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
809 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
810 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
811 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
812 u64 data0, data1 = 0, steer_ctrl = 0;
813 enum vxge_hw_status status;
815 status = vxge_hw_vpath_fw_api(vpath,
816 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
817 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
818 0, &data0, &data1, &steer_ctrl);
819 if (status != VXGE_HW_OK)
820 goto exit;
822 fw_date->day =
823 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
824 fw_date->month =
825 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
826 fw_date->year =
827 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
829 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
830 fw_date->month, fw_date->day, fw_date->year);
832 fw_version->major =
833 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
834 fw_version->minor =
835 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
836 fw_version->build =
837 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
839 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
840 fw_version->major, fw_version->minor, fw_version->build);
842 flash_date->day =
843 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
844 flash_date->month =
845 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
846 flash_date->year =
847 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
849 snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
850 flash_date->month, flash_date->day, flash_date->year);
852 flash_version->major =
853 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
854 flash_version->minor =
855 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
856 flash_version->build =
857 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
859 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
860 flash_version->major, flash_version->minor,
861 flash_version->build);
863 exit:
864 return status;
868 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
869 * part number and product description.
871 static enum vxge_hw_status
872 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
873 struct vxge_hw_device_hw_info *hw_info)
875 enum vxge_hw_status status;
876 u64 data0, data1 = 0, steer_ctrl = 0;
877 u8 *serial_number = hw_info->serial_number;
878 u8 *part_number = hw_info->part_number;
879 u8 *product_desc = hw_info->product_desc;
880 u32 i, j = 0;
882 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
884 status = vxge_hw_vpath_fw_api(vpath,
885 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
886 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
887 0, &data0, &data1, &steer_ctrl);
888 if (status != VXGE_HW_OK)
889 return status;
891 ((u64 *)serial_number)[0] = be64_to_cpu(data0);
892 ((u64 *)serial_number)[1] = be64_to_cpu(data1);
894 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
895 data1 = steer_ctrl = 0;
897 status = vxge_hw_vpath_fw_api(vpath,
898 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
899 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
900 0, &data0, &data1, &steer_ctrl);
901 if (status != VXGE_HW_OK)
902 return status;
904 ((u64 *)part_number)[0] = be64_to_cpu(data0);
905 ((u64 *)part_number)[1] = be64_to_cpu(data1);
907 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
908 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
909 data0 = i;
910 data1 = steer_ctrl = 0;
912 status = vxge_hw_vpath_fw_api(vpath,
913 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
914 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
915 0, &data0, &data1, &steer_ctrl);
916 if (status != VXGE_HW_OK)
917 return status;
919 ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
920 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
923 return status;
927 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
928 * Returns pci function mode
930 static enum vxge_hw_status
931 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
932 struct vxge_hw_device_hw_info *hw_info)
934 u64 data0, data1 = 0, steer_ctrl = 0;
935 enum vxge_hw_status status;
937 data0 = 0;
939 status = vxge_hw_vpath_fw_api(vpath,
940 VXGE_HW_FW_API_GET_FUNC_MODE,
941 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
942 0, &data0, &data1, &steer_ctrl);
943 if (status != VXGE_HW_OK)
944 return status;
946 hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
947 return status;
951 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
952 * from MAC address table.
954 static enum vxge_hw_status
955 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
956 u8 *macaddr, u8 *macaddr_mask)
958 u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
959 data0 = 0, data1 = 0, steer_ctrl = 0;
960 enum vxge_hw_status status;
961 int i;
963 do {
964 status = vxge_hw_vpath_fw_api(vpath, action,
965 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
966 0, &data0, &data1, &steer_ctrl);
967 if (status != VXGE_HW_OK)
968 goto exit;
970 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
971 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
972 data1);
974 for (i = ETH_ALEN; i > 0; i--) {
975 macaddr[i - 1] = (u8) (data0 & 0xFF);
976 data0 >>= 8;
978 macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
979 data1 >>= 8;
982 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
983 data0 = 0, data1 = 0, steer_ctrl = 0;
985 } while (!is_valid_ether_addr(macaddr));
986 exit:
987 return status;
991 * vxge_hw_device_hw_info_get - Get the hw information
992 * Returns the vpath mask that has the bits set for each vpath allocated
993 * for the driver, FW version information, and the first mac address for
994 * each vpath
996 enum vxge_hw_status __devinit
997 vxge_hw_device_hw_info_get(void __iomem *bar0,
998 struct vxge_hw_device_hw_info *hw_info)
1000 u32 i;
1001 u64 val64;
1002 struct vxge_hw_toc_reg __iomem *toc;
1003 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1004 struct vxge_hw_common_reg __iomem *common_reg;
1005 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1006 enum vxge_hw_status status;
1007 struct __vxge_hw_virtualpath vpath;
1009 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1011 toc = __vxge_hw_device_toc_get(bar0);
1012 if (toc == NULL) {
1013 status = VXGE_HW_ERR_CRITICAL;
1014 goto exit;
1017 val64 = readq(&toc->toc_common_pointer);
1018 common_reg = bar0 + val64;
1020 status = __vxge_hw_device_vpath_reset_in_prog_check(
1021 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
1022 if (status != VXGE_HW_OK)
1023 goto exit;
1025 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1027 val64 = readq(&common_reg->host_type_assignments);
1029 hw_info->host_type =
1030 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1032 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1033 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1034 continue;
1036 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1038 vpmgmt_reg = bar0 + val64;
1040 hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1041 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1042 hw_info->func_id) &
1043 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1045 val64 = readq(&toc->toc_mrpcim_pointer);
1047 mrpcim_reg = bar0 + val64;
1049 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1050 wmb();
1053 val64 = readq(&toc->toc_vpath_pointer[i]);
1055 spin_lock_init(&vpath.lock);
1056 vpath.vp_reg = bar0 + val64;
1057 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1059 status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1060 if (status != VXGE_HW_OK)
1061 goto exit;
1063 status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1064 if (status != VXGE_HW_OK)
1065 goto exit;
1067 status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1068 if (status != VXGE_HW_OK)
1069 goto exit;
1071 break;
1074 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1075 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1076 continue;
1078 val64 = readq(&toc->toc_vpath_pointer[i]);
1079 vpath.vp_reg = bar0 + val64;
1080 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1082 status = __vxge_hw_vpath_addr_get(&vpath,
1083 hw_info->mac_addrs[i],
1084 hw_info->mac_addr_masks[i]);
1085 if (status != VXGE_HW_OK)
1086 goto exit;
1088 exit:
1089 return status;
1093 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1095 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1097 struct __vxge_hw_device *hldev;
1098 struct list_head *p, *n;
1099 u16 ret;
1101 if (blockpool == NULL) {
1102 ret = 1;
1103 goto exit;
1106 hldev = blockpool->hldev;
1108 list_for_each_safe(p, n, &blockpool->free_block_list) {
1109 pci_unmap_single(hldev->pdev,
1110 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1111 ((struct __vxge_hw_blockpool_entry *)p)->length,
1112 PCI_DMA_BIDIRECTIONAL);
1114 vxge_os_dma_free(hldev->pdev,
1115 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
1116 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1118 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1119 kfree(p);
1120 blockpool->pool_size--;
1123 list_for_each_safe(p, n, &blockpool->free_entry_list) {
1124 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1125 kfree((void *)p);
1127 ret = 0;
1128 exit:
1129 return;
1133 * __vxge_hw_blockpool_create - Create block pool
1135 static enum vxge_hw_status
1136 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1137 struct __vxge_hw_blockpool *blockpool,
1138 u32 pool_size,
1139 u32 pool_max)
1141 u32 i;
1142 struct __vxge_hw_blockpool_entry *entry = NULL;
1143 void *memblock;
1144 dma_addr_t dma_addr;
1145 struct pci_dev *dma_handle;
1146 struct pci_dev *acc_handle;
1147 enum vxge_hw_status status = VXGE_HW_OK;
1149 if (blockpool == NULL) {
1150 status = VXGE_HW_FAIL;
1151 goto blockpool_create_exit;
1154 blockpool->hldev = hldev;
1155 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1156 blockpool->pool_size = 0;
1157 blockpool->pool_max = pool_max;
1158 blockpool->req_out = 0;
1160 INIT_LIST_HEAD(&blockpool->free_block_list);
1161 INIT_LIST_HEAD(&blockpool->free_entry_list);
1163 for (i = 0; i < pool_size + pool_max; i++) {
1164 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1165 GFP_KERNEL);
1166 if (entry == NULL) {
1167 __vxge_hw_blockpool_destroy(blockpool);
1168 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1169 goto blockpool_create_exit;
1171 list_add(&entry->item, &blockpool->free_entry_list);
1174 for (i = 0; i < pool_size; i++) {
1175 memblock = vxge_os_dma_malloc(
1176 hldev->pdev,
1177 VXGE_HW_BLOCK_SIZE,
1178 &dma_handle,
1179 &acc_handle);
1180 if (memblock == NULL) {
1181 __vxge_hw_blockpool_destroy(blockpool);
1182 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1183 goto blockpool_create_exit;
1186 dma_addr = pci_map_single(hldev->pdev, memblock,
1187 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1188 if (unlikely(pci_dma_mapping_error(hldev->pdev,
1189 dma_addr))) {
1190 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1191 __vxge_hw_blockpool_destroy(blockpool);
1192 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1193 goto blockpool_create_exit;
1196 if (!list_empty(&blockpool->free_entry_list))
1197 entry = (struct __vxge_hw_blockpool_entry *)
1198 list_first_entry(&blockpool->free_entry_list,
1199 struct __vxge_hw_blockpool_entry,
1200 item);
1202 if (entry == NULL)
1203 entry =
1204 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1205 GFP_KERNEL);
1206 if (entry != NULL) {
1207 list_del(&entry->item);
1208 entry->length = VXGE_HW_BLOCK_SIZE;
1209 entry->memblock = memblock;
1210 entry->dma_addr = dma_addr;
1211 entry->acc_handle = acc_handle;
1212 entry->dma_handle = dma_handle;
1213 list_add(&entry->item,
1214 &blockpool->free_block_list);
1215 blockpool->pool_size++;
1216 } else {
1217 __vxge_hw_blockpool_destroy(blockpool);
1218 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1219 goto blockpool_create_exit;
1223 blockpool_create_exit:
1224 return status;
1228 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1229 * Check the fifo configuration
1231 static enum vxge_hw_status
1232 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1234 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1235 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1236 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1238 return VXGE_HW_OK;
1242 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1243 * Check the vpath configuration
1245 static enum vxge_hw_status
1246 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1248 enum vxge_hw_status status;
1250 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1251 (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
1252 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1254 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1255 if (status != VXGE_HW_OK)
1256 return status;
1258 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1259 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1260 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1261 return VXGE_HW_BADCFG_VPATH_MTU;
1263 if ((vp_config->rpa_strip_vlan_tag !=
1264 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1265 (vp_config->rpa_strip_vlan_tag !=
1266 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1267 (vp_config->rpa_strip_vlan_tag !=
1268 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1269 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1271 return VXGE_HW_OK;
1275 * __vxge_hw_device_config_check - Check device configuration.
1276 * Check the device configuration
1278 static enum vxge_hw_status
1279 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1281 u32 i;
1282 enum vxge_hw_status status;
1284 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1285 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1286 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1287 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1288 return VXGE_HW_BADCFG_INTR_MODE;
1290 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1291 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1292 return VXGE_HW_BADCFG_RTS_MAC_EN;
1294 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1295 status = __vxge_hw_device_vpath_config_check(
1296 &new_config->vp_config[i]);
1297 if (status != VXGE_HW_OK)
1298 return status;
1301 return VXGE_HW_OK;
1305 * vxge_hw_device_initialize - Initialize Titan device.
1306 * Initialize Titan device. Note that all the arguments of this public API
1307 * are 'IN', including @hldev. Driver cooperates with
1308 * OS to find new Titan device, locate its PCI and memory spaces.
1310 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1311 * to enable the latter to perform Titan hardware initialization.
