include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / net / wireless / ath / ath9k / xmit.c
blobcc595712f5180479c39871bd0f18af6ff2b5be2c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 static u16 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid,
52 struct list_head *bf_head);
53 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
54 struct ath_txq *txq, struct list_head *bf_q,
55 struct ath_tx_status *ts, int txok, int sendbar);
56 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
57 struct list_head *head, bool internal);
58 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok, bool update_rc);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
65 enum {
66 MCS_HT20,
67 MCS_HT20_SGI,
68 MCS_HT40,
69 MCS_HT40_SGI,
72 static int ath_max_4ms_framelen[4][32] = {
73 [MCS_HT20] = {
74 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
75 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
76 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
77 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
79 [MCS_HT20_SGI] = {
80 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
81 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
82 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
83 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
85 [MCS_HT40] = {
86 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
87 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
88 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
89 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
91 [MCS_HT40_SGI] = {
92 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
93 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
94 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
95 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
99 /*********************/
100 /* Aggregation logic */
101 /*********************/
103 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
105 struct ath_atx_ac *ac = tid->ac;
107 if (tid->paused)
108 return;
110 if (tid->sched)
111 return;
113 tid->sched = true;
114 list_add_tail(&tid->list, &ac->tid_q);
116 if (ac->sched)
117 return;
119 ac->sched = true;
120 list_add_tail(&ac->list, &txq->axq_acq);
123 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
125 struct ath_txq *txq = tid->ac->txq;
127 WARN_ON(!tid->paused);
129 spin_lock_bh(&txq->axq_lock);
130 tid->paused = false;
132 if (list_empty(&tid->buf_q))
133 goto unlock;
135 ath_tx_queue_tid(txq, tid);
136 ath_txq_schedule(sc, txq);
137 unlock:
138 spin_unlock_bh(&txq->axq_lock);
141 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
143 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
144 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
145 sizeof(tx_info->rate_driver_data));
146 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
149 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
151 struct ath_txq *txq = tid->ac->txq;
152 struct ath_buf *bf;
153 struct list_head bf_head;
154 struct ath_tx_status ts;
155 struct ath_frame_info *fi;
157 INIT_LIST_HEAD(&bf_head);
159 memset(&ts, 0, sizeof(ts));
160 spin_lock_bh(&txq->axq_lock);
162 while (!list_empty(&tid->buf_q)) {
163 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
164 list_move_tail(&bf->list, &bf_head);
166 spin_unlock_bh(&txq->axq_lock);
167 fi = get_frame_info(bf->bf_mpdu);
168 if (fi->retries) {
169 ath_tx_update_baw(sc, tid, fi->seqno);
170 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 1);
171 } else {
172 ath_tx_send_normal(sc, txq, NULL, &bf_head);
174 spin_lock_bh(&txq->axq_lock);
177 spin_unlock_bh(&txq->axq_lock);
180 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
181 int seqno)
183 int index, cindex;
185 index = ATH_BA_INDEX(tid->seq_start, seqno);
186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
188 __clear_bit(cindex, tid->tx_buf);
190 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
191 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
192 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
196 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
197 u16 seqno)
199 int index, cindex;
201 index = ATH_BA_INDEX(tid->seq_start, seqno);
202 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
203 __set_bit(cindex, tid->tx_buf);
205 if (index >= ((tid->baw_tail - tid->baw_head) &
206 (ATH_TID_MAX_BUFS - 1))) {
207 tid->baw_tail = cindex;
208 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
213 * TODO: For frame(s) that are in the retry state, we will reuse the
214 * sequence number(s) without setting the retry bit. The
215 * alternative is to give up on these and BAR the receiver's window
216 * forward.
218 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
219 struct ath_atx_tid *tid)
222 struct ath_buf *bf;
223 struct list_head bf_head;
224 struct ath_tx_status ts;
225 struct ath_frame_info *fi;
227 memset(&ts, 0, sizeof(ts));
228 INIT_LIST_HEAD(&bf_head);
230 for (;;) {
231 if (list_empty(&tid->buf_q))
232 break;
234 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
235 list_move_tail(&bf->list, &bf_head);
237 fi = get_frame_info(bf->bf_mpdu);
238 if (fi->retries)
239 ath_tx_update_baw(sc, tid, fi->seqno);
241 spin_unlock(&txq->axq_lock);
242 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
243 spin_lock(&txq->axq_lock);
246 tid->seq_next = tid->seq_start;
247 tid->baw_tail = tid->baw_head;
250 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
251 struct sk_buff *skb)
253 struct ath_frame_info *fi = get_frame_info(skb);
254 struct ieee80211_hdr *hdr;
256 TX_STAT_INC(txq->axq_qnum, a_retries);
257 if (fi->retries++ > 0)
258 return;
260 hdr = (struct ieee80211_hdr *)skb->data;
261 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
264 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
266 struct ath_buf *bf = NULL;
268 spin_lock_bh(&sc->tx.txbuflock);
270 if (unlikely(list_empty(&sc->tx.txbuf))) {
271 spin_unlock_bh(&sc->tx.txbuflock);
272 return NULL;
275 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
276 list_del(&bf->list);
278 spin_unlock_bh(&sc->tx.txbuflock);
280 return bf;
283 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
285 spin_lock_bh(&sc->tx.txbuflock);
286 list_add_tail(&bf->list, &sc->tx.txbuf);
287 spin_unlock_bh(&sc->tx.txbuflock);
290 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
292 struct ath_buf *tbf;
294 tbf = ath_tx_get_buffer(sc);
295 if (WARN_ON(!tbf))
296 return NULL;
298 ATH_TXBUF_RESET(tbf);
300 tbf->bf_mpdu = bf->bf_mpdu;
301 tbf->bf_buf_addr = bf->bf_buf_addr;
302 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
303 tbf->bf_state = bf->bf_state;
305 return tbf;
308 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
309 struct ath_tx_status *ts, int txok,
310 int *nframes, int *nbad)
312 struct ath_frame_info *fi;
313 u16 seq_st = 0;
314 u32 ba[WME_BA_BMP_SIZE >> 5];
315 int ba_index;
316 int isaggr = 0;
318 *nbad = 0;
319 *nframes = 0;
321 isaggr = bf_isaggr(bf);
322 if (isaggr) {
323 seq_st = ts->ts_seqnum;
324 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
327 while (bf) {
328 fi = get_frame_info(bf->bf_mpdu);
329 ba_index = ATH_BA_INDEX(seq_st, fi->seqno);
331 (*nframes)++;
332 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
333 (*nbad)++;
335 bf = bf->bf_next;
340 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
341 struct ath_buf *bf, struct list_head *bf_q,
342 struct ath_tx_status *ts, int txok, bool retry)
344 struct ath_node *an = NULL;
345 struct sk_buff *skb;
346 struct ieee80211_sta *sta;
347 struct ieee80211_hw *hw = sc->hw;
348 struct ieee80211_hdr *hdr;
349 struct ieee80211_tx_info *tx_info;
350 struct ath_atx_tid *tid = NULL;
351 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
352 struct list_head bf_head, bf_pending;
353 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
354 u32 ba[WME_BA_BMP_SIZE >> 5];
355 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
356 bool rc_update = true;
357 struct ieee80211_tx_rate rates[4];
358 struct ath_frame_info *fi;
359 int nframes;
360 u8 tidno;
361 bool clear_filter;
363 skb = bf->bf_mpdu;
364 hdr = (struct ieee80211_hdr *)skb->data;
366 tx_info = IEEE80211_SKB_CB(skb);
368 memcpy(rates, tx_info->control.rates, sizeof(rates));
370 rcu_read_lock();
372 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
373 if (!sta) {
374 rcu_read_unlock();
376 INIT_LIST_HEAD(&bf_head);
377 while (bf) {
378 bf_next = bf->bf_next;
380 bf->bf_state.bf_type |= BUF_XRETRY;
381 if (!bf->bf_stale || bf_next != NULL)
382 list_move_tail(&bf->list, &bf_head);
384 ath_tx_rc_status(sc, bf, ts, 1, 1, 0, false);
385 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
386 0, 0);
388 bf = bf_next;
390 return;
393 an = (struct ath_node *)sta->drv_priv;
394 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
395 tid = ATH_AN_2_TID(an, tidno);
398 * The hardware occasionally sends a tx status for the wrong TID.
