include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / net / wireless / rtlwifi / rtl8192se / hw.c
blobd59f66cb776898e35b451f925f9e45f748c8a402
1 /******************************************************************************
3 * Copyright(c) 2009-2010 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 #include "../wifi.h"
33 #include "../efuse.h"
34 #include "../base.h"
35 #include "../regd.h"
36 #include "../cam.h"
37 #include "../ps.h"
38 #include "../pci.h"
39 #include "reg.h"
40 #include "def.h"
41 #include "phy.h"
42 #include "dm.h"
43 #include "fw.h"
44 #include "led.h"
45 #include "hw.h"
47 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
49 struct rtl_priv *rtlpriv = rtl_priv(hw);
50 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
51 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
53 switch (variable) {
54 case HW_VAR_RCR: {
55 *((u32 *) (val)) = rtlpci->receive_config;
56 break;
58 case HW_VAR_RF_STATE: {
59 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
60 break;
62 case HW_VAR_FW_PSMODE_STATUS: {
63 *((bool *) (val)) = ppsc->fw_current_inpsmode;
64 break;
66 case HW_VAR_CORRECT_TSF: {
67 u64 tsf;
68 u32 *ptsf_low = (u32 *)&tsf;
69 u32 *ptsf_high = ((u32 *)&tsf) + 1;
71 *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
72 *ptsf_low = rtl_read_dword(rtlpriv, TSFR);
74 *((u64 *) (val)) = tsf;
76 break;
78 case HW_VAR_MRC: {
79 *((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
80 break;
82 default: {
83 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
84 ("switch case not process\n"));
85 break;
90 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
92 struct rtl_priv *rtlpriv = rtl_priv(hw);
93 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
94 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
95 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
96 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
97 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
99 switch (variable) {
100 case HW_VAR_ETHER_ADDR:{
101 rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
102 rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
103 break;
105 case HW_VAR_BASIC_RATE:{
106 u16 rate_cfg = ((u16 *) val)[0];
107 u8 rate_index = 0;
109 if (rtlhal->version == VERSION_8192S_ACUT)
110 rate_cfg = rate_cfg & 0x150;
111 else
112 rate_cfg = rate_cfg & 0x15f;
114 rate_cfg |= 0x01;
116 rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
117 rtl_write_byte(rtlpriv, RRSR + 1,
118 (rate_cfg >> 8) & 0xff);
120 while (rate_cfg > 0x1) {
121 rate_cfg = (rate_cfg >> 1);
122 rate_index++;
124 rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
126 break;
128 case HW_VAR_BSSID:{
129 rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
130 rtl_write_word(rtlpriv, BSSIDR + 4,
131 ((u16 *)(val + 4))[0]);
132 break;
134 case HW_VAR_SIFS:{
135 rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
136 rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
137 break;
139 case HW_VAR_SLOT_TIME:{
140 u8 e_aci;
142 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
143 ("HW_VAR_SLOT_TIME %x\n", val[0]));
145 rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
147 for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
148 rtlpriv->cfg->ops->set_hw_reg(hw,
149 HW_VAR_AC_PARAM,
150 (u8 *)(&e_aci));
152 break;
154 case HW_VAR_ACK_PREAMBLE:{
155 u8 reg_tmp;
156 u8 short_preamble = (bool) (*(u8 *) val);
157 reg_tmp = (mac->cur_40_prime_sc) << 5;
158 if (short_preamble)
159 reg_tmp |= 0x80;
161 rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
162 break;
164 case HW_VAR_AMPDU_MIN_SPACE:{
165 u8 min_spacing_to_set;
166 u8 sec_min_space;
168 min_spacing_to_set = *((u8 *)val);
169 if (min_spacing_to_set <= 7) {
170 if (rtlpriv->sec.pairwise_enc_algorithm ==
171 NO_ENCRYPTION)
172 sec_min_space = 0;
173 else
174 sec_min_space = 1;
176 if (min_spacing_to_set < sec_min_space)
177 min_spacing_to_set = sec_min_space;
178 if (min_spacing_to_set > 5)
179 min_spacing_to_set = 5;
181 mac->min_space_cfg =
182 ((mac->min_space_cfg & 0xf8) |
183 min_spacing_to_set);
185 *val = min_spacing_to_set;
187 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
188 ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
189 mac->min_space_cfg));
191 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