1313 enum vxge_hw_status __devinit
1314 vxge_hw_device_initialize(
1315 struct __vxge_hw_device **devh,
1316 struct vxge_hw_device_attr *attr,
1317 struct vxge_hw_device_config *device_config)
1319 u32 i;
1320 u32 nblocks = 0;
1321 struct __vxge_hw_device *hldev = NULL;
1322 enum vxge_hw_status status = VXGE_HW_OK;
1324 status = __vxge_hw_device_config_check(device_config);
1325 if (status != VXGE_HW_OK)
1326 goto exit;
1328 hldev = vzalloc(sizeof(struct __vxge_hw_device));
1329 if (hldev == NULL) {
1330 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1331 goto exit;
1334 hldev->magic = VXGE_HW_DEVICE_MAGIC;
1336 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1338 /* apply config */
1339 memcpy(&hldev->config, device_config,
1340 sizeof(struct vxge_hw_device_config));
1342 hldev->bar0 = attr->bar0;
1343 hldev->pdev = attr->pdev;
1345 hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
1346 hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
1347 hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
1349 __vxge_hw_device_pci_e_init(hldev);
1351 status = __vxge_hw_device_reg_addr_get(hldev);
1352 if (status != VXGE_HW_OK) {
1353 vfree(hldev);
1354 goto exit;
1357 __vxge_hw_device_host_info_get(hldev);
1359 /* Incrementing for stats blocks */
1360 nblocks++;
1362 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1363 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1364 continue;
1366 if (device_config->vp_config[i].ring.enable ==
1367 VXGE_HW_RING_ENABLE)
1368 nblocks += device_config->vp_config[i].ring.ring_blocks;
1370 if (device_config->vp_config[i].fifo.enable ==
1371 VXGE_HW_FIFO_ENABLE)
1372 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1373 nblocks++;
1376 if (__vxge_hw_blockpool_create(hldev,
1377 &hldev->block_pool,
1378 device_config->dma_blockpool_initial + nblocks,
1379 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1381 vxge_hw_device_terminate(hldev);
1382 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1383 goto exit;
1386 status = __vxge_hw_device_initialize(hldev);
1387 if (status != VXGE_HW_OK) {
1388 vxge_hw_device_terminate(hldev);
1389 goto exit;
1392 *devh = hldev;
1393 exit:
1394 return status;
1398 * vxge_hw_device_terminate - Terminate Titan device.
1399 * Terminate HW device.
1401 void
1402 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1404 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1406 hldev->magic = VXGE_HW_DEVICE_DEAD;
1407 __vxge_hw_blockpool_destroy(&hldev->block_pool);
1408 vfree(hldev);
1412 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1413 * and offset and perform an operation
1415 static enum vxge_hw_status
1416 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1417 u32 operation, u32 offset, u64 *stat)
1419 u64 val64;
1420 enum vxge_hw_status status = VXGE_HW_OK;
1421 struct vxge_hw_vpath_reg __iomem *vp_reg;
1423 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1424 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1425 goto vpath_stats_access_exit;
1428 vp_reg = vpath->vp_reg;
1430 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1431 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1432 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1434 status = __vxge_hw_pio_mem_write64(val64,
1435 &vp_reg->xmac_stats_access_cmd,
1436 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1437 vpath->hldev->config.device_poll_millis);
1438 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1439 *stat = readq(&vp_reg->xmac_stats_access_data);
1440 else
1441 *stat = 0;
1443 vpath_stats_access_exit:
1444 return status;
1448 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1450 static enum vxge_hw_status
1451 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1452 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1454 u64 *val64;
1455 int i;
1456 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1457 enum vxge_hw_status status = VXGE_HW_OK;
1459 val64 = (u64 *)vpath_tx_stats;
1461 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1462 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1463 goto exit;
1466 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1467 status = __vxge_hw_vpath_stats_access(vpath,
1468 VXGE_HW_STATS_OP_READ,
1469 offset, val64);
1470 if (status != VXGE_HW_OK)
1471 goto exit;
1472 offset++;
1473 val64++;
1475 exit:
1476 return status;
1480 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1482 static enum vxge_hw_status
1483 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1484 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1486 u64 *val64;
1487 enum vxge_hw_status status = VXGE_HW_OK;
1488 int i;
1489 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1490 val64 = (u64 *) vpath_rx_stats;
1492 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1493 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1494 goto exit;
1496 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1497 status = __vxge_hw_vpath_stats_access(vpath,
1498 VXGE_HW_STATS_OP_READ,
1499 offset >> 3, val64);
1500 if (status != VXGE_HW_OK)
1501 goto exit;
1503 offset += 8;
1504 val64++;
1506 exit:
1507 return status;
1511 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1513 static enum vxge_hw_status
1514 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1515 struct vxge_hw_vpath_stats_hw_info *hw_stats)
1517 u64 val64;
1518 enum vxge_hw_status status = VXGE_HW_OK;
1519 struct vxge_hw_vpath_reg __iomem *vp_reg;
1521 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1522 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1523 goto exit;
1525 vp_reg = vpath->vp_reg;
1527 val64 = readq(&vp_reg->vpath_debug_stats0);
1528 hw_stats->ini_num_mwr_sent =
1529 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1531 val64 = readq(&vp_reg->vpath_debug_stats1);
1532 hw_stats->ini_num_mrd_sent =
1533 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1535 val64 = readq(&vp_reg->vpath_debug_stats2);
1536 hw_stats->ini_num_cpl_rcvd =
1537 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1539 val64 = readq(&vp_reg->vpath_debug_stats3);
1540 hw_stats->ini_num_mwr_byte_sent =
1541 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1543 val64 = readq(&vp_reg->vpath_debug_stats4);
1544 hw_stats->ini_num_cpl_byte_rcvd =
1545 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1547 val64 = readq(&vp_reg->vpath_debug_stats5);
1548 hw_stats->wrcrdtarb_xoff =
1549 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1551 val64 = readq(&vp_reg->vpath_debug_stats6);
1552 hw_stats->rdcrdtarb_xoff =
1553 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1555 val64 = readq(&vp_reg->vpath_genstats_count01);
1556 hw_stats->vpath_genstats_count0 =
1557 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1558 val64);
1560 val64 = readq(&vp_reg->vpath_genstats_count01);
1561 hw_stats->vpath_genstats_count1 =
1562 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1563 val64);
1565 val64 = readq(&vp_reg->vpath_genstats_count23);
1566 hw_stats->vpath_genstats_count2 =
1567 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1568 val64);
1570 val64 = readq(&vp_reg->vpath_genstats_count01);
1571 hw_stats->vpath_genstats_count3 =
1572 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1573 val64);
1575 val64 = readq(&vp_reg->vpath_genstats_count4);
1576 hw_stats->vpath_genstats_count4 =
1577 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1578 val64);
1580 val64 = readq(&vp_reg->vpath_genstats_count5);
1581 hw_stats->vpath_genstats_count5 =
1582 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1583 val64);
1585 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1586 if (status != VXGE_HW_OK)
1587 goto exit;
1589 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1590 if (status != VXGE_HW_OK)
1591 goto exit;
1593 VXGE_HW_VPATH_STATS_PIO_READ(
1594 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1596 hw_stats->prog_event_vnum0 =
1597 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1599 hw_stats->prog_event_vnum1 =
1600 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1602 VXGE_HW_VPATH_STATS_PIO_READ(
1603 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1605 hw_stats->prog_event_vnum2 =
1606 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1608 hw_stats->prog_event_vnum3 =
1609 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1611 val64 = readq(&vp_reg->rx_multi_cast_stats);
1612 hw_stats->rx_multi_cast_frame_discard =
1613 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1615 val64 = readq(&vp_reg->rx_frm_transferred);
1616 hw_stats->rx_frm_transferred =
1617 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1619 val64 = readq(&vp_reg->rxd_returned);
1620 hw_stats->rxd_returned =
1621 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1623 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1624 hw_stats->rx_mpa_len_fail_frms =
1625 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1626 hw_stats->rx_mpa_mrk_fail_frms =
1627 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1628 hw_stats->rx_mpa_crc_fail_frms =
1629 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1631 val64 = readq(&vp_reg->dbg_stats_rx_fau);
1632 hw_stats->rx_permitted_frms =
1633 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1634 hw_stats->rx_vp_reset_discarded_frms =
1635 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1636 hw_stats->rx_wol_frms =
1637 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1639 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1640 hw_stats->tx_vp_reset_discarded_frms =
1641 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1642 val64);
1643 exit:
1644 return status;
1648 * vxge_hw_device_stats_get - Get the device hw statistics.
1649 * Returns the vpath h/w stats for the device.
1651 enum vxge_hw_status
1652 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1653 struct vxge_hw_device_stats_hw_info *hw_stats)
1655 u32 i;
1656 enum vxge_hw_status status = VXGE_HW_OK;
1658 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1659 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1660 (hldev->virtual_paths[i].vp_open ==
1661 VXGE_HW_VP_NOT_OPEN))
1662 continue;
1664 memcpy(hldev->virtual_paths[i].hw_stats_sav,
1665 hldev->virtual_paths[i].hw_stats,
1666 sizeof(struct vxge_hw_vpath_stats_hw_info));
1668 status = __vxge_hw_vpath_stats_get(
1669 &hldev->virtual_paths[i],
1670 hldev->virtual_paths[i].hw_stats);
1673 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1674 sizeof(struct vxge_hw_device_stats_hw_info));
1676 return status;
1680 * vxge_hw_driver_stats_get - Get the device sw statistics.
1681 * Returns the vpath s/w stats for the device.
1683 enum vxge_hw_status vxge_hw_driver_stats_get(
1684 struct __vxge_hw_device *hldev,
1685 struct vxge_hw_device_stats_sw_info *sw_stats)
1687 enum vxge_hw_status status = VXGE_HW_OK;
1689 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1690 sizeof(struct vxge_hw_device_stats_sw_info));
1692 return status;
1696 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1697 * and offset and perform an operation
1698 * Get the statistics from the given location and offset.
1700 enum vxge_hw_status
1701 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1702 u32 operation, u32 location, u32 offset, u64 *stat)
1704 u64 val64;
1705 enum vxge_hw_status status = VXGE_HW_OK;
1707 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1708 hldev->func_id);
1709 if (status != VXGE_HW_OK)
1710 goto exit;
1712 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1713 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1714 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1715 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1717 status = __vxge_hw_pio_mem_write64(val64,
1718 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
1719 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1720 hldev->config.device_poll_millis);
1722 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1723 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1724 else
1725 *stat = 0;
1726 exit:
1727 return status;
1731 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1732 * Get the Statistics on aggregate port
1734 static enum vxge_hw_status
1735 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1736 struct vxge_hw_xmac_aggr_stats *aggr_stats)
1738 u64 *val64;
1739 int i;
1740 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1741 enum vxge_hw_status status = VXGE_HW_OK;
1743 val64 = (u64 *)aggr_stats;
1745 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1746 hldev->func_id);
1747 if (status != VXGE_HW_OK)
1748 goto exit;
1750 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1751 status = vxge_hw_mrpcim_stats_access(hldev,
1752 VXGE_HW_STATS_OP_READ,
1753 VXGE_HW_STATS_LOC_AGGR,
1754 ((offset + (104 * port)) >> 3), val64);
1755 if (status != VXGE_HW_OK)
1756 goto exit;
1758 offset += 8;
1759 val64++;
1761 exit:
1762 return status;
1766 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1767 * Get the Statistics on port
1769 static enum vxge_hw_status
1770 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1771 struct vxge_hw_xmac_port_stats *port_stats)
1773 u64 *val64;
1774 enum vxge_hw_status status = VXGE_HW_OK;
1775 int i;
1776 u32 offset = 0x0;
1777 val64 = (u64 *) port_stats;
1779 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1780 hldev->func_id);
1781 if (status != VXGE_HW_OK)
1782 goto exit;
1784 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1785 status = vxge_hw_mrpcim_stats_access(hldev,
1786 VXGE_HW_STATS_OP_READ,
1787 VXGE_HW_STATS_LOC_AGGR,
1788 ((offset + (608 * port)) >> 3), val64);
1789 if (status != VXGE_HW_OK)
1790 goto exit;
1792 offset += 8;
1793 val64++;
1796 exit:
1797 return status;
1801 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1802 * Get the XMAC Statistics
1804 enum vxge_hw_status
1805 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1806 struct vxge_hw_xmac_stats *xmac_stats)
1808 enum vxge_hw_status status = VXGE_HW_OK;
1809 u32 i;
1811 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1812 0, &xmac_stats->aggr_stats[0]);
1813 if (status != VXGE_HW_OK)
1814 goto exit;
1816 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1817 1, &xmac_stats->aggr_stats[1]);
1818 if (status != VXGE_HW_OK)
1819 goto exit;
1821 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1823 status = vxge_hw_device_xmac_port_stats_get(hldev,
1824 i, &xmac_stats->port_stats[i]);
1825 if (status != VXGE_HW_OK)
1826 goto exit;
1829 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1831 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1832 continue;
1834 status = __vxge_hw_vpath_xmac_tx_stats_get(
1835 &hldev->virtual_paths[i],
1836 &xmac_stats->vpath_tx_stats[i]);
1837 if (status != VXGE_HW_OK)
1838 goto exit;
1840 status = __vxge_hw_vpath_xmac_rx_stats_get(
1841 &hldev->virtual_paths[i],
1842 &xmac_stats->vpath_rx_stats[i]);
1843 if (status != VXGE_HW_OK)
1844 goto exit;
1846 exit:
1847 return status;
1851 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1852 * This routine is used to dynamically change the debug output
1854 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1855 enum vxge_debug_level level, u32 mask)
1857 if (hldev == NULL)
1858 return;
1860 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1861 defined(VXGE_DEBUG_ERR_MASK)
1862 hldev->debug_module_mask = mask;
1863 hldev->debug_level = level;
1864 #endif
1866 #if defined(VXGE_DEBUG_ERR_MASK)
1867 hldev->level_err = level & VXGE_ERR;
1868 #endif
1870 #if defined(VXGE_DEBUG_TRACE_MASK)
1871 hldev->level_trace = level & VXGE_TRACE;
1872 #endif
1876 * vxge_hw_device_error_level_get - Get the error level
1877 * This routine returns the current error level set
1879 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1881 #if defined(VXGE_DEBUG_ERR_MASK)
1882 if (hldev == NULL)
1883 return VXGE_ERR;
1884 else
1885 return hldev->level_err;
1886 #else
1887 return 0;
1888 #endif
1892 * vxge_hw_device_trace_level_get - Get the trace level
1893 * This routine returns the current trace level set
1895 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1897 #if defined(VXGE_DEBUG_TRACE_MASK)
1898 if (hldev == NULL)
1899 return VXGE_TRACE;
1900 else
1901 return hldev->level_trace;
1902 #else
1903 return 0;
1904 #endif
1908 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1909 * Returns the Pause frame generation and reception capability of the NIC.