399 * In this case, the BA status cannot be considered valid and all
400 * subframes need to be retransmitted
402 if (tidno != ts->tid)
403 txok = false;
405 isaggr = bf_isaggr(bf);
406 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
408 if (isaggr && txok) {
409 if (ts->ts_flags & ATH9K_TX_BA) {
410 seq_st = ts->ts_seqnum;
411 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
412 } else {
414 * AR5416 can become deaf/mute when BA
415 * issue happens. Chip needs to be reset.
416 * But AP code may have sychronization issues
417 * when perform internal reset in this routine.
418 * Only enable reset in STA mode for now.
420 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
421 needreset = 1;
425 INIT_LIST_HEAD(&bf_pending);
426 INIT_LIST_HEAD(&bf_head);
428 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
429 while (bf) {
430 txfail = txpending = sendbar = 0;
431 bf_next = bf->bf_next;
433 skb = bf->bf_mpdu;
434 tx_info = IEEE80211_SKB_CB(skb);
435 fi = get_frame_info(skb);
437 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, fi->seqno))) {
438 /* transmit completion, subframe is
439 * acked by block ack */
440 acked_cnt++;
441 } else if (!isaggr && txok) {
442 /* transmit completion */
443 acked_cnt++;
444 } else {
445 if ((tid->state & AGGR_CLEANUP) || !retry) {
447 * cleanup in progress, just fail
448 * the un-acked sub-frames
450 txfail = 1;
451 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
452 if (!(ts->ts_status & ATH9K_TXERR_FILT) ||
453 !an->sleeping)
454 ath_tx_set_retry(sc, txq, bf->bf_mpdu);
456 clear_filter = true;
457 txpending = 1;
458 } else {
459 bf->bf_state.bf_type |= BUF_XRETRY;
460 txfail = 1;
461 sendbar = 1;
462 txfail_cnt++;
467 * Make sure the last desc is reclaimed if it
468 * not a holding desc.
470 if (!bf_last->bf_stale || bf_next != NULL)
471 list_move_tail(&bf->list, &bf_head);
472 else
473 INIT_LIST_HEAD(&bf_head);
475 if (!txpending || (tid->state & AGGR_CLEANUP)) {
477 * complete the acked-ones/xretried ones; update
478 * block-ack window
480 spin_lock_bh(&txq->axq_lock);
481 ath_tx_update_baw(sc, tid, fi->seqno);
482 spin_unlock_bh(&txq->axq_lock);
484 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
485 memcpy(tx_info->control.rates, rates, sizeof(rates));
486 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, true);
487 rc_update = false;
488 } else {
489 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, false);
492 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
493 !txfail, sendbar);
494 } else {
495 /* retry the un-acked ones */
496 ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, false);
497 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
498 if (bf->bf_next == NULL && bf_last->bf_stale) {
499 struct ath_buf *tbf;
501 tbf = ath_clone_txbuf(sc, bf_last);
503 * Update tx baw and complete the
504 * frame with failed status if we
505 * run out of tx buf.
507 if (!tbf) {
508 spin_lock_bh(&txq->axq_lock);
509 ath_tx_update_baw(sc, tid, fi->seqno);
510 spin_unlock_bh(&txq->axq_lock);
512 bf->bf_state.bf_type |=
513 BUF_XRETRY;
514 ath_tx_rc_status(sc, bf, ts, nframes,
515 nbad, 0, false);
516 ath_tx_complete_buf(sc, bf, txq,
517 &bf_head,
518 ts, 0, 0);
519 break;
522 ath9k_hw_cleartxdesc(sc->sc_ah,
523 tbf->bf_desc);
524 list_add_tail(&tbf->list, &bf_head);
525 } else {
527 * Clear descriptor status words for
528 * software retry
530 ath9k_hw_cleartxdesc(sc->sc_ah,
531 bf->bf_desc);
536 * Put this buffer to the temporary pending
537 * queue to retain ordering
539 list_splice_tail_init(&bf_head, &bf_pending);
542 bf = bf_next;
545 /* prepend un-acked frames to the beginning of the pending frame queue */
546 if (!list_empty(&bf_pending)) {
547 if (an->sleeping)
548 ieee80211_sta_set_tim(sta);
550 spin_lock_bh(&txq->axq_lock);
551 if (clear_filter)
552 tid->ac->clear_ps_filter = true;
553 list_splice(&bf_pending, &tid->buf_q);
554 ath_tx_queue_tid(txq, tid);
555 spin_unlock_bh(&txq->axq_lock);
558 if (tid->state & AGGR_CLEANUP) {
559 ath_tx_flush_tid(sc, tid);
561 if (tid->baw_head == tid->baw_tail) {
562 tid->state &= ~AGGR_ADDBA_COMPLETE;
563 tid->state &= ~AGGR_CLEANUP;
567 rcu_read_unlock();
569 if (needreset)
570 ath_reset(sc, false);
573 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
574 struct ath_atx_tid *tid)
576 struct sk_buff *skb;
577 struct ieee80211_tx_info *tx_info;
578 struct ieee80211_tx_rate *rates;
579 u32 max_4ms_framelen, frmlen;
580 u16 aggr_limit, legacy = 0;
581 int i;
583 skb = bf->bf_mpdu;
584 tx_info = IEEE80211_SKB_CB(skb);
585 rates = tx_info->control.rates;
588 * Find the lowest frame length among the rate series that will have a
589 * 4ms transmit duration.
590 * TODO - TXOP limit needs to be considered.
592 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
594 for (i = 0; i < 4; i++) {
595 if (rates[i].count) {
596 int modeidx;
597 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
598 legacy = 1;
599 break;
602 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
603 modeidx = MCS_HT40;
604 else
605 modeidx = MCS_HT20;
607 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
608 modeidx++;
610 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
611 max_4ms_framelen = min(max_4ms_framelen, frmlen);
616 * limit aggregate size by the minimum rate if rate selected is
617 * not a probe rate, if rate selected is a probe rate then
618 * avoid aggregation of this packet.
620 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
621 return 0;
623 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
624 aggr_limit = min((max_4ms_framelen * 3) / 8,
625 (u32)ATH_AMPDU_LIMIT_MAX);
626 else
627 aggr_limit = min(max_4ms_framelen,
628 (u32)ATH_AMPDU_LIMIT_MAX);
631 * h/w can accept aggregates up to 16 bit lengths (65535).
632 * The IE, however can hold up to 65536, which shows up here
633 * as zero. Ignore 65536 since we are constrained by hw.
635 if (tid->an->maxampdu)
636 aggr_limit = min(aggr_limit, tid->an->maxampdu);
638 return aggr_limit;
642 * Returns the number of delimiters to be added to
643 * meet the minimum required mpdudensity.
645 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
646 struct ath_buf *bf, u16 frmlen)
648 struct sk_buff *skb = bf->bf_mpdu;
649 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
650 u32 nsymbits, nsymbols;
651 u16 minlen;
652 u8 flags, rix;
653 int width, streams, half_gi, ndelim, mindelim;
654 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
656 /* Select standard number of delimiters based on frame length alone */
657 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
660 * If encryption enabled, hardware requires some more padding between
661 * subframes.
662 * TODO - this could be improved to be dependent on the rate.
663 * The hardware can keep up at lower rates, but not higher rates
665 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
666 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
667 ndelim += ATH_AGGR_ENCRYPTDELIM;
670 * Convert desired mpdu density from microeconds to bytes based
671 * on highest rate in rate series (i.e. first rate) to determine
672 * required minimum length for subframe. Take into account
673 * whether high rate is 20 or 40Mhz and half or full GI.
