1 /******************************************************************************
3 * Copyright(c) 2009-2010 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
46 u32
rtl92de_read_dword_dbi(struct ieee80211_hw
*hw
, u16 offset
, u8 direct
)
48 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
51 rtl_write_word(rtlpriv
, REG_DBI_CTRL
, (offset
& 0xFFC));
52 rtl_write_byte(rtlpriv
, REG_DBI_FLAG
, BIT(1) | direct
);
54 value
= rtl_read_dword(rtlpriv
, REG_DBI_RDATA
);
58 void rtl92de_write_dword_dbi(struct ieee80211_hw
*hw
,
59 u16 offset
, u32 value
, u8 direct
)
61 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
63 rtl_write_word(rtlpriv
, REG_DBI_CTRL
, ((offset
& 0xFFC) | 0xF000));
64 rtl_write_dword(rtlpriv
, REG_DBI_WDATA
, value
);
65 rtl_write_byte(rtlpriv
, REG_DBI_FLAG
, BIT(0) | direct
);
68 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw
*hw
,
69 u8 set_bits
, u8 clear_bits
)
71 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
72 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
74 rtlpci
->reg_bcn_ctrl_val
|= set_bits
;
75 rtlpci
->reg_bcn_ctrl_val
&= ~clear_bits
;
76 rtl_write_byte(rtlpriv
, REG_BCN_CTRL
, (u8
) rtlpci
->reg_bcn_ctrl_val
);
79 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw
*hw
)
81 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
84 tmp1byte
= rtl_read_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2);
85 rtl_write_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2, tmp1byte
& (~BIT(6)));
86 rtl_write_byte(rtlpriv
, REG_BCN_MAX_ERR
, 0xff);
87 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 1, 0x64);
88 tmp1byte
= rtl_read_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 2);
89 tmp1byte
&= ~(BIT(0));
90 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 2, tmp1byte
);
93 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw
*hw
)
95 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
98 tmp1byte
= rtl_read_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2);
99 rtl_write_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2, tmp1byte
| BIT(6));
100 rtl_write_byte(rtlpriv
, REG_BCN_MAX_ERR
, 0x0a);
101 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 1, 0xff);
102 tmp1byte
= rtl_read_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 2);
104 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 2, tmp1byte
);
107 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw
*hw
)
109 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(1));
112 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw
*hw
)
114 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(1), 0);
117 void rtl92de_get_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
119 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
120 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
121 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
125 *((u32
*) (val
)) = rtlpci
->receive_config
;
127 case HW_VAR_RF_STATE
:
128 *((enum rf_pwrstate
*)(val
)) = ppsc
->rfpwr_state
;
130 case HW_VAR_FWLPS_RF_ON
:{
131 enum rf_pwrstate rfState
;
134 rtlpriv
->cfg
->ops
->get_hw_reg(hw
, HW_VAR_RF_STATE
,
136 if (rfState
== ERFOFF
) {
137 *((bool *) (val
)) = true;
139 val_rcr
= rtl_read_dword(rtlpriv
, REG_RCR
);
140 val_rcr
&= 0x00070000;
142 *((bool *) (val
)) = false;
144 *((bool *) (val
)) = true;
148 case HW_VAR_FW_PSMODE_STATUS
:
149 *((bool *) (val
)) = ppsc
->fw_current_inpsmode
;
151 case HW_VAR_CORRECT_TSF
:{
153 u32
*ptsf_low
= (u32
*)&tsf
;
154 u32
*ptsf_high
= ((u32
*)&tsf
) + 1;
156 *ptsf_high
= rtl_read_dword(rtlpriv
, (REG_TSFTR
+ 4));
157 *ptsf_low
= rtl_read_dword(rtlpriv
, REG_TSFTR
);
158 *((u64
*) (val
)) = tsf
;
161 case HW_VAR_INT_MIGRATION
:
162 *((bool *)(val
)) = rtlpriv
->dm
.interrupt_migration
;
165 *((bool *)(val
)) = rtlpriv
->dm
.disable_tx_int
;
168 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
169 ("switch case not process\n"));
174 void rtl92de_set_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
176 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
177 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
178 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
179 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
180 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
181 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
185 case HW_VAR_ETHER_ADDR
:
186 for (idx
= 0; idx
< ETH_ALEN
; idx
++) {
187 rtl_write_byte(rtlpriv
, (REG_MACID
+ idx
),
191 case HW_VAR_BASIC_RATE
: {
192 u16 rate_cfg
= ((u16
*) val
)[0];
195 rate_cfg
= rate_cfg
& 0x15f;
196 if (mac
->vendor
== PEER_CISCO
&&
197 ((rate_cfg
& 0x150) == 0))
199 rtl_write_byte(rtlpriv
, REG_RRSR
, rate_cfg
& 0xff);
200 rtl_write_byte(rtlpriv
, REG_RRSR
+ 1,
201 (rate_cfg
>> 8) & 0xff);
202 while (rate_cfg
> 0x1) {
203 rate_cfg
= (rate_cfg
>> 1);
206 if (rtlhal
->fw_version
> 0xe)
207 rtl_write_byte(rtlpriv
, REG_INIRTS_RATE_SEL
,
212 for (idx
= 0; idx
< ETH_ALEN
; idx
++) {
213 rtl_write_byte(rtlpriv
, (REG_BSSID
+ idx
),
218 rtl_write_byte(rtlpriv
, REG_SIFS_CTX
+ 1, val
[0]);
219 rtl_write_byte(rtlpriv
, REG_SIFS_TRX
+ 1, val
[1]);
220 rtl_write_byte(rtlpriv
, REG_SPEC_SIFS
+ 1, val
[0]);
221 rtl_write_byte(rtlpriv
, REG_MAC_SPEC_SIFS
+ 1, val
[0]);
223 rtl_write_word(rtlpriv
, REG_RESP_SIFS_OFDM
,
226 rtl_write_word(rtlpriv
, REG_RESP_SIFS_OFDM
,
229 case HW_VAR_SLOT_TIME
: {
232 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
233 ("HW_VAR_SLOT_TIME %x\n", val
[0]));
234 rtl_write_byte(rtlpriv
, REG_SLOT
, val
[0]);
235 for (e_aci
= 0; e_aci
< AC_MAX
; e_aci
++)
236 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
241 case HW_VAR_ACK_PREAMBLE
: {
243 u8 short_preamble
= (bool) (*(u8
*) val
);
245 reg_tmp
= (mac
->cur_40_prime_sc
) << 5;
248 rtl_write_byte(rtlpriv
, REG_RRSR
+ 2, reg_tmp
);
251 case HW_VAR_AMPDU_MIN_SPACE
: {
252 u8 min_spacing_to_set
;
255 min_spacing_to_set
= *((u8
*) val
);
256 if (min_spacing_to_set
<= 7) {
258 if (min_spacing_to_set
< sec_min_space
)
259 min_spacing_to_set
= sec_min_space
;
260 mac
->min_space_cfg
= ((mac
->min_space_cfg
& 0xf8) |
262 *val
= min_spacing_to_set
;
263 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
264 ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
265 mac
->min_space_cfg
));
266 rtl_write_byte(rtlpriv
, REG_AMPDU_MIN_SPACE
,
271 case HW_VAR_SHORTGI_DENSITY
: {
274 density_to_set
= *((u8
*) val
);
275 mac
->min_space_cfg
= rtlpriv
->rtlhal
.minspace_cfg
;
276 mac
->min_space_cfg
|= (density_to_set
<< 3);
277 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
278 ("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
279 mac
->min_space_cfg
));
280 rtl_write_byte(rtlpriv
, REG_AMPDU_MIN_SPACE
,
284 case HW_VAR_AMPDU_FACTOR
: {
287 u8
*ptmp_byte
= NULL
;
290 if (rtlhal
->macphymode
== DUALMAC_DUALPHY
)
291 regtoSet
= 0xb9726641;
292 else if (rtlhal
->macphymode
== DUALMAC_SINGLEPHY
)
293 regtoSet
= 0x66626641;
295 regtoSet
= 0xb972a841;
296 factor_toset
= *((u8
*) val
);
297 if (factor_toset
<= 3) {
298 factor_toset
= (1 << (factor_toset
+ 2));
299 if (factor_toset
> 0xf)
301 for (index
= 0; index
< 4; index
++) {
302 ptmp_byte
= (u8
*) (®toSet
) + index
;
303 if ((*ptmp_byte
& 0xf0) >
305 *ptmp_byte
= (*ptmp_byte
& 0x0f)
306 | (factor_toset
<< 4);
307 if ((*ptmp_byte
& 0x0f) > factor_toset
)
308 *ptmp_byte
= (*ptmp_byte
& 0xf0)
311 rtl_write_dword(rtlpriv
, REG_AGGLEN_LMT
, regtoSet
);
312 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
313 ("Set HW_VAR_AMPDU_FACTOR: %#x\n",
318 case HW_VAR_AC_PARAM
: {
319 u8 e_aci
= *((u8
*) val
);
320 rtl92d_dm_init_edca_turbo(hw
);
321 if (rtlpci
->acm_method
!= eAcmWay2_SW
)
322 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_ACM_CTRL
,
326 case HW_VAR_ACM_CTRL
: {
327 u8 e_aci
= *((u8
*) val
);
328 union aci_aifsn
*p_aci_aifsn
=
329 (union aci_aifsn
*)(&(mac
->ac
[0].aifs
));
330 u8 acm
= p_aci_aifsn
->f
.acm
;
331 u8 acm_ctrl
= rtl_read_byte(rtlpriv
, REG_ACMHWCTRL
);
333 acm_ctrl
= acm_ctrl
| ((rtlpci
->acm_method
== 2) ? 0x0 : 0x1);
337 acm_ctrl
|= ACMHW_BEQEN
;
340 acm_ctrl
|= ACMHW_VIQEN
;
343 acm_ctrl
|= ACMHW_VOQEN
;
346 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
347 ("HW_VAR_ACM_CTRL acm set "
348 "failed: eACI is %d\n", acm
));
354 acm_ctrl
&= (~ACMHW_BEQEN
);
357 acm_ctrl
&= (~ACMHW_VIQEN
);
360 acm_ctrl
&= (~ACMHW_VOQEN
);
363 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
364 ("switch case not process\n"));
368 RT_TRACE(rtlpriv
, COMP_QOS
, DBG_TRACE
,
369 ("SetHwReg8190pci(): [HW_VAR_ACM_CTRL] "
370 "Write 0x%X\n", acm_ctrl
));
371 rtl_write_byte(rtlpriv
, REG_ACMHWCTRL
, acm_ctrl
);
375 rtl_write_dword(rtlpriv
, REG_RCR
, ((u32
*) (val
))[0]);
376 rtlpci
->receive_config
= ((u32
*) (val
))[0];
378 case HW_VAR_RETRY_LIMIT
: {
379 u8 retry_limit
= ((u8
*) (val
))[0];
381 rtl_write_word(rtlpriv
, REG_RL
,
382 retry_limit
<< RETRY_LIMIT_SHORT_SHIFT
|
383 retry_limit
<< RETRY_LIMIT_LONG_SHIFT
);
386 case HW_VAR_DUAL_TSF_RST
:
387 rtl_write_byte(rtlpriv
, REG_DUAL_TSF_RST
, (BIT(0) | BIT(1)));
389 case HW_VAR_EFUSE_BYTES
:
390 rtlefuse
->efuse_usedbytes
= *((u16
*) val
);
392 case HW_VAR_EFUSE_USAGE
:
393 rtlefuse
->efuse_usedpercentage
= *((u8
*) val
);
396 rtl92d_phy_set_io_cmd(hw
, (*(enum io_type
*)val
));
398 case HW_VAR_WPA_CONFIG
:
399 rtl_write_byte(rtlpriv
, REG_SECCFG
, *((u8
*) val
));
401 case HW_VAR_SET_RPWM
:
402 rtl92d_fill_h2c_cmd(hw
, H2C_PWRM
, 1, (u8
*) (val
));
404 case HW_VAR_H2C_FW_PWRMODE
:
406 case HW_VAR_FW_PSMODE_STATUS
:
407 ppsc
->fw_current_inpsmode
= *((bool *) val
);
409 case HW_VAR_H2C_FW_JOINBSSRPT
: {
410 u8 mstatus
= (*(u8
*) val
);
411 u8 tmp_regcr
, tmp_reg422
;
412 bool recover
= false;
414 if (mstatus
== RT_MEDIA_CONNECT
) {
415 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
417 tmp_regcr
= rtl_read_byte(rtlpriv
, REG_CR
+ 1);
418 rtl_write_byte(rtlpriv
, REG_CR
+ 1,
419 (tmp_regcr
| BIT(0)));
420 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(3));
421 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(4), 0);
422 tmp_reg422
= rtl_read_byte(rtlpriv
,
423 REG_FWHW_TXQ_CTRL
+ 2);
424 if (tmp_reg422
& BIT(6))
426 rtl_write_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2,
427 tmp_reg422
& (~BIT(6)));
428 rtl92d_set_fw_rsvdpagepkt(hw
, 0);
429 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(3), 0);
430 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(4));
432 rtl_write_byte(rtlpriv
,
433 REG_FWHW_TXQ_CTRL
+ 2,
435 rtl_write_byte(rtlpriv
, REG_CR
+ 1,
436 (tmp_regcr
& ~(BIT(0))));
438 rtl92d_set_fw_joinbss_report_cmd(hw
, (*(u8
*) val
));
443 u2btmp
= rtl_read_word(rtlpriv
, REG_BCN_PSR_RPT
);
445 rtl_write_word(rtlpriv
, REG_BCN_PSR_RPT
, (u2btmp
|
449 case HW_VAR_CORRECT_TSF
: {
450 u8 btype_ibss
= ((u8
*) (val
))[0];
453 _rtl92de_stop_tx_beacon(hw
);
454 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(3));
455 rtl_write_dword(rtlpriv
, REG_TSFTR
,
456 (u32
) (mac
->tsf
& 0xffffffff));
457 rtl_write_dword(rtlpriv
, REG_TSFTR
+ 4,
458 (u32
) ((mac
->tsf
>> 32) & 0xffffffff));
459 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(3), 0);
461 _rtl92de_resume_tx_beacon(hw
);
465 case HW_VAR_INT_MIGRATION
: {
466 bool int_migration
= *(bool *) (val
);
469 /* Set interrrupt migration timer and
470 * corresponging Tx/Rx counter.