1911 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1912 u32 port, u32 *tx, u32 *rx)
1914 u64 val64;
1915 enum vxge_hw_status status = VXGE_HW_OK;
1917 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1918 status = VXGE_HW_ERR_INVALID_DEVICE;
1919 goto exit;
1922 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1923 status = VXGE_HW_ERR_INVALID_PORT;
1924 goto exit;
1927 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1928 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
1929 goto exit;
1932 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1933 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1934 *tx = 1;
1935 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1936 *rx = 1;
1937 exit:
1938 return status;
1942 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1943 * It can be used to set or reset Pause frame generation or reception
1944 * support of the NIC.
1946 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1947 u32 port, u32 tx, u32 rx)
1949 u64 val64;
1950 enum vxge_hw_status status = VXGE_HW_OK;
1952 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1953 status = VXGE_HW_ERR_INVALID_DEVICE;
1954 goto exit;
1957 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1958 status = VXGE_HW_ERR_INVALID_PORT;
1959 goto exit;
1962 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1963 hldev->func_id);
1964 if (status != VXGE_HW_OK)
1965 goto exit;
1967 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1968 if (tx)
1969 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1970 else
1971 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1972 if (rx)
1973 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1974 else
1975 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1977 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1978 exit:
1979 return status;
1982 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1984 struct pci_dev *dev = hldev->pdev;
1985 u16 lnk;
1987 pci_read_config_word(dev, dev->pcie_cap + PCI_EXP_LNKSTA, &lnk);
1988 return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1992 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1993 * This function returns the index of memory block
1995 static inline u32
1996 __vxge_hw_ring_block_memblock_idx(u8 *block)
1998 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
2002 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
2003 * This function sets index to a memory block
2005 static inline void
2006 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
2008 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2012 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2013 * in RxD block
2014 * Sets the next block pointer in RxD block
2016 static inline void
2017 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2019 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2023 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2024 * first block
2025 * Returns the dma address of the first RxD block
2027 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2029 struct vxge_hw_mempool_dma *dma_object;
2031 dma_object = ring->mempool->memblocks_dma_arr;
2032 vxge_assert(dma_object != NULL);
2034 return dma_object->addr;
2038 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2039 * This function returns the dma address of a given item
2041 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2042 void *item)
2044 u32 memblock_idx;
2045 void *memblock;
2046 struct vxge_hw_mempool_dma *memblock_dma_object;
2047 ptrdiff_t dma_item_offset;
2049 /* get owner memblock index */
2050 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2052 /* get owner memblock by memblock index */
2053 memblock = mempoolh->memblocks_arr[memblock_idx];
2055 /* get memblock DMA object by memblock index */
2056 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2058 /* calculate offset in the memblock of this item */
2059 dma_item_offset = (u8 *)item - (u8 *)memblock;
2061 return memblock_dma_object->addr + dma_item_offset;
2065 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2066 * This function returns the dma address of a given item
2068 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2069 struct __vxge_hw_ring *ring, u32 from,
2070 u32 to)
2072 u8 *to_item , *from_item;
2073 dma_addr_t to_dma;
2075 /* get "from" RxD block */
2076 from_item = mempoolh->items_arr[from];
2077 vxge_assert(from_item);
2079 /* get "to" RxD block */
2080 to_item = mempoolh->items_arr[to];
2081 vxge_assert(to_item);
2083 /* return address of the beginning of previous RxD block */
2084 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2086 /* set next pointer for this RxD block to point on
2087 * previous item's DMA start address */
2088 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2092 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2093 * block callback
2094 * This function is callback passed to __vxge_hw_mempool_create to create memory
2095 * pool for RxD block
2097 static void
2098 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2099 u32 memblock_index,
2100 struct vxge_hw_mempool_dma *dma_object,
2101 u32 index, u32 is_last)
2103 u32 i;
2104 void *item = mempoolh->items_arr[index];
2105 struct __vxge_hw_ring *ring =
2106 (struct __vxge_hw_ring *)mempoolh->userdata;
2108 /* format rxds array */
2109 for (i = 0; i < ring->rxds_per_block; i++) {
2110 void *rxdblock_priv;
2111 void *uld_priv;
2112 struct vxge_hw_ring_rxd_1 *rxdp;
2114 u32 reserve_index = ring->channel.reserve_ptr -
2115 (index * ring->rxds_per_block + i + 1);
2116 u32 memblock_item_idx;
2118 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2119 i * ring->rxd_size;
2121 /* Note: memblock_item_idx is index of the item within
2122 * the memblock. For instance, in case of three RxD-blocks
2123 * per memblock this value can be 0, 1 or 2. */
2124 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2125 memblock_index, item,
2126 &memblock_item_idx);
2128 rxdp = ring->channel.reserve_arr[reserve_index];
2130 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2132 /* pre-format Host_Control */
2133 rxdp->host_control = (u64)(size_t)uld_priv;
2136 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2138 if (is_last) {
2139 /* link last one with first one */
2140 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2143 if (index > 0) {
2144 /* link this RxD block with previous one */
2145 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2150 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2151 * This function replenishes the RxDs from reserve array to work array
2153 enum vxge_hw_status
2154 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2156 void *rxd;
2157 struct __vxge_hw_channel *channel;
2158 enum vxge_hw_status status = VXGE_HW_OK;
2160 channel = &ring->channel;
2162 while (vxge_hw_channel_dtr_count(channel) > 0) {
2164 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2166 vxge_assert(status == VXGE_HW_OK);
2168 if (ring->rxd_init) {
2169 status = ring->rxd_init(rxd, channel->userdata);
2170 if (status != VXGE_HW_OK) {
2171 vxge_hw_ring_rxd_free(ring, rxd);
2172 goto exit;
2176 vxge_hw_ring_rxd_post(ring, rxd);
2178 status = VXGE_HW_OK;
2179 exit:
2180 return status;
2184 * __vxge_hw_channel_allocate - Allocate memory for channel
2185 * This function allocates required memory for the channel and various arrays
2186 * in the channel
2188 static struct __vxge_hw_channel *
2189 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2190 enum __vxge_hw_channel_type type,
2191 u32 length, u32 per_dtr_space,
2192 void *userdata)
2194 struct __vxge_hw_channel *channel;
2195 struct __vxge_hw_device *hldev;
2196 int size = 0;
2197 u32 vp_id;
2199 hldev = vph->vpath->hldev;
2200 vp_id = vph->vpath->vp_id;
2202 switch (type) {
2203 case VXGE_HW_CHANNEL_TYPE_FIFO:
2204 size = sizeof(struct __vxge_hw_fifo);
2205 break;
2206 case VXGE_HW_CHANNEL_TYPE_RING:
2207 size = sizeof(struct __vxge_hw_ring);
2208 break;
2209 default:
2210 break;
2213 channel = kzalloc(size, GFP_KERNEL);
2214 if (channel == NULL)
2215 goto exit0;
2216 INIT_LIST_HEAD(&channel->item);
2218 channel->common_reg = hldev->common_reg;
2219 channel->first_vp_id = hldev->first_vp_id;
2220 channel->type = type;
2221 channel->devh = hldev;
2222 channel->vph = vph;
2223 channel->userdata = userdata;
2224 channel->per_dtr_space = per_dtr_space;
2225 channel->length = length;
2226 channel->vp_id = vp_id;
2228 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2229 if (channel->work_arr == NULL)
2230 goto exit1;
2232 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2233 if (channel->free_arr == NULL)
2234 goto exit1;
2235 channel->free_ptr = length;
2237 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2238 if (channel->reserve_arr == NULL)
2239 goto exit1;
2240 channel->reserve_ptr = length;
2241 channel->reserve_top = 0;
2243 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2244 if (channel->orig_arr == NULL)
2245 goto exit1;
2247 return channel;
2248 exit1:
2249 __vxge_hw_channel_free(channel);
2251 exit0:
2252 return NULL;
2256 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2257 * Adds a block to block pool
2259 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2260 void *block_addr,
2261 u32 length,
2262 struct pci_dev *dma_h,
2263 struct pci_dev *acc_handle)
2265 struct __vxge_hw_blockpool *blockpool;
2266 struct __vxge_hw_blockpool_entry *entry = NULL;
2267 dma_addr_t dma_addr;
2268 enum vxge_hw_status status = VXGE_HW_OK;
2269 u32 req_out;
2271 blockpool = &devh->block_pool;
2273 if (block_addr == NULL) {
2274 blockpool->req_out--;
2275 status = VXGE_HW_FAIL;
2276 goto exit;
2279 dma_addr = pci_map_single(devh->pdev, block_addr, length,
2280 PCI_DMA_BIDIRECTIONAL);
2282 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2283 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2284 blockpool->req_out--;
2285 status = VXGE_HW_FAIL;
2286 goto exit;
2289 if (!list_empty(&blockpool->free_entry_list))
2290 entry = (struct __vxge_hw_blockpool_entry *)
2291 list_first_entry(&blockpool->free_entry_list,
2292 struct __vxge_hw_blockpool_entry,
2293 item);
2295 if (entry == NULL)
2296 entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2297 else
2298 list_del(&entry->item);
2300 if (entry != NULL) {
2301 entry->length = length;
2302 entry->memblock = block_addr;
2303 entry->dma_addr = dma_addr;
2304 entry->acc_handle = acc_handle;
2305 entry->dma_handle = dma_h;
2306 list_add(&entry->item, &blockpool->free_block_list);
2307 blockpool->pool_size++;
2308 status = VXGE_HW_OK;
2309 } else
2310 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2312 blockpool->req_out--;
2314 req_out = blockpool->req_out;
2315 exit:
2316 return;
2319 static inline void
2320 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2322 gfp_t flags;
2323 void *vaddr;
2325 if (in_interrupt())
2326 flags = GFP_ATOMIC | GFP_DMA;
2327 else
2328 flags = GFP_KERNEL | GFP_DMA;
2330 vaddr = kmalloc((size), flags);
2332 vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2336 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2338 static
2339 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2341 u32 nreq = 0, i;
2343 if ((blockpool->pool_size + blockpool->req_out) <
2344 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2345 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2346 blockpool->req_out += nreq;
2349 for (i = 0; i < nreq; i++)
2350 vxge_os_dma_malloc_async(
2351 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
2352 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2356 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2357 * Allocates a block of memory of given size, either from block pool
2358 * or by calling vxge_os_dma_malloc()
2360 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2361 struct vxge_hw_mempool_dma *dma_object)
2363 struct __vxge_hw_blockpool_entry *entry = NULL;
2364 struct __vxge_hw_blockpool *blockpool;
2365 void *memblock = NULL;
2366 enum vxge_hw_status status = VXGE_HW_OK;
2368 blockpool = &devh->block_pool;
2370 if (size != blockpool->block_size) {
2372 memblock = vxge_os_dma_malloc(devh->pdev, size,
2373 &dma_object->handle,
2374 &dma_object->acc_handle);
2376 if (memblock == NULL) {
2377 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2378 goto exit;
2381 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2382 PCI_DMA_BIDIRECTIONAL);
2384 if (unlikely(pci_dma_mapping_error(devh->pdev,
2385 dma_object->addr))) {
2386 vxge_os_dma_free(devh->pdev, memblock,
2387 &dma_object->acc_handle);
2388 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2389 goto exit;
2392 } else {
2394 if (!list_empty(&blockpool->free_block_list))
2395 entry = (struct __vxge_hw_blockpool_entry *)
2396 list_first_entry(&blockpool->free_block_list,
2397 struct __vxge_hw_blockpool_entry,
2398 item);
2400 if (entry != NULL) {
2401 list_del(&entry->item);
2402 dma_object->addr = entry->dma_addr;
2403 dma_object->handle = entry->dma_handle;
2404 dma_object->acc_handle = entry->acc_handle;
2405 memblock = entry->memblock;
2407 list_add(&entry->item,
2408 &blockpool->free_entry_list);
2409 blockpool->pool_size--;
2412 if (memblock != NULL)
2413 __vxge_hw_blockpool_blocks_add(blockpool);
2415 exit:
2416 return memblock;
2420 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2422 static void
2423 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2425 struct list_head *p, *n;
2427 list_for_each_safe(p, n, &blockpool->free_block_list) {
2429 if (blockpool->pool_size < blockpool->pool_max)
2430 break;
2432 pci_unmap_single(
2433 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
2434 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2435 ((struct __vxge_hw_blockpool_entry *)p)->length,
2436 PCI_DMA_BIDIRECTIONAL);
2438 vxge_os_dma_free(
2439 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
2440 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
2441 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2443 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2445 list_add(p, &blockpool->free_entry_list);
2447 blockpool->pool_size--;
2453 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2454 * __vxge_hw_blockpool_malloc
2456 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2457 void *memblock, u32 size,
2458 struct vxge_hw_mempool_dma *dma_object)
2460 struct __vxge_hw_blockpool_entry *entry = NULL;
2461 struct __vxge_hw_blockpool *blockpool;
2462 enum vxge_hw_status status = VXGE_HW_OK;
2464 blockpool = &devh->block_pool;
2466 if (size != blockpool->block_size) {
2467 pci_unmap_single(devh->pdev, dma_object->addr, size,
2468 PCI_DMA_BIDIRECTIONAL);
2469 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2470 } else {
2472 if (!list_empty(&blockpool->free_entry_list))
2473 entry = (struct __vxge_hw_blockpool_entry *)
2474 list_first_entry(&blockpool->free_entry_list,
2475 struct __vxge_hw_blockpool_entry,
2476 item);
2478 if (entry == NULL)
2479 entry = vmalloc(sizeof(
2480 struct __vxge_hw_blockpool_entry));
2481 else
2482 list_del(&entry->item);
2484 if (entry != NULL) {
2485 entry->length = size;
2486 entry->memblock = memblock;
2487 entry->dma_addr = dma_object->addr;
2488 entry->acc_handle = dma_object->acc_handle;
2489 entry->dma_handle = dma_object->handle;
2490 list_add(&entry->item,
2491 &blockpool->free_block_list);
2492 blockpool->pool_size++;
2493 status = VXGE_HW_OK;
2494 } else
2495 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2497 if (status == VXGE_HW_OK)
2498 __vxge_hw_blockpool_blocks_remove(blockpool);
2503 * vxge_hw_mempool_destroy
2505 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2507 u32 i, j;
2508 struct __vxge_hw_device *devh = mempool->devh;
2510 for (i = 0; i < mempool->memblocks_allocated; i++) {
2511 struct vxge_hw_mempool_dma *dma_object;
2513 vxge_assert(mempool->memblocks_arr[i]);
2514 vxge_assert(mempool->memblocks_dma_arr + i);
2516 dma_object = mempool->memblocks_dma_arr + i;
2518 for (j = 0; j < mempool->items_per_memblock; j++) {
2519 u32 index = i * mempool->items_per_memblock + j;
2521 /* to skip last partially filled(if any) memblock */
2522 if (index >= mempool->items_current)
2523 break;
2526 vfree(mempool->memblocks_priv_arr[i]);
2528 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2529 mempool->memblock_size, dma_object);
2532 vfree(mempool->items_arr);
2533 vfree(mempool->memblocks_dma_arr);
2534 vfree(mempool->memblocks_priv_arr);
2535 vfree(mempool->memblocks_arr);
2536 vfree(mempool);
2540 * __vxge_hw_mempool_grow
2541 * Will resize mempool up to %num_allocate value.