192 mac->min_space_cfg);
194 break;
196 case HW_VAR_SHORTGI_DENSITY:{
197 u8 density_to_set;
199 density_to_set = *((u8 *) val);
200 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
201 mac->min_space_cfg |= (density_to_set << 3);
203 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
204 ("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
205 mac->min_space_cfg));
207 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
208 mac->min_space_cfg);
210 break;
212 case HW_VAR_AMPDU_FACTOR:{
213 u8 factor_toset;
214 u8 regtoset;
215 u8 factorlevel[18] = {
216 2, 4, 4, 7, 7, 13, 13,
217 13, 2, 7, 7, 13, 13,
218 15, 15, 15, 15, 0};
219 u8 index = 0;
221 factor_toset = *((u8 *) val);
222 if (factor_toset <= 3) {
223 factor_toset = (1 << (factor_toset + 2));
224 if (factor_toset > 0xf)
225 factor_toset = 0xf;
227 for (index = 0; index < 17; index++) {
228 if (factorlevel[index] > factor_toset)
229 factorlevel[index] =
230 factor_toset;
233 for (index = 0; index < 8; index++) {
234 regtoset = ((factorlevel[index * 2]) |
235 (factorlevel[index *
236 2 + 1] << 4));
237 rtl_write_byte(rtlpriv,
238 AGGLEN_LMT_L + index,
239 regtoset);
242 regtoset = ((factorlevel[16]) |
243 (factorlevel[17] << 4));
244 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
246 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
247 ("Set HW_VAR_AMPDU_FACTOR: %#x\n",
248 factor_toset));
250 break;
252 case HW_VAR_AC_PARAM:{
253 u8 e_aci = *((u8 *) val);
254 rtl92s_dm_init_edca_turbo(hw);
256 if (rtlpci->acm_method != eAcmWay2_SW)
257 rtlpriv->cfg->ops->set_hw_reg(hw,
258 HW_VAR_ACM_CTRL,
259 (u8 *)(&e_aci));
260 break;
262 case HW_VAR_ACM_CTRL:{
263 u8 e_aci = *((u8 *) val);
264 union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
265 mac->ac[0].aifs));
266 u8 acm = p_aci_aifsn->f.acm;
267 u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
269 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
270 0x0 : 0x1);
272 if (acm) {
273 switch (e_aci) {
274 case AC0_BE:
275 acm_ctrl |= AcmHw_BeqEn;
276 break;
277 case AC2_VI:
278 acm_ctrl |= AcmHw_ViqEn;
279 break;
280 case AC3_VO:
281 acm_ctrl |= AcmHw_VoqEn;
282 break;
283 default:
284 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
285 ("HW_VAR_ACM_CTRL acm set "
286 "failed: eACI is %d\n", acm));
287 break;
289 } else {
290 switch (e_aci) {
291 case AC0_BE:
292 acm_ctrl &= (~AcmHw_BeqEn);
293 break;
294 case AC2_VI:
295 acm_ctrl &= (~AcmHw_ViqEn);
296 break;
297 case AC3_VO:
298 acm_ctrl &= (~AcmHw_BeqEn);
299 break;
300 default:
301 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
302 ("switch case not process\n"));
303 break;
307 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
308 ("HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl));
309 rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
310 break;
312 case HW_VAR_RCR:{
313 rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
314 rtlpci->receive_config = ((u32 *) (val))[0];
315 break;
317 case HW_VAR_RETRY_LIMIT:{
318 u8 retry_limit = ((u8 *) (val))[0];
320 rtl_write_word(rtlpriv, RETRY_LIMIT,
321 retry_limit << RETRY_LIMIT_SHORT_SHIFT |
322 retry_limit << RETRY_LIMIT_LONG_SHIFT);
323 break;
325 case HW_VAR_DUAL_TSF_RST: {
326 break;
328 case HW_VAR_EFUSE_BYTES: {
329 rtlefuse->efuse_usedbytes = *((u16 *) val);
330 break;
332 case HW_VAR_EFUSE_USAGE: {
333 rtlefuse->efuse_usedpercentage = *((u8 *) val);
334 break;
336 case HW_VAR_IO_CMD: {
337 break;
339 case HW_VAR_WPA_CONFIG: {
340 rtl_write_byte(rtlpriv, REG_SECR, *((u8 *) val));
341 break;
343 case HW_VAR_SET_RPWM:{
344 break;
346 case HW_VAR_H2C_FW_PWRMODE:{
347 break;
349 case HW_VAR_FW_PSMODE_STATUS: {
350 ppsc->fw_current_inpsmode = *((bool *) val);
351 break;
353 case HW_VAR_H2C_FW_JOINBSSRPT:{
354 break;
356 case HW_VAR_AID:{
357 break;
359 case HW_VAR_CORRECT_TSF:{
360 break;
362 case HW_VAR_MRC: {
363 bool bmrc_toset = *((bool *)val);
364 u8 u1bdata = 0;
366 if (bmrc_toset) {
367 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
368 MASKBYTE0, 0x33);
369 u1bdata = (u8)rtl_get_bbreg(hw,
370 ROFDM1_TRXPATHENABLE,
371 MASKBYTE0);
372 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
373 MASKBYTE0,
374 ((u1bdata & 0xf0) | 0x03));
375 u1bdata = (u8)rtl_get_bbreg(hw,
376 ROFDM0_TRXPATHENABLE,
377 MASKBYTE1);
378 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
