include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
blobb9540a992616c6241258b96add5858d44bf91017
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22 struct ath9k_channel *chan,
23 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
26 u8 pcdac, i = 0;
27 u16 idxL = 0, idxR = 0, numPiers;
28 bool match;
29 struct chan_centers centers;
31 ath9k_hw_get_channel_centers(ah, chan, &centers);
33 for (numPiers = 0; numPiers < availPiers; numPiers++)
34 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 break;
37 match = ath9k_hw_get_lower_upper_index(
38 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 calChans, numPiers, &idxL, &idxR);
40 if (match) {
41 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 } else {
44 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
49 while (pcdac > ah->originalGain[i] &&
50 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 i++;
53 *pcdacIdx = i;
56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 u32 initTxGain,
58 int txPower,
59 u8 *pPDADCValues)
61 u32 i;
62 u32 offset;
64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
72 offset = txPower;
73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 if (i < offset)
75 pPDADCValues[i] = 0x0;
76 else
77 pPDADCValues[i] = 0xFF;
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
82 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
87 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
94 struct ath_common *common = ath9k_hw_common(ah);
95 u16 *eep_data = (u16 *)&ah->eeprom.def;
96 int addr, ar5416_eep_start_loc = 0x100;
98 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
99 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
100 eep_data)) {
101 ath_err(ath9k_hw_common(ah),
102 "Unable to read eeprom region\n");
103 return false;
105 eep_data++;
107 return true;
110 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
112 u16 *eep_data = (u16 *)&ah->eeprom.def;
114 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
115 0x100, SIZE_EEPROM_DEF);
116 return true;
119 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
121 struct ath_common *common = ath9k_hw_common(ah);
123 if (!ath9k_hw_use_flash(ah)) {
124 ath_dbg(common, ATH_DBG_EEPROM,
125 "Reading from EEPROM, not flash\n");
128 if (common->bus_ops->ath_bus_type == ATH_USB)
129 return __ath9k_hw_usb_def_fill_eeprom(ah);
130 else
131 return __ath9k_hw_def_fill_eeprom(ah);
134 #undef SIZE_EEPROM_DEF
136 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
138 struct ar5416_eeprom_def *eep =
139 (struct ar5416_eeprom_def *) &ah->eeprom.def;
140 struct ath_common *common = ath9k_hw_common(ah);
141 u16 *eepdata, temp, magic, magic2;
142 u32 sum = 0, el;
143 bool need_swap = false;
144 int i, addr, size;
146 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
147 ath_err(common, "Reading Magic # failed\n");
148 return false;
151 if (!ath9k_hw_use_flash(ah)) {
152 ath_dbg(common, ATH_DBG_EEPROM,
153 "Read Magic = 0x%04X\n", magic);
155 if (magic != AR5416_EEPROM_MAGIC) {
156 magic2 = swab16(magic);
158 if (magic2 == AR5416_EEPROM_MAGIC) {
159 size = sizeof(struct ar5416_eeprom_def);
160 need_swap = true;
161 eepdata = (u16 *) (&ah->eeprom);
163 for (addr = 0; addr < size / sizeof(u16); addr++) {
164 temp = swab16(*eepdata);
165 *eepdata = temp;
166 eepdata++;
168 } else {
169 ath_err(common,
170 "Invalid EEPROM Magic. Endianness mismatch.\n");
171 return -EINVAL;
176 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
177 need_swap ? "True" : "False");
179 if (need_swap)
180 el = swab16(ah->eeprom.def.baseEepHeader.length);
181 else
182 el = ah->eeprom.def.baseEepHeader.length;
184 if (el > sizeof(struct ar5416_eeprom_def))
185 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
186 else
187 el = el / sizeof(u16);
189 eepdata = (u16 *)(&ah->eeprom);
191 for (i = 0; i < el; i++)
192 sum ^= *eepdata++;
194 if (need_swap) {
195 u32 integer, j;
196 u16 word;
198 ath_dbg(common, ATH_DBG_EEPROM,
199 "EEPROM Endianness is not native.. Changing.\n");
201 word = swab16(eep->baseEepHeader.length);
202 eep->baseEepHeader.length = word;
204 word = swab16(eep->baseEepHeader.checksum);
205 eep->baseEepHeader.checksum = word;
207 word = swab16(eep->baseEepHeader.version);
208 eep->baseEepHeader.version = word;
210 word = swab16(eep->baseEepHeader.regDmn[0]);
211 eep->baseEepHeader.regDmn[0] = word;
213 word = swab16(eep->baseEepHeader.regDmn[1]);
214 eep->baseEepHeader.regDmn[1] = word;
216 word = swab16(eep->baseEepHeader.rfSilent);
217 eep->baseEepHeader.rfSilent = word;
219 word = swab16(eep->baseEepHeader.blueToothOptions);
220 eep->baseEepHeader.blueToothOptions = word;