2543 static enum vxge_hw_status
2544 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2545 u32 *num_allocated)
2547 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2548 u32 n_items = mempool->items_per_memblock;
2549 u32 start_block_idx = mempool->memblocks_allocated;
2550 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2551 enum vxge_hw_status status = VXGE_HW_OK;
2553 *num_allocated = 0;
2555 if (end_block_idx > mempool->memblocks_max) {
2556 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2557 goto exit;
2560 for (i = start_block_idx; i < end_block_idx; i++) {
2561 u32 j;
2562 u32 is_last = ((end_block_idx - 1) == i);
2563 struct vxge_hw_mempool_dma *dma_object =
2564 mempool->memblocks_dma_arr + i;
2565 void *the_memblock;
2567 /* allocate memblock's private part. Each DMA memblock
2568 * has a space allocated for item's private usage upon
2569 * mempool's user request. Each time mempool grows, it will
2570 * allocate new memblock and its private part at once.
2571 * This helps to minimize memory usage a lot. */
2572 mempool->memblocks_priv_arr[i] =
2573 vzalloc(mempool->items_priv_size * n_items);
2574 if (mempool->memblocks_priv_arr[i] == NULL) {
2575 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2576 goto exit;
2579 /* allocate DMA-capable memblock */
2580 mempool->memblocks_arr[i] =
2581 __vxge_hw_blockpool_malloc(mempool->devh,
2582 mempool->memblock_size, dma_object);
2583 if (mempool->memblocks_arr[i] == NULL) {
2584 vfree(mempool->memblocks_priv_arr[i]);
2585 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2586 goto exit;
2589 (*num_allocated)++;
2590 mempool->memblocks_allocated++;
2592 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2594 the_memblock = mempool->memblocks_arr[i];
2596 /* fill the items hash array */
2597 for (j = 0; j < n_items; j++) {
2598 u32 index = i * n_items + j;
2600 if (first_time && index >= mempool->items_initial)
2601 break;
2603 mempool->items_arr[index] =
2604 ((char *)the_memblock + j*mempool->item_size);
2606 /* let caller to do more job on each item */
2607 if (mempool->item_func_alloc != NULL)
2608 mempool->item_func_alloc(mempool, i,
2609 dma_object, index, is_last);
2611 mempool->items_current = index + 1;
2614 if (first_time && mempool->items_current ==
2615 mempool->items_initial)
2616 break;
2618 exit:
2619 return status;
2623 * vxge_hw_mempool_create
2624 * This function will create memory pool object. Pool may grow but will
2625 * never shrink. Pool consists of number of dynamically allocated blocks
2626 * with size enough to hold %items_initial number of items. Memory is
2627 * DMA-able but client must map/unmap before interoperating with the device.
2629 static struct vxge_hw_mempool *
2630 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2631 u32 memblock_size,
2632 u32 item_size,
2633 u32 items_priv_size,
2634 u32 items_initial,
2635 u32 items_max,
2636 struct vxge_hw_mempool_cbs *mp_callback,
2637 void *userdata)
2639 enum vxge_hw_status status = VXGE_HW_OK;
2640 u32 memblocks_to_allocate;
2641 struct vxge_hw_mempool *mempool = NULL;
2642 u32 allocated;
2644 if (memblock_size < item_size) {
2645 status = VXGE_HW_FAIL;
2646 goto exit;
2649 mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2650 if (mempool == NULL) {
2651 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2652 goto exit;
2655 mempool->devh = devh;
2656 mempool->memblock_size = memblock_size;
2657 mempool->items_max = items_max;
2658 mempool->items_initial = items_initial;
2659 mempool->item_size = item_size;
2660 mempool->items_priv_size = items_priv_size;
2661 mempool->item_func_alloc = mp_callback->item_func_alloc;
2662 mempool->userdata = userdata;
2664 mempool->memblocks_allocated = 0;
2666 mempool->items_per_memblock = memblock_size / item_size;
2668 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2669 mempool->items_per_memblock;
2671 /* allocate array of memblocks */
2672 mempool->memblocks_arr =
2673 vzalloc(sizeof(void *) * mempool->memblocks_max);
2674 if (mempool->memblocks_arr == NULL) {
2675 __vxge_hw_mempool_destroy(mempool);
2676 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2677 mempool = NULL;
2678 goto exit;
2681 /* allocate array of private parts of items per memblocks */
2682 mempool->memblocks_priv_arr =
2683 vzalloc(sizeof(void *) * mempool->memblocks_max);
2684 if (mempool->memblocks_priv_arr == NULL) {
2685 __vxge_hw_mempool_destroy(mempool);
2686 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2687 mempool = NULL;
2688 goto exit;
2691 /* allocate array of memblocks DMA objects */
2692 mempool->memblocks_dma_arr =
2693 vzalloc(sizeof(struct vxge_hw_mempool_dma) *
2694 mempool->memblocks_max);
2695 if (mempool->memblocks_dma_arr == NULL) {
2696 __vxge_hw_mempool_destroy(mempool);
2697 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2698 mempool = NULL;
2699 goto exit;
2702 /* allocate hash array of items */
2703 mempool->items_arr = vzalloc(sizeof(void *) * mempool->items_max);
2704 if (mempool->items_arr == NULL) {
2705 __vxge_hw_mempool_destroy(mempool);
2706 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2707 mempool = NULL;
2708 goto exit;
2711 /* calculate initial number of memblocks */
2712 memblocks_to_allocate = (mempool->items_initial +
2713 mempool->items_per_memblock - 1) /
2714 mempool->items_per_memblock;
2716 /* pre-allocate the mempool */
2717 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2718 &allocated);
2719 if (status != VXGE_HW_OK) {
2720 __vxge_hw_mempool_destroy(mempool);
2721 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2722 mempool = NULL;
2723 goto exit;
2726 exit:
2727 return mempool;
2731 * __vxge_hw_ring_abort - Returns the RxD
2732 * This function terminates the RxDs of ring
2734 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2736 void *rxdh;
2737 struct __vxge_hw_channel *channel;
2739 channel = &ring->channel;
2741 for (;;) {
2742 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2744 if (rxdh == NULL)
2745 break;
2747 vxge_hw_channel_dtr_complete(channel);
2749 if (ring->rxd_term)
2750 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2751 channel->userdata);
2753 vxge_hw_channel_dtr_free(channel, rxdh);
2756 return VXGE_HW_OK;
2760 * __vxge_hw_ring_reset - Resets the ring
2761 * This function resets the ring during vpath reset operation
2763 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2765 enum vxge_hw_status status = VXGE_HW_OK;
2766 struct __vxge_hw_channel *channel;
2768 channel = &ring->channel;
2770 __vxge_hw_ring_abort(ring);
2772 status = __vxge_hw_channel_reset(channel);
2774 if (status != VXGE_HW_OK)
2775 goto exit;
2777 if (ring->rxd_init) {
2778 status = vxge_hw_ring_replenish(ring);
2779 if (status != VXGE_HW_OK)
2780 goto exit;
2782 exit:
2783 return status;
2787 * __vxge_hw_ring_delete - Removes the ring
2788 * This function freeup the memory pool and removes the ring
2790 static enum vxge_hw_status
2791 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2793 struct __vxge_hw_ring *ring = vp->vpath->ringh;
2795 __vxge_hw_ring_abort(ring);
2797 if (ring->mempool)
2798 __vxge_hw_mempool_destroy(ring->mempool);
2800 vp->vpath->ringh = NULL;
2801 __vxge_hw_channel_free(&ring->channel);
2803 return VXGE_HW_OK;
2807 * __vxge_hw_ring_create - Create a Ring
2808 * This function creates Ring and initializes it.
2810 static enum vxge_hw_status
2811 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2812 struct vxge_hw_ring_attr *attr)
2814 enum vxge_hw_status status = VXGE_HW_OK;
2815 struct __vxge_hw_ring *ring;
2816 u32 ring_length;
2817 struct vxge_hw_ring_config *config;
2818 struct __vxge_hw_device *hldev;
2819 u32 vp_id;
2820 struct vxge_hw_mempool_cbs ring_mp_callback;
2822 if ((vp == NULL) || (attr == NULL)) {
2823 status = VXGE_HW_FAIL;
2824 goto exit;
2827 hldev = vp->vpath->hldev;
2828 vp_id = vp->vpath->vp_id;
2830 config = &hldev->config.vp_config[vp_id].ring;
2832 ring_length = config->ring_blocks *
2833 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2835 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2836 VXGE_HW_CHANNEL_TYPE_RING,
2837 ring_length,
2838 attr->per_rxd_space,
2839 attr->userdata);
2840 if (ring == NULL) {
2841 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2842 goto exit;
2845 vp->vpath->ringh = ring;
2846 ring->vp_id = vp_id;
2847 ring->vp_reg = vp->vpath->vp_reg;
2848 ring->common_reg = hldev->common_reg;
2849 ring->stats = &vp->vpath->sw_stats->ring_stats;
2850 ring->config = config;
2851 ring->callback = attr->callback;
2852 ring->rxd_init = attr->rxd_init;
2853 ring->rxd_term = attr->rxd_term;
2854 ring->buffer_mode = config->buffer_mode;
2855 ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2856 ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2857 ring->rxds_limit = config->rxds_limit;
2859 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2860 ring->rxd_priv_size =
2861 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2862 ring->per_rxd_space = attr->per_rxd_space;
2864 ring->rxd_priv_size =
2865 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2866 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2868 /* how many RxDs can fit into one block. Depends on configured
2869 * buffer_mode. */
2870 ring->rxds_per_block =
2871 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2873 /* calculate actual RxD block private size */
2874 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2875 ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
2876 ring->mempool = __vxge_hw_mempool_create(hldev,
2877 VXGE_HW_BLOCK_SIZE,
2878 VXGE_HW_BLOCK_SIZE,
2879 ring->rxdblock_priv_size,
2880 ring->config->ring_blocks,
2881 ring->config->ring_blocks,
2882 &ring_mp_callback,
2883 ring);
2884 if (ring->mempool == NULL) {
2885 __vxge_hw_ring_delete(vp);
2886 return VXGE_HW_ERR_OUT_OF_MEMORY;
2889 status = __vxge_hw_channel_initialize(&ring->channel);
2890 if (status != VXGE_HW_OK) {
2891 __vxge_hw_ring_delete(vp);
2892 goto exit;
2895 /* Note:
2896 * Specifying rxd_init callback means two things:
2897 * 1) rxds need to be initialized by driver at channel-open time;
2898 * 2) rxds need to be posted at channel-open time
2899 * (that's what the initial_replenish() below does)
2900 * Currently we don't have a case when the 1) is done without the 2).