379 MASKBYTE1,
380 (u1bdata | 0x04));
382 /* Update current settings. */
383 rtlpriv->dm.current_mrc_switch = bmrc_toset;
384 } else {
385 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
386 MASKBYTE0, 0x13);
387 u1bdata = (u8)rtl_get_bbreg(hw,
388 ROFDM1_TRXPATHENABLE,
389 MASKBYTE0);
390 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
391 MASKBYTE0,
392 ((u1bdata & 0xf0) | 0x01));
393 u1bdata = (u8)rtl_get_bbreg(hw,
394 ROFDM0_TRXPATHENABLE,
395 MASKBYTE1);
396 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
397 MASKBYTE1, (u1bdata & 0xfb));
399 /* Update current settings. */
400 rtlpriv->dm.current_mrc_switch = bmrc_toset;
403 break;
405 default:
406 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
407 ("switch case not process\n"));
408 break;
413 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
415 struct rtl_priv *rtlpriv = rtl_priv(hw);
416 u8 sec_reg_value = 0x0;
418 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("PairwiseEncAlgorithm = %d "
419 "GroupEncAlgorithm = %d\n",
420 rtlpriv->sec.pairwise_enc_algorithm,
421 rtlpriv->sec.group_enc_algorithm));
423 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
424 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
425 ("not open hw encryption\n"));
426 return;
429 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
431 if (rtlpriv->sec.use_defaultkey) {
432 sec_reg_value |= SCR_TXUSEDK;
433 sec_reg_value |= SCR_RXUSEDK;
436 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, ("The SECR-value %x\n",
437 sec_reg_value));
439 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
443 static u8 _rtl92ce_halset_sysclk(struct ieee80211_hw *hw, u8 data)
445 struct rtl_priv *rtlpriv = rtl_priv(hw);
446 u8 waitcount = 100;
447 bool bresult = false;
448 u8 tmpvalue;
450 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
452 /* Wait the MAC synchronized. */
453 udelay(400);
455 /* Check if it is set ready. */
456 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
457 bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
459 if ((data & (BIT(6) | BIT(7))) == false) {
460 waitcount = 100;
461 tmpvalue = 0;
463 while (1) {
464 waitcount--;
466 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
467 if ((tmpvalue & BIT(6)))
468 break;
470 pr_err("wait for BIT(6) return value %x\n", tmpvalue);
471 if (waitcount == 0)
472 break;
474 udelay(10);
477 if (waitcount == 0)
478 bresult = false;
479 else
480 bresult = true;
483 return bresult;
486 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
488 struct rtl_priv *rtlpriv = rtl_priv(hw);
489 u8 u1tmp;
491 /* The following config GPIO function */
492 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
493 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
495 /* config GPIO3 to input */
496 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
497 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
501 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
503 struct rtl_priv *rtlpriv = rtl_priv(hw);
504 u8 u1tmp;
505 u8 retval = ERFON;
507 /* The following config GPIO function */
508 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
509 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
511 /* config GPIO3 to input */
512 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
513 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
515 /* On some of the platform, driver cannot read correct
516 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
517 mdelay(10);
519 /* check GPIO3 */
520 u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
521 retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
523 return retval;
526 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
528 struct rtl_priv *rtlpriv = rtl_priv(hw);
529 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
530 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
532 u8 i;
533 u8 tmpu1b;
534 u16 tmpu2b;
535 u8 pollingcnt = 20;
537 if (rtlpci->first_init) {
538 /* Reset PCIE Digital */
539 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
540 tmpu1b &= 0xFE;
541 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
542 udelay(1);
543 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
546 /* Switch to SW IO control */
547 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
548 if (tmpu1b & BIT(7)) {