222 word = swab16(eep->baseEepHeader.deviceCap);
223 eep->baseEepHeader.deviceCap = word;
225 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
226 struct modal_eep_header *pModal =
227 &eep->modalHeader[j];
228 integer = swab32(pModal->antCtrlCommon);
229 pModal->antCtrlCommon = integer;
231 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
232 integer = swab32(pModal->antCtrlChain[i]);
233 pModal->antCtrlChain[i] = integer;
235 for (i = 0; i < 3; i++) {
236 word = swab16(pModal->xpaBiasLvlFreq[i]);
237 pModal->xpaBiasLvlFreq[i] = word;
240 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
241 word = swab16(pModal->spurChans[i].spurChan);
242 pModal->spurChans[i].spurChan = word;
247 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
248 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
249 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
250 sum, ah->eep_ops->get_eeprom_ver(ah));
251 return -EINVAL;
254 /* Enable fixup for AR_AN_TOP2 if necessary */
255 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
256 ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
257 (eep->baseEepHeader.pwdclkind == 0))
258 ah->need_an_top2_fixup = 1;
260 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
261 (AR_SREV_9280(ah)))
262 eep->modalHeader[0].xpaBiasLvl = 0;
264 return 0;
267 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
268 enum eeprom_param param)
270 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
271 struct modal_eep_header *pModal = eep->modalHeader;
272 struct base_eep_header *pBase = &eep->baseEepHeader;
274 switch (param) {
275 case EEP_NFTHRESH_5:
276 return pModal[0].noiseFloorThreshCh[0];
277 case EEP_NFTHRESH_2:
278 return pModal[1].noiseFloorThreshCh[0];
279 case EEP_MAC_LSW:
280 return get_unaligned_be16(pBase->macAddr);
281 case EEP_MAC_MID:
282 return get_unaligned_be16(pBase->macAddr + 2);
283 case EEP_MAC_MSW:
284 return get_unaligned_be16(pBase->macAddr + 4);
285 case EEP_REG_0:
286 return pBase->regDmn[0];
287 case EEP_REG_1:
288 return pBase->regDmn[1];
289 case EEP_OP_CAP:
290 return pBase->deviceCap;
291 case EEP_OP_MODE:
292 return pBase->opCapFlags;
293 case EEP_RF_SILENT:
294 return pBase->rfSilent;
295 case EEP_OB_5:
296 return pModal[0].ob;
297 case EEP_DB_5:
298 return pModal[0].db;
299 case EEP_OB_2:
300 return pModal[1].ob;
301 case EEP_DB_2:
302 return pModal[1].db;
303 case EEP_MINOR_REV:
304 return AR5416_VER_MASK;
305 case EEP_TX_MASK:
306 return pBase->txMask;
307 case EEP_RX_MASK:
308 return pBase->rxMask;
309 case EEP_FSTCLK_5G:
310 return pBase->fastClk5g;
311 case EEP_RXGAIN_TYPE:
312 return pBase->rxGainType;
313 case EEP_TXGAIN_TYPE:
314 return pBase->txGainType;
315 case EEP_OL_PWRCTRL:
316 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
317 return pBase->openLoopPwrCntl ? true : false;
318 else
319 return false;
320 case EEP_RC_CHAIN_MASK:
321 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
322 return pBase->rcChainMask;
323 else
324 return 0;
325 case EEP_DAC_HPWR_5G:
326 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
327 return pBase->dacHiPwrMode_5G;
328 else
329 return 0;
330 case EEP_FRAC_N_5G:
331 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
332 return pBase->frac_n_5g;
333 else
334 return 0;
335 case EEP_PWR_TABLE_OFFSET:
336 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
337 return pBase->pwr_table_offset;
338 else
339 return AR5416_PWR_TABLE_OFFSET_DB;
340 default:
341 return 0;
345 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
346 struct modal_eep_header *pModal,
347 struct ar5416_eeprom_def *eep,
348 u8 txRxAttenLocal, int regChainOffset, int i)
350 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
351 txRxAttenLocal = pModal->txRxAttenCh[i];
353 if (AR_SREV_9280_20_OR_LATER(ah)) {
354 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
355 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
356 pModal->bswMargin[i]);
357 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
358 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
359 pModal->bswAtten[i]);
360 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
361 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
362 pModal->xatten2Margin[i]);
363 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
364 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
365 pModal->xatten2Db[i]);
366 } else {
367 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
368 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
369 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
370 | SM(pModal-> bswMargin[i],
371 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