2902 if (ring->rxd_init) {
2903 status = vxge_hw_ring_replenish(ring);
2904 if (status != VXGE_HW_OK) {
2905 __vxge_hw_ring_delete(vp);
2906 goto exit;
2910 /* initial replenish will increment the counter in its post() routine,
2911 * we have to reset it */
2912 ring->stats->common_stats.usage_cnt = 0;
2913 exit:
2914 return status;
2918 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2919 * Initialize Titan device config with default values.
2921 enum vxge_hw_status __devinit
2922 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2924 u32 i;
2926 device_config->dma_blockpool_initial =
2927 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2928 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2929 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2930 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2931 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2932 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2933 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
2935 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2936 device_config->vp_config[i].vp_id = i;
2938 device_config->vp_config[i].min_bandwidth =
2939 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2941 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2943 device_config->vp_config[i].ring.ring_blocks =
2944 VXGE_HW_DEF_RING_BLOCKS;
2946 device_config->vp_config[i].ring.buffer_mode =
2947 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2949 device_config->vp_config[i].ring.scatter_mode =
2950 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2952 device_config->vp_config[i].ring.rxds_limit =
2953 VXGE_HW_DEF_RING_RXDS_LIMIT;
2955 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2957 device_config->vp_config[i].fifo.fifo_blocks =
2958 VXGE_HW_MIN_FIFO_BLOCKS;
2960 device_config->vp_config[i].fifo.max_frags =
2961 VXGE_HW_MAX_FIFO_FRAGS;
2963 device_config->vp_config[i].fifo.memblock_size =
2964 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2966 device_config->vp_config[i].fifo.alignment_size =
2967 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2969 device_config->vp_config[i].fifo.intr =
2970 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2972 device_config->vp_config[i].fifo.no_snoop_bits =
2973 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2974 device_config->vp_config[i].tti.intr_enable =
2975 VXGE_HW_TIM_INTR_DEFAULT;
2977 device_config->vp_config[i].tti.btimer_val =
2978 VXGE_HW_USE_FLASH_DEFAULT;
2980 device_config->vp_config[i].tti.timer_ac_en =
2981 VXGE_HW_USE_FLASH_DEFAULT;
2983 device_config->vp_config[i].tti.timer_ci_en =
2984 VXGE_HW_USE_FLASH_DEFAULT;
2986 device_config->vp_config[i].tti.timer_ri_en =
2987 VXGE_HW_USE_FLASH_DEFAULT;
2989 device_config->vp_config[i].tti.rtimer_val =
2990 VXGE_HW_USE_FLASH_DEFAULT;
2992 device_config->vp_config[i].tti.util_sel =
2993 VXGE_HW_USE_FLASH_DEFAULT;
2995 device_config->vp_config[i].tti.ltimer_val =
2996 VXGE_HW_USE_FLASH_DEFAULT;
2998 device_config->vp_config[i].tti.urange_a =
2999 VXGE_HW_USE_FLASH_DEFAULT;
3001 device_config->vp_config[i].tti.uec_a =
3002 VXGE_HW_USE_FLASH_DEFAULT;
3004 device_config->vp_config[i].tti.urange_b =
3005 VXGE_HW_USE_FLASH_DEFAULT;
3007 device_config->vp_config[i].tti.uec_b =
3008 VXGE_HW_USE_FLASH_DEFAULT;
3010 device_config->vp_config[i].tti.urange_c =
3011 VXGE_HW_USE_FLASH_DEFAULT;
3013 device_config->vp_config[i].tti.uec_c =
3014 VXGE_HW_USE_FLASH_DEFAULT;
3016 device_config->vp_config[i].tti.uec_d =
3017 VXGE_HW_USE_FLASH_DEFAULT;
3019 device_config->vp_config[i].rti.intr_enable =
3020 VXGE_HW_TIM_INTR_DEFAULT;
3022 device_config->vp_config[i].rti.btimer_val =
3023 VXGE_HW_USE_FLASH_DEFAULT;
3025 device_config->vp_config[i].rti.timer_ac_en =
3026 VXGE_HW_USE_FLASH_DEFAULT;
3028 device_config->vp_config[i].rti.timer_ci_en =
3029 VXGE_HW_USE_FLASH_DEFAULT;
3031 device_config->vp_config[i].rti.timer_ri_en =
3032 VXGE_HW_USE_FLASH_DEFAULT;
3034 device_config->vp_config[i].rti.rtimer_val =
3035 VXGE_HW_USE_FLASH_DEFAULT;
3037 device_config->vp_config[i].rti.util_sel =
3038 VXGE_HW_USE_FLASH_DEFAULT;
3040 device_config->vp_config[i].rti.ltimer_val =
3041 VXGE_HW_USE_FLASH_DEFAULT;
3043 device_config->vp_config[i].rti.urange_a =
3044 VXGE_HW_USE_FLASH_DEFAULT;
3046 device_config->vp_config[i].rti.uec_a =
3047 VXGE_HW_USE_FLASH_DEFAULT;
3049 device_config->vp_config[i].rti.urange_b =
3050 VXGE_HW_USE_FLASH_DEFAULT;
3052 device_config->vp_config[i].rti.uec_b =
3053 VXGE_HW_USE_FLASH_DEFAULT;
3055 device_config->vp_config[i].rti.urange_c =
3056 VXGE_HW_USE_FLASH_DEFAULT;
3058 device_config->vp_config[i].rti.uec_c =
3059 VXGE_HW_USE_FLASH_DEFAULT;
3061 device_config->vp_config[i].rti.uec_d =
3062 VXGE_HW_USE_FLASH_DEFAULT;
3064 device_config->vp_config[i].mtu =
3065 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3067 device_config->vp_config[i].rpa_strip_vlan_tag =
3068 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3071 return VXGE_HW_OK;
3075 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3076 * Set the swapper bits appropriately for the vpath.
3078 static enum vxge_hw_status
3079 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3081 #ifndef __BIG_ENDIAN
3082 u64 val64;
3084 val64 = readq(&vpath_reg->vpath_general_cfg1);
3085 wmb();
3086 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3087 writeq(val64, &vpath_reg->vpath_general_cfg1);
3088 wmb();
3089 #endif
3090 return VXGE_HW_OK;
3094 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3095 * Set the swapper bits appropriately for the vpath.
3097 static enum vxge_hw_status
3098 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3099 struct vxge_hw_vpath_reg __iomem *vpath_reg)
3101 u64 val64;
3103 val64 = readq(&legacy_reg->pifm_wr_swap_en);
3105 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3106 val64 = readq(&vpath_reg->kdfcctl_cfg0);
3107 wmb();
3109 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
3110 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
3111 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3113 writeq(val64, &vpath_reg->kdfcctl_cfg0);
3114 wmb();
3117 return VXGE_HW_OK;
3121 * vxge_hw_mgmt_reg_read - Read Titan register.
3123 enum vxge_hw_status
3124 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3125 enum vxge_hw_mgmt_reg_type type,
3126 u32 index, u32 offset, u64 *value)
3128 enum vxge_hw_status status = VXGE_HW_OK;
3130 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3131 status = VXGE_HW_ERR_INVALID_DEVICE;
3132 goto exit;
3135 switch (type) {
3136 case vxge_hw_mgmt_reg_type_legacy:
3137 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3138 status = VXGE_HW_ERR_INVALID_OFFSET;
3139 break;
3141 *value = readq((void __iomem *)hldev->legacy_reg + offset);
3142 break;
3143 case vxge_hw_mgmt_reg_type_toc:
3144 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3145 status = VXGE_HW_ERR_INVALID_OFFSET;
3146 break;
3148 *value = readq((void __iomem *)hldev->toc_reg + offset);
3149 break;
3150 case vxge_hw_mgmt_reg_type_common:
3151 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3152 status = VXGE_HW_ERR_INVALID_OFFSET;
3153 break;
3155 *value = readq((void __iomem *)hldev->common_reg + offset);
3156 break;
3157 case vxge_hw_mgmt_reg_type_mrpcim:
3158 if (!(hldev->access_rights &
3159 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3160 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3161 break;
3163 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3164 status = VXGE_HW_ERR_INVALID_OFFSET;
3165 break;
3167 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3168 break;
3169 case vxge_hw_mgmt_reg_type_srpcim:
3170 if (!(hldev->access_rights &
3171 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3172 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3173 break;
3175 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3176 status = VXGE_HW_ERR_INVALID_INDEX;
3177 break;
3179 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3180 status = VXGE_HW_ERR_INVALID_OFFSET;
3181 break;
3183 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
3184 offset);
3185 break;
3186 case vxge_hw_mgmt_reg_type_vpmgmt:
3187 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3188 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3189 status = VXGE_HW_ERR_INVALID_INDEX;
3190 break;
3192 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3193 status = VXGE_HW_ERR_INVALID_OFFSET;
3194 break;
3196 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3197 offset);
3198 break;
3199 case vxge_hw_mgmt_reg_type_vpath:
3200 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3201 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3202 status = VXGE_HW_ERR_INVALID_INDEX;
3203 break;
3205 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3206 status = VXGE_HW_ERR_INVALID_INDEX;
3207 break;
3209 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3210 status = VXGE_HW_ERR_INVALID_OFFSET;
3211 break;
3213 *value = readq((void __iomem *)hldev->vpath_reg[index] +
3214 offset);
3215 break;
3216 default:
3217 status = VXGE_HW_ERR_INVALID_TYPE;
3218 break;
3221 exit:
3222 return status;
3226 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3228 enum vxge_hw_status
3229 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3231 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
3232 enum vxge_hw_status status = VXGE_HW_OK;
3233 int i = 0, j = 0;
3235 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3236 if (!((vpath_mask) & vxge_mBIT(i)))
3237 continue;
3238 vpmgmt_reg = hldev->vpmgmt_reg[i];
3239 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3240 if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3241 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3242 return VXGE_HW_FAIL;
3245 return status;
3248 * vxge_hw_mgmt_reg_Write - Write Titan register.