549 tmpu1b &= ~(BIT(6) | BIT(7));
551 /* Set failed, return to prevent hang. */
552 if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
553 return;
556 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
557 udelay(50);
558 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
559 udelay(50);
561 /* Clear FW RPWM for FW control LPS.*/
562 rtl_write_byte(rtlpriv, RPWM, 0x0);
564 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
565 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
566 tmpu1b &= 0x73;
567 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
568 /* wait for BIT 10/11/15 to pull high automatically!! */
569 mdelay(1);
571 rtl_write_byte(rtlpriv, CMDR, 0);
572 rtl_write_byte(rtlpriv, TCR, 0);
574 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
575 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
576 tmpu1b |= 0x08;
577 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
578 tmpu1b &= ~(BIT(3));
579 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
581 /* Enable AFE clock source */
582 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
583 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
584 /* Delay 1.5ms */
585 mdelay(2);
586 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
587 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
589 /* Enable AFE Macro Block's Bandgap */
590 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
591 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
592 mdelay(1);
594 /* Enable AFE Mbias */
595 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
596 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
597 mdelay(1);
599 /* Enable LDOA15 block */
600 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
601 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
603 /* Set Digital Vdd to Retention isolation Path. */
604 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
605 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
607 /* For warm reboot NIC disappera bug. */
608 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
609 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
611 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
613 /* Enable AFE PLL Macro Block */
614 /* We need to delay 100u before enabling PLL. */
615 udelay(200);
616 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
617 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
619 /* for divider reset */
620 udelay(100);
621 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
622 BIT(4) | BIT(6)));
623 udelay(10);
624 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
625 udelay(10);
627 /* Enable MAC 80MHZ clock */
628 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
629 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
630 mdelay(1);
632 /* Release isolation AFE PLL & MD */
633 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
635 /* Enable MAC clock */
636 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
637 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
639 /* Enable Core digital and enable IOREG R/W */
640 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
641 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
643 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
644 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
646 /* enable REG_EN */
647 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
649 /* Switch the control path. */
650 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
651 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
653 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
654 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
655 if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
656 return; /* Set failed, return to prevent hang. */
658 rtl_write_word(rtlpriv, CMDR, 0x07FC);
660 /* MH We must enable the section of code to prevent load IMEM fail. */
661 /* Load MAC register from WMAc temporarily We simulate macreg. */
662 /* txt HW will provide MAC txt later */
663 rtl_write_byte(rtlpriv, 0x6, 0x30);
664 rtl_write_byte(rtlpriv, 0x49, 0xf0);
666 rtl_write_byte(rtlpriv, 0x4b, 0x81);
668 rtl_write_byte(rtlpriv, 0xb5, 0x21);
670 rtl_write_byte(rtlpriv, 0xdc, 0xff);
671 rtl_write_byte(rtlpriv, 0xdd, 0xff);
672 rtl_write_byte(rtlpriv, 0xde, 0xff);
673 rtl_write_byte(rtlpriv, 0xdf, 0xff);