471 * timer 25ns*0xfa0=100us for 0xf packets.
472 * 0x306:Rx, 0x307:Tx */
473 rtl_write_dword(rtlpriv
, REG_INT_MIG
, 0xfe000fa0);
474 rtlpriv
->dm
.interrupt_migration
= int_migration
;
476 /* Reset all interrupt migration settings. */
477 rtl_write_dword(rtlpriv
, REG_INT_MIG
, 0);
478 rtlpriv
->dm
.interrupt_migration
= int_migration
;
482 case HW_VAR_INT_AC
: {
483 bool disable_ac_int
= *((bool *) val
);
485 /* Disable four ACs interrupts. */
486 if (disable_ac_int
) {
487 /* Disable VO, VI, BE and BK four AC interrupts
488 * to gain more efficient CPU utilization.
489 * When extremely highly Rx OK occurs,
490 * we will disable Tx interrupts.
492 rtlpriv
->cfg
->ops
->update_interrupt_mask(hw
, 0,
494 rtlpriv
->dm
.disable_tx_int
= disable_ac_int
;
495 /* Enable four ACs interrupts. */
497 rtlpriv
->cfg
->ops
->update_interrupt_mask(hw
,
499 rtlpriv
->dm
.disable_tx_int
= disable_ac_int
;
504 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
505 ("switch case not process\n"));
510 static bool _rtl92de_llt_write(struct ieee80211_hw
*hw
, u32 address
, u32 data
)
512 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
515 u32 value
= _LLT_INIT_ADDR(address
) |
516 _LLT_INIT_DATA(data
) | _LLT_OP(_LLT_WRITE_ACCESS
);
518 rtl_write_dword(rtlpriv
, REG_LLT_INIT
, value
);
520 value
= rtl_read_dword(rtlpriv
, REG_LLT_INIT
);
521 if (_LLT_NO_ACTIVE
== _LLT_OP_VALUE(value
))
523 if (count
> POLLING_LLT_THRESHOLD
) {
524 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
525 ("Failed to polling write LLT done at "
526 "address %d!\n", address
));
534 static bool _rtl92de_llt_table_init(struct ieee80211_hw
*hw
)
536 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
541 u32 value32
; /* High+low page number */
542 u8 value8
; /* normal page number */
544 if (rtlpriv
->rtlhal
.macphymode
== SINGLEMAC_SINGLEPHY
) {
548 value32
= 0x80bf0d29;
549 } else if (rtlpriv
->rtlhal
.macphymode
!= SINGLEMAC_SINGLEPHY
) {
553 value32
= 0x80750005;
556 /* Set reserved page for each queue */
557 /* 11. RQPN 0x200[31:0] = 0x80BD1C1C */
559 rtl_write_byte(rtlpriv
, REG_RQPN_NPQ
, value8
);
560 rtl_write_dword(rtlpriv
, REG_RQPN
, value32
);
562 /* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
563 /* TXRKTBUG_PG_BNDY */
564 rtl_write_dword(rtlpriv
, REG_TRXFF_BNDY
,
565 (rtl_read_word(rtlpriv
, REG_TRXFF_BNDY
+ 2) << 16 |
568 /* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */
569 /* Beacon Head for TXDMA */
570 rtl_write_byte(rtlpriv
, REG_TDECTRL
+ 1, txpktbuf_bndy
);
572 /* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */
574 rtl_write_byte(rtlpriv
, REG_TXPKTBUF_BCNQ_BDNY
, txpktbuf_bndy
);
575 rtl_write_byte(rtlpriv
, REG_TXPKTBUF_MGQ_BDNY
, txpktbuf_bndy
);
577 /* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */
579 rtl_write_byte(rtlpriv
, 0x45D, txpktbuf_bndy
);
581 /* Set Tx/Rx page size (Tx must be 128 Bytes, */
582 /* Rx can be 64,128,256,512,1024 bytes) */
583 /* 16. PBP [7:0] = 0x11 */
585 rtl_write_byte(rtlpriv
, REG_PBP
, 0x11);
587 /* 17. DRV_INFO_SZ = 0x04 */
588 rtl_write_byte(rtlpriv
, REG_RX_DRVINFO_SZ
, 0x4);
590 /* 18. LLT_table_init(Adapter); */
591 for (i
= 0; i
< (txpktbuf_bndy
- 1); i
++) {
592 status
= _rtl92de_llt_write(hw
, i
, i
+ 1);
598 status
= _rtl92de_llt_write(hw
, (txpktbuf_bndy
- 1), 0xFF);
602 /* Make the other pages as ring buffer */
603 /* This ring buffer is used as beacon buffer if we */
604 /* config this MAC as two MAC transfer. */
605 /* Otherwise used as local loopback buffer. */
606 for (i
= txpktbuf_bndy
; i
< maxPage
; i
++) {
607 status
= _rtl92de_llt_write(hw
, i
, (i
+ 1));
612 /* Let last entry point to the start entry of ring buffer */
613 status
= _rtl92de_llt_write(hw
, maxPage
, txpktbuf_bndy
);
620 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw
*hw
)
622 struct rtl_pci_priv
*pcipriv
= rtl_pcipriv(hw
);
623 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
624 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
625 struct rtl_led
*pLed0
= &(pcipriv
->ledctl
.sw_led0
);
627 if (rtlpci
->up_first_time
)
629 if (ppsc
->rfoff_reason
== RF_CHANGE_BY_IPS
)
630 rtl92de_sw_led_on(hw
, pLed0
);
631 else if (ppsc
->rfoff_reason
== RF_CHANGE_BY_INIT
)
632 rtl92de_sw_led_on(hw
, pLed0
);
634 rtl92de_sw_led_off(hw
, pLed0
);
637 static bool _rtl92de_init_mac(struct ieee80211_hw
*hw
)
639 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
640 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
641 unsigned char bytetmp
;
642 unsigned short wordtmp
;
645 rtl92d_phy_set_poweron(hw
);
646 /* Add for resume sequence of power domain according
647 * to power document V11. Chapter V.11.... */
648 /* 0. RSV_CTRL 0x1C[7:0] = 0x00 */
649 /* unlock ISO/CLK/Power control register */
650 rtl_write_byte(rtlpriv
, REG_RSV_CTRL
, 0x00);
651 rtl_write_byte(rtlpriv
, REG_LDOA15_CTRL
, 0x05);
653 /* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */
654 /* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */
655 /* 3. delay (1ms) this is not necessary when initially power on */
657 /* C. Resume Sequence */
658 /* a. SPS0_CTRL 0x11[7:0] = 0x2b */
659 rtl_write_byte(rtlpriv
, REG_SPS0_CTRL
, 0x2b);
661 /* b. AFE_XTAL_CTRL [7:0] = 0x0F */
662 rtl_write_byte(rtlpriv
, REG_AFE_XTAL_CTRL
, 0x0F);
664 /* c. DRV runs power on init flow */
666 /* auto enable WLAN */
667 /* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */
668 /* Power On Reset for MAC Block */
669 bytetmp
= rtl_read_byte(rtlpriv
, REG_APS_FSMCO
+ 1) | BIT(0);
671 rtl_write_byte(rtlpriv
, REG_APS_FSMCO
+ 1, bytetmp
);
674 /* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
675 bytetmp
= rtl_read_byte(rtlpriv
, REG_APS_FSMCO
+ 1);
678 while ((bytetmp
& BIT(0)) && retry
< 1000) {
680 bytetmp
= rtl_read_byte(rtlpriv
, REG_APS_FSMCO
+ 1);
684 /* Enable Radio off, GPIO, and LED function */
685 /* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */
686 rtl_write_word(rtlpriv
, REG_APS_FSMCO
, 0x1012);
688 /* release RF digital isolation */
689 /* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */
690 /*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
691 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1, 0x82);
694 /* make sure that BB reset OK. */
695 /* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
697 /* Disable REG_CR before enable it to assure reset */
698 rtl_write_word(rtlpriv
, REG_CR
, 0x0);
700 /* Release MAC IO register reset */
701 rtl_write_word(rtlpriv
, REG_CR
, 0x2ff);
703 /* clear stopping tx/rx dma */
704 rtl_write_byte(rtlpriv
, REG_PCIE_CTRL_REG
+ 1, 0x0);
706 /* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
709 /* 18. LLT_table_init(Adapter); */
710 if (_rtl92de_llt_table_init(hw
) == false)
713 /* Clear interrupt and enable interrupt */
714 /* 19. HISR 0x124[31:0] = 0xffffffff; */
715 /* HISRE 0x12C[7:0] = 0xFF */
716 rtl_write_dword(rtlpriv
, REG_HISR
, 0xffffffff);
717 rtl_write_byte(rtlpriv
, REG_HISRE
, 0xff);
719 /* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */
720 /* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */
721 /* The IMR should be enabled later after all init sequence
724 /* 22. PCIE configuration space configuration */
725 /* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */
726 /* and PCIe gated clock function is enabled. */
727 /* PCIE configuration space will be written after
728 * all init sequence.(Or by BIOS) */
730 rtl92d_phy_config_maccoexist_rfpage(hw
);
732 /* THe below section is not related to power document Vxx . */
733 /* This is only useful for driver and OS setting. */
734 /* -------------------Software Relative Setting---------------------- */
735 wordtmp
= rtl_read_word(rtlpriv
, REG_TRXDMA_CTRL
);
738 rtl_write_word(rtlpriv
, REG_TRXDMA_CTRL
, wordtmp
);
740 /* Reported Tx status from HW for rate adaptive. */
741 /* This should be realtive to power on step 14. But in document V11 */
742 /* still not contain the description.!!! */
743 rtl_write_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 1, 0x1F);
745 /* Set Tx/Rx page size (Tx must be 128 Bytes,
746 * Rx can be 64,128,256,512,1024 bytes) */
747 /* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
749 /* Set RCR register */
750 rtl_write_dword(rtlpriv
, REG_RCR
, rtlpci
->receive_config
);
751 /* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