3250 enum vxge_hw_status
3251 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3252 enum vxge_hw_mgmt_reg_type type,
3253 u32 index, u32 offset, u64 value)
3255 enum vxge_hw_status status = VXGE_HW_OK;
3257 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3258 status = VXGE_HW_ERR_INVALID_DEVICE;
3259 goto exit;
3262 switch (type) {
3263 case vxge_hw_mgmt_reg_type_legacy:
3264 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3265 status = VXGE_HW_ERR_INVALID_OFFSET;
3266 break;
3268 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3269 break;
3270 case vxge_hw_mgmt_reg_type_toc:
3271 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3272 status = VXGE_HW_ERR_INVALID_OFFSET;
3273 break;
3275 writeq(value, (void __iomem *)hldev->toc_reg + offset);
3276 break;
3277 case vxge_hw_mgmt_reg_type_common:
3278 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3279 status = VXGE_HW_ERR_INVALID_OFFSET;
3280 break;
3282 writeq(value, (void __iomem *)hldev->common_reg + offset);
3283 break;
3284 case vxge_hw_mgmt_reg_type_mrpcim:
3285 if (!(hldev->access_rights &
3286 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3287 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3288 break;
3290 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3291 status = VXGE_HW_ERR_INVALID_OFFSET;
3292 break;
3294 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3295 break;
3296 case vxge_hw_mgmt_reg_type_srpcim:
3297 if (!(hldev->access_rights &
3298 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3299 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3300 break;
3302 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3303 status = VXGE_HW_ERR_INVALID_INDEX;
3304 break;
3306 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3307 status = VXGE_HW_ERR_INVALID_OFFSET;
3308 break;
3310 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3311 offset);
3313 break;
3314 case vxge_hw_mgmt_reg_type_vpmgmt:
3315 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3316 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3317 status = VXGE_HW_ERR_INVALID_INDEX;
3318 break;
3320 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3321 status = VXGE_HW_ERR_INVALID_OFFSET;
3322 break;
3324 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3325 offset);
3326 break;
3327 case vxge_hw_mgmt_reg_type_vpath:
3328 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3329 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3330 status = VXGE_HW_ERR_INVALID_INDEX;
3331 break;
3333 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3334 status = VXGE_HW_ERR_INVALID_OFFSET;
3335 break;
3337 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3338 offset);
3339 break;
3340 default:
3341 status = VXGE_HW_ERR_INVALID_TYPE;
3342 break;
3344 exit:
3345 return status;
3349 * __vxge_hw_fifo_abort - Returns the TxD
3350 * This function terminates the TxDs of fifo
3352 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3354 void *txdlh;
3356 for (;;) {
3357 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3359 if (txdlh == NULL)
3360 break;
3362 vxge_hw_channel_dtr_complete(&fifo->channel);
3364 if (fifo->txdl_term) {
3365 fifo->txdl_term(txdlh,
3366 VXGE_HW_TXDL_STATE_POSTED,
3367 fifo->channel.userdata);
3370 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3373 return VXGE_HW_OK;
3377 * __vxge_hw_fifo_reset - Resets the fifo
3378 * This function resets the fifo during vpath reset operation
3380 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3382 enum vxge_hw_status status = VXGE_HW_OK;
3384 __vxge_hw_fifo_abort(fifo);
3385 status = __vxge_hw_channel_reset(&fifo->channel);
3387 return status;
3391 * __vxge_hw_fifo_delete - Removes the FIFO
3392 * This function freeup the memory pool and removes the FIFO
3394 static enum vxge_hw_status
3395 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3397 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3399 __vxge_hw_fifo_abort(fifo);
3401 if (fifo->mempool)
3402 __vxge_hw_mempool_destroy(fifo->mempool);
3404 vp->vpath->fifoh = NULL;
3406 __vxge_hw_channel_free(&fifo->channel);
3408 return VXGE_HW_OK;
3412 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3413 * list callback
3414 * This function is callback passed to __vxge_hw_mempool_create to create memory
3415 * pool for TxD list
3417 static void
3418 __vxge_hw_fifo_mempool_item_alloc(
3419 struct vxge_hw_mempool *mempoolh,
3420 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3421 u32 index, u32 is_last)
3423 u32 memblock_item_idx;
3424 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3425 struct vxge_hw_fifo_txd *txdp =
3426 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3427 struct __vxge_hw_fifo *fifo =
3428 (struct __vxge_hw_fifo *)mempoolh->userdata;
3429 void *memblock = mempoolh->memblocks_arr[memblock_index];
3431 vxge_assert(txdp);
3433 txdp->host_control = (u64) (size_t)
3434 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3435 &memblock_item_idx);
3437 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3439 vxge_assert(txdl_priv);
3441 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3443 /* pre-format HW's TxDL's private */
3444 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3445 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3446 txdl_priv->dma_handle = dma_object->handle;
3447 txdl_priv->memblock = memblock;
3448 txdl_priv->first_txdp = txdp;
3449 txdl_priv->next_txdl_priv = NULL;
3450 txdl_priv->alloc_frags = 0;
3454 * __vxge_hw_fifo_create - Create a FIFO
3455 * This function creates FIFO and initializes it.
3457 static enum vxge_hw_status
3458 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3459 struct vxge_hw_fifo_attr *attr)
3461 enum vxge_hw_status status = VXGE_HW_OK;
3462 struct __vxge_hw_fifo *fifo;
3463 struct vxge_hw_fifo_config *config;
3464 u32 txdl_size, txdl_per_memblock;
3465 struct vxge_hw_mempool_cbs fifo_mp_callback;
3466 struct __vxge_hw_virtualpath *vpath;
3468 if ((vp == NULL) || (attr == NULL)) {
3469 status = VXGE_HW_ERR_INVALID_HANDLE;
3470 goto exit;
3472 vpath = vp->vpath;
3473 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3475 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3477 txdl_per_memblock = config->memblock_size / txdl_size;
3479 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3480 VXGE_HW_CHANNEL_TYPE_FIFO,
3481 config->fifo_blocks * txdl_per_memblock,
3482 attr->per_txdl_space, attr->userdata);
3484 if (fifo == NULL) {
3485 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3486 goto exit;
3489 vpath->fifoh = fifo;
3490 fifo->nofl_db = vpath->nofl_db;
3492 fifo->vp_id = vpath->vp_id;
3493 fifo->vp_reg = vpath->vp_reg;
3494 fifo->stats = &vpath->sw_stats->fifo_stats;
3496 fifo->config = config;
3498 /* apply "interrupts per txdl" attribute */
3499 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3500 fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3501 fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3503 if (fifo->config->intr)
3504 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3506 fifo->no_snoop_bits = config->no_snoop_bits;
3509 * FIFO memory management strategy:
3511 * TxDL split into three independent parts:
3512 * - set of TxD's
3513 * - TxD HW private part
3514 * - driver private part
3516 * Adaptative memory allocation used. i.e. Memory allocated on
3517 * demand with the size which will fit into one memory block.
3518 * One memory block may contain more than one TxDL.
3520 * During "reserve" operations more memory can be allocated on demand
3521 * for example due to FIFO full condition.
3523 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3524 * routine which will essentially stop the channel and free resources.
3527 /* TxDL common private size == TxDL private + driver private */
3528 fifo->priv_size =
3529 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3530 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
3531 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3533 fifo->per_txdl_space = attr->per_txdl_space;
3535 /* recompute txdl size to be cacheline aligned */
3536 fifo->txdl_size = txdl_size;
3537 fifo->txdl_per_memblock = txdl_per_memblock;
3539 fifo->txdl_term = attr->txdl_term;
3540 fifo->callback = attr->callback;
3542 if (fifo->txdl_per_memblock == 0) {
3543 __vxge_hw_fifo_delete(vp);
3544 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3545 goto exit;
3548 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3550 fifo->mempool =
3551 __vxge_hw_mempool_create(vpath->hldev,
3552 fifo->config->memblock_size,
3553 fifo->txdl_size,
3554 fifo->priv_size,
3555 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3556 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3557 &fifo_mp_callback,
3558 fifo);
3560 if (fifo->mempool == NULL) {
3561 __vxge_hw_fifo_delete(vp);
3562 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3563 goto exit;
3566 status = __vxge_hw_channel_initialize(&fifo->channel);
3567 if (status != VXGE_HW_OK) {
3568 __vxge_hw_fifo_delete(vp);
3569 goto exit;
3572 vxge_assert(fifo->channel.reserve_ptr);
3573 exit:
3574 return status;
3578 * __vxge_hw_vpath_pci_read - Read the content of given address
3579 * in pci config space.
3580 * Read from the vpath pci config space.
3582 static enum vxge_hw_status
3583 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3584 u32 phy_func_0, u32 offset, u32 *val)
3586 u64 val64;
3587 enum vxge_hw_status status = VXGE_HW_OK;
3588 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3590 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3592 if (phy_func_0)
3593 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3595 writeq(val64, &vp_reg->pci_config_access_cfg1);
3596 wmb();
3597 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3598 &vp_reg->pci_config_access_cfg2);
3599 wmb();
3601 status = __vxge_hw_device_register_poll(
3602 &vp_reg->pci_config_access_cfg2,
3603 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3605 if (status != VXGE_HW_OK)
3606 goto exit;
3608 val64 = readq(&vp_reg->pci_config_access_status);
3610 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3611 status = VXGE_HW_FAIL;
3612 *val = 0;
3613 } else
3614 *val = (u32)vxge_bVALn(val64, 32, 32);
3615 exit:
3616 return status;
3620 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3621 * @hldev: HW device.
3622 * @on_off: TRUE if flickering to be on, FALSE to be off
3624 * Flicker the link LED.
3626 enum vxge_hw_status
3627 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3629 struct __vxge_hw_virtualpath *vpath;
3630 u64 data0, data1 = 0, steer_ctrl = 0;
3631 enum vxge_hw_status status;
3633 if (hldev == NULL) {
3634 status = VXGE_HW_ERR_INVALID_DEVICE;
3635 goto exit;
3638 vpath = &hldev->virtual_paths[hldev->first_vp_id];
3640 data0 = on_off;
3641 status = vxge_hw_vpath_fw_api(vpath,
3642 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3643 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3644 0, &data0, &data1, &steer_ctrl);
3645 exit:
3646 return status;
3650 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3652 enum vxge_hw_status
3653 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3654 u32 action, u32 rts_table, u32 offset,
3655 u64 *data0, u64 *data1)
3657 enum vxge_hw_status status;
3658 u64 steer_ctrl = 0;
3660 if (vp == NULL) {
3661 status = VXGE_HW_ERR_INVALID_HANDLE;
3662 goto exit;
3665 if ((rts_table ==
3666 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3667 (rts_table ==
3668 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3669 (rts_table ==
3670 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3671 (rts_table ==
3672 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3673 steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3676 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3677 data0, data1, &steer_ctrl);
3678 if (status != VXGE_HW_OK)
3679 goto exit;
3681 if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3682 (rts_table !=
3683 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3684 *data1 = 0;
3685 exit:
3686 return status;
3690 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3692 enum vxge_hw_status
3693 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3694 u32 rts_table, u32 offset, u64 steer_data0,
3695 u64 steer_data1)
3697 u64 data0, data1 = 0, steer_ctrl = 0;
3698 enum vxge_hw_status status;
3700 if (vp == NULL) {
3701 status = VXGE_HW_ERR_INVALID_HANDLE;
3702 goto exit;
3705 data0 = steer_data0;
3707 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3708 (rts_table ==
3709 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3710 data1 = steer_data1;
3712 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3713 &data0, &data1, &steer_ctrl);
3714 exit:
3715 return status;
3719 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3721 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3722 struct __vxge_hw_vpath_handle *vp,
3723 enum vxge_hw_rth_algoritms algorithm,
3724 struct vxge_hw_rth_hash_types *hash_type,
3725 u16 bucket_size)
3727 u64 data0, data1;
3728 enum vxge_hw_status status = VXGE_HW_OK;
3730 if (vp == NULL) {
3731 status = VXGE_HW_ERR_INVALID_HANDLE;
3732 goto exit;
3735 status = __vxge_hw_vpath_rts_table_get(vp,
3736 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3737 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3738 0, &data0, &data1);
3739 if (status != VXGE_HW_OK)
3740 goto exit;
3742 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3743 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3745 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3746 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3747 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3749 if (hash_type->hash_type_tcpipv4_en)
3750 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3752 if (hash_type->hash_type_ipv4_en)
3753 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3755 if (hash_type->hash_type_tcpipv6_en)
3756 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3758 if (hash_type->hash_type_ipv6_en)
3759 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3761 if (hash_type->hash_type_tcpipv6ex_en)
3762 data0 |=
3763 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3765 if (hash_type->hash_type_ipv6ex_en)
3766 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3768 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3769 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3770 else
3771 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3773 status = __vxge_hw_vpath_rts_table_set(vp,
3774 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3775 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3776 0, data0, 0);
3777 exit:
3778 return status;
3781 static void
3782 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3783 u16 flag, u8 *itable)
3785 switch (flag) {
3786 case 1:
3787 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3788 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3789 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3790 itable[j]);
3791 case 2:
3792 *data0 |=
3793 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3794 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3795 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3796 itable[j]);
3797 case 3:
3798 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3799 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3800 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3801 itable[j]);
3802 case 4:
3803 *data1 |=
3804 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3805 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3806 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3807 itable[j]);
3808 default:
3809 return;
3813 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3815 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3816 struct __vxge_hw_vpath_handle **vpath_handles,
3817 u32 vpath_count,
3818 u8 *mtable,
3819 u8 *itable,
3820 u32 itable_size)
3822 u32 i, j, action, rts_table;
3823 u64 data0;
3824 u64 data1;
3825 u32 max_entries;
3826 enum vxge_hw_status status = VXGE_HW_OK;
3827 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3829 if (vp == NULL) {
3830 status = VXGE_HW_ERR_INVALID_HANDLE;
3831 goto exit;
3834 max_entries = (((u32)1) << itable_size);
3836 if (vp->vpath->hldev->config.rth_it_type
3837 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3838 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3839 rts_table =
3840 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3842 for (j = 0; j < max_entries; j++) {
3844 data1 = 0;
3846 data0 =
3847 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3848 itable[j]);
3850 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3851 action, rts_table, j, data0, data1);
3853 if (status != VXGE_HW_OK)
3854 goto exit;
3857 for (j = 0; j < max_entries; j++) {
3859 data1 = 0;
3861 data0 =
3862 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3863 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3864 itable[j]);
3866 status = __vxge_hw_vpath_rts_table_set(
3867 vpath_handles[mtable[itable[j]]], action,
3868 rts_table, j, data0, data1);
3870 if (status != VXGE_HW_OK)
3871 goto exit;
3873 } else {
3874 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3875 rts_table =
3876 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3877 for (i = 0; i < vpath_count; i++) {
3879 for (j = 0; j < max_entries;) {
3881 data0 = 0;
3882 data1 = 0;
3884 while (j < max_entries) {
3885 if (mtable[itable[j]] != i) {
3886 j++;
3887 continue;
3889 vxge_hw_rts_rth_data0_data1_get(j,
3890 &data0, &data1, 1, itable);
3891 j++;
3892 break;
3895 while (j < max_entries) {
3896 if (mtable[itable[j]] != i) {
3897 j++;
3898 continue;
3900 vxge_hw_rts_rth_data0_data1_get(j,
3901 &data0, &data1, 2, itable);
3902 j++;
3903 break;
3906 while (j < max_entries) {
3907 if (mtable[itable[j]] != i) {
3908 j++;
3909 continue;
3911 vxge_hw_rts_rth_data0_data1_get(j,
3912 &data0, &data1, 3, itable);
3913 j++;
3914 break;
3917 while (j < max_entries) {
3918 if (mtable[itable[j]] != i) {
3919 j++;
3920 continue;
3922 vxge_hw_rts_rth_data0_data1_get(j,
3923 &data0, &data1, 4, itable);
3924 j++;
3925 break;
3928 if (data0 != 0) {
3929 status = __vxge_hw_vpath_rts_table_set(
3930 vpath_handles[i],
3931 action, rts_table,
3932 0, data0, data1);
3934 if (status != VXGE_HW_OK)
3935 goto exit;
3940 exit:
3941 return status;
3945 * vxge_hw_vpath_check_leak - Check for memory leak
3946 * @ringh: Handle to the ring object used for receive
3948 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3949 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3950 * Returns: VXGE_HW_FAIL, if leak has occurred.