675 rtl_write_byte(rtlpriv, 0x11a, 0x00);
676 rtl_write_byte(rtlpriv, 0x11b, 0x00);
678 for (i = 0; i < 32; i++)
679 rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
681 rtl_write_byte(rtlpriv, 0x236, 0xff);
683 rtl_write_byte(rtlpriv, 0x503, 0x22);
685 if (ppsc->support_aspm && !ppsc->support_backdoor)
686 rtl_write_byte(rtlpriv, 0x560, 0x40);
687 else
688 rtl_write_byte(rtlpriv, 0x560, 0x00);
690 rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
692 /* Set RX Desc Address */
693 rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
694 rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
696 /* Set TX Desc Address */
697 rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
698 rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
699 rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
700 rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
701 rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
702 rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
703 rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
704 rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
705 rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
707 rtl_write_word(rtlpriv, CMDR, 0x37FC);
709 /* To make sure that TxDMA can ready to download FW. */
710 /* We should reset TxDMA if IMEM RPT was not ready. */
711 do {
712 tmpu1b = rtl_read_byte(rtlpriv, TCR);
713 if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
714 break;
716 udelay(5);
717 } while (pollingcnt--);
719 if (pollingcnt <= 0) {
720 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
721 ("Polling TXDMA_INIT_VALUE "
722 "timeout!! Current TCR(%#x)\n", tmpu1b));
723 tmpu1b = rtl_read_byte(rtlpriv, CMDR);
724 rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
725 udelay(2);
726 /* Reset TxDMA */
727 rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
730 /* After MACIO reset,we must refresh LED state. */
731 if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
732 (ppsc->rfoff_reason == 0)) {
733 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
734 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
735 enum rf_pwrstate rfpwr_state_toset;
736 rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
738 if (rfpwr_state_toset == ERFON)
739 rtl92se_sw_led_on(hw, pLed0);
743 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
745 struct rtl_priv *rtlpriv = rtl_priv(hw);
746 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
747 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
748 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
749 u8 i;
750 u16 tmpu2b;
752 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
754 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
755 /* Turn on 0x40 Command register */
756 rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
757 SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
758 RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
760 /* Set TCR TX DMA pre 2 FULL enable bit */
761 rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
762 TXDMAPRE2FULL);
764 /* Set RCR */
765 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
767 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
769 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
770 /* Set CCK/OFDM SIFS */
771 /* CCK SIFS shall always be 10us. */
772 rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
773 rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
775 /* Set AckTimeout */
776 rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
778 /* Beacon related */
779 rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
780 rtl_write_word(rtlpriv, ATIMWND, 2);
782 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
783 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
784 /* Firmware allocate now, associate with FW internal setting.!!! */
786 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
787 /* 5.3 Set driver info, we only accept PHY status now. */
788 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
789 rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
791 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
792 /* Set RRSR to all legacy rate and HT rate
793 * CCK rate is supported by default.
794 * CCK rate will be filtered out only when associated
795 * AP does not support it.