753 /* Set TCR register */
754 rtl_write_dword(rtlpriv
, REG_TCR
, rtlpci
->transmit_config
);
756 /* disable earlymode */
757 rtl_write_byte(rtlpriv
, 0x4d0, 0x0);
759 /* Set TX/RX descriptor physical address(from OS API). */
760 rtl_write_dword(rtlpriv
, REG_BCNQ_DESA
,
761 rtlpci
->tx_ring
[BEACON_QUEUE
].dma
);
762 rtl_write_dword(rtlpriv
, REG_MGQ_DESA
, rtlpci
->tx_ring
[MGNT_QUEUE
].dma
);
763 rtl_write_dword(rtlpriv
, REG_VOQ_DESA
, rtlpci
->tx_ring
[VO_QUEUE
].dma
);
764 rtl_write_dword(rtlpriv
, REG_VIQ_DESA
, rtlpci
->tx_ring
[VI_QUEUE
].dma
);
765 rtl_write_dword(rtlpriv
, REG_BEQ_DESA
, rtlpci
->tx_ring
[BE_QUEUE
].dma
);
766 rtl_write_dword(rtlpriv
, REG_BKQ_DESA
, rtlpci
->tx_ring
[BK_QUEUE
].dma
);
767 rtl_write_dword(rtlpriv
, REG_HQ_DESA
, rtlpci
->tx_ring
[HIGH_QUEUE
].dma
);
768 /* Set RX Desc Address */
769 rtl_write_dword(rtlpriv
, REG_RX_DESA
,
770 rtlpci
->rx_ring
[RX_MPDU_QUEUE
].dma
);
772 /* if we want to support 64 bit DMA, we should set it here,
773 * but now we do not support 64 bit DMA*/
775 rtl_write_byte(rtlpriv
, REG_PCIE_CTRL_REG
+ 3, 0x33);
777 /* Reset interrupt migration setting when initialization */
778 rtl_write_dword(rtlpriv
, REG_INT_MIG
, 0);
780 /* Reconsider when to do this operation after asking HWSD. */
781 bytetmp
= rtl_read_byte(rtlpriv
, REG_APSD_CTRL
);
782 rtl_write_byte(rtlpriv
, REG_APSD_CTRL
, bytetmp
& ~BIT(6));
785 bytetmp
= rtl_read_byte(rtlpriv
, REG_APSD_CTRL
);
786 } while ((retry
< 200) && !(bytetmp
& BIT(7)));
788 /* After MACIO reset,we must refresh LED state. */
789 _rtl92de_gen_refresh_led_state(hw
);
791 /* Reset H2C protection register */
792 rtl_write_dword(rtlpriv
, REG_MCUTST_1
, 0x0);
797 static void _rtl92de_hw_configure(struct ieee80211_hw
*hw
)
799 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
800 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
801 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
802 u8 reg_bw_opmode
= BW_OPMODE_20MHZ
;
805 reg_rrsr
= RATE_ALL_CCK
| RATE_ALL_OFDM_AG
;
806 rtl_write_byte(rtlpriv
, REG_INIRTS_RATE_SEL
, 0x8);
807 rtl_write_byte(rtlpriv
, REG_BWOPMODE
, reg_bw_opmode
);
808 rtl_write_dword(rtlpriv
, REG_RRSR
, reg_rrsr
);
809 rtl_write_byte(rtlpriv
, REG_SLOT
, 0x09);
810 rtl_write_byte(rtlpriv
, REG_AMPDU_MIN_SPACE
, 0x0);
811 rtl_write_word(rtlpriv
, REG_FWHW_TXQ_CTRL
, 0x1F80);
812 rtl_write_word(rtlpriv
, REG_RL
, 0x0707);
813 rtl_write_dword(rtlpriv
, REG_BAR_MODE_CTRL
, 0x02012802);
814 rtl_write_byte(rtlpriv
, REG_HWSEQ_CTRL
, 0xFF);
815 rtl_write_dword(rtlpriv
, REG_DARFRC
, 0x01000000);
816 rtl_write_dword(rtlpriv
, REG_DARFRC
+ 4, 0x07060504);
817 rtl_write_dword(rtlpriv
, REG_RARFRC
, 0x01000000);
818 rtl_write_dword(rtlpriv
, REG_RARFRC
+ 4, 0x07060504);
819 /* Aggregation threshold */
820 if (rtlhal
->macphymode
== DUALMAC_DUALPHY
)
821 rtl_write_dword(rtlpriv
, REG_AGGLEN_LMT
, 0xb9726641);
822 else if (rtlhal
->macphymode
== DUALMAC_SINGLEPHY
)
823 rtl_write_dword(rtlpriv
, REG_AGGLEN_LMT
, 0x66626641);
825 rtl_write_dword(rtlpriv
, REG_AGGLEN_LMT
, 0xb972a841);
826 rtl_write_byte(rtlpriv
, REG_ATIMWND
, 0x2);
827 rtl_write_byte(rtlpriv
, REG_BCN_MAX_ERR
, 0x0a);
828 rtlpci
->reg_bcn_ctrl_val
= 0x1f;
829 rtl_write_byte(rtlpriv
, REG_BCN_CTRL
, rtlpci
->reg_bcn_ctrl_val
);
830 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 1, 0xff);
831 rtl_write_byte(rtlpriv
, REG_PIFS
, 0x1C);
832 rtl_write_byte(rtlpriv
, REG_AGGR_BREAK_TIME
, 0x16);
833 rtl_write_word(rtlpriv
, REG_NAV_PROT_LEN
, 0x0020);
835 rtl_write_word(rtlpriv
, REG_FAST_EDCA_CTRL
, 0x6666);
836 /* ACKTO for IOT issue. */
837 rtl_write_byte(rtlpriv
, REG_ACKTO
, 0x40);
838 /* Set Spec SIFS (used in NAV) */
839 rtl_write_word(rtlpriv
, REG_SPEC_SIFS
, 0x1010);
840 rtl_write_word(rtlpriv
, REG_MAC_SPEC_SIFS
, 0x1010);
841 /* Set SIFS for CCK */
842 rtl_write_word(rtlpriv
, REG_SIFS_CTX
, 0x1010);
843 /* Set SIFS for OFDM */
844 rtl_write_word(rtlpriv
, REG_SIFS_TRX
, 0x1010);
845 /* Set Multicast Address. */
846 rtl_write_dword(rtlpriv
, REG_MAR
, 0xffffffff);
847 rtl_write_dword(rtlpriv
, REG_MAR
+ 4, 0xffffffff);
848 switch (rtlpriv
->phy
.rf_type
) {
851 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_1T
<< 3);
855 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_2T
<< 3);
860 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw
*hw
)
862 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
863 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
865 rtl_write_byte(rtlpriv
, 0x34b, 0x93);
866 rtl_write_word(rtlpriv
, 0x350, 0x870c);
867 rtl_write_byte(rtlpriv
, 0x352, 0x1);
868 if (ppsc
->support_backdoor
)
869 rtl_write_byte(rtlpriv
, 0x349, 0x1b);
871 rtl_write_byte(rtlpriv
, 0x349, 0x03);
872 rtl_write_word(rtlpriv
, 0x350, 0x2718);
873 rtl_write_byte(rtlpriv
, 0x352, 0x1);
876 void rtl92de_enable_hw_security_config(struct ieee80211_hw
*hw
)
878 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
881 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
882 ("PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
883 rtlpriv
->sec
.pairwise_enc_algorithm
,
884 rtlpriv
->sec
.group_enc_algorithm
));
885 if (rtlpriv
->cfg
->mod_params
->sw_crypto
|| rtlpriv
->sec
.use_sw_sec
) {
886 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
887 ("not open hw encryption\n"));
890 sec_reg_value
= SCR_TXENCENABLE
| SCR_RXENCENABLE
;
891 if (rtlpriv
->sec
.use_defaultkey
) {
892 sec_reg_value
|= SCR_TXUSEDK
;
893 sec_reg_value
|= SCR_RXUSEDK
;
895 sec_reg_value
|= (SCR_RXBCUSEDK
| SCR_TXBCUSEDK
);
896 rtl_write_byte(rtlpriv
, REG_CR
+ 1, 0x02);
897 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
,
898 ("The SECR-value %x\n", sec_reg_value
));
899 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_WPA_CONFIG
, &sec_reg_value
);
902 int rtl92de_hw_init(struct ieee80211_hw
*hw
)
904 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
905 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
906 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
907 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
908 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
909 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
910 bool rtstatus
= true;
916 rtlpci
->being_init_adapter
= true;
917 rtlpci
->init_ready
= false;
918 spin_lock_irqsave(&globalmutex_for_power_and_efuse
, flags
);
919 /* we should do iqk after disable/enable */
920 rtl92d_phy_reset_iqk_result(hw
);
921 /* rtlpriv->intf_ops->disable_aspm(hw); */
922 rtstatus
= _rtl92de_init_mac(hw
);
923 if (rtstatus
!= true) {
924 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
, ("Init MAC failed\n"));
926 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse
, flags
);
929 err
= rtl92d_download_fw(hw
);
930 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse
, flags
);
932 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
933 ("Failed to download FW. Init HW "
935 rtlhal
->fw_ready
= false;
938 rtlhal
->fw_ready
= true;
940 rtlhal
->last_hmeboxnum
= 0;
941 rtlpriv
->psc
.fw_current_inpsmode
= false;
943 tmp_u1b
= rtl_read_byte(rtlpriv
, 0x605);
944 tmp_u1b
= tmp_u1b
| 0x30;
945 rtl_write_byte(rtlpriv
, 0x605, tmp_u1b
);
947 if (rtlhal
->earlymode_enable
) {
948 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
949 ("EarlyMode Enabled!!!\n"));
951 tmp_u1b
= rtl_read_byte(rtlpriv
, 0x4d0);
952 tmp_u1b
= tmp_u1b
| 0x1f;
953 rtl_write_byte(rtlpriv
, 0x4d0, tmp_u1b
);
955 rtl_write_byte(rtlpriv
, 0x4d3, 0x80);
957 tmp_u1b
= rtl_read_byte(rtlpriv
, 0x605);
958 tmp_u1b
= tmp_u1b
| 0x40;
959 rtl_write_byte(rtlpriv
, 0x605, tmp_u1b
);
963 rtl_write_byte(rtlpriv
, REG_RD_CTRL
, 0xff);
964 rtl_write_word(rtlpriv
, REG_RD_NAV_NXT
, 0x200);
965 rtl_write_byte(rtlpriv
, REG_RD_RESP_PKT_TH
, 0x05);
968 rtl92d_phy_mac_config(hw
);
969 /* because last function modify RCR, so we update
970 * rcr var here, or TP will unstable for receive_config
971 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
972 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
973 rtlpci
->receive_config
= rtl_read_dword(rtlpriv
, REG_RCR
);
974 rtlpci
->receive_config
&= ~(RCR_ACRC32
| RCR_AICV
);
976 rtl92d_phy_bb_config(hw
);
978 rtlphy
->rf_mode
= RF_OP_BY_SW_3WIRE
;
979 /* set before initialize RF */
980 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER4