372 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
373 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
374 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
375 | SM(pModal->bswAtten[i],
376 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
380 if (AR_SREV_9280_20_OR_LATER(ah)) {
381 REG_RMW_FIELD(ah,
382 AR_PHY_RXGAIN + regChainOffset,
383 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
384 REG_RMW_FIELD(ah,
385 AR_PHY_RXGAIN + regChainOffset,
386 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
387 } else {
388 REG_WRITE(ah,
389 AR_PHY_RXGAIN + regChainOffset,
390 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
391 ~AR_PHY_RXGAIN_TXRX_ATTEN)
392 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
393 REG_WRITE(ah,
394 AR_PHY_GAIN_2GHZ + regChainOffset,
395 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
396 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
397 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
401 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
402 struct ath9k_channel *chan)
404 struct modal_eep_header *pModal;
405 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
406 int i, regChainOffset;
407 u8 txRxAttenLocal;
409 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
410 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
412 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
414 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
415 if (AR_SREV_9280(ah)) {
416 if (i >= 2)
417 break;
420 if (AR_SREV_5416_20_OR_LATER(ah) &&
421 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
422 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
423 else
424 regChainOffset = i * 0x1000;
426 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
427 pModal->antCtrlChain[i]);
429 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
430 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
431 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
432 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
433 SM(pModal->iqCalICh[i],
434 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
435 SM(pModal->iqCalQCh[i],
436 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
438 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
439 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
440 regChainOffset, i);
443 if (AR_SREV_9280_20_OR_LATER(ah)) {
444 if (IS_CHAN_2GHZ(chan)) {
445 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
446 AR_AN_RF2G1_CH0_OB,
447 AR_AN_RF2G1_CH0_OB_S,
448 pModal->ob);
449 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
450 AR_AN_RF2G1_CH0_DB,
451 AR_AN_RF2G1_CH0_DB_S,
452 pModal->db);
453 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
454 AR_AN_RF2G1_CH1_OB,
455 AR_AN_RF2G1_CH1_OB_S,
456 pModal->ob_ch1);
457 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
458 AR_AN_RF2G1_CH1_DB,
459 AR_AN_RF2G1_CH1_DB_S,
460 pModal->db_ch1);
461 } else {
462 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
463 AR_AN_RF5G1_CH0_OB5,
464 AR_AN_RF5G1_CH0_OB5_S,
465 pModal->ob);
466 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
467 AR_AN_RF5G1_CH0_DB5,
468 AR_AN_RF5G1_CH0_DB5_S,
469 pModal->db);
470 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
471 AR_AN_RF5G1_CH1_OB5,
472 AR_AN_RF5G1_CH1_OB5_S,
473 pModal->ob_ch1);
474 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
475 AR_AN_RF5G1_CH1_DB5,
476 AR_AN_RF5G1_CH1_DB5_S,
477 pModal->db_ch1);
479 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
480 AR_AN_TOP2_XPABIAS_LVL,
481 AR_AN_TOP2_XPABIAS_LVL_S,
482 pModal->xpaBiasLvl);
483 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
484 AR_AN_TOP2_LOCALBIAS,
485 AR_AN_TOP2_LOCALBIAS_S,
486 !!(pModal->lna_ctl &
487 LNA_CTL_LOCAL_BIAS));
488 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
489 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
492 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
493 pModal->switchSettling);
494 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
495 pModal->adcDesiredSize);
497 if (!AR_SREV_9280_20_OR_LATER(ah))
498 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
499 AR_PHY_DESIRED_SZ_PGA,
500 pModal->pgaDesiredSize);
502 REG_WRITE(ah, AR_PHY_RF_CTL4,
503 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
504 | SM(pModal->txEndToXpaOff,
505 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
506 | SM(pModal->txFrameToXpaOn,
507 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
508 | SM(pModal->txFrameToXpaOn,
509 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
511 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
512 pModal->txEndToRxOn);