675 * If there is no mpdu density restriction, no further calculation
676 * is needed.
679 if (tid->an->mpdudensity == 0)
680 return ndelim;
682 rix = tx_info->control.rates[0].idx;
683 flags = tx_info->control.rates[0].flags;
684 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
685 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
687 if (half_gi)
688 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
689 else
690 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
692 if (nsymbols == 0)
693 nsymbols = 1;
695 streams = HT_RC_2_STREAMS(rix);
696 nsymbits = bits_per_symbol[rix % 8][width] * streams;
697 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
699 if (frmlen < minlen) {
700 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
701 ndelim = max(mindelim, ndelim);
704 return ndelim;
707 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
708 struct ath_txq *txq,
709 struct ath_atx_tid *tid,
710 struct list_head *bf_q,
711 int *aggr_len)
713 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
714 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
715 int rl = 0, nframes = 0, ndelim, prev_al = 0;
716 u16 aggr_limit = 0, al = 0, bpad = 0,
717 al_delta, h_baw = tid->baw_size / 2;
718 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
719 struct ieee80211_tx_info *tx_info;
720 struct ath_frame_info *fi;
722 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
724 do {
725 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
726 fi = get_frame_info(bf->bf_mpdu);
728 /* do not step over block-ack window */
729 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno)) {
730 status = ATH_AGGR_BAW_CLOSED;
731 break;
734 if (!rl) {
735 aggr_limit = ath_lookup_rate(sc, bf, tid);
736 rl = 1;
739 /* do not exceed aggregation limit */
740 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
742 if (nframes &&
743 (aggr_limit < (al + bpad + al_delta + prev_al))) {
744 status = ATH_AGGR_LIMITED;
745 break;
748 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
749 if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
750 !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS)))
751 break;
753 /* do not exceed subframe limit */
754 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
755 status = ATH_AGGR_LIMITED;
756 break;
758 nframes++;
760 /* add padding for previous frame to aggregation length */
761 al += bpad + al_delta;
764 * Get the delimiters needed to meet the MPDU
765 * density for this node.
767 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen);
768 bpad = PADBYTES(al_delta) + (ndelim << 2);
770 bf->bf_next = NULL;
771 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
773 /* link buffers of this frame to the aggregate */
774 if (!fi->retries)
775 ath_tx_addto_baw(sc, tid, fi->seqno);
776 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
777 list_move_tail(&bf->list, bf_q);
778 if (bf_prev) {
779 bf_prev->bf_next = bf;
780 ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
781 bf->bf_daddr);
783 bf_prev = bf;
785 } while (!list_empty(&tid->buf_q));
787 *aggr_len = al;
789 return status;
790 #undef PADBYTES
793 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
794 struct ath_atx_tid *tid)
796 struct ath_buf *bf;
797 enum ATH_AGGR_STATUS status;
798 struct ath_frame_info *fi;
799 struct list_head bf_q;
800 int aggr_len;
802 do {
803 if (list_empty(&tid->buf_q))
804 return;
806 INIT_LIST_HEAD(&bf_q);
808 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
811 * no frames picked up to be aggregated;
812 * block-ack window is not open.
814 if (list_empty(&bf_q))
815 break;
817 bf = list_first_entry(&bf_q, struct ath_buf, list);
818 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
820 if (tid->ac->clear_ps_filter) {
821 tid->ac->clear_ps_filter = false;
822 ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, true);
825 /* if only one frame, send as non-aggregate */
826 if (bf == bf->bf_lastbf) {
827 fi = get_frame_info(bf->bf_mpdu);
829 bf->bf_state.bf_type &= ~BUF_AGGR;
830 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
831 ath_buf_set_rate(sc, bf, fi->framelen);
832 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
833 continue;
836 /* setup first desc of aggregate */
837 bf->bf_state.bf_type |= BUF_AGGR;
838 ath_buf_set_rate(sc, bf, aggr_len);
839 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, aggr_len);
841 /* anchor last desc of aggregate */
842 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
844 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
845 TX_STAT_INC(txq->axq_qnum, a_aggr);
847 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
848 status != ATH_AGGR_BAW_CLOSED);
851 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
852 u16 tid, u16 *ssn)
854 struct ath_atx_tid *txtid;
855 struct ath_node *an;
857 an = (struct ath_node *)sta->drv_priv;
858 txtid = ATH_AN_2_TID(an, tid);
860 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
861 return -EAGAIN;
863 txtid->state |= AGGR_ADDBA_PROGRESS;
864 txtid->paused = true;
865 *ssn = txtid->seq_start = txtid->seq_next;
867 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
868 txtid->baw_head = txtid->baw_tail = 0;
870 return 0;
873 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
875 struct ath_node *an = (struct ath_node *)sta->drv_priv;
876 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
877 struct ath_txq *txq = txtid->ac->txq;
879 if (txtid->state & AGGR_CLEANUP)
880 return;
882 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
883 txtid->state &= ~AGGR_ADDBA_PROGRESS;
884 return;
887 spin_lock_bh(&txq->axq_lock);
888 txtid->paused = true;
891 * If frames are still being transmitted for this TID, they will be
892 * cleaned up during tx completion. To prevent race conditions, this
893 * TID can only be reused after all in-progress subframes have been
894 * completed.
896 if (txtid->baw_head != txtid->baw_tail)
897 txtid->state |= AGGR_CLEANUP;
898 else
899 txtid->state &= ~AGGR_ADDBA_COMPLETE;
900 spin_unlock_bh(&txq->axq_lock);
902 ath_tx_flush_tid(sc, txtid);
905 bool ath_tx_aggr_sleep(struct ath_softc *sc, struct ath_node *an)
907 struct ath_atx_tid *tid;
908 struct ath_atx_ac *ac;
909 struct ath_txq *txq;
910 bool buffered = false;
911 int tidno;
913 for (tidno = 0, tid = &an->tid[tidno];
914 tidno < WME_NUM_TID; tidno++, tid++) {
916 if (!tid->sched)
917 continue;
919 ac = tid->ac;
920 txq = ac->txq;
922 spin_lock_bh(&txq->axq_lock);
924 if (!list_empty(&tid->buf_q))
925 buffered = true;
927 tid->sched = false;
928 list_del(&tid->list);
930 if (ac->sched) {
931 ac->sched = false;
932 list_del(&ac->list);
935 spin_unlock_bh(&txq->axq_lock);
938 return buffered;
941 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
943 struct ath_atx_tid *tid;
944 struct ath_atx_ac *ac;
945 struct ath_txq *txq;
946 int tidno;
948 for (tidno = 0, tid = &an->tid[tidno];
949 tidno < WME_NUM_TID; tidno++, tid++) {
951 ac = tid->ac;
952 txq = ac->txq;
954 spin_lock_bh(&txq->axq_lock);
955 ac->clear_ps_filter = true;
957 if (!list_empty(&tid->buf_q) && !tid->paused) {
958 ath_tx_queue_tid(txq, tid);
959 ath_txq_schedule(sc, txq);
962 spin_unlock_bh(&txq->axq_lock);
966 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
968 struct ath_atx_tid *txtid;
969 struct ath_node *an;
971 an = (struct ath_node *)sta->drv_priv;
973 if (sc->sc_flags & SC_OP_TXAGGR) {
974 txtid = ATH_AN_2_TID(an, tid);
975 txtid->baw_size =
976 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
977 txtid->state |= AGGR_ADDBA_COMPLETE;
978 txtid->state &= ~AGGR_ADDBA_PROGRESS;
979 ath_tx_resume_tid(sc, txtid);
983 /********************/
984 /* Queue Management */
985 /********************/
987 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
988 struct ath_txq *txq)
990 struct ath_atx_ac *ac, *ac_tmp;
991 struct ath_atx_tid *tid, *tid_tmp;
993 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
994 list_del(&ac->list);
995 ac->sched = false;
996 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
997 list_del(&tid->list);
998 tid->sched = false;
999 ath_tid_drain(sc, txq, tid);
1004 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1006 struct ath_hw *ah = sc->sc_ah;
1007 struct ath_common *common = ath9k_hw_common(ah);
1008 struct ath9k_tx_queue_info qi;
1009 static const int subtype_txq_to_hwq[] = {
1010 [WME_AC_BE] = ATH_TXQ_AC_BE,
1011 [WME_AC_BK] = ATH_TXQ_AC_BK,
1012 [WME_AC_VI] = ATH_TXQ_AC_VI,
1013 [WME_AC_VO] = ATH_TXQ_AC_VO,
1015 int axq_qnum, i;
1017 memset(&qi, 0, sizeof(qi));
1018 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1019 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1020 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1021 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1022 qi.tqi_physCompBuf = 0;
1025 * Enable interrupts only for EOL and DESC conditions.