796 * Only enable ACK rate to OFDM 24M
797 * Disable RRSR for CCK rate in A-Cut */
799 if (rtlhal->version == VERSION_8192S_ACUT)
800 rtl_write_byte(rtlpriv, RRSR, 0xf0);
801 else if (rtlhal->version == VERSION_8192S_BCUT)
802 rtl_write_byte(rtlpriv, RRSR, 0xff);
803 rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
804 rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
806 /* A-Cut IC do not support CCK rate. We forbid ARFR to */
807 /* fallback to CCK rate */
808 for (i = 0; i < 8; i++) {
809 /*Disable RRSR for CCK rate in A-Cut */
810 if (rtlhal->version == VERSION_8192S_ACUT)
811 rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
814 /* Different rate use different AMPDU size */
815 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
816 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
817 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
818 rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
819 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
820 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
821 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
822 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
823 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
824 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
826 /* Set Data / Response auto rate fallack retry count */
827 rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
828 rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
829 rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
830 rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
832 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
833 /* Set all rate to support SG */
834 rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
836 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
837 /* Set NAV protection length */
838 rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
839 /* CF-END Threshold */
840 rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
841 /* Set AMPDU minimum space */
842 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
843 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
844 rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
846 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
847 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
848 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
849 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
850 /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
852 /* 14. Set driver info, we only accept PHY status now. */
853 rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
855 /* 15. For EEPROM R/W Workaround */
856 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
857 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
858 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
859 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
860 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
862 /* 17. For EFUSE */
863 /* We may R/W EFUSE in EEPROM mode */
864 if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
865 u8 tempval;
867 tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
868 tempval &= 0xFE;
869 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
871 /* Change Program timing */
872 rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
873 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("EFUSE CONFIG OK\n"));
876 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("OK\n"));
880 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
882 struct rtl_priv *rtlpriv = rtl_priv(hw);
883 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
884 struct rtl_phy *rtlphy = &(rtlpriv->phy);
885 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
887 u8 reg_bw_opmode = 0;
888 u32 reg_rrsr = 0;
889 u8 regtmp = 0;
891 reg_bw_opmode = BW_OPMODE_20MHZ;
892 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
894 regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
895 reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
896 rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
897 rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
899 /* Set Retry Limit here */
900 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
901 (u8 *)(&rtlpci->shortretry_limit));
903 rtl_write_byte(rtlpriv, MLT, 0x8f);
905 /* For Min Spacing configuration. */
906 switch (rtlphy->rf_type) {
907 case RF_1T2R:
908 case RF_1T1R:
909 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
910 break;
911 case RF_2T2R:
912 case RF_2T2R_GREEN:
913 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
914 break;
916 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
919 int rtl92se_hw_init(struct ieee80211_hw *hw)
921 struct rtl_priv *rtlpriv = rtl_priv(hw);
922 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
923 struct rtl_phy *rtlphy = &(rtlpriv->phy);