514 if (AR_SREV_9280_20_OR_LATER(ah)) {
515 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
516 pModal->thresh62);
517 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
518 AR_PHY_EXT_CCA0_THRESH62,
519 pModal->thresh62);
520 } else {
521 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
522 pModal->thresh62);
523 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
524 AR_PHY_EXT_CCA_THRESH62,
525 pModal->thresh62);
528 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
529 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
530 AR_PHY_TX_END_DATA_START,
531 pModal->txFrameToDataStart);
532 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
533 pModal->txFrameToPaOn);
536 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
537 if (IS_CHAN_HT40(chan))
538 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
539 AR_PHY_SETTLING_SWITCH,
540 pModal->swSettleHt40);
543 if (AR_SREV_9280_20_OR_LATER(ah) &&
544 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
545 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
546 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
547 pModal->miscBits);
550 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
551 if (IS_CHAN_2GHZ(chan))
552 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
553 eep->baseEepHeader.dacLpMode);
554 else if (eep->baseEepHeader.dacHiPwrMode_5G)
555 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
556 else
557 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
558 eep->baseEepHeader.dacLpMode);
560 udelay(100);
562 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
563 pModal->miscBits >> 2);
565 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
566 AR_PHY_TX_DESIRED_SCALE_CCK,
567 eep->baseEepHeader.desiredScaleCCK);
571 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
572 struct ath9k_channel *chan)
574 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
575 struct modal_eep_header *pModal;
576 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
577 u8 biaslevel;
579 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
580 return;
582 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
583 return;
585 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
587 if (pModal->xpaBiasLvl != 0xff) {
588 biaslevel = pModal->xpaBiasLvl;
589 } else {
590 u16 resetFreqBin, freqBin, freqCount = 0;
591 struct chan_centers centers;
593 ath9k_hw_get_channel_centers(ah, chan, &centers);
595 resetFreqBin = FREQ2FBIN(centers.synth_center,
596 IS_CHAN_2GHZ(chan));
597 freqBin = XPA_LVL_FREQ(0) & 0xff;
598 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
600 freqCount++;
602 while (freqCount < 3) {
603 if (XPA_LVL_FREQ(freqCount) == 0x0)
604 break;
606 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
607 if (resetFreqBin >= freqBin)
608 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
609 else
610 break;
611 freqCount++;
615 if (IS_CHAN_2GHZ(chan)) {
616 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
617 7, 1) & (~0x18)) | biaslevel << 3;
618 } else {
619 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
620 6, 1) & (~0xc0)) | biaslevel << 6;
622 #undef XPA_LVL_FREQ
625 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
626 u16 *gb,
627 u16 numXpdGain,
628 u16 pdGainOverlap_t2,
629 int8_t pwr_table_offset,
630 int16_t *diff)
633 u16 k;
635 /* Prior to writing the boundaries or the pdadc vs. power table
636 * into the chip registers the default starting point on the pdadc
637 * vs. power table needs to be checked and the curve boundaries
638 * adjusted accordingly
640 if (AR_SREV_9280_20_OR_LATER(ah)) {
641 u16 gb_limit;
643 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
644 /* get the difference in dB */
645 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
646 /* get the number of half dB steps */
647 *diff *= 2;
648 /* change the original gain boundary settings
649 * by the number of half dB steps
651 for (k = 0; k < numXpdGain; k++)
652 gb[k] = (u16)(gb[k] - *diff);
654 /* Because of a hardware limitation, ensure the gain boundary
655 * is not larger than (63 - overlap)
657 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
659 for (k = 0; k < numXpdGain; k++)
660 gb[k] = (u16)min(gb_limit, gb[k]);
663 return *diff;
666 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
667 int8_t pwr_table_offset,
668 int16_t diff,
669 u8 *pdadcValues)
671 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
672 u16 k;
674 /* If this is a board that has a pwrTableOffset that differs from
675 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
676 * pdadc vs pwr table needs to be adjusted prior to writing to the
677 * chip.