1026 * We mark tx descriptors to receive a DESC interrupt
1027 * when a tx queue gets deep; otherwise waiting for the
1028 * EOL to reap descriptors. Note that this is done to
1029 * reduce interrupt load and this only defers reaping
1030 * descriptors, never transmitting frames. Aside from
1031 * reducing interrupts this also permits more concurrency.
1032 * The only potential downside is if the tx queue backs
1033 * up in which case the top half of the kernel may backup
1034 * due to a lack of tx descriptors.
1036 * The UAPSD queue is an exception, since we take a desc-
1037 * based intr on the EOSP frames.
1039 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1040 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
1041 TXQ_FLAG_TXERRINT_ENABLE;
1042 } else {
1043 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1044 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1045 else
1046 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1047 TXQ_FLAG_TXDESCINT_ENABLE;
1049 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1050 if (axq_qnum == -1) {
1052 * NB: don't print a message, this happens
1053 * normally on parts with too few tx queues
1055 return NULL;
1057 if (axq_qnum >= ARRAY_SIZE(sc->tx.txq)) {
1058 ath_err(common, "qnum %u out of range, max %zu!\n",
1059 axq_qnum, ARRAY_SIZE(sc->tx.txq));
1060 ath9k_hw_releasetxqueue(ah, axq_qnum);
1061 return NULL;
1063 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1064 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1066 txq->axq_qnum = axq_qnum;
1067 txq->mac80211_qnum = -1;
1068 txq->axq_link = NULL;
1069 INIT_LIST_HEAD(&txq->axq_q);
1070 INIT_LIST_HEAD(&txq->axq_acq);
1071 spin_lock_init(&txq->axq_lock);
1072 txq->axq_depth = 0;
1073 txq->axq_ampdu_depth = 0;
1074 txq->axq_tx_inprogress = false;
1075 sc->tx.txqsetup |= 1<<axq_qnum;
1077 txq->txq_headidx = txq->txq_tailidx = 0;
1078 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1079 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1081 return &sc->tx.txq[axq_qnum];
1084 int ath_txq_update(struct ath_softc *sc, int qnum,
1085 struct ath9k_tx_queue_info *qinfo)
1087 struct ath_hw *ah = sc->sc_ah;
1088 int error = 0;
1089 struct ath9k_tx_queue_info qi;
1091 if (qnum == sc->beacon.beaconq) {
1093 * XXX: for beacon queue, we just save the parameter.
1094 * It will be picked up by ath_beaconq_config when
1095 * it's necessary.
1097 sc->beacon.beacon_qi = *qinfo;
1098 return 0;
1101 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1103 ath9k_hw_get_txq_props(ah, qnum, &qi);
1104 qi.tqi_aifs = qinfo->tqi_aifs;
1105 qi.tqi_cwmin = qinfo->tqi_cwmin;
1106 qi.tqi_cwmax = qinfo->tqi_cwmax;
1107 qi.tqi_burstTime = qinfo->tqi_burstTime;
1108 qi.tqi_readyTime = qinfo->tqi_readyTime;
1110 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1111 ath_err(ath9k_hw_common(sc->sc_ah),
1112 "Unable to update hardware queue %u!\n", qnum);
1113 error = -EIO;
1114 } else {
1115 ath9k_hw_resettxqueue(ah, qnum);
1118 return error;
1121 int ath_cabq_update(struct ath_softc *sc)
1123 struct ath9k_tx_queue_info qi;
1124 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1125 int qnum = sc->beacon.cabq->axq_qnum;
1127 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1129 * Ensure the readytime % is within the bounds.
1131 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1132 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1133 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1134 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1136 qi.tqi_readyTime = (cur_conf->beacon_interval *
1137 sc->config.cabqReadytime) / 100;
1138 ath_txq_update(sc, qnum, &qi);
1140 return 0;
1143 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
1145 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
1146 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1149 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1150 struct list_head *list, bool retry_tx)
1151 __releases(txq->axq_lock)
1152 __acquires(txq->axq_lock)
1154 struct ath_buf *bf, *lastbf;
1155 struct list_head bf_head;
1156 struct ath_tx_status ts;
1158 memset(&ts, 0, sizeof(ts));
1159 INIT_LIST_HEAD(&bf_head);
1161 while (!list_empty(list)) {
1162 bf = list_first_entry(list, struct ath_buf, list);
1164 if (bf->bf_stale) {
1165 list_del(&bf->list);
1167 ath_tx_return_buffer(sc, bf);
1168 continue;
1171 lastbf = bf->bf_lastbf;
1172 list_cut_position(&bf_head, list, &lastbf->list);
1174 txq->axq_depth--;
1175 if (bf_is_ampdu_not_probing(bf))
1176 txq->axq_ampdu_depth--;
1178 spin_unlock_bh(&txq->axq_lock);
1179 if (bf_isampdu(bf))
1180 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
1181 retry_tx);
1182 else
1183 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
1184 spin_lock_bh(&txq->axq_lock);
1189 * Drain a given TX queue (could be Beacon or Data)
1191 * This assumes output has been stopped and
1192 * we do not need to block ath_tx_tasklet.
1194 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1196 spin_lock_bh(&txq->axq_lock);
1197 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1198 int idx = txq->txq_tailidx;
1200 while (!list_empty(&txq->txq_fifo[idx])) {
1201 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
1202 retry_tx);
1204 INCR(idx, ATH_TXFIFO_DEPTH);
1206 txq->txq_tailidx = idx;
1209 txq->axq_link = NULL;
1210 txq->axq_tx_inprogress = false;
1211 ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
1213 /* flush any pending frames if aggregation is enabled */
1214 if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx)
1215 ath_txq_drain_pending_buffers(sc, txq);
1217 spin_unlock_bh(&txq->axq_lock);
1220 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1222 struct ath_hw *ah = sc->sc_ah;
1223 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1224 struct ath_txq *txq;
1225 int i, npend = 0;
1227 if (sc->sc_flags & SC_OP_INVALID)
1228 return true;
1230 ath9k_hw_abort_tx_dma(ah);
1232 /* Check if any queue remains active */
1233 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1234 if (!ATH_TXQ_SETUP(sc, i))
1235 continue;
1237 npend += ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum);
1240 if (npend)
1241 ath_err(common, "Failed to stop TX DMA!\n");
1243 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1244 if (!ATH_TXQ_SETUP(sc, i))
1245 continue;
1248 * The caller will resume queues with ieee80211_wake_queues.
1249 * Mark the queue as not stopped to prevent ath_tx_complete
1250 * from waking the queue too early.
1252 txq = &sc->tx.txq[i];
1253 txq->stopped = false;
1254 ath_draintxq(sc, txq, retry_tx);
1257 return !npend;
1260 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1262 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1263 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1266 /* For each axq_acq entry, for each tid, try to schedule packets
1267 * for transmit until ampdu_depth has reached min Q depth.