924 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
925 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
926 u8 tmp_byte = 0;
928 bool rtstatus = true;
929 u8 tmp_u1b;
930 int err = false;
931 u8 i;
932 int wdcapra_add[] = {
933 EDCAPARA_BE, EDCAPARA_BK,
934 EDCAPARA_VI, EDCAPARA_VO};
935 u8 secr_value = 0x0;
937 rtlpci->being_init_adapter = true;
939 rtlpriv->intf_ops->disable_aspm(hw);
941 /* 1. MAC Initialize */
942 /* Before FW download, we have to set some MAC register */
943 _rtl92se_macconfig_before_fwdownload(hw);
945 rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
946 PMC_FSM) >> 16) & 0xF);
948 rtl8192se_gpiobit3_cfg_inputmode(hw);
950 /* 2. download firmware */
951 rtstatus = rtl92s_download_fw(hw);
952 if (!rtstatus) {
953 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
954 ("Failed to download FW. "
955 "Init HW without FW now.., Please copy FW into"
956 "/lib/firmware/rtlwifi\n"));
957 rtlhal->fw_ready = false;
958 } else {
959 rtlhal->fw_ready = true;
962 /* After FW download, we have to reset MAC register */
963 _rtl92se_macconfig_after_fwdownload(hw);
965 /*Retrieve default FW Cmd IO map. */
966 rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
967 rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
969 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
970 if (rtl92s_phy_mac_config(hw) != true) {
971 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("MAC Config failed\n"));
972 return rtstatus;
975 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
976 /* We must set flag avoid BB/RF config period later!! */
977 rtl_write_dword(rtlpriv, CMDR, 0x37FC);
979 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
980 if (rtl92s_phy_bb_config(hw) != true) {
981 RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, ("BB Config failed\n"));
982 return rtstatus;
985 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
986 /* Before initalizing RF. We can not use FW to do RF-R/W. */
988 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
990 /* RF Power Save */
991 #if 0
992 /* H/W or S/W RF OFF before sleep. */
993 if (rtlpriv->psc.rfoff_reason > RF_CHANGE_BY_PS) {
994 u32 rfoffreason = rtlpriv->psc.rfoff_reason;
996 rtlpriv->psc.rfoff_reason = RF_CHANGE_BY_INIT;
997 rtlpriv->psc.rfpwr_state = ERFON;
998 /* FIXME: check spinlocks if this block is uncommented */
999 rtl_ps_set_rf_state(hw, ERFOFF, rfoffreason);
1000 } else {
1001 /* gpio radio on/off is out of adapter start */
1002 if (rtlpriv->psc.hwradiooff == false) {
1003 rtlpriv->psc.rfpwr_state = ERFON;
1004 rtlpriv->psc.rfoff_reason = 0;
1007 #endif
1009 /* Before RF-R/W we must execute the IO from Scott's suggestion. */
1010 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1011 if (rtlhal->version == VERSION_8192S_ACUT)
1012 rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1013 else
1014 rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1016 if (rtl92s_phy_rf_config(hw) != true) {
1017 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("RF Config failed\n"));
1018 return rtstatus;
1021 /* After read predefined TXT, we must set BB/MAC/RF
1022 * register as our requirement */
1024 rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1025 (enum radio_path)0,
1026 RF_CHNLBW,
1027 RFREG_OFFSET_MASK);
1028 rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1029 (enum radio_path)1,
1030 RF_CHNLBW,
1031 RFREG_OFFSET_MASK);
1033 /*---- Set CCK and OFDM Block "ON"----*/
1034 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1035 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1037 /*3 Set Hardware(Do nothing now) */
1038 _rtl92se_hw_configure(hw);
1040 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1041 /* TX power index for different rate set. */
1042 /* Get original hw reg values */
1043 rtl92s_phy_get_hw_reg_originalvalue(hw);
1044 /* Write correct tx power index */
1045 rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1047 /* We must set MAC address after firmware download. */
1048 for (i = 0; i < 6; i++)
1049 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1051 /* EEPROM R/W workaround */
1052 tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1053 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1055 rtl_write_byte(rtlpriv, 0x4d, 0x0);
1057 if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1058 tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1059 tmp_byte = tmp_byte | BIT(5);
1060 rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1061 rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1064 /* We enable high power and RA related mechanism after NIC
1065 * initialized. */
1066 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1068 /* Add to prevent ASPM bug. */
1069 /* Always enable hst and NIC clock request. */
1070 rtl92s_phy_switch_ephy_parameter(hw);
1072 /* Security related
1073 * 1. Clear all H/W keys.