, 0x00f00000, 0xf);
983 rtl92d_phy_rf_config(hw
);
985 /* After read predefined TXT, we must set BB/MAC/RF
986 * register as our requirement */
987 /* After load BB,RF params,we need do more for 92D. */
988 rtl92d_update_bbrf_configuration(hw
);
989 /* set default value after initialize RF, */
990 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER4
, 0x00f00000, 0);
991 rtlphy
->rfreg_chnlval
[0] = rtl_get_rfreg(hw
, (enum radio_path
)0,
992 RF_CHNLBW
, BRFREGOFFSETMASK
);
993 rtlphy
->rfreg_chnlval
[1] = rtl_get_rfreg(hw
, (enum radio_path
)1,
994 RF_CHNLBW
, BRFREGOFFSETMASK
);
996 /*---- Set CCK and OFDM Block "ON"----*/
997 if (rtlhal
->current_bandtype
== BAND_ON_2_4G
)
998 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BCCKEN
, 0x1);
999 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BOFDMEN
, 0x1);
1000 if (rtlhal
->interfaceindex
== 0) {
1001 /* RFPGA0_ANALOGPARAMETER2: cck clock select,
1002 * set to 20MHz by default */
1003 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER2
, BIT(10) |
1007 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER2
, BIT(11) |
1011 _rtl92de_hw_configure(hw
);
1014 rtl_cam_reset_all_entry(hw
);
1015 rtl92de_enable_hw_security_config(hw
);
1017 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1018 /* TX power index for different rate set. */
1019 rtl92d_phy_get_hw_reg_originalvalue(hw
);
1020 rtl92d_phy_set_txpower_level(hw
, rtlphy
->current_channel
);
1022 ppsc
->rfpwr_state
= ERFON
;
1024 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_ETHER_ADDR
, mac
->mac_addr
);
1026 _rtl92de_enable_aspm_back_door(hw
);
1027 /* rtlpriv->intf_ops->enable_aspm(hw); */
1030 rtlpci
->being_init_adapter
= false;
1032 if (ppsc
->rfpwr_state
== ERFON
) {
1033 rtl92d_phy_lc_calibrate(hw
);
1034 /* 5G and 2.4G must wait sometime to let RF LO ready */
1035 if (rtlhal
->macphymode
== DUALMAC_DUALPHY
) {
1037 for (i
= 0; i
< 10000; i
++) {
1038 udelay(MAX_STALL_TIME
);
1040 tmp_rega
= rtl_get_rfreg(hw
,
1041 (enum radio_path
)RF90_PATH_A
,
1044 if (((tmp_rega
& BIT(11)) == BIT(11)))
1047 /* check that loop was successful. If not, exit now */
1049 rtlpci
->init_ready
= false;
1054 rtlpci
->init_ready
= true;
1058 static enum version_8192d
_rtl92de_read_chip_version(struct ieee80211_hw
*hw
)
1060 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1061 enum version_8192d version
= VERSION_NORMAL_CHIP_92D_SINGLEPHY
;
1064 value32
= rtl_read_dword(rtlpriv
, REG_SYS_CFG
);
1065 if (!(value32
& 0x000f0000)) {
1066 version
= VERSION_TEST_CHIP_92D_SINGLEPHY
;
1067 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("TEST CHIP!!!\n"));
1069 version
= VERSION_NORMAL_CHIP_92D_SINGLEPHY
;
1070 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("Normal CHIP!!!\n"));
1075 static int _rtl92de_set_media_status(struct ieee80211_hw
*hw
,
1076 enum nl80211_iftype type
)
1078 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1079 u8 bt_msr
= rtl_read_byte(rtlpriv
, MSR
);
1080 enum led_ctl_mode ledaction
= LED_CTL_NO_LINK
;
1085 if (type
== NL80211_IFTYPE_UNSPECIFIED
||
1086 type
== NL80211_IFTYPE_STATION
) {
1087 _rtl92de_stop_tx_beacon(hw
);
1088 _rtl92de_enable_bcn_sub_func(hw
);
1089 } else if (type
== NL80211_IFTYPE_ADHOC
||
1090 type
== NL80211_IFTYPE_AP
) {
1091 _rtl92de_resume_tx_beacon(hw
);
1092 _rtl92de_disable_bcn_sub_func(hw
);
1094 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
1095 ("Set HW_VAR_MEDIA_STATUS: No such media "
1096 "status(%x).\n", type
));
1098 bcnfunc_enable
= rtl_read_byte(rtlpriv
, REG_BCN_CTRL
);
1100 case NL80211_IFTYPE_UNSPECIFIED
:
1101 bt_msr
|= MSR_NOLINK
;
1102 ledaction
= LED_CTL_LINK
;
1103 bcnfunc_enable
&= 0xF7;
1104 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1105 ("Set Network type to NO LINK!\n"));
1107 case NL80211_IFTYPE_ADHOC
:
1108 bt_msr
|= MSR_ADHOC
;
1109 bcnfunc_enable
|= 0x08;
1110 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1111 ("Set Network type to Ad Hoc!\n"));
1113 case NL80211_IFTYPE_STATION
:
1114 bt_msr
|= MSR_INFRA
;
1115 ledaction
= LED_CTL_LINK
;
1116 bcnfunc_enable
&= 0xF7;
1117 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1118 ("Set Network type to STA!\n"));
1120 case NL80211_IFTYPE_AP
:
1122 bcnfunc_enable
|= 0x08;
1123 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1124 ("Set Network type to AP!\n"));
1127 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
1128 ("Network type %d not support!\n", type
));
1133 rtl_write_byte(rtlpriv
, REG_CR
+ 2, bt_msr
);
1134 rtlpriv
->cfg
->ops
->led_control(hw
, ledaction
);
1135 if ((bt_msr
& 0xfc) == MSR_AP
)
1136 rtl_write_byte(rtlpriv
, REG_BCNTCFG
+ 1, 0x00);
1138 rtl_write_byte(rtlpriv
, REG_BCNTCFG
+ 1, 0x66);
1142 void rtl92de_set_check_bssid(struct ieee80211_hw
*hw
, bool check_bssid
)
1144 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1145 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1146 u32 reg_rcr
= rtlpci
->receive_config
;
1148 if (rtlpriv
->psc
.rfpwr_state
!= ERFON
)
1151 reg_rcr
|= (RCR_CBSSID_DATA
| RCR_CBSSID_BCN
);
1152 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1153 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(4));
1154 } else if (check_bssid
== false) {
1155 reg_rcr
&= (~(RCR_CBSSID_DATA
| RCR_CBSSID_BCN
));
1156 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(4), 0);
1157 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1161 int rtl92de_set_network_type(struct ieee80211_hw
*hw
, enum nl80211_iftype type
)
1163 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1165 if (_rtl92de_set_media_status(hw
, type
))
1169 if (rtlpriv
->mac80211
.link_state
== MAC80211_LINKED
) {
1170 if (type
!= NL80211_IFTYPE_AP
)
1171 rtl92de_set_check_bssid(hw
, true);
1173 rtl92de_set_check_bssid(hw
, false);
1178 /* do iqk or reload iqk */
1179 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1180 * but it's very strict for time sequence so we add
1181 * rtl92d_phy_reload_iqk_setting here */
1182 void rtl92d_linked_set_reg(struct ieee80211_hw
*hw
)
1184 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1185 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1187 u8 channel
= rtlphy
->current_channel
;
1189 indexforchannel
= rtl92d_get_rightchnlplace_for_iqk(channel
);
1190 if (!rtlphy
->iqk_matrix_regsetting
[indexforchannel
].iqk_done
) {
1191 RT_TRACE(rtlpriv
, COMP_SCAN
| COMP_INIT
, DBG_DMESG
,
1192 ("Do IQK for channel:%d.\n", channel
));
1193 rtl92d_phy_iq_calibrate(hw
);
1197 /* don't set REG_EDCA_BE_PARAM here because
1198 * mac80211 will send pkt when scan */
1199 void rtl92de_set_qos(struct ieee80211_hw
*hw
, int aci
)
1201 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1202 rtl92d_dm_init_edca_turbo(hw
);
1206 rtl_write_dword(rtlpriv
, REG_EDCA_BK_PARAM
, 0xa44f);
1211 rtl_write_dword(rtlpriv
, REG_EDCA_VI_PARAM
, 0x5e4322);
1214 rtl_write_dword(rtlpriv
, REG_EDCA_VO_PARAM
, 0x2f3222);
1217 RT_ASSERT(false, ("invalid aci: %d !\n", aci
));
1222 void rtl92de_enable_interrupt(struct ieee80211_hw
*hw
)
1224 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1225 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1227 rtl_write_dword(rtlpriv
, REG_HIMR
, rtlpci
->irq_mask
[0] & 0xFFFFFFFF);
1228 rtl_write_dword(rtlpriv
, REG_HIMRE
, rtlpci
->irq_mask
[1] & 0xFFFFFFFF);
1231 void rtl92de_disable_interrupt(struct ieee80211_hw
*hw
)
1233 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1234 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1236 rtl_write_dword(rtlpriv
, REG_HIMR
, IMR8190_DISABLED
);
1237 rtl_write_dword(rtlpriv
, REG_HIMRE
, IMR8190_DISABLED
);
1238 synchronize_irq(rtlpci
->pdev
->irq
);
1241 static void _rtl92de_poweroff_adapter(struct ieee80211_hw
*hw
)
1243 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1245 unsigned long flags
;
1247 rtlpriv
->intf_ops
->enable_aspm(hw
);
1248 rtl_write_byte(rtlpriv
, REG_RF_CTRL
, 0x00);
1249 rtl_set_bbreg(hw
, RFPGA0_XCD_RFPARAMETER
, BIT(3), 0);
1250 rtl_set_bbreg(hw
, RFPGA0_XCD_RFPARAMETER
, BIT(15), 0);
1252 /* 0x20:value 05-->04 */
1253 rtl_write_byte(rtlpriv
, REG_LDOA15_CTRL
, 0x04);
1255 /* ==== Reset digital sequence ====== */
1256 rtl92d_firmware_selfreset(hw
);
1258 /* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1259 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, 0x51);