1269 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1271 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1272 struct ath_atx_tid *tid, *last_tid;
1274 if (list_empty(&txq->axq_acq) ||
1275 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1276 return;
1278 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1279 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1281 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1282 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1283 list_del(&ac->list);
1284 ac->sched = false;
1286 while (!list_empty(&ac->tid_q)) {
1287 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1288 list);
1289 list_del(&tid->list);
1290 tid->sched = false;
1292 if (tid->paused)
1293 continue;
1295 ath_tx_sched_aggr(sc, txq, tid);
1298 * add tid to round-robin queue if more frames
1299 * are pending for the tid
1301 if (!list_empty(&tid->buf_q))
1302 ath_tx_queue_tid(txq, tid);
1304 if (tid == last_tid ||
1305 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1306 break;
1309 if (!list_empty(&ac->tid_q)) {
1310 if (!ac->sched) {
1311 ac->sched = true;
1312 list_add_tail(&ac->list, &txq->axq_acq);
1316 if (ac == last_ac ||
1317 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1318 return;
1322 /***********/
1323 /* TX, DMA */
1324 /***********/
1327 * Insert a chain of ath_buf (descriptors) on a txq and
1328 * assume the descriptors are already chained together by caller.
1330 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1331 struct list_head *head, bool internal)
1333 struct ath_hw *ah = sc->sc_ah;
1334 struct ath_common *common = ath9k_hw_common(ah);
1335 struct ath_buf *bf, *bf_last;
1336 bool puttxbuf = false;
1337 bool edma;
1340 * Insert the frame on the outbound list and
1341 * pass it on to the hardware.
1344 if (list_empty(head))
1345 return;
1347 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1348 bf = list_first_entry(head, struct ath_buf, list);
1349 bf_last = list_entry(head->prev, struct ath_buf, list);
1351 ath_dbg(common, ATH_DBG_QUEUE,
1352 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1354 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1355 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1356 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1357 puttxbuf = true;
1358 } else {
1359 list_splice_tail_init(head, &txq->axq_q);
1361 if (txq->axq_link) {
1362 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1363 ath_dbg(common, ATH_DBG_XMIT,
1364 "link[%u] (%p)=%llx (%p)\n",
1365 txq->axq_qnum, txq->axq_link,
1366 ito64(bf->bf_daddr), bf->bf_desc);
1367 } else if (!edma)
1368 puttxbuf = true;
1370 txq->axq_link = bf_last->bf_desc;
1373 if (puttxbuf) {
1374 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1375 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1376 ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n",
1377 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1380 if (!edma) {
1381 TX_STAT_INC(txq->axq_qnum, txstart);
1382 ath9k_hw_txstart(ah, txq->axq_qnum);
1385 if (!internal) {
1386 txq->axq_depth++;
1387 if (bf_is_ampdu_not_probing(bf))
1388 txq->axq_ampdu_depth++;
1392 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1393 struct ath_buf *bf, struct ath_tx_control *txctl)
1395 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1396 struct list_head bf_head;
1398 bf->bf_state.bf_type |= BUF_AMPDU;
1401 * Do not queue to h/w when any of the following conditions is true:
1402 * - there are pending frames in software queue
1403 * - the TID is currently paused for ADDBA/BAR request
1404 * - seqno is not within block-ack window
1405 * - h/w queue depth exceeds low water mark
1407 if (!list_empty(&tid->buf_q) || tid->paused ||
1408 !BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno) ||
1409 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1411 * Add this frame to software queue for scheduling later
1412 * for aggregation.
1414 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1415 list_add_tail(&bf->list, &tid->buf_q);
1416 ath_tx_queue_tid(txctl->txq, tid);
1417 return;
1420 INIT_LIST_HEAD(&bf_head);
1421 list_add(&bf->list, &bf_head);
1423 /* Add sub-frame to BAW */
1424 if (!fi->retries)
1425 ath_tx_addto_baw(sc, tid, fi->seqno);
1427 /* Queue to h/w without aggregation */
1428 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1429 bf->bf_lastbf = bf;
1430 ath_buf_set_rate(sc, bf, fi->framelen);
1431 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1434 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1435 struct ath_atx_tid *tid,
1436 struct list_head *bf_head)
1438 struct ath_frame_info *fi;
1439 struct ath_buf *bf;
1441 bf = list_first_entry(bf_head, struct ath_buf, list);
1442 bf->bf_state.bf_type &= ~BUF_AMPDU;
1444 /* update starting sequence number for subsequent ADDBA request */
1445 if (tid)
1446 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1448 bf->bf_lastbf = bf;
1449 fi = get_frame_info(bf->bf_mpdu);
1450 ath_buf_set_rate(sc, bf, fi->framelen);
1451 ath_tx_txqaddbuf(sc, txq, bf_head, false);
1452 TX_STAT_INC(txq->axq_qnum, queued);
1455 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1457 struct ieee80211_hdr *hdr;
1458 enum ath9k_pkt_type htype;
1459 __le16 fc;
1461 hdr = (struct ieee80211_hdr *)skb->data;
1462 fc = hdr->frame_control;
1464 if (ieee80211_is_beacon(fc))
1465 htype = ATH9K_PKT_TYPE_BEACON;
1466 else if (ieee80211_is_probe_resp(fc))
1467 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1468 else if (ieee80211_is_atim(fc))
1469 htype = ATH9K_PKT_TYPE_ATIM;
1470 else if (ieee80211_is_pspoll(fc))
1471 htype = ATH9K_PKT_TYPE_PSPOLL;
1472 else
1473 htype = ATH9K_PKT_TYPE_NORMAL;
1475 return htype;
1478 static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
1479 int framelen)
1481 struct ath_softc *sc = hw->priv;
1482 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1483 struct ieee80211_sta *sta = tx_info->control.sta;
1484 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1485 struct ieee80211_hdr *hdr;
1486 struct ath_frame_info *fi = get_frame_info(skb);
1487 struct ath_node *an = NULL;
1488 struct ath_atx_tid *tid;
1489 enum ath9k_key_type keytype;
1490 u16 seqno = 0;
1491 u8 tidno;
1493 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1495 if (sta)
1496 an = (struct ath_node *) sta->drv_priv;
1498 hdr = (struct ieee80211_hdr *)skb->data;
1499 if (an && ieee80211_is_data_qos(hdr->frame_control) &&
1500 conf_is_ht(&hw->conf) && (sc->sc_flags & SC_OP_TXAGGR)) {
1502 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
1505 * Override seqno set by upper layer with the one
1506 * in tx aggregation state.
1508 tid = ATH_AN_2_TID(an, tidno);
1509 seqno = tid->seq_next;
1510 hdr->seq_ctrl = cpu_to_le16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1511 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1514 memset(fi, 0, sizeof(*fi));
1515 if (hw_key)
1516 fi->keyix = hw_key->hw_key_idx;
1517 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1518 fi->keyix = an->ps_key;
1519 else
1520 fi->keyix = ATH9K_TXKEYIX_INVALID;
1521 fi->keytype = keytype;
1522 fi->framelen = framelen;
1523 fi->seqno = seqno;
1526 static int setup_tx_flags(struct sk_buff *skb)
1528 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1529 int flags = 0;
1531 flags |= ATH9K_TXDESC_INTREQ;
1533 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1534 flags |= ATH9K_TXDESC_NOACK;
1536 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1537 flags |= ATH9K_TXDESC_LDPC;
1539 return flags;
1543 * rix - rate index
1544 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1545 * width - 0 for 20 MHz, 1 for 40 MHz
1546 * half_gi - to use 4us v/s 3.6 us for symbol time
1548 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1549 int width, int half_gi, bool shortPreamble)
1551 u32 nbits, nsymbits, duration, nsymbols;
1552 int streams;
1554 /* find number of symbols: PLCP + data */
1555 streams = HT_RC_2_STREAMS(rix);
1556 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1557 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1558 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1560 if (!half_gi)
1561 duration = SYMBOL_TIME(nsymbols);
1562 else
1563 duration = SYMBOL_TIME_HALFGI(nsymbols);
1565 /* addup duration for legacy/ht training and signal fields */
1566 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1568 return duration;
1571 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1573 struct ath_hw *ah = sc->sc_ah;
1574 struct ath9k_channel *curchan = ah->curchan;
1575 if ((sc->sc_flags & SC_OP_ENABLE_APM) &&
1576 (curchan->channelFlags & CHANNEL_5GHZ) &&
1577 (chainmask == 0x7) && (rate < 0x90))
1578 return 0x3;
1579 else
1580 return chainmask;
1583 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len)
1585 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1586 struct ath9k_11n_rate_series series[4];
1587 struct sk_buff *skb;
1588 struct ieee80211_tx_info *tx_info;
1589 struct ieee80211_tx_rate *rates;
1590 const struct ieee80211_rate *rate;
1591 struct ieee80211_hdr *hdr;
1592 int i, flags = 0;
1593 u8 rix = 0, ctsrate = 0;
1594 bool is_pspoll;
1596 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1598 skb = bf->bf_mpdu;
1599 tx_info = IEEE80211_SKB_CB(skb);
1600 rates = tx_info->control.rates;
1601 hdr = (struct ieee80211_hdr *)skb->data;
1602 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1605 * We check if Short Preamble is needed for the CTS rate by
1606 * checking the BSS's global flag.