679 if (AR_SREV_9280_20_OR_LATER(ah)) {
680 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
681 /* shift the table to start at the new offset */
682 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
683 pdadcValues[k] = pdadcValues[k + diff];
686 /* fill the back of the table */
687 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
688 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
692 #undef NUM_PDADC
695 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
696 struct ath9k_channel *chan,
697 int16_t *pTxPowerIndexOffset)
699 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
700 #define SM_PDGAIN_B(x, y) \
701 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
702 struct ath_common *common = ath9k_hw_common(ah);
703 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
704 struct cal_data_per_freq *pRawDataset;
705 u8 *pCalBChans = NULL;
706 u16 pdGainOverlap_t2;
707 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
708 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
709 u16 numPiers, i, j;
710 int16_t diff = 0;
711 u16 numXpdGain, xpdMask;
712 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
713 u32 reg32, regOffset, regChainOffset;
714 int16_t modalIdx;
715 int8_t pwr_table_offset;
717 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
718 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
720 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
722 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
723 AR5416_EEP_MINOR_VER_2) {
724 pdGainOverlap_t2 =
725 pEepData->modalHeader[modalIdx].pdGainOverlap;
726 } else {
727 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
728 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
731 if (IS_CHAN_2GHZ(chan)) {
732 pCalBChans = pEepData->calFreqPier2G;
733 numPiers = AR5416_NUM_2G_CAL_PIERS;
734 } else {
735 pCalBChans = pEepData->calFreqPier5G;
736 numPiers = AR5416_NUM_5G_CAL_PIERS;
739 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
740 pRawDataset = pEepData->calPierData2G[0];
741 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
742 pRawDataset)->vpdPdg[0][0];
745 numXpdGain = 0;
747 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
748 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
749 if (numXpdGain >= AR5416_NUM_PD_GAINS)
750 break;
751 xpdGainValues[numXpdGain] =
752 (u16)(AR5416_PD_GAINS_IN_MASK - i);
753 numXpdGain++;
757 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
758 (numXpdGain - 1) & 0x3);
759 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
760 xpdGainValues[0]);
761 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
762 xpdGainValues[1]);
763 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
764 xpdGainValues[2]);
766 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
767 if (AR_SREV_5416_20_OR_LATER(ah) &&
768 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
769 (i != 0)) {
770 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
771 } else
772 regChainOffset = i * 0x1000;
774 if (pEepData->baseEepHeader.txMask & (1 << i)) {
775 if (IS_CHAN_2GHZ(chan))
776 pRawDataset = pEepData->calPierData2G[i];
777 else
778 pRawDataset = pEepData->calPierData5G[i];
781 if (OLC_FOR_AR9280_20_LATER) {
782 u8 pcdacIdx;
783 u8 txPower;
785 ath9k_get_txgain_index(ah, chan,
786 (struct calDataPerFreqOpLoop *)pRawDataset,
787 pCalBChans, numPiers, &txPower, &pcdacIdx);
788 ath9k_olc_get_pdadcs(ah, pcdacIdx,
789 txPower/2, pdadcValues);
790 } else {
791 ath9k_hw_get_gain_boundaries_pdadcs(ah,
792 chan, pRawDataset,
793 pCalBChans, numPiers,
794 pdGainOverlap_t2,
795 gainBoundaries,
796 pdadcValues,
797 numXpdGain);
800 diff = ath9k_change_gain_boundary_setting(ah,
801 gainBoundaries,
802 numXpdGain,
803 pdGainOverlap_t2,
804 pwr_table_offset,
805 &diff);
807 ENABLE_REGWRITE_BUFFER(ah);
809 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
810 if (OLC_FOR_AR9280_20_LATER) {
811 REG_WRITE(ah,
812 AR_PHY_TPCRG5 + regChainOffset,
813 SM(0x6,
814 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
815 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
816 SM_PD_GAIN(3) | SM_PD_GAIN(4));
817 } else {
818 REG_WRITE(ah,
819 AR_PHY_TPCRG5 + regChainOffset,
820 SM(pdGainOverlap_t2,
821 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
822 SM_PDGAIN_B(0, 1) |
823 SM_PDGAIN_B(1, 2) |
824 SM_PDGAIN_B(2, 3) |
825 SM_PDGAIN_B(3, 4));
830 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
831 diff, pdadcValues);
833 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
834 for (j = 0; j < 32; j++) {
835 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
836 REG_WRITE(ah, regOffset, reg32);
838 ath_dbg(common, ATH_DBG_EEPROM,
839 "PDADC (%d,%4x): %4.4x %8.8x\n",
840 i, regChainOffset, regOffset,
841 reg32);
842 ath_dbg(common, ATH_DBG_EEPROM,
843 "PDADC: Chain %d | PDADC %3d "
844 "Value %3d | PDADC %3d Value %3d | "
845 "PDADC %3d Value %3d | PDADC %3d "
846 "Value %3d |\n",
847 i, 4 * j, pdadcValues[4 * j],
848 4 * j + 1, pdadcValues[4 * j + 1],
849 4 * j + 2, pdadcValues[4 * j + 2],
850 4 * j + 3, pdadcValues[4 * j + 3]);
852 regOffset += 4;
854 REGWRITE_BUFFER_FLUSH(ah);
858 *pTxPowerIndexOffset = 0;
859 #undef SM_PD_GAIN
860 #undef SM_PDGAIN_B
863 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