1261 /* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1262 rtl_write_byte(rtlpriv
, REG_MCUFWDL
, 0x00);
1264 /* ==== Pull GPIO PIN to balance level and LED control ====== */
1266 /* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */
1267 rtl_write_dword(rtlpriv
, REG_GPIO_PIN_CTRL
, 0x00000000);
1269 /* i. Value = GPIO_PIN_CTRL[7:0] */
1270 u1b_tmp
= rtl_read_byte(rtlpriv
, REG_GPIO_PIN_CTRL
);
1272 /* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1273 /* write external PIN level */
1274 rtl_write_dword(rtlpriv
, REG_GPIO_PIN_CTRL
,
1275 0x00FF0000 | (u1b_tmp
<< 8));
1277 /* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1278 rtl_write_word(rtlpriv
, REG_GPIO_IO_SEL
, 0x0790);
1280 /* l. LEDCFG 0x4C[15:0] = 0x8080 */
1281 rtl_write_word(rtlpriv
, REG_LEDCFG0
, 0x8080);
1283 /* ==== Disable analog sequence === */
1285 /* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */
1286 rtl_write_byte(rtlpriv
, REG_AFE_PLL_CTRL
, 0x80);
1288 /* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */
1289 rtl_write_byte(rtlpriv
, REG_SPS0_CTRL
, 0x23);
1291 /* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */
1292 rtl_write_byte(rtlpriv
, REG_AFE_XTAL_CTRL
, 0x0e);
1294 /* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1295 rtl_write_byte(rtlpriv
, REG_RSV_CTRL
, 0x0e);
1297 /* ==== interface into suspend === */
1299 /* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1300 /* According to power document V11, we need to set this */
1301 /* value as 0x18. Otherwise, we may not L0s sometimes. */
1302 /* This indluences power consumption. Bases on SD1's test, */
1303 /* set as 0x00 do not affect power current. And if it */
1304 /* is set as 0x18, they had ever met auto load fail problem. */
1305 rtl_write_byte(rtlpriv
, REG_APS_FSMCO
+ 1, 0x10);
1307 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1308 ("In PowerOff,reg0x%x=%X\n", REG_SPS0_CTRL
,
1309 rtl_read_byte(rtlpriv
, REG_SPS0_CTRL
)));
1310 /* r. Note: for PCIe interface, PON will not turn */
1311 /* off m-bias and BandGap in PCIe suspend mode. */
1313 /* 0x17[7] 1b': power off in process 0b' : power off over */
1314 if (rtlpriv
->rtlhal
.macphymode
!= SINGLEMAC_SINGLEPHY
) {
1315 spin_lock_irqsave(&globalmutex_power
, flags
);
1316 u1b_tmp
= rtl_read_byte(rtlpriv
, REG_POWER_OFF_IN_PROCESS
);
1317 u1b_tmp
&= (~BIT(7));
1318 rtl_write_byte(rtlpriv
, REG_POWER_OFF_IN_PROCESS
, u1b_tmp
);
1319 spin_unlock_irqrestore(&globalmutex_power
, flags
);
1322 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("<=======\n"));
1325 void rtl92de_card_disable(struct ieee80211_hw
*hw
)
1327 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1328 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
1329 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1330 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1331 enum nl80211_iftype opmode
;
1333 mac
->link_state
= MAC80211_NOLINK
;
1334 opmode
= NL80211_IFTYPE_UNSPECIFIED
;
1335 _rtl92de_set_media_status(hw
, opmode
);
1337 if (rtlpci
->driver_is_goingto_unload
||
1338 ppsc
->rfoff_reason
> RF_CHANGE_BY_PS
)
1339 rtlpriv
->cfg
->ops
->led_control(hw
, LED_CTL_POWER_OFF
);
1340 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
1341 /* Power sequence for each MAC. */
1342 /* a. stop tx DMA */
1344 /* c. clear rx buf */
1345 /* d. stop rx DMA */
1348 /* a. stop tx DMA */
1349 rtl_write_byte(rtlpriv
, REG_PCIE_CTRL_REG
+ 1, 0xFE);
1352 /* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1354 /* c. ========RF OFF sequence========== */
1355 /* 0x88c[23:20] = 0xf. */
1356 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER4
, 0x00f00000, 0xf);
1357 rtl_set_rfreg(hw
, RF90_PATH_A
, 0x00, BRFREGOFFSETMASK
, 0x00);
1359 /* APSD_CTRL 0x600[7:0] = 0x40 */
1360 rtl_write_byte(rtlpriv
, REG_APSD_CTRL
, 0x40);
1362 /* Close antenna 0,0xc04,0xd04 */
1363 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
, BMASKBYTE0
, 0);
1364 rtl_set_bbreg(hw
, ROFDM1_TRXPATHENABLE
, BDWORD
, 0);
1366 /* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */
1367 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
, 0xE2);
1369 /* Mac0 can not do Global reset. Mac1 can do. */
1370 /* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */
1371 if (rtlpriv
->rtlhal
.interfaceindex
== 1)
1372 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
, 0xE0);
1375 /* d. stop tx/rx dma before disable REG_CR (0x100) to fix */
1376 /* dma hang issue when disable/enable device. */
1377 rtl_write_byte(rtlpriv
, REG_PCIE_CTRL_REG
+ 1, 0xff);
1379 rtl_write_byte(rtlpriv
, REG_CR
, 0x0);
1380 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("==> Do power off.......\n"));
1381 if (rtl92d_phy_check_poweroff(hw
))
1382 _rtl92de_poweroff_adapter(hw
);
1386 void rtl92de_interrupt_recognized(struct ieee80211_hw
*hw
,
1387 u32
*p_inta
, u32
*p_intb
)
1389 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1390 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1392 *p_inta
= rtl_read_dword(rtlpriv
, ISR
) & rtlpci
->irq_mask
[0];
1393 rtl_write_dword(rtlpriv
, ISR
, *p_inta
);
1396 * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
1397 * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1401 void rtl92de_set_beacon_related_registers(struct ieee80211_hw
*hw
)
1403 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1404 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1405 u16 bcn_interval
, atim_window
;
1407 bcn_interval
= mac
->beacon_interval
;
1409 /*rtl92de_disable_interrupt(hw); */
1410 rtl_write_word(rtlpriv
, REG_ATIMWND
, atim_window
);
1411 rtl_write_word(rtlpriv
, REG_BCN_INTERVAL
, bcn_interval
);
1412 rtl_write_word(rtlpriv
, REG_BCNTCFG
, 0x660f);
1413 rtl_write_byte(rtlpriv
, REG_RXTSF_OFFSET_CCK
, 0x20);
1414 if (rtlpriv
->rtlhal
.current_bandtype
== BAND_ON_5G
)
1415 rtl_write_byte(rtlpriv
, REG_RXTSF_OFFSET_OFDM
, 0x30);
1417 rtl_write_byte(rtlpriv
, REG_RXTSF_OFFSET_OFDM
, 0x20);
1418 rtl_write_byte(rtlpriv
, 0x606, 0x30);
1421 void rtl92de_set_beacon_interval(struct ieee80211_hw
*hw
)
1423 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1424 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1425 u16 bcn_interval
= mac
->beacon_interval
;
1427 RT_TRACE(rtlpriv
, COMP_BEACON
, DBG_DMESG
,
1428 ("beacon_interval:%d\n", bcn_interval
));
1429 /* rtl92de_disable_interrupt(hw); */
1430 rtl_write_word(rtlpriv
, REG_BCN_INTERVAL
, bcn_interval
);
1431 /* rtl92de_enable_interrupt(hw); */
1434 void rtl92de_update_interrupt_mask(struct ieee80211_hw
*hw
,
1435 u32 add_msr
, u32 rm_msr
)
1437 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1438 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1440 RT_TRACE(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1441 ("add_msr:%x, rm_msr:%x\n", add_msr
, rm_msr
));
1443 rtlpci
->irq_mask
[0] |= add_msr
;
1445 rtlpci
->irq_mask
[0] &= (~rm_msr
);
1446 rtl92de_disable_interrupt(hw
);
1447 rtl92de_enable_interrupt(hw
);
1450 static void _rtl92de_readpowervalue_fromprom(struct txpower_info
*pwrinfo
,
1451 u8
*rom_content
, bool autoLoadfail
)
1453 u32 rfpath
, eeaddr
, group
, offset1
, offset2
;
1456 memset(pwrinfo
, 0, sizeof(struct txpower_info
));
1458 for (group
= 0; group
< CHANNEL_GROUP_MAX
; group
++) {
1459 for (rfpath
= 0; rfpath
< RF6052_MAX_PATH
; rfpath
++) {
1460 if (group
< CHANNEL_GROUP_MAX_2G
) {
1461 pwrinfo
->cck_index
[rfpath
][group
] =
1462 EEPROM_DEFAULT_TXPOWERLEVEL_2G
;
1463 pwrinfo
->ht40_1sindex
[rfpath
][group
] =
1464 EEPROM_DEFAULT_TXPOWERLEVEL_2G
;
1466 pwrinfo
->ht40_1sindex
[rfpath
][group
] =
1467 EEPROM_DEFAULT_TXPOWERLEVEL_5G
;
1469 pwrinfo
->ht40_2sindexdiff
[rfpath
][group
] =
1470 EEPROM_DEFAULT_HT40_2SDIFF
;
1471 pwrinfo
->ht20indexdiff
[rfpath
][group
] =
1472 EEPROM_DEFAULT_HT20_DIFF
;
1473 pwrinfo
->ofdmindexdiff
[rfpath
][group
] =
1474 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF
;
1475 pwrinfo
->ht40maxoffset
[rfpath
][group
] =
1476 EEPROM_DEFAULT_HT40_PWRMAXOFFSET
;
1477 pwrinfo
->ht20maxoffset
[rfpath
][group
] =
1478 EEPROM_DEFAULT_HT20_PWRMAXOFFSET
;
1481 for (i
= 0; i
< 3; i
++) {
1482 pwrinfo
->tssi_a
[i
] = EEPROM_DEFAULT_TSSI
;
1483 pwrinfo
->tssi_b
[i
] = EEPROM_DEFAULT_TSSI
;
1488 /* Maybe autoload OK,buf the tx power index value is not filled.