1607 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1609 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
1610 ctsrate = rate->hw_value;
1611 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1612 ctsrate |= rate->hw_value_short;
1614 for (i = 0; i < 4; i++) {
1615 bool is_40, is_sgi, is_sp;
1616 int phy;
1618 if (!rates[i].count || (rates[i].idx < 0))
1619 continue;
1621 rix = rates[i].idx;
1622 series[i].Tries = rates[i].count;
1624 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1625 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1626 flags |= ATH9K_TXDESC_RTSENA;
1627 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1628 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1629 flags |= ATH9K_TXDESC_CTSENA;
1632 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1633 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1634 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1635 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1637 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1638 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1639 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1641 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1642 /* MCS rates */
1643 series[i].Rate = rix | 0x80;
1644 series[i].ChSel = ath_txchainmask_reduction(sc,
1645 common->tx_chainmask, series[i].Rate);
1646 series[i].PktDuration = ath_pkt_duration(sc, rix, len,
1647 is_40, is_sgi, is_sp);
1648 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1649 series[i].RateFlags |= ATH9K_RATESERIES_STBC;
1650 continue;
1653 /* legacy rates */
1654 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1655 !(rate->flags & IEEE80211_RATE_ERP_G))
1656 phy = WLAN_RC_PHY_CCK;
1657 else
1658 phy = WLAN_RC_PHY_OFDM;
1660 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1661 series[i].Rate = rate->hw_value;
1662 if (rate->hw_value_short) {
1663 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1664 series[i].Rate |= rate->hw_value_short;
1665 } else {
1666 is_sp = false;
1669 if (bf->bf_state.bfs_paprd)
1670 series[i].ChSel = common->tx_chainmask;
1671 else
1672 series[i].ChSel = ath_txchainmask_reduction(sc,
1673 common->tx_chainmask, series[i].Rate);
1675 series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1676 phy, rate->bitrate * 100, len, rix, is_sp);
1679 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1680 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1681 flags &= ~ATH9K_TXDESC_RTSENA;
1683 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1684 if (flags & ATH9K_TXDESC_RTSENA)
1685 flags &= ~ATH9K_TXDESC_CTSENA;
1687 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1688 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1689 bf->bf_lastbf->bf_desc,
1690 !is_pspoll, ctsrate,
1691 0, series, 4, flags);
1695 static struct ath_buf *ath_tx_setup_buffer(struct ieee80211_hw *hw,
1696 struct ath_txq *txq,
1697 struct sk_buff *skb)
1699 struct ath_softc *sc = hw->priv;
1700 struct ath_hw *ah = sc->sc_ah;
1701 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1702 struct ath_frame_info *fi = get_frame_info(skb);
1703 struct ath_buf *bf;
1704 struct ath_desc *ds;
1705 int frm_type;
1707 bf = ath_tx_get_buffer(sc);
1708 if (!bf) {
1709 ath_dbg(common, ATH_DBG_XMIT, "TX buffers are full\n");
1710 return NULL;
1713 ATH_TXBUF_RESET(bf);
1715 bf->bf_flags = setup_tx_flags(skb);
1716 bf->bf_mpdu = skb;
1718 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1719 skb->len, DMA_TO_DEVICE);
1720 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1721 bf->bf_mpdu = NULL;
1722 bf->bf_buf_addr = 0;
1723 ath_err(ath9k_hw_common(sc->sc_ah),
1724 "dma_mapping_error() on TX\n");
1725 ath_tx_return_buffer(sc, bf);
1726 return NULL;
1729 frm_type = get_hw_packet_type(skb);
1731 ds = bf->bf_desc;
1732 ath9k_hw_set_desc_link(ah, ds, 0);
1734 ath9k_hw_set11n_txdesc(ah, ds, fi->framelen, frm_type, MAX_RATE_POWER,
1735 fi->keyix, fi->keytype, bf->bf_flags);
1737 ath9k_hw_filltxdesc(ah, ds,
1738 skb->len, /* segment length */
1739 true, /* first segment */
1740 true, /* last segment */
1741 ds, /* first descriptor */
1742 bf->bf_buf_addr,
1743 txq->axq_qnum);
1746 return bf;
1749 /* FIXME: tx power */
1750 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1751 struct ath_tx_control *txctl)
1753 struct sk_buff *skb = bf->bf_mpdu;
1754 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1756 struct list_head bf_head;
1757 struct ath_atx_tid *tid = NULL;
1758 u8 tidno;
1760 spin_lock_bh(&txctl->txq->axq_lock);
1761 if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
1762 ieee80211_is_data_qos(hdr->frame_control)) {
1763 tidno = ieee80211_get_qos_ctl(hdr)[0] &
1764 IEEE80211_QOS_CTL_TID_MASK;
1765 tid = ATH_AN_2_TID(txctl->an, tidno);
1767 WARN_ON(tid->ac->txq != txctl->txq);
1770 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1772 * Try aggregation if it's a unicast data frame
1773 * and the destination is HT capable.
1775 ath_tx_send_ampdu(sc, tid, bf, txctl);
1776 } else {
1777 INIT_LIST_HEAD(&bf_head);
1778 list_add_tail(&bf->list, &bf_head);
1780 bf->bf_state.bfs_ftype = txctl->frame_type;
1781 bf->bf_state.bfs_paprd = txctl->paprd;
1783 if (bf->bf_state.bfs_paprd)
1784 ar9003_hw_set_paprd_txdesc(sc->sc_ah, bf->bf_desc,
1785 bf->bf_state.bfs_paprd);
1787 if (txctl->paprd)
1788 bf->bf_state.bfs_paprd_timestamp = jiffies;
1790 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1791 ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, true);
1793 ath_tx_send_normal(sc, txctl->txq, tid, &bf_head);
1796 spin_unlock_bh(&txctl->txq->axq_lock);
1799 /* Upon failure caller should free skb */
1800 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1801 struct ath_tx_control *txctl)
1803 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1804 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1805 struct ieee80211_sta *sta = info->control.sta;
1806 struct ieee80211_vif *vif = info->control.vif;
1807 struct ath_softc *sc = hw->priv;
1808 struct ath_txq *txq = txctl->txq;
1809 struct ath_buf *bf;
1810 int padpos, padsize;
1811 int frmlen = skb->len + FCS_LEN;
1812 int q;
1814 /* NOTE: sta can be NULL according to net/mac80211.h */
1815 if (sta)
1816 txctl->an = (struct ath_node *)sta->drv_priv;
1818 if (info->control.hw_key)
1819 frmlen += info->control.hw_key->icv_len;
1822 * As a temporary workaround, assign seq# here; this will likely need
1823 * to be cleaned up to work better with Beacon transmission and virtual
1824 * BSSes.