864 struct ath9k_channel *chan,
865 int16_t *ratesArray,
866 u16 cfgCtl,
867 u16 AntennaReduction,
868 u16 twiceMaxRegulatoryPower,
869 u16 powerLimit)
871 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
872 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
874 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
875 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
876 u16 twiceMaxEdgePower = MAX_RATE_POWER;
877 static const u16 tpScaleReductionTable[5] =
878 { 0, 3, 6, 9, MAX_RATE_POWER };
880 int i;
881 int16_t twiceLargestAntenna;
882 struct cal_ctl_data *rep;
883 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
884 0, { 0, 0, 0, 0}
886 struct cal_target_power_leg targetPowerOfdmExt = {
887 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
888 0, { 0, 0, 0, 0 }
890 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
891 0, {0, 0, 0, 0}
893 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
894 static const u16 ctlModesFor11a[] = {
895 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
897 static const u16 ctlModesFor11g[] = {
898 CTL_11B, CTL_11G, CTL_2GHT20,
899 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
901 u16 numCtlModes;
902 const u16 *pCtlMode;
903 u16 ctlMode, freq;
904 struct chan_centers centers;
905 int tx_chainmask;
906 u16 twiceMinEdgePower;
908 tx_chainmask = ah->txchainmask;
910 ath9k_hw_get_channel_centers(ah, chan, &centers);
912 twiceLargestAntenna = max(
913 pEepData->modalHeader
914 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
915 pEepData->modalHeader
916 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
918 twiceLargestAntenna = max((u8)twiceLargestAntenna,
919 pEepData->modalHeader
920 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
922 twiceLargestAntenna = (int16_t)min(AntennaReduction -
923 twiceLargestAntenna, 0);
925 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
927 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
928 maxRegAllowedPower -=
929 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
932 scaledPower = min(powerLimit, maxRegAllowedPower);
934 switch (ar5416_get_ntxchains(tx_chainmask)) {
935 case 1:
936 break;
937 case 2:
938 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
939 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
940 else
941 scaledPower = 0;
942 break;
943 case 3:
944 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
945 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
946 else
947 scaledPower = 0;
948 break;
951 if (IS_CHAN_2GHZ(chan)) {
952 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
953 SUB_NUM_CTL_MODES_AT_2G_40;
954 pCtlMode = ctlModesFor11g;
956 ath9k_hw_get_legacy_target_powers(ah, chan,
957 pEepData->calTargetPowerCck,
958 AR5416_NUM_2G_CCK_TARGET_POWERS,
959 &targetPowerCck, 4, false);
960 ath9k_hw_get_legacy_target_powers(ah, chan,
961 pEepData->calTargetPower2G,
962 AR5416_NUM_2G_20_TARGET_POWERS,
963 &targetPowerOfdm, 4, false);
964 ath9k_hw_get_target_powers(ah, chan,
965 pEepData->calTargetPower2GHT20,
966 AR5416_NUM_2G_20_TARGET_POWERS,
967 &targetPowerHt20, 8, false);
969 if (IS_CHAN_HT40(chan)) {
970 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
971 ath9k_hw_get_target_powers(ah, chan,
972 pEepData->calTargetPower2GHT40,
973 AR5416_NUM_2G_40_TARGET_POWERS,
974 &targetPowerHt40, 8, true);
975 ath9k_hw_get_legacy_target_powers(ah, chan,
976 pEepData->calTargetPowerCck,
977 AR5416_NUM_2G_CCK_TARGET_POWERS,
978 &targetPowerCckExt, 4, true);
979 ath9k_hw_get_legacy_target_powers(ah, chan,
980 pEepData->calTargetPower2G,
981 AR5416_NUM_2G_20_TARGET_POWERS,
982 &targetPowerOfdmExt, 4, true);
984 } else {
985 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
986 SUB_NUM_CTL_MODES_AT_5G_40;
987 pCtlMode = ctlModesFor11a;
989 ath9k_hw_get_legacy_target_powers(ah, chan,
990 pEepData->calTargetPower5G,
991 AR5416_NUM_5G_20_TARGET_POWERS,
992 &targetPowerOfdm, 4, false);
993 ath9k_hw_get_target_powers(ah, chan,
994 pEepData->calTargetPower5GHT20,
995 AR5416_NUM_5G_20_TARGET_POWERS,
996 &targetPowerHt20, 8, false);
998 if (IS_CHAN_HT40(chan)) {
999 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1000 ath9k_hw_get_target_powers(ah, chan,
1001 pEepData->calTargetPower5GHT40,
1002 AR5416_NUM_5G_40_TARGET_POWERS,
1003 &targetPowerHt40, 8, true);
1004 ath9k_hw_get_legacy_target_powers(ah, chan,
1005 pEepData->calTargetPower5G,
1006 AR5416_NUM_5G_20_TARGET_POWERS,
1007 &targetPowerOfdmExt, 4, true);
1011 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1012 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1013 (pCtlMode[ctlMode] == CTL_2GHT40);
1014 if (isHt40CtlMode)
1015 freq = centers.synth_center;
1016 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1017 freq = centers.ext_center;
1018 else
1019 freq = centers.ctl_center;
1021 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1022 ah->eep_ops->get_eeprom_rev(ah) <= 2)
1023 twiceMaxEdgePower = MAX_RATE_POWER;
1025 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1026 if ((((cfgCtl & ~CTL_MODE_M) |
1027 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1028 pEepData->ctlIndex[i]) ||
1029 (((cfgCtl & ~CTL_MODE_M) |
1030 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1031 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1032 rep = &(pEepData->ctlData[i]);