1489 * If we find it, we set it to default value. */
1490 for (rfpath
= 0; rfpath
< RF6052_MAX_PATH
; rfpath
++) {
1491 for (group
= 0; group
< CHANNEL_GROUP_MAX_2G
; group
++) {
1492 eeaddr
= EEPROM_CCK_TX_PWR_INX_2G
+ (rfpath
* 3)
1494 pwrinfo
->cck_index
[rfpath
][group
] =
1495 (rom_content
[eeaddr
] == 0xFF) ?
1497 EEPROM_DEFAULT_TXPOWERLEVEL_5G
:
1498 EEPROM_DEFAULT_TXPOWERLEVEL_2G
) :
1499 rom_content
[eeaddr
];
1502 for (rfpath
= 0; rfpath
< RF6052_MAX_PATH
; rfpath
++) {
1503 for (group
= 0; group
< CHANNEL_GROUP_MAX
; group
++) {
1504 offset1
= group
/ 3;
1505 offset2
= group
% 3;
1506 eeaddr
= EEPROM_HT40_1S_TX_PWR_INX_2G
+ (rfpath
* 3) +
1507 offset2
+ offset1
* 21;
1508 pwrinfo
->ht40_1sindex
[rfpath
][group
] =
1509 (rom_content
[eeaddr
] == 0xFF) ? (eeaddr
> 0x7B ?
1510 EEPROM_DEFAULT_TXPOWERLEVEL_5G
:
1511 EEPROM_DEFAULT_TXPOWERLEVEL_2G
) :
1512 rom_content
[eeaddr
];
1515 /* These just for 92D efuse offset. */
1516 for (group
= 0; group
< CHANNEL_GROUP_MAX
; group
++) {
1517 for (rfpath
= 0; rfpath
< RF6052_MAX_PATH
; rfpath
++) {
1518 int base1
= EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G
;
1520 offset1
= group
/ 3;
1521 offset2
= group
% 3;
1523 if (rom_content
[base1
+ offset2
+ offset1
* 21] != 0xFF)
1524 pwrinfo
->ht40_2sindexdiff
[rfpath
][group
] =
1525 (rom_content
[base1
+
1526 offset2
+ offset1
* 21] >> (rfpath
* 4))
1529 pwrinfo
->ht40_2sindexdiff
[rfpath
][group
] =
1530 EEPROM_DEFAULT_HT40_2SDIFF
;
1531 if (rom_content
[EEPROM_HT20_TX_PWR_INX_DIFF_2G
+ offset2
1532 + offset1
* 21] != 0xFF)
1533 pwrinfo
->ht20indexdiff
[rfpath
][group
] =
1534 (rom_content
[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1535 + offset2
+ offset1
* 21] >> (rfpath
* 4))
1538 pwrinfo
->ht20indexdiff
[rfpath
][group
] =
1539 EEPROM_DEFAULT_HT20_DIFF
;
1540 if (rom_content
[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
+ offset2
1541 + offset1
* 21] != 0xFF)
1542 pwrinfo
->ofdmindexdiff
[rfpath
][group
] =
1543 (rom_content
[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1544 + offset2
+ offset1
* 21] >> (rfpath
* 4))
1547 pwrinfo
->ofdmindexdiff
[rfpath
][group
] =
1548 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF
;
1549 if (rom_content
[EEPROM_HT40_MAX_PWR_OFFSET_2G
+ offset2
1550 + offset1
* 21] != 0xFF)
1551 pwrinfo
->ht40maxoffset
[rfpath
][group
] =
1552 (rom_content
[EEPROM_HT40_MAX_PWR_OFFSET_2G
1553 + offset2
+ offset1
* 21] >> (rfpath
* 4))
1556 pwrinfo
->ht40maxoffset
[rfpath
][group
] =
1557 EEPROM_DEFAULT_HT40_PWRMAXOFFSET
;
1558 if (rom_content
[EEPROM_HT20_MAX_PWR_OFFSET_2G
+ offset2
1559 + offset1
* 21] != 0xFF)
1560 pwrinfo
->ht20maxoffset
[rfpath
][group
] =
1561 (rom_content
[EEPROM_HT20_MAX_PWR_OFFSET_2G
+
1562 offset2
+ offset1
* 21] >> (rfpath
* 4)) &
1565 pwrinfo
->ht20maxoffset
[rfpath
][group
] =
1566 EEPROM_DEFAULT_HT20_PWRMAXOFFSET
;
1569 if (rom_content
[EEPROM_TSSI_A_5G
] != 0xFF) {
1571 pwrinfo
->tssi_a
[0] = rom_content
[EEPROM_TSSI_A_5G
] & 0x3F;
1572 pwrinfo
->tssi_b
[0] = rom_content
[EEPROM_TSSI_B_5G
] & 0x3F;
1574 pwrinfo
->tssi_a
[1] = rom_content
[EEPROM_TSSI_AB_5G
] & 0x3F;
1575 pwrinfo
->tssi_b
[1] =
1576 (rom_content
[EEPROM_TSSI_AB_5G
] & 0xC0) >> 6 |
1577 (rom_content
[EEPROM_TSSI_AB_5G
+ 1] & 0x0F) << 2;
1579 pwrinfo
->tssi_a
[2] = (rom_content
[EEPROM_TSSI_AB_5G
+ 1] &
1581 (rom_content
[EEPROM_TSSI_AB_5G
+ 2] & 0x03) << 4;
1582 pwrinfo
->tssi_b
[2] = (rom_content
[EEPROM_TSSI_AB_5G
+ 2] &
1585 for (i
= 0; i
< 3; i
++) {
1586 pwrinfo
->tssi_a
[i
] = EEPROM_DEFAULT_TSSI
;
1587 pwrinfo
->tssi_b
[i
] = EEPROM_DEFAULT_TSSI
;
1592 static void _rtl92de_read_txpower_info(struct ieee80211_hw
*hw
,
1593 bool autoload_fail
, u8
*hwinfo
)
1595 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1596 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1597 struct txpower_info pwrinfo
;
1598 u8 tempval
[2], i
, pwr
, diff
;
1599 u32 ch
, rfPath
, group
;
1601 _rtl92de_readpowervalue_fromprom(&pwrinfo
, hwinfo
, autoload_fail
);
1602 if (!autoload_fail
) {
1604 rtlefuse
->eeprom_regulatory
= (hwinfo
[EEPROM_RF_OPT1
] & 0x7);
1605 rtlefuse
->eeprom_thermalmeter
=
1606 hwinfo
[EEPROM_THERMAL_METER
] & 0x1f;
1607 rtlefuse
->crystalcap
= hwinfo
[EEPROM_XTAL_K
];
1608 tempval
[0] = hwinfo
[EEPROM_IQK_DELTA
] & 0x03;
1609 tempval
[1] = (hwinfo
[EEPROM_LCK_DELTA
] & 0x0C) >> 2;
1610 rtlefuse
->txpwr_fromeprom
= true;
1611 if (IS_92D_D_CUT(rtlpriv
->rtlhal
.version
)) {
1612 rtlefuse
->internal_pa_5g
[0] =
1613 !((hwinfo
[EEPROM_TSSI_A_5G
] &
1615 rtlefuse
->internal_pa_5g
[1] =
1616 !((hwinfo
[EEPROM_TSSI_B_5G
] &
1618 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1619 ("Is D cut,Internal PA0 %d Internal PA1 %d\n",
1620 rtlefuse
->internal_pa_5g
[0],
1621 rtlefuse
->internal_pa_5g
[1]))
1623 rtlefuse
->eeprom_c9
= hwinfo
[EEPROM_RF_OPT6
];
1624 rtlefuse
->eeprom_cc
= hwinfo
[EEPROM_RF_OPT7
];
1626 rtlefuse
->eeprom_regulatory
= 0;
1627 rtlefuse
->eeprom_thermalmeter
= EEPROM_DEFAULT_THERMALMETER
;
1628 rtlefuse
->crystalcap
= EEPROM_DEFAULT_CRYSTALCAP
;
1629 tempval
[0] = tempval
[1] = 3;
1632 /* Use default value to fill parameters if
1633 * efuse is not filled on some place. */
1635 /* ThermalMeter from EEPROM */
1636 if (rtlefuse
->eeprom_thermalmeter
< 0x06 ||
1637 rtlefuse
->eeprom_thermalmeter
> 0x1c)
1638 rtlefuse
->eeprom_thermalmeter
= 0x12;
1639 rtlefuse
->thermalmeter
[0] = rtlefuse
->eeprom_thermalmeter
;
1642 if (rtlefuse
->crystalcap
== 0xFF)
1643 rtlefuse
->crystalcap
= 0;
1644 if (rtlefuse
->eeprom_regulatory
> 3)
1645 rtlefuse
->eeprom_regulatory
= 0;
1647 for (i
= 0; i
< 2; i
++) {
1648 switch (tempval
[i
]) {
1665 rtlefuse
->delta_iqk
= tempval
[0];
1667 rtlefuse
->delta_lck
= tempval
[1] - 1;
1668 if (rtlefuse
->eeprom_c9
== 0xFF)
1669 rtlefuse
->eeprom_c9
= 0x00;
1670 RT_TRACE(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1671 ("EEPROMRegulatory = 0x%x\n", rtlefuse
->eeprom_regulatory
));
1672 RT_TRACE(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1673 ("ThermalMeter = 0x%x\n", rtlefuse
->eeprom_thermalmeter
));
1674 RT_TRACE(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1675 ("CrystalCap = 0x%x\n", rtlefuse
->crystalcap
));
1676 RT_TRACE(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1677 ("Delta_IQK = 0x%x Delta_LCK = 0x%x\n", rtlefuse
->delta_iqk
,
1678 rtlefuse
->delta_lck
));
1680 for (rfPath
= 0; rfPath
< RF6052_MAX_PATH
; rfPath
++) {
1681 for (ch
= 0; ch
< CHANNEL_MAX_NUMBER
; ch
++) {
1682 group
= rtl92d_get_chnlgroup_fromarray((u8
) ch
);
1683 if (ch
< CHANNEL_MAX_NUMBER_2G
)
1684 rtlefuse
->txpwrlevel_cck
[rfPath
][ch
] =
1685 pwrinfo
.cck_index
[rfPath
][group
];
1686 rtlefuse
->txpwrlevel_ht40_1s
[rfPath
][ch
] =
1687 pwrinfo
.ht40_1sindex
[rfPath
][group
];
1688 rtlefuse
->txpwr_ht20diff
[rfPath
][ch
] =
1689 pwrinfo
.ht20indexdiff
[rfPath
][group
];
1690 rtlefuse
->txpwr_legacyhtdiff
[rfPath
][ch
] =
1691 pwrinfo
.ofdmindexdiff
[rfPath
][group
];
1692 rtlefuse
->pwrgroup_ht20
[rfPath
][ch
] =
1693 pwrinfo
.ht20maxoffset
[rfPath
][group
];
1694 rtlefuse
->pwrgroup_ht40
[rfPath
][ch
] =
1695 pwrinfo
.ht40maxoffset
[rfPath
][group
];
1696 pwr
= pwrinfo
.ht40_1sindex
[rfPath
][group
];
1697 diff
= pwrinfo
.ht40_2sindexdiff
[rfPath
][group
];
1698 rtlefuse
->txpwrlevel_ht40_2s
[rfPath
][ch
] =
1699 (pwr
> diff
) ? (pwr
- diff
) : 0;
1704 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw
*hw
,
1707 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1708 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1709 u8 macphy_crvalue
= content
[EEPROM_MAC_FUNCTION
];
1711 if (macphy_crvalue
& BIT(3)) {
1712 rtlhal
->macphymode
= SINGLEMAC_SINGLEPHY
;
1713 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1714 ("MacPhyMode SINGLEMAC_SINGLEPHY\n"));
1716 rtlhal
->macphymode
= DUALMAC_DUALPHY
;
1717 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1718 ("MacPhyMode DUALMAC_DUALPHY\n"));
1722 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw
*hw
,
1725 _rtl92de_read_macphymode_from_prom(hw
, content
);
1726 rtl92d_phy_config_macphymode(hw
);
1727 rtl92d_phy_config_macphymode_info(hw
);
1730 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw
*hw
)
1732 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1733 enum version_8192d chipver
= rtlpriv
->rtlhal
.version
;
1737 rtlpriv
->intf_ops
->read_efuse_byte(hw
, EEPROME_CHIP_VERSION_H
,
1739 rtlpriv
->intf_ops
->read_efuse_byte(hw
, EEPROME_CHIP_VERSION_L
,
1741 chipvalue
= (cutvalue
[1] << 8) | cutvalue
[0];
1742 switch (chipvalue
) {
1744 chipver
|= CHIP_92D_C_CUT
;
1745 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("C-CUT!!!\n"));