1826 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1827 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1828 sc->tx.seq_no += 0x10;
1829 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1830 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1833 /* Add the padding after the header if this is not already done */
1834 padpos = ath9k_cmn_padpos(hdr->frame_control);
1835 padsize = padpos & 3;
1836 if (padsize && skb->len > padpos) {
1837 if (skb_headroom(skb) < padsize)
1838 return -ENOMEM;
1840 skb_push(skb, padsize);
1841 memmove(skb->data, skb->data + padsize, padpos);
1844 if ((vif && vif->type != NL80211_IFTYPE_AP &&
1845 vif->type != NL80211_IFTYPE_AP_VLAN) ||
1846 !ieee80211_is_data(hdr->frame_control))
1847 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1849 setup_frame_info(hw, skb, frmlen);
1852 * At this point, the vif, hw_key and sta pointers in the tx control
1853 * info are no longer valid (overwritten by the ath_frame_info data.
1856 bf = ath_tx_setup_buffer(hw, txctl->txq, skb);
1857 if (unlikely(!bf))
1858 return -ENOMEM;
1860 q = skb_get_queue_mapping(skb);
1861 spin_lock_bh(&txq->axq_lock);
1862 if (txq == sc->tx.txq_map[q] &&
1863 ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
1864 ieee80211_stop_queue(sc->hw, q);
1865 txq->stopped = 1;
1867 spin_unlock_bh(&txq->axq_lock);
1869 ath_tx_start_dma(sc, bf, txctl);
1871 return 0;
1874 /*****************/
1875 /* TX Completion */
1876 /*****************/
1878 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1879 int tx_flags, int ftype, struct ath_txq *txq)
1881 struct ieee80211_hw *hw = sc->hw;
1882 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1883 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1884 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1885 int q, padpos, padsize;
1887 ath_dbg(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1889 if (tx_flags & ATH_TX_BAR)
1890 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1892 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1893 /* Frame was ACKed */
1894 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1897 padpos = ath9k_cmn_padpos(hdr->frame_control);
1898 padsize = padpos & 3;
1899 if (padsize && skb->len>padpos+padsize) {
1901 * Remove MAC header padding before giving the frame back to
1902 * mac80211.
1904 memmove(skb->data + padsize, skb->data, padpos);
1905 skb_pull(skb, padsize);
1908 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
1909 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
1910 ath_dbg(common, ATH_DBG_PS,
1911 "Going back to sleep after having received TX status (0x%lx)\n",
1912 sc->ps_flags & (PS_WAIT_FOR_BEACON |
1913 PS_WAIT_FOR_CAB |
1914 PS_WAIT_FOR_PSPOLL_DATA |
1915 PS_WAIT_FOR_TX_ACK));
1918 q = skb_get_queue_mapping(skb);
1919 if (txq == sc->tx.txq_map[q]) {
1920 spin_lock_bh(&txq->axq_lock);
1921 if (WARN_ON(--txq->pending_frames < 0))
1922 txq->pending_frames = 0;
1924 if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
1925 ieee80211_wake_queue(sc->hw, q);
1926 txq->stopped = 0;
1928 spin_unlock_bh(&txq->axq_lock);
1931 ieee80211_tx_status(hw, skb);
1934 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1935 struct ath_txq *txq, struct list_head *bf_q,
1936 struct ath_tx_status *ts, int txok, int sendbar)
1938 struct sk_buff *skb = bf->bf_mpdu;
1939 unsigned long flags;
1940 int tx_flags = 0;
1942 if (sendbar)
1943 tx_flags = ATH_TX_BAR;
1945 if (!txok) {
1946 tx_flags |= ATH_TX_ERROR;
1948 if (bf_isxretried(bf))
1949 tx_flags |= ATH_TX_XRETRY;
1952 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
1953 bf->bf_buf_addr = 0;
1955 if (bf->bf_state.bfs_paprd) {
1956 if (time_after(jiffies,
1957 bf->bf_state.bfs_paprd_timestamp +
1958 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
1959 dev_kfree_skb_any(skb);
1960 else
1961 complete(&sc->paprd_complete);
1962 } else {
1963 ath_debug_stat_tx(sc, bf, ts, txq);
1964 ath_tx_complete(sc, skb, tx_flags,
1965 bf->bf_state.bfs_ftype, txq);
1967 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
1968 * accidentally reference it later.
1970 bf->bf_mpdu = NULL;
1973 * Return the list of ath_buf of this mpdu to free queue
1975 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1976 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1977 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1980 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
1981 struct ath_tx_status *ts, int nframes, int nbad,
1982 int txok, bool update_rc)
1984 struct sk_buff *skb = bf->bf_mpdu;
1985 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1986 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1987 struct ieee80211_hw *hw = sc->hw;
1988 struct ath_hw *ah = sc->sc_ah;
1989 u8 i, tx_rateindex;
1991 if (txok)
1992 tx_info->status.ack_signal = ts->ts_rssi;
1994 tx_rateindex = ts->ts_rateindex;
1995 WARN_ON(tx_rateindex >= hw->max_rates);
1997 if (ts->ts_status & ATH9K_TXERR_FILT)
1998 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1999 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) {
2000 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2002 BUG_ON(nbad > nframes);
2004 tx_info->status.ampdu_len = nframes;
2005 tx_info->status.ampdu_ack_len = nframes - nbad;
2008 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2009 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
2011 * If an underrun error is seen assume it as an excessive
2012 * retry only if max frame trigger level has been reached
2013 * (2 KB for single stream, and 4 KB for dual stream).
2014 * Adjust the long retry as if the frame was tried
2015 * hw->max_rate_tries times to affect how rate control updates
2016 * PER for the failed rate.
2017 * In case of congestion on the bus penalizing this type of
2018 * underruns should help hardware actually transmit new frames
2019 * successfully by eventually preferring slower rates.
2020 * This itself should also alleviate congestion on the bus.
2022 if (ieee80211_is_data(hdr->frame_control) &&
2023 (ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2024 ATH9K_TX_DELIM_UNDERRUN)) &&
2025 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2026 tx_info->status.rates[tx_rateindex].count =
2027 hw->max_rate_tries;
2030 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2031 tx_info->status.rates[i].count = 0;
2032 tx_info->status.rates[i].idx = -1;
2035 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2038 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
2039 struct ath_tx_status *ts, struct ath_buf *bf,
2040 struct list_head *bf_head)
2041 __releases(txq->axq_lock)
2042 __acquires(txq->axq_lock)
2044 int txok;
2046 txq->axq_depth--;
2047 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
2048 txq->axq_tx_inprogress = false;
2049 if (bf_is_ampdu_not_probing(bf))
2050 txq->axq_ampdu_depth--;
2052 spin_unlock_bh(&txq->axq_lock);
2054 if (!bf_isampdu(bf)) {
2056 * This frame is sent out as a single frame.
2057 * Use hardware retry status for this frame.
2059 if (ts->ts_status & ATH9K_TXERR_XRETRY)
2060 bf->bf_state.bf_type |= BUF_XRETRY;
2061 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok, true);
2062 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok, 0);
2063 } else
2064 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
2066 spin_lock_bh(&txq->axq_lock);
2068 if (sc->sc_flags & SC_OP_TXAGGR)
2069 ath_txq_schedule(sc, txq);
2072 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2074 struct ath_hw *ah = sc->sc_ah;
2075 struct ath_common *common = ath9k_hw_common(ah);
2076 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2077 struct list_head bf_head;
2078 struct ath_desc *ds;
2079 struct ath_tx_status ts;
2080 int status;
2082 ath_dbg(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2083 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2084 txq->axq_link);
2086 spin_lock_bh(&txq->axq_lock);
2087 for (;;) {
2088 if (list_empty(&txq->axq_q)) {
2089 txq->axq_link = NULL;
2090 if (sc->sc_flags & SC_OP_TXAGGR)
2091 ath_txq_schedule(sc, txq);
2092 break;
2094 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2097 * There is a race condition that a BH gets scheduled
2098 * after sw writes TxE and before hw re-load the last
2099 * descriptor to get the newly chained one.
2100 * Software must keep the last DONE descriptor as a
2101 * holding descriptor - software does so by marking
2102 * it with the STALE flag.