1034 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1035 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1036 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1038 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1039 twiceMaxEdgePower = min(twiceMaxEdgePower,
1040 twiceMinEdgePower);
1041 } else {
1042 twiceMaxEdgePower = twiceMinEdgePower;
1043 break;
1048 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1050 switch (pCtlMode[ctlMode]) {
1051 case CTL_11B:
1052 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1053 targetPowerCck.tPow2x[i] =
1054 min((u16)targetPowerCck.tPow2x[i],
1055 minCtlPower);
1057 break;
1058 case CTL_11A:
1059 case CTL_11G:
1060 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1061 targetPowerOfdm.tPow2x[i] =
1062 min((u16)targetPowerOfdm.tPow2x[i],
1063 minCtlPower);
1065 break;
1066 case CTL_5GHT20:
1067 case CTL_2GHT20:
1068 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1069 targetPowerHt20.tPow2x[i] =
1070 min((u16)targetPowerHt20.tPow2x[i],
1071 minCtlPower);
1073 break;
1074 case CTL_11B_EXT:
1075 targetPowerCckExt.tPow2x[0] = min((u16)
1076 targetPowerCckExt.tPow2x[0],
1077 minCtlPower);
1078 break;
1079 case CTL_11A_EXT:
1080 case CTL_11G_EXT:
1081 targetPowerOfdmExt.tPow2x[0] = min((u16)
1082 targetPowerOfdmExt.tPow2x[0],
1083 minCtlPower);
1084 break;
1085 case CTL_5GHT40:
1086 case CTL_2GHT40:
1087 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1088 targetPowerHt40.tPow2x[i] =
1089 min((u16)targetPowerHt40.tPow2x[i],
1090 minCtlPower);
1092 break;
1093 default:
1094 break;
1098 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1099 ratesArray[rate18mb] = ratesArray[rate24mb] =
1100 targetPowerOfdm.tPow2x[0];
1101 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1102 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1103 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1104 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1106 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1107 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1109 if (IS_CHAN_2GHZ(chan)) {
1110 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1111 ratesArray[rate2s] = ratesArray[rate2l] =
1112 targetPowerCck.tPow2x[1];
1113 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1114 targetPowerCck.tPow2x[2];
1115 ratesArray[rate11s] = ratesArray[rate11l] =
1116 targetPowerCck.tPow2x[3];
1118 if (IS_CHAN_HT40(chan)) {
1119 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1120 ratesArray[rateHt40_0 + i] =
1121 targetPowerHt40.tPow2x[i];
1123 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1124 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1125 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1126 if (IS_CHAN_2GHZ(chan)) {
1127 ratesArray[rateExtCck] =
1128 targetPowerCckExt.tPow2x[0];
1133 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1134 struct ath9k_channel *chan,
1135 u16 cfgCtl,
1136 u8 twiceAntennaReduction,
1137 u8 twiceMaxRegulatoryPower,
1138 u8 powerLimit, bool test)
1140 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1141 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1142 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1143 struct modal_eep_header *pModal =
1144 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1145 int16_t ratesArray[Ar5416RateSize];
1146 int16_t txPowerIndexOffset = 0;
1147 u8 ht40PowerIncForPdadc = 2;
1148 int i, cck_ofdm_delta = 0;
1150 memset(ratesArray, 0, sizeof(ratesArray));
1152 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1153 AR5416_EEP_MINOR_VER_2) {
1154 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1157 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1158 &ratesArray[0], cfgCtl,
1159 twiceAntennaReduction,
1160 twiceMaxRegulatoryPower,
1161 powerLimit);
1163 ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1165 regulatory->max_power_level = 0;
1166 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1167 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1168 if (ratesArray[i] > MAX_RATE_POWER)
1169 ratesArray[i] = MAX_RATE_POWER;
1170 if (ratesArray[i] > regulatory->max_power_level)
1171 regulatory->max_power_level = ratesArray[i];
1174 if (!test) {
1175 i = rate6mb;
1177 if (IS_CHAN_HT40(chan))
1178 i = rateHt40_0;
1179 else if (IS_CHAN_HT20(chan))
1180 i = rateHt20_0;
1182 regulatory->max_power_level = ratesArray[i];
1185 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1186 case 1:
1187 break;
1188 case 2:
1189 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1190 break;
1191 case 3:
1192 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1193 break;
1194 default:
1195 ath_dbg(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1196 "Invalid chainmask configuration\n");
1197 break;
1200 if (test)
1201 return;
1203 if (AR_SREV_9280_20_OR_LATER(ah)) {
1204 for (i = 0; i < Ar5416RateSize; i++) {
1205 int8_t pwr_table_offset;
1207 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1208 EEP_PWR_TABLE_OFFSET);
1209 ratesArray[i] -= pwr_table_offset * 2;
1213 ENABLE_REGWRITE_BUFFER(ah);