3953 enum vxge_hw_status
3954 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3956 enum vxge_hw_status status = VXGE_HW_OK;
3957 u64 rxd_new_count, rxd_spat;
3959 if (ring == NULL)
3960 return status;
3962 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3963 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3964 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3966 if (rxd_new_count >= rxd_spat)
3967 status = VXGE_HW_FAIL;
3969 return status;
3973 * __vxge_hw_vpath_mgmt_read
3974 * This routine reads the vpath_mgmt registers
3976 static enum vxge_hw_status
3977 __vxge_hw_vpath_mgmt_read(
3978 struct __vxge_hw_device *hldev,
3979 struct __vxge_hw_virtualpath *vpath)
3981 u32 i, mtu = 0, max_pyld = 0;
3982 u64 val64;
3983 enum vxge_hw_status status = VXGE_HW_OK;
3985 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3987 val64 = readq(&vpath->vpmgmt_reg->
3988 rxmac_cfg0_port_vpmgmt_clone[i]);
3989 max_pyld =
3990 (u32)
3991 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3992 (val64);
3993 if (mtu < max_pyld)
3994 mtu = max_pyld;
3997 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3999 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
4001 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
4002 if (val64 & vxge_mBIT(i))
4003 vpath->vsport_number = i;
4006 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
4008 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
4009 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
4010 else
4011 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
4013 return status;
4017 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4018 * This routine checks the vpath_rst_in_prog register to see if
4019 * adapter completed the reset process for the vpath
4021 static enum vxge_hw_status
4022 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4024 enum vxge_hw_status status;
4026 status = __vxge_hw_device_register_poll(
4027 &vpath->hldev->common_reg->vpath_rst_in_prog,
4028 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4029 1 << (16 - vpath->vp_id)),
4030 vpath->hldev->config.device_poll_millis);
4032 return status;
4036 * __vxge_hw_vpath_reset
4037 * This routine resets the vpath on the device
4039 static enum vxge_hw_status
4040 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4042 u64 val64;
4043 enum vxge_hw_status status = VXGE_HW_OK;
4045 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4047 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4048 &hldev->common_reg->cmn_rsthdlr_cfg0);
4050 return status;
4054 * __vxge_hw_vpath_sw_reset
4055 * This routine resets the vpath structures
4057 static enum vxge_hw_status
4058 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4060 enum vxge_hw_status status = VXGE_HW_OK;
4061 struct __vxge_hw_virtualpath *vpath;
4063 vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
4065 if (vpath->ringh) {
4066 status = __vxge_hw_ring_reset(vpath->ringh);
4067 if (status != VXGE_HW_OK)
4068 goto exit;
4071 if (vpath->fifoh)
4072 status = __vxge_hw_fifo_reset(vpath->fifoh);
4073 exit:
4074 return status;
4078 * __vxge_hw_vpath_prc_configure
4079 * This routine configures the prc registers of virtual path using the config
4080 * passed
4082 static void
4083 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4085 u64 val64;
4086 struct __vxge_hw_virtualpath *vpath;
4087 struct vxge_hw_vp_config *vp_config;
4088 struct vxge_hw_vpath_reg __iomem *vp_reg;
4090 vpath = &hldev->virtual_paths[vp_id];
4091 vp_reg = vpath->vp_reg;
4092 vp_config = vpath->vp_config;
4094 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4095 return;
4097 val64 = readq(&vp_reg->prc_cfg1);
4098 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4099 writeq(val64, &vp_reg->prc_cfg1);
4101 val64 = readq(&vpath->vp_reg->prc_cfg6);
4102 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4103 writeq(val64, &vpath->vp_reg->prc_cfg6);
4105 val64 = readq(&vp_reg->prc_cfg7);
4107 if (vpath->vp_config->ring.scatter_mode !=
4108 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4110 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4112 switch (vpath->vp_config->ring.scatter_mode) {
4113 case VXGE_HW_RING_SCATTER_MODE_A:
4114 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4115 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4116 break;
4117 case VXGE_HW_RING_SCATTER_MODE_B:
4118 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4119 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4120 break;
4121 case VXGE_HW_RING_SCATTER_MODE_C:
4122 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4123 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4124 break;
4128 writeq(val64, &vp_reg->prc_cfg7);
4130 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4131 __vxge_hw_ring_first_block_address_get(
4132 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4134 val64 = readq(&vp_reg->prc_cfg4);
4135 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4136 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4138 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4139 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4141 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4142 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4143 else
4144 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4146 writeq(val64, &vp_reg->prc_cfg4);
4150 * __vxge_hw_vpath_kdfc_configure
4151 * This routine configures the kdfc registers of virtual path using the
4152 * config passed
4154 static enum vxge_hw_status
4155 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4157 u64 val64;
4158 u64 vpath_stride;
4159 enum vxge_hw_status status = VXGE_HW_OK;
4160 struct __vxge_hw_virtualpath *vpath;
4161 struct vxge_hw_vpath_reg __iomem *vp_reg;
4163 vpath = &hldev->virtual_paths[vp_id];
4164 vp_reg = vpath->vp_reg;
4165 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4167 if (status != VXGE_HW_OK)
4168 goto exit;
4170 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4172 vpath->max_kdfc_db =
4173 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4174 val64+1)/2;
4176 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4178 vpath->max_nofl_db = vpath->max_kdfc_db;
4180 if (vpath->max_nofl_db <
4181 ((vpath->vp_config->fifo.memblock_size /
4182 (vpath->vp_config->fifo.max_frags *
4183 sizeof(struct vxge_hw_fifo_txd))) *
4184 vpath->vp_config->fifo.fifo_blocks)) {
4186 return VXGE_HW_BADCFG_FIFO_BLOCKS;
4188 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4189 (vpath->max_nofl_db*2)-1);
4192 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4194 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4195 &vp_reg->kdfc_fifo_trpl_ctrl);
4197 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4199 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4200 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4202 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4203 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4204 #ifndef __BIG_ENDIAN
4205 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4206 #endif
4207 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4209 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4210 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4211 wmb();
4212 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4214 vpath->nofl_db =
4215 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
4216 (hldev->kdfc + (vp_id *
4217 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4218 vpath_stride)));
4219 exit:
4220 return status;
4224 * __vxge_hw_vpath_mac_configure
4225 * This routine configures the mac of virtual path using the config passed
4227 static enum vxge_hw_status
4228 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4230 u64 val64;
4231 enum vxge_hw_status status = VXGE_HW_OK;
4232 struct __vxge_hw_virtualpath *vpath;
4233 struct vxge_hw_vp_config *vp_config;
4234 struct vxge_hw_vpath_reg __iomem *vp_reg;
4236 vpath = &hldev->virtual_paths[vp_id];
4237 vp_reg = vpath->vp_reg;
4238 vp_config = vpath->vp_config;
4240 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4241 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4243 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4245 val64 = readq(&vp_reg->xmac_rpa_vcfg);
4247 if (vp_config->rpa_strip_vlan_tag !=
4248 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4249 if (vp_config->rpa_strip_vlan_tag)
4250 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4251 else
4252 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4255 writeq(val64, &vp_reg->xmac_rpa_vcfg);
4256 val64 = readq(&vp_reg->rxmac_vcfg0);
4258 if (vp_config->mtu !=
4259 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4260 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4261 if ((vp_config->mtu +
4262 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4263 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4264 vp_config->mtu +
4265 VXGE_HW_MAC_HEADER_MAX_SIZE);
4266 else
4267 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4268 vpath->max_mtu);
4271 writeq(val64, &vp_reg->rxmac_vcfg0);
4273 val64 = readq(&vp_reg->rxmac_vcfg1);
4275 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4276 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4278 if (hldev->config.rth_it_type ==
4279 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4280 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4281 0x2) |
4282 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4285 writeq(val64, &vp_reg->rxmac_vcfg1);
4287 return status;
4291 * __vxge_hw_vpath_tim_configure
4292 * This routine configures the tim registers of virtual path using the config
4293 * passed
4295 static enum vxge_hw_status
4296 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4298 u64 val64;
4299 enum vxge_hw_status status = VXGE_HW_OK;
4300 struct __vxge_hw_virtualpath *vpath;
4301 struct vxge_hw_vpath_reg __iomem *vp_reg;
4302 struct vxge_hw_vp_config *config;
4304 vpath = &hldev->virtual_paths[vp_id];
4305 vp_reg = vpath->vp_reg;
4306 config = vpath->vp_config;
4308 writeq(0, &vp_reg->tim_dest_addr);
4309 writeq(0, &vp_reg->tim_vpath_map);
4310 writeq(0, &vp_reg->tim_bitmap);
4311 writeq(0, &vp_reg->tim_remap);
4313 if (config->ring.enable == VXGE_HW_RING_ENABLE)
4314 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4315 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4316 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4318 val64 = readq(&vp_reg->tim_pci_cfg);
4319 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4320 writeq(val64, &vp_reg->tim_pci_cfg);
4322 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4324 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4326 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4327 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4328 0x3ffffff);
4329 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4330 config->tti.btimer_val);
4333 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4335 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4336 if (config->tti.timer_ac_en)
4337 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4338 else
4339 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4342 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4343 if (config->tti.timer_ci_en)
4344 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4345 else
4346 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4349 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4350 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4351 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4352 config->tti.urange_a);
4355 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4356 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4357 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4358 config->tti.urange_b);
4361 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4362 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4363 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4364 config->tti.urange_c);
4367 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4368 vpath->tim_tti_cfg1_saved = val64;
4370 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4372 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4373 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4374 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4375 config->tti.uec_a);
4378 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4379 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4380 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4381 config->tti.uec_b);
4384 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4385 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4386 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4387 config->tti.uec_c);
4390 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4391 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4392 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4393 config->tti.uec_d);
4396 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4397 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4399 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4400 if (config->tti.timer_ri_en)
4401 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4402 else
4403 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4406 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4407 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4408 0x3ffffff);
4409 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4410 config->tti.rtimer_val);
4413 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4414 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4415 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4418 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4419 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4420 0x3ffffff);
4421 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4422 config->tti.ltimer_val);
4425 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4426 vpath->tim_tti_cfg3_saved = val64;
4429 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4431 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4433 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4434 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4435 0x3ffffff);
4436 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4437 config->rti.btimer_val);
4440 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4442 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4443 if (config->rti.timer_ac_en)
4444 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4445 else
4446 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4449 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4450 if (config->rti.timer_ci_en)
4451 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4452 else
4453 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4456 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4457 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4458 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4459 config->rti.urange_a);
4462 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4463 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4464 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4465 config->rti.urange_b);
4468 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4469 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4470 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4471 config->rti.urange_c);
4474 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4475 vpath->tim_rti_cfg1_saved = val64;
4477 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4479 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4480 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4481 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4482 config->rti.uec_a);
4485 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4486 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4487 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4488 config->rti.uec_b);
4491 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4492 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4493 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4494 config->rti.uec_c);
4497 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4498 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4499 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4500 config->rti.uec_d);
4503 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4504 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4506 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4507 if (config->rti.timer_ri_en)
4508 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4509 else
4510 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4513 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4514 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4515 0x3ffffff);
4516 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4517 config->rti.rtimer_val);
4520 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4521 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4522 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4525 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4526 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4527 0x3ffffff);
4528 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4529 config->rti.ltimer_val);
4532 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4533 vpath->tim_rti_cfg3_saved = val64;
4536 val64 = 0;
4537 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4538 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4539 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4540 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4541 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4542 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4544 val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4545 val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4546 val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4547 writeq(val64, &vp_reg->tim_wrkld_clc);
4549 return status;
4553 * __vxge_hw_vpath_initialize
4554 * This routine is the final phase of init which initializes the
4555 * registers of the vpath using the configuration passed.