1748 chipver
|= CHIP_92D_D_CUT
;
1749 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("D-CUT!!!\n"));
1752 chipver
|= CHIP_92D_D_CUT
;
1753 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_EMERG
, ("Unkown CUT!\n"));
1756 rtlpriv
->rtlhal
.version
= chipver
;
1759 static void _rtl92de_read_adapter_info(struct ieee80211_hw
*hw
)
1761 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1762 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1763 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1765 u8 hwinfo
[HWSET_MAX_SIZE
];
1767 unsigned long flags
;
1769 if (rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) {
1770 spin_lock_irqsave(&globalmutex_for_power_and_efuse
, flags
);
1771 rtl_efuse_shadow_map_update(hw
);
1772 _rtl92de_efuse_update_chip_version(hw
);
1773 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse
, flags
);
1774 memcpy((void *)hwinfo
, (void *)&rtlefuse
->efuse_map
1775 [EFUSE_INIT_MAP
][0],
1777 } else if (rtlefuse
->epromtype
== EEPROM_93C46
) {
1778 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
1779 ("RTL819X Not boot from eeprom, check it !!"));
1781 RT_PRINT_DATA(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("MAP\n"),
1782 hwinfo
, HWSET_MAX_SIZE
);
1784 eeprom_id
= *((u16
*)&hwinfo
[0]);
1785 if (eeprom_id
!= RTL8190_EEPROM_ID
) {
1786 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
1787 ("EEPROM ID(%#x) is invalid!!\n", eeprom_id
));
1788 rtlefuse
->autoload_failflag
= true;
1790 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("Autoload OK\n"));
1791 rtlefuse
->autoload_failflag
= false;
1793 if (rtlefuse
->autoload_failflag
) {
1794 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
1795 ("RTL819X Not boot from eeprom, check it !!"));
1798 rtlefuse
->eeprom_oemid
= *(u8
*)&hwinfo
[EEPROM_CUSTOMER_ID
];
1799 _rtl92de_read_macphymode_and_bandtype(hw
, hwinfo
);
1801 /* VID, DID SE 0xA-D */
1802 rtlefuse
->eeprom_vid
= *(u16
*)&hwinfo
[EEPROM_VID
];
1803 rtlefuse
->eeprom_did
= *(u16
*)&hwinfo
[EEPROM_DID
];
1804 rtlefuse
->eeprom_svid
= *(u16
*)&hwinfo
[EEPROM_SVID
];
1805 rtlefuse
->eeprom_smid
= *(u16
*)&hwinfo
[EEPROM_SMID
];
1806 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1807 ("EEPROMId = 0x%4x\n", eeprom_id
));
1808 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1809 ("EEPROM VID = 0x%4x\n", rtlefuse
->eeprom_vid
));
1810 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1811 ("EEPROM DID = 0x%4x\n", rtlefuse
->eeprom_did
));
1812 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1813 ("EEPROM SVID = 0x%4x\n", rtlefuse
->eeprom_svid
));
1814 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1815 ("EEPROM SMID = 0x%4x\n", rtlefuse
->eeprom_smid
));
1817 /* Read Permanent MAC address */
1818 if (rtlhal
->interfaceindex
== 0) {
1819 for (i
= 0; i
< 6; i
+= 2) {
1820 usvalue
= *(u16
*)&hwinfo
[EEPROM_MAC_ADDR_MAC0_92D
+ i
];
1821 *((u16
*) (&rtlefuse
->dev_addr
[i
])) = usvalue
;
1824 for (i
= 0; i
< 6; i
+= 2) {
1825 usvalue
= *(u16
*)&hwinfo
[EEPROM_MAC_ADDR_MAC1_92D
+ i
];
1826 *((u16
*) (&rtlefuse
->dev_addr
[i
])) = usvalue
;
1829 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_ETHER_ADDR
,
1830 rtlefuse
->dev_addr
);
1831 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
,
1832 ("%pM\n", rtlefuse
->dev_addr
));
1833 _rtl92de_read_txpower_info(hw
, rtlefuse
->autoload_failflag
, hwinfo
);
1835 /* Read Channel Plan */
1836 switch (rtlhal
->bandset
) {
1838 rtlefuse
->channel_plan
= COUNTRY_CODE_TELEC
;
1841 rtlefuse
->channel_plan
= COUNTRY_CODE_FCC
;
1844 rtlefuse
->channel_plan
= COUNTRY_CODE_FCC
;
1847 rtlefuse
->channel_plan
= COUNTRY_CODE_FCC
;
1850 rtlefuse
->eeprom_version
= *(u16
*)&hwinfo
[EEPROM_VERSION
];
1851 rtlefuse
->txpwr_fromeprom
= true;
1852 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1853 ("EEPROM Customer ID: 0x%2x\n", rtlefuse
->eeprom_oemid
));
1856 void rtl92de_read_eeprom_info(struct ieee80211_hw
*hw
)
1858 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1859 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1860 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1863 rtlhal
->version
= _rtl92de_read_chip_version(hw
);
1864 tmp_u1b
= rtl_read_byte(rtlpriv
, REG_9346CR
);
1865 rtlefuse
->autoload_status
= tmp_u1b
;
1866 if (tmp_u1b
& BIT(4)) {
1867 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("Boot from EEPROM\n"));
1868 rtlefuse
->epromtype
= EEPROM_93C46
;
1870 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("Boot from EFUSE\n"));
1871 rtlefuse
->epromtype
= EEPROM_BOOT_EFUSE
;
1873 if (tmp_u1b
& BIT(5)) {
1874 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("Autoload OK\n"));
1876 rtlefuse
->autoload_failflag
= false;
1877 _rtl92de_read_adapter_info(hw
);
1879 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
, ("Autoload ERR!!\n"));
1884 static void rtl92de_update_hal_rate_table(struct ieee80211_hw
*hw
,
1885 struct ieee80211_sta
*sta
)
1887 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1888 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1889 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1890 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1893 u8 nmode
= mac
->ht_enable
;
1894 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
1897 u8 curtxbw_40mhz
= mac
->bw_40
;
1898 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
1900 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
1902 enum wireless_mode wirelessmode
= mac
->mode
;
1904 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
1905 ratr_value
= sta
->supp_rates
[1] << 4;
1907 ratr_value
= sta
->supp_rates
[0];
1908 ratr_value
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
1909 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
1910 switch (wirelessmode
) {
1911 case WIRELESS_MODE_A
:
1912 ratr_value
&= 0x00000FF0;
1914 case WIRELESS_MODE_B
:
1915 if (ratr_value
& 0x0000000c)
1916 ratr_value
&= 0x0000000d;
1918 ratr_value
&= 0x0000000f;
1920 case WIRELESS_MODE_G
:
1921 ratr_value
&= 0x00000FF5;
1923 case WIRELESS_MODE_N_24G
:
1924 case WIRELESS_MODE_N_5G
:
1926 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
1927 ratr_value
&= 0x0007F005;
1931 if (get_rf_type(rtlphy
) == RF_1T2R
||
1932 get_rf_type(rtlphy
) == RF_1T1R
) {
1933 ratr_mask
= 0x000ff005;
1935 ratr_mask
= 0x0f0ff005;
1938 ratr_value
&= ratr_mask
;
1942 if (rtlphy
->rf_type
== RF_1T2R
)
1943 ratr_value
&= 0x000ff0ff;
1945 ratr_value
&= 0x0f0ff0ff;
1949 ratr_value
&= 0x0FFFFFFF;
1950 if (nmode
&& ((curtxbw_40mhz
&& curshortgi_40mhz
) ||
1951 (!curtxbw_40mhz
&& curshortgi_20mhz
))) {
1952 ratr_value
|= 0x10000000;
1953 tmp_ratr_value
= (ratr_value
>> 12);
1954 for (shortgi_rate
= 15; shortgi_rate
> 0; shortgi_rate
--) {
1955 if ((1 << shortgi_rate
) & tmp_ratr_value
)
1958 shortgi_rate
= (shortgi_rate
<< 12) | (shortgi_rate
<< 8) |
1959 (shortgi_rate
<< 4) | (shortgi_rate
);
1961 rtl_write_dword(rtlpriv
, REG_ARFR0
+ ratr_index
* 4, ratr_value
);
1962 RT_TRACE(rtlpriv
, COMP_RATR
, DBG_DMESG
,
1963 ("%x\n", rtl_read_dword(rtlpriv
, REG_ARFR0
)));
1966 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw
*hw
,
1967 struct ieee80211_sta
*sta
, u8 rssi_level
)
1969 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1970 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1971 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1972 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1973 struct rtl_sta_info
*sta_entry
= NULL
;
1976 u8 curtxbw_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SUP_WIDTH_20_40
)
1978 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
1980 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
1982 enum wireless_mode wirelessmode
= 0;
1983 bool shortgi
= false;
1986 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
1988 sta_entry
= (struct rtl_sta_info
*) sta
->drv_priv
;
1989 mimo_ps
= sta_entry
->mimo_ps
;
1990 wirelessmode
= sta_entry
->wireless_mode
;
1991 if (mac
->opmode
== NL80211_IFTYPE_STATION
)
1992 curtxbw_40mhz
= mac
->bw_40
;
1993 else if (mac
->opmode
== NL80211_IFTYPE_AP
||
1994 mac
->opmode
== NL80211_IFTYPE_ADHOC
)
1995 macid
= sta
->aid
+ 1;
1997 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
1998 ratr_bitmap
= sta
->supp_rates
[1] << 4;
2000 ratr_bitmap
= sta
->supp_rates
[0];
2001 ratr_bitmap
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
2002 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
2003 switch (wirelessmode
) {
2004 case WIRELESS_MODE_B
:
2005 ratr_index
= RATR_INX_WIRELESS_B
;
2006 if (ratr_bitmap
& 0x0000000c)
2007 ratr_bitmap