1215 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1216 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1217 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1218 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1219 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1220 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1221 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1222 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1223 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1224 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1226 if (IS_CHAN_2GHZ(chan)) {
1227 if (OLC_FOR_AR9280_20_LATER) {
1228 cck_ofdm_delta = 2;
1229 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1230 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1231 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1232 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1233 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1234 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1235 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1236 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1237 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1238 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1239 } else {
1240 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1241 ATH9K_POW_SM(ratesArray[rate2s], 24)
1242 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1243 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1244 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1245 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1246 ATH9K_POW_SM(ratesArray[rate11s], 24)
1247 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1248 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1249 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1253 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1254 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1255 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1256 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1257 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1258 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1259 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1260 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1261 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1262 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1264 if (IS_CHAN_HT40(chan)) {
1265 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1266 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1267 ht40PowerIncForPdadc, 24)
1268 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1269 ht40PowerIncForPdadc, 16)
1270 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1271 ht40PowerIncForPdadc, 8)
1272 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1273 ht40PowerIncForPdadc, 0));
1274 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1275 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1276 ht40PowerIncForPdadc, 24)
1277 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1278 ht40PowerIncForPdadc, 16)
1279 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1280 ht40PowerIncForPdadc, 8)
1281 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1282 ht40PowerIncForPdadc, 0));
1283 if (OLC_FOR_AR9280_20_LATER) {
1284 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1285 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1286 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1287 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1288 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1289 } else {
1290 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1291 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1292 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1293 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1294 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1298 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1299 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1300 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1302 REGWRITE_BUFFER_FLUSH(ah);
1305 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1307 #define EEP_DEF_SPURCHAN \
1308 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1309 struct ath_common *common = ath9k_hw_common(ah);
1311 u16 spur_val = AR_NO_SPUR;
1313 ath_dbg(common, ATH_DBG_ANI,
1314 "Getting spur idx:%d is2Ghz:%d val:%x\n",
1315 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1317 switch (ah->config.spurmode) {
1318 case SPUR_DISABLE:
1319 break;
1320 case SPUR_ENABLE_IOCTL:
1321 spur_val = ah->config.spurchans[i][is2GHz];
1322 ath_dbg(common, ATH_DBG_ANI,
1323 "Getting spur val from new loc. %d\n", spur_val);
1324 break;
1325 case SPUR_ENABLE_EEPROM:
1326 spur_val = EEP_DEF_SPURCHAN;
1327 break;
1330 return spur_val;
1332 #undef EEP_DEF_SPURCHAN
1335 const struct eeprom_ops eep_def_ops = {
1336 .check_eeprom = ath9k_hw_def_check_eeprom,
1337 .get_eeprom = ath9k_hw_def_get_eeprom,
1338 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1339 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1340 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1341 .set_board_values = ath9k_hw_def_set_board_values,
1342 .set_addac = ath9k_hw_def_set_addac,
1343 .set_txpower = ath9k_hw_def_set_txpower,
1344 .get_spur_channel = ath9k_hw_def_get_spur_channel