2104 bf_held = NULL;
2105 if (bf->bf_stale) {
2106 bf_held = bf;
2107 if (list_is_last(&bf_held->list, &txq->axq_q))
2108 break;
2110 bf = list_entry(bf_held->list.next, struct ath_buf,
2111 list);
2114 lastbf = bf->bf_lastbf;
2115 ds = lastbf->bf_desc;
2117 memset(&ts, 0, sizeof(ts));
2118 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2119 if (status == -EINPROGRESS)
2120 break;
2122 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2125 * Remove ath_buf's of the same transmit unit from txq,
2126 * however leave the last descriptor back as the holding
2127 * descriptor for hw.
2129 lastbf->bf_stale = true;
2130 INIT_LIST_HEAD(&bf_head);
2131 if (!list_is_singular(&lastbf->list))
2132 list_cut_position(&bf_head,
2133 &txq->axq_q, lastbf->list.prev);
2135 if (bf_held) {
2136 list_del(&bf_held->list);
2137 ath_tx_return_buffer(sc, bf_held);
2140 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2142 spin_unlock_bh(&txq->axq_lock);
2145 static void ath_tx_complete_poll_work(struct work_struct *work)
2147 struct ath_softc *sc = container_of(work, struct ath_softc,
2148 tx_complete_work.work);
2149 struct ath_txq *txq;
2150 int i;
2151 bool needreset = false;
2152 #ifdef CONFIG_ATH9K_DEBUGFS
2153 sc->tx_complete_poll_work_seen++;
2154 #endif
2156 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2157 if (ATH_TXQ_SETUP(sc, i)) {
2158 txq = &sc->tx.txq[i];
2159 spin_lock_bh(&txq->axq_lock);
2160 if (txq->axq_depth) {
2161 if (txq->axq_tx_inprogress) {
2162 needreset = true;
2163 spin_unlock_bh(&txq->axq_lock);
2164 break;
2165 } else {
2166 txq->axq_tx_inprogress = true;
2169 spin_unlock_bh(&txq->axq_lock);
2172 if (needreset) {
2173 ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2174 "tx hung, resetting the chip\n");
2175 spin_lock_bh(&sc->sc_pcu_lock);
2176 ath_reset(sc, true);
2177 spin_unlock_bh(&sc->sc_pcu_lock);
2180 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2181 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2186 void ath_tx_tasklet(struct ath_softc *sc)
2188 int i;
2189 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2191 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2193 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2194 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2195 ath_tx_processq(sc, &sc->tx.txq[i]);
2199 void ath_tx_edma_tasklet(struct ath_softc *sc)
2201 struct ath_tx_status ts;
2202 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2203 struct ath_hw *ah = sc->sc_ah;
2204 struct ath_txq *txq;
2205 struct ath_buf *bf, *lastbf;
2206 struct list_head bf_head;
2207 int status;
2209 for (;;) {
2210 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2211 if (status == -EINPROGRESS)
2212 break;
2213 if (status == -EIO) {
2214 ath_dbg(common, ATH_DBG_XMIT,
2215 "Error processing tx status\n");
2216 break;
2219 /* Skip beacon completions */
2220 if (ts.qid == sc->beacon.beaconq)
2221 continue;
2223 txq = &sc->tx.txq[ts.qid];
2225 spin_lock_bh(&txq->axq_lock);
2227 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2228 spin_unlock_bh(&txq->axq_lock);
2229 return;
2232 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2233 struct ath_buf, list);
2234 lastbf = bf->bf_lastbf;
2236 INIT_LIST_HEAD(&bf_head);
2237 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2238 &lastbf->list);
2240 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2241 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2243 if (!list_empty(&txq->axq_q)) {
2244 struct list_head bf_q;
2246 INIT_LIST_HEAD(&bf_q);
2247 txq->axq_link = NULL;
2248 list_splice_tail_init(&txq->axq_q, &bf_q);
2249 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2253 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2254 spin_unlock_bh(&txq->axq_lock);
2258 /*****************/
2259 /* Init, Cleanup */
2260 /*****************/
2262 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2264 struct ath_descdma *dd = &sc->txsdma;
2265 u8 txs_len = sc->sc_ah->caps.txs_len;
2267 dd->dd_desc_len = size * txs_len;
2268 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2269 &dd->dd_desc_paddr, GFP_KERNEL);
2270 if (!dd->dd_desc)
2271 return -ENOMEM;
2273 return 0;
2276 static int ath_tx_edma_init(struct ath_softc *sc)
2278 int err;
2280 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2281 if (!err)
2282 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2283 sc->txsdma.dd_desc_paddr,
2284 ATH_TXSTATUS_RING_SIZE);
2286 return err;
2289 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2291 struct ath_descdma *dd = &sc->txsdma;
2293 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2294 dd->dd_desc_paddr);
2297 int ath_tx_init(struct ath_softc *sc, int nbufs)
2299 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2300 int error = 0;
2302 spin_lock_init(&sc->tx.txbuflock);
2304 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2305 "tx", nbufs, 1, 1);
2306 if (error != 0) {
2307 ath_err(common,
2308 "Failed to allocate tx descriptors: %d\n", error);
2309 goto err;
2312 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2313 "beacon", ATH_BCBUF, 1, 1);
2314 if (error != 0) {
2315 ath_err(common,
2316 "Failed to allocate beacon descriptors: %d\n", error);
2317 goto err;
2320 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2322 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2323 error = ath_tx_edma_init(sc);
2324 if (error)
2325 goto err;
2328 err:
2329 if (error != 0)
2330 ath_tx_cleanup(sc);
2332 return error;
2335 void ath_tx_cleanup(struct ath_softc *sc)
2337 if (sc->beacon.bdma.dd_desc_len != 0)
2338 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2340 if (sc->tx.txdma.dd_desc_len != 0)
2341 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2343 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2344 ath_tx_edma_cleanup(sc);
2347 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2349 struct ath_atx_tid *tid;
2350 struct ath_atx_ac *ac;
2351 int tidno, acno;
2353 for (tidno = 0, tid = &an->tid[tidno];
2354 tidno < WME_NUM_TID;
2355 tidno++, tid++) {
2356 tid->an = an;
2357 tid->tidno = tidno;
2358 tid->seq_start = tid->seq_next = 0;
2359 tid->baw_size = WME_MAX_BA;
2360 tid->baw_head = tid->baw_tail = 0;
2361 tid->sched = false;
2362 tid->paused = false;
2363 tid->state &= ~AGGR_CLEANUP;
2364 INIT_LIST_HEAD(&tid->buf_q);
2365 acno = TID_TO_WME_AC(tidno);
2366 tid->ac = &an->ac[acno];
2367 tid->state &= ~AGGR_ADDBA_COMPLETE;
2368 tid->state &= ~AGGR_ADDBA_PROGRESS;
2371 for (acno = 0, ac = &an->ac[acno];
2372 acno < WME_NUM_AC; acno++, ac++) {
2373 ac->sched = false;
2374 ac->txq = sc->tx.txq_map[acno];
2375 INIT_LIST_HEAD(&ac->tid_q);
2379 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2381 struct ath_atx_ac *ac;
2382 struct ath_atx_tid *tid;
2383 struct ath_txq *txq;
2384 int tidno;
2386 for (tidno = 0, tid = &an->tid[tidno];
2387 tidno < WME_NUM_TID; tidno++, tid++) {
2389 ac = tid->ac;
2390 txq = ac->txq;
2392 spin_lock_bh(&txq->axq_lock);
2394 if (tid->sched) {
2395 list_del(&tid->list);
2396 tid->sched = false;
2399 if (ac->sched) {
2400 list_del(&ac->list);
2401 tid->ac->sched = false;
2404 ath_tid_drain(sc, txq, tid);
2405 tid->state &= ~AGGR_ADDBA_COMPLETE;
2406 tid->state &= ~AGGR_CLEANUP;
2408 spin_unlock_bh(&txq->axq_lock);