4557 static enum vxge_hw_status
4558 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4560 u64 val64;
4561 u32 val32;
4562 enum vxge_hw_status status = VXGE_HW_OK;
4563 struct __vxge_hw_virtualpath *vpath;
4564 struct vxge_hw_vpath_reg __iomem *vp_reg;
4566 vpath = &hldev->virtual_paths[vp_id];
4568 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4569 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4570 goto exit;
4572 vp_reg = vpath->vp_reg;
4574 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4575 if (status != VXGE_HW_OK)
4576 goto exit;
4578 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4579 if (status != VXGE_HW_OK)
4580 goto exit;
4582 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4583 if (status != VXGE_HW_OK)
4584 goto exit;
4586 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4587 if (status != VXGE_HW_OK)
4588 goto exit;
4590 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4592 /* Get MRRS value from device control */
4593 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4594 if (status == VXGE_HW_OK) {
4595 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4596 val64 &=
4597 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4598 val64 |=
4599 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4601 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4604 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4605 val64 |=
4606 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4607 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4609 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4610 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4612 exit:
4613 return status;
4617 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4618 * This routine closes all channels it opened and freeup memory
4620 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4622 struct __vxge_hw_virtualpath *vpath;
4624 vpath = &hldev->virtual_paths[vp_id];
4626 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4627 goto exit;
4629 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4630 vpath->hldev->tim_int_mask1, vpath->vp_id);
4631 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4633 /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4634 * work after the interface is brought down.
4636 spin_lock(&vpath->lock);
4637 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4638 spin_unlock(&vpath->lock);
4640 vpath->vpmgmt_reg = NULL;
4641 vpath->nofl_db = NULL;
4642 vpath->max_mtu = 0;
4643 vpath->vsport_number = 0;
4644 vpath->max_kdfc_db = 0;
4645 vpath->max_nofl_db = 0;
4646 vpath->ringh = NULL;
4647 vpath->fifoh = NULL;
4648 memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4649 vpath->stats_block = 0;
4650 vpath->hw_stats = NULL;
4651 vpath->hw_stats_sav = NULL;
4652 vpath->sw_stats = NULL;
4654 exit:
4655 return;
4659 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4660 * This routine is the initial phase of init which resets the vpath and
4661 * initializes the software support structures.
4663 static enum vxge_hw_status
4664 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4665 struct vxge_hw_vp_config *config)
4667 struct __vxge_hw_virtualpath *vpath;
4668 enum vxge_hw_status status = VXGE_HW_OK;
4670 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4671 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4672 goto exit;
4675 vpath = &hldev->virtual_paths[vp_id];
4677 spin_lock_init(&vpath->lock);
4678 vpath->vp_id = vp_id;
4679 vpath->vp_open = VXGE_HW_VP_OPEN;
4680 vpath->hldev = hldev;
4681 vpath->vp_config = config;
4682 vpath->vp_reg = hldev->vpath_reg[vp_id];
4683 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4685 __vxge_hw_vpath_reset(hldev, vp_id);
4687 status = __vxge_hw_vpath_reset_check(vpath);
4688 if (status != VXGE_HW_OK) {
4689 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4690 goto exit;
4693 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4694 if (status != VXGE_HW_OK) {
4695 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4696 goto exit;
4699 INIT_LIST_HEAD(&vpath->vpath_handles);
4701 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4703 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4704 hldev->tim_int_mask1, vp_id);
4706 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4707 if (status != VXGE_HW_OK)
4708 __vxge_hw_vp_terminate(hldev, vp_id);
4709 exit:
4710 return status;
4714 * vxge_hw_vpath_mtu_set - Set MTU.
4715 * Set new MTU value. Example, to use jumbo frames:
4716 * vxge_hw_vpath_mtu_set(my_device, 9600);
4718 enum vxge_hw_status
4719 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4721 u64 val64;
4722 enum vxge_hw_status status = VXGE_HW_OK;
4723 struct __vxge_hw_virtualpath *vpath;
4725 if (vp == NULL) {
4726 status = VXGE_HW_ERR_INVALID_HANDLE;
4727 goto exit;
4729 vpath = vp->vpath;
4731 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4733 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4734 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4736 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4738 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4739 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4741 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4743 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4745 exit:
4746 return status;
4750 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4751 * Enable the DMA vpath statistics. The function is to be called to re-enable
4752 * the adapter to update stats into the host memory
4754 static enum vxge_hw_status
4755 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4757 enum vxge_hw_status status = VXGE_HW_OK;
4758 struct __vxge_hw_virtualpath *vpath;
4760 vpath = vp->vpath;
4762 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4763 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4764 goto exit;
4767 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4768 sizeof(struct vxge_hw_vpath_stats_hw_info));
4770 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4771 exit:
4772 return status;
4776 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4777 * This function allocates a block from block pool or from the system
4779 static struct __vxge_hw_blockpool_entry *
4780 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4782 struct __vxge_hw_blockpool_entry *entry = NULL;
4783 struct __vxge_hw_blockpool *blockpool;
4785 blockpool = &devh->block_pool;
4787 if (size == blockpool->block_size) {
4789 if (!list_empty(&blockpool->free_block_list))
4790 entry = (struct __vxge_hw_blockpool_entry *)
4791 list_first_entry(&blockpool->free_block_list,
4792 struct __vxge_hw_blockpool_entry,
4793 item);
4795 if (entry != NULL) {
4796 list_del(&entry->item);
4797 blockpool->pool_size--;
4801 if (entry != NULL)
4802 __vxge_hw_blockpool_blocks_add(blockpool);
4804 return entry;
4808 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4809 * This function is used to open access to virtual path of an
4810 * adapter for offload, GRO operations. This function returns
4811 * synchronously.
4813 enum vxge_hw_status
4814 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4815 struct vxge_hw_vpath_attr *attr,
4816 struct __vxge_hw_vpath_handle **vpath_handle)
4818 struct __vxge_hw_virtualpath *vpath;
4819 struct __vxge_hw_vpath_handle *vp;
4820 enum vxge_hw_status status;
4822 vpath = &hldev->virtual_paths[attr->vp_id];
4824 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4825 status = VXGE_HW_ERR_INVALID_STATE;
4826 goto vpath_open_exit1;
4829 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4830 &hldev->config.vp_config[attr->vp_id]);
4831 if (status != VXGE_HW_OK)
4832 goto vpath_open_exit1;
4834 vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4835 if (vp == NULL) {
4836 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4837 goto vpath_open_exit2;
4840 vp->vpath = vpath;
4842 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4843 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4844 if (status != VXGE_HW_OK)
4845 goto vpath_open_exit6;
4848 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4849 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4850 if (status != VXGE_HW_OK)
4851 goto vpath_open_exit7;
4853 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4856 vpath->fifoh->tx_intr_num =
4857 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4858 VXGE_HW_VPATH_INTR_TX;
4860 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4861 VXGE_HW_BLOCK_SIZE);
4862 if (vpath->stats_block == NULL) {
4863 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4864 goto vpath_open_exit8;
4867 vpath->hw_stats = vpath->stats_block->memblock;
4868 memset(vpath->hw_stats, 0,
4869 sizeof(struct vxge_hw_vpath_stats_hw_info));
4871 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4872 vpath->hw_stats;
4874 vpath->hw_stats_sav =
4875 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4876 memset(vpath->hw_stats_sav, 0,
4877 sizeof(struct vxge_hw_vpath_stats_hw_info));
4879 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4881 status = vxge_hw_vpath_stats_enable(vp);
4882 if (status != VXGE_HW_OK)
4883 goto vpath_open_exit8;
4885 list_add(&vp->item, &vpath->vpath_handles);
4887 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4889 *vpath_handle = vp;
4891 attr->fifo_attr.userdata = vpath->fifoh;
4892 attr->ring_attr.userdata = vpath->ringh;
4894 return VXGE_HW_OK;
4896 vpath_open_exit8:
4897 if (vpath->ringh != NULL)
4898 __vxge_hw_ring_delete(vp);
4899 vpath_open_exit7:
4900 if (vpath->fifoh != NULL)
4901 __vxge_hw_fifo_delete(vp);
4902 vpath_open_exit6:
4903 vfree(vp);
4904 vpath_open_exit2:
4905 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4906 vpath_open_exit1:
4908 return status;
4912 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4913 * (vpath) open
4914 * @vp: Handle got from previous vpath open
4916 * This function is used to close access to virtual path opened
4917 * earlier.
4919 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4921 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4922 struct __vxge_hw_ring *ring = vpath->ringh;
4923 struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4924 u64 new_count, val64, val164;
4926 if (vdev->titan1) {
4927 new_count = readq(&vpath->vp_reg->rxdmem_size);
4928 new_count &= 0x1fff;
4929 } else
4930 new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4932 val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4934 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4935 &vpath->vp_reg->prc_rxd_doorbell);
4936 readl(&vpath->vp_reg->prc_rxd_doorbell);
4938 val164 /= 2;
4939 val64 = readq(&vpath->vp_reg->prc_cfg6);
4940 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4941 val64 &= 0x1ff;
4944 * Each RxD is of 4 qwords
4946 new_count -= (val64 + 1);
4947 val64 = min(val164, new_count) / 4;
4949 ring->rxds_limit = min(ring->rxds_limit, val64);
4950 if (ring->rxds_limit < 4)
4951 ring->rxds_limit = 4;
4955 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4956 * @devh: Hal device
4957 * @entry: Entry of block to be freed
4959 * This function frees a block from block pool
4961 static void
4962 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4963 struct __vxge_hw_blockpool_entry *entry)
4965 struct __vxge_hw_blockpool *blockpool;
4967 blockpool = &devh->block_pool;
4969 if (entry->length == blockpool->block_size) {
4970 list_add(&entry->item, &blockpool->free_block_list);
4971 blockpool->pool_size++;
4974 __vxge_hw_blockpool_blocks_remove(blockpool);
4978 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4979 * This function is used to close access to virtual path opened
4980 * earlier.
4982 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4984 struct __vxge_hw_virtualpath *vpath = NULL;
4985 struct __vxge_hw_device *devh = NULL;
4986 u32 vp_id = vp->vpath->vp_id;
4987 u32 is_empty = TRUE;
4988 enum vxge_hw_status status = VXGE_HW_OK;
4990 vpath = vp->vpath;
4991 devh = vpath->hldev;
4993 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4994 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4995 goto vpath_close_exit;
4998 list_del(&vp->item);
5000 if (!list_empty(&vpath->vpath_handles)) {
5001 list_add(&vp->item, &vpath->vpath_handles);
5002 is_empty = FALSE;
5005 if (!is_empty) {
5006 status = VXGE_HW_FAIL;
5007 goto vpath_close_exit;
5010 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
5012 if (vpath->ringh != NULL)
5013 __vxge_hw_ring_delete(vp);
5015 if (vpath->fifoh != NULL)
5016 __vxge_hw_fifo_delete(vp);
5018 if (vpath->stats_block != NULL)
5019 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
5021 vfree(vp);
5023 __vxge_hw_vp_terminate(devh, vp_id);
5025 vpath_close_exit:
5026 return status;
5030 * vxge_hw_vpath_reset - Resets vpath
5031 * This function is used to request a reset of vpath
5033 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5035 enum vxge_hw_status status;
5036 u32 vp_id;
5037 struct __vxge_hw_virtualpath *vpath = vp->vpath;
5039 vp_id = vpath->vp_id;
5041 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5042 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5043 goto exit;
5046 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5047 if (status == VXGE_HW_OK)
5048 vpath->sw_stats->soft_reset_cnt++;
5049 exit:
5050 return status;
5054 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5055 * This function poll's for the vpath reset completion and re initializes
5056 * the vpath.
5058 enum vxge_hw_status
5059 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5061 struct __vxge_hw_virtualpath *vpath = NULL;
5062 enum vxge_hw_status status;
5063 struct __vxge_hw_device *hldev;
5064 u32 vp_id;
5066 vp_id = vp->vpath->vp_id;
5067 vpath = vp->vpath;
5068 hldev = vpath->hldev;
5070 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5071 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5072 goto exit;
5075 status = __vxge_hw_vpath_reset_check(vpath);
5076 if (status != VXGE_HW_OK)
5077 goto exit;
5079 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5080 if (status != VXGE_HW_OK)
5081 goto exit;
5083 status = __vxge_hw_vpath_initialize(hldev, vp_id);
5084 if (status != VXGE_HW_OK)
5085 goto exit;
5087 if (vpath->ringh != NULL)
5088 __vxge_hw_vpath_prc_configure(hldev, vp_id);
5090 memset(vpath->hw_stats, 0,
5091 sizeof(struct vxge_hw_vpath_stats_hw_info));
5093 memset(vpath->hw_stats_sav, 0,
5094 sizeof(struct vxge_hw_vpath_stats_hw_info));
5096 writeq(vpath->stats_block->dma_addr,
5097 &vpath->vp_reg->stats_cfg);
5099 status = vxge_hw_vpath_stats_enable(vp);
5101 exit:
5102 return status;
5106 * vxge_hw_vpath_enable - Enable vpath.
5107 * This routine clears the vpath reset thereby enabling a vpath
5108 * to start forwarding frames and generating interrupts.
5110 void
5111 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5113 struct __vxge_hw_device *hldev;
5114 u64 val64;
5116 hldev = vp->vpath->hldev;
5118 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5119 1 << (16 - vp->vpath->vp_id));
5121 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5122 &hldev->common_reg->cmn_rsthdlr_cfg1);