&= 0x0000000d;
2009 ratr_bitmap
&= 0x0000000f;
2011 case WIRELESS_MODE_G
:
2012 ratr_index
= RATR_INX_WIRELESS_GB
;
2014 if (rssi_level
== 1)
2015 ratr_bitmap
&= 0x00000f00;
2016 else if (rssi_level
== 2)
2017 ratr_bitmap
&= 0x00000ff0;
2019 ratr_bitmap
&= 0x00000ff5;
2021 case WIRELESS_MODE_A
:
2022 ratr_index
= RATR_INX_WIRELESS_G
;
2023 ratr_bitmap
&= 0x00000ff0;
2025 case WIRELESS_MODE_N_24G
:
2026 case WIRELESS_MODE_N_5G
:
2027 if (wirelessmode
== WIRELESS_MODE_N_24G
)
2028 ratr_index
= RATR_INX_WIRELESS_NGB
;
2030 ratr_index
= RATR_INX_WIRELESS_NG
;
2031 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
2032 if (rssi_level
== 1)
2033 ratr_bitmap
&= 0x00070000;
2034 else if (rssi_level
== 2)
2035 ratr_bitmap
&= 0x0007f000;
2037 ratr_bitmap
&= 0x0007f005;
2039 if (rtlphy
->rf_type
== RF_1T2R
||
2040 rtlphy
->rf_type
== RF_1T1R
) {
2041 if (curtxbw_40mhz
) {
2042 if (rssi_level
== 1)
2043 ratr_bitmap
&= 0x000f0000;
2044 else if (rssi_level
== 2)
2045 ratr_bitmap
&= 0x000ff000;
2047 ratr_bitmap
&= 0x000ff015;
2049 if (rssi_level
== 1)
2050 ratr_bitmap
&= 0x000f0000;
2051 else if (rssi_level
== 2)
2052 ratr_bitmap
&= 0x000ff000;
2054 ratr_bitmap
&= 0x000ff005;
2057 if (curtxbw_40mhz
) {
2058 if (rssi_level
== 1)
2059 ratr_bitmap
&= 0x0f0f0000;
2060 else if (rssi_level
== 2)
2061 ratr_bitmap
&= 0x0f0ff000;
2063 ratr_bitmap
&= 0x0f0ff015;
2065 if (rssi_level
== 1)
2066 ratr_bitmap
&= 0x0f0f0000;
2067 else if (rssi_level
== 2)
2068 ratr_bitmap
&= 0x0f0ff000;
2070 ratr_bitmap
&= 0x0f0ff005;
2074 if ((curtxbw_40mhz
&& curshortgi_40mhz
) ||
2075 (!curtxbw_40mhz
&& curshortgi_20mhz
)) {
2079 else if (macid
== 1)
2084 ratr_index
= RATR_INX_WIRELESS_NGB
;
2086 if (rtlphy
->rf_type
== RF_1T2R
)
2087 ratr_bitmap
&= 0x000ff0ff;
2089 ratr_bitmap
&= 0x0f0ff0ff;
2093 value
[0] = (ratr_bitmap
& 0x0fffffff) | (ratr_index
<< 28);
2094 value
[1] = macid
| (shortgi
? 0x20 : 0x00) | 0x80;
2095 RT_TRACE(rtlpriv
, COMP_RATR
, DBG_DMESG
,
2096 ("ratr_bitmap :%x value0:%x value1:%x\n",
2097 ratr_bitmap
, value
[0], value
[1]));
2098 rtl92d_fill_h2c_cmd(hw
, H2C_RA_MASK
, 5, (u8
*) value
);
2100 sta_entry
->ratr_index
= ratr_index
;
2103 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw
*hw
,
2104 struct ieee80211_sta
*sta
, u8 rssi_level
)
2106 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2108 if (rtlpriv
->dm
.useramask
)
2109 rtl92de_update_hal_rate_mask(hw
, sta
, rssi_level
);
2111 rtl92de_update_hal_rate_table(hw
, sta
);
2114 void rtl92de_update_channel_access_setting(struct ieee80211_hw
*hw
)
2116 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2117 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2120 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SLOT_TIME
,
2121 (u8
*)&mac
->slot_time
);
2122 if (!mac
->ht_enable
)
2123 sifs_timer
= 0x0a0a;
2125 sifs_timer
= 0x1010;
2126 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SIFS
, (u8
*)&sifs_timer
);
2129 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw
*hw
, u8
*valid
)
2131 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2132 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
2133 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2134 enum rf_pwrstate e_rfpowerstate_toset
;
2136 bool actuallyset
= false;
2139 if (rtlpci
->being_init_adapter
)
2141 if (ppsc
->swrf_processing
)
2143 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2144 if (ppsc
->rfchange_inprogress
) {
2145 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2148 ppsc
->rfchange_inprogress
= true;
2149 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2151 rtl_write_byte(rtlpriv
, REG_MAC_PINMUX_CFG
, rtl_read_byte(rtlpriv
,
2152 REG_MAC_PINMUX_CFG
) & ~(BIT(3)));
2153 u1tmp
= rtl_read_byte(rtlpriv
, REG_GPIO_IO_SEL
);
2154 e_rfpowerstate_toset
= (u1tmp
& BIT(3)) ? ERFON
: ERFOFF
;
2155 if (ppsc
->hwradiooff
&& (e_rfpowerstate_toset
== ERFON
)) {
2156 RT_TRACE(rtlpriv
, COMP_RF
, DBG_DMESG
,
2157 ("GPIOChangeRF - HW Radio ON, RF ON\n"));
2158 e_rfpowerstate_toset
= ERFON
;
2159 ppsc
->hwradiooff
= false;
2161 } else if ((ppsc
->hwradiooff
== false)
2162 && (e_rfpowerstate_toset
== ERFOFF
)) {
2163 RT_TRACE(rtlpriv
, COMP_RF
, DBG_DMESG
,
2164 ("GPIOChangeRF - HW Radio OFF, RF OFF\n"));
2165 e_rfpowerstate_toset
= ERFOFF
;
2166 ppsc
->hwradiooff
= true;
2170 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2171 ppsc
->rfchange_inprogress
= false;
2172 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2174 if (ppsc
->reg_rfps_level
& RT_RF_OFF_LEVL_HALT_NIC
)
2175 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
2176 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2177 ppsc
->rfchange_inprogress
= false;
2178 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2181 return !ppsc
->hwradiooff
;
2184 void rtl92de_set_key(struct ieee80211_hw
*hw
, u32 key_index
,
2185 u8
*p_macaddr
, bool is_group
, u8 enc_algo
,
2186 bool is_wepkey
, bool clear_all
)
2188 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2189 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2190 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
2191 u8
*macaddr
= p_macaddr
;
2193 bool is_pairwise
= false;
2194 static u8 cam_const_addr
[4][6] = {
2195 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2196 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2197 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2198 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2200 static u8 cam_const_broad
[] = {
2201 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2207 u8 clear_number
= 5;
2208 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
, ("clear_all\n"));
2209 for (idx
= 0; idx
< clear_number
; idx
++) {
2210 rtl_cam_mark_invalid(hw
, cam_offset
+ idx
);
2211 rtl_cam_empty_entry(hw
, cam_offset
+ idx
);
2214 memset(rtlpriv
->sec
.key_buf
[idx
], 0,
2216 rtlpriv
->sec
.key_len
[idx
] = 0;
2221 case WEP40_ENCRYPTION
:
2222 enc_algo
= CAM_WEP40
;
2224 case WEP104_ENCRYPTION
:
2225 enc_algo
= CAM_WEP104
;
2227 case TKIP_ENCRYPTION
:
2228 enc_algo
= CAM_TKIP
;
2230 case AESCCMP_ENCRYPTION
:
2234 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
, ("switch case "
2236 enc_algo
= CAM_TKIP
;
2239 if (is_wepkey
|| rtlpriv
->sec
.use_defaultkey
) {
2240 macaddr
= cam_const_addr
[key_index
];
2241 entry_id
= key_index
;
2244 macaddr
= cam_const_broad
;
2245 entry_id
= key_index
;
2247 if (mac
->opmode
== NL80211_IFTYPE_AP
) {
2248 entry_id
= rtl_cam_get_free_entry(hw
,
2250 if (entry_id
>= TOTAL_CAM_ENTRY
) {
2251 RT_TRACE(rtlpriv
, COMP_SEC
,
2252 DBG_EMERG
, ("Can not "
2253 "find free hw security"
2258 entry_id
= CAM_PAIRWISE_KEY_POSITION
;
2260 key_index
= PAIRWISE_KEYIDX
;
2264 if (rtlpriv
->sec
.key_len
[key_index
] == 0) {
2265 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2266 ("delete one entry, entry_id is %d\n",
2268 if (mac
->opmode
== NL80211_IFTYPE_AP
)
2269 rtl_cam_del_entry(hw
, p_macaddr
);
2270 rtl_cam_delete_one_entry(hw
, p_macaddr
, entry_id
);
2272 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2273 ("The insert KEY length is %d\n",
2274 rtlpriv
->sec
.key_len
[PAIRWISE_KEYIDX
]));
2275 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2276 ("The insert KEY is %x %x\n",
2277 rtlpriv
->sec
.key_buf
[0][0],
2278 rtlpriv
->sec
.key_buf
[0][1]));
2279 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2280 ("add one entry\n"));
2282 RT_PRINT_DATA(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2283 "Pairwiase Key content :",
2284 rtlpriv
->sec
.pairwise_key
,
2286 sec
.key_len
[PAIRWISE_KEYIDX
]);
2287 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2288 ("set Pairwiase key\n"));
2289 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2291 CAM_CONFIG_NO_USEDK
,
2293 sec
.key_buf
[key_index
]);
2295 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2296 ("set group key\n"));
2297 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
) {
2298 rtl_cam_add_one_entry(hw
,
2301 CAM_PAIRWISE_KEY_POSITION
,
2302 enc_algo
, CAM_CONFIG_NO_USEDK
,
2303 rtlpriv
->sec
.key_buf
[entry_id
]);
2305 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2307 CAM_CONFIG_NO_USEDK
,
2308 rtlpriv
->sec
.key_buf
2315 void rtl92de_suspend(struct ieee80211_hw
*hw
)
2317 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2319 rtlpriv
->rtlhal
.macphyctl_reg
= rtl_read_byte(rtlpriv
,
2320 REG_MAC_PHY_CTRL_NORMAL
);
2323 void rtl92de_resume(struct ieee80211_hw
*hw
)
2325 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2327 rtl_write_byte(rtlpriv
, REG_MAC_PHY_CTRL_NORMAL
,
2328 rtlpriv
->rtlhal
.macphyctl_reg
);