1074 * 2. Enable H/W encryption/decryption. */
1075 rtl_cam_reset_all_entry(hw);
1076 secr_value |= SCR_TXENCENABLE;
1077 secr_value |= SCR_RXENCENABLE;
1078 secr_value |= SCR_NOSKMC;
1079 rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1081 for (i = 0; i < 4; i++)
1082 rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1084 if (rtlphy->rf_type == RF_1T2R) {
1085 bool mrc2set = true;
1086 /* Turn on B-Path */
1087 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1090 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1091 rtl92s_dm_init(hw);
1092 rtlpci->being_init_adapter = false;
1094 return err;
1097 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 * addr)
1101 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1103 struct rtl_priv *rtlpriv = rtl_priv(hw);
1104 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1105 u32 reg_rcr = rtlpci->receive_config;
1107 if (rtlpriv->psc.rfpwr_state != ERFON)
1108 return;
1110 if (check_bssid) {
1111 reg_rcr |= (RCR_CBSSID);
1112 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1113 } else if (check_bssid == false) {
1114 reg_rcr &= (~RCR_CBSSID);
1115 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1120 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1121 enum nl80211_iftype type)
1123 struct rtl_priv *rtlpriv = rtl_priv(hw);
1124 u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1125 u32 temp;
1126 bt_msr &= ~MSR_LINK_MASK;
1128 switch (type) {
1129 case NL80211_IFTYPE_UNSPECIFIED:
1130 bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1131 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1132 ("Set Network type to NO LINK!\n"));
1133 break;
1134 case NL80211_IFTYPE_ADHOC:
1135 bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1136 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1137 ("Set Network type to Ad Hoc!\n"));
1138 break;
1139 case NL80211_IFTYPE_STATION:
1140 bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1141 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1142 ("Set Network type to STA!\n"));
1143 break;
1144 case NL80211_IFTYPE_AP:
1145 bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1146 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1147 ("Set Network type to AP!\n"));
1148 break;
1149 default:
1150 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1151 ("Network type %d not support!\n", type));
1152 return 1;
1153 break;
1157 rtl_write_byte(rtlpriv, (MSR), bt_msr);
1159 temp = rtl_read_dword(rtlpriv, TCR);
1160 rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1161 rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1164 return 0;
1167 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1168 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1170 struct rtl_priv *rtlpriv = rtl_priv(hw);
1172 if (_rtl92se_set_media_status(hw, type))
1173 return -EOPNOTSUPP;
1175 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1176 if (type != NL80211_IFTYPE_AP)
1177 rtl92se_set_check_bssid(hw, true);
1178 } else {
1179 rtl92se_set_check_bssid(hw, false);
1182 return 0;
1185 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1186 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1188 struct rtl_priv *rtlpriv = rtl_priv(hw);
1189 rtl92s_dm_init_edca_turbo(hw);
1191 switch (aci) {
1192 case AC1_BK:
1193 rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1194 break;
1195 case AC0_BE:
1196 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1197 break;
1198 case AC2_VI:
1199 rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1200 break;
1201 case AC3_VO:
1202 rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1203 break;
1204 default:
1205 RT_ASSERT(false, ("invalid aci: %d !\n", aci));
1206 break;
1210 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1212 struct rtl_priv *rtlpriv = rtl_priv(hw);
1213 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1215 rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1216 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1217 rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1220 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1222 struct rtl_priv *rtlpriv = rtl_priv(hw);
1223 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1225 rtl_write_dword(rtlpriv, INTA_MASK, 0);
1226 rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1228 synchronize_irq(rtlpci->pdev->irq);
1232 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1234 struct rtl_priv *rtlpriv = rtl_priv(hw);
1235 u8 waitcnt = 100;
1236 bool result = false;
1237 u8 tmp;
1239 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1241 /* Wait the MAC synchronized. */
1242 udelay(400);
1244 /* Check if it is set ready. */
1245 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1246 result = ((tmp & BIT(7)) == (data & BIT(7)));
1248 if ((data & (BIT(6) | BIT(7))) == false) {
1249 waitcnt = 100;
1250 tmp = 0;
1252 while (1) {
1253 waitcnt--;
1254 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1256 if ((tmp & BIT(6)))
1257 break;
1259 pr_err("wait for BIT(6) return value %x\n", tmp);
1261 if (waitcnt == 0)
1262 break;
1263 udelay(10);
1266 if (waitcnt == 0)
1267 result = false;
1268 else
1269 result = true;
1272 return result;
1275 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1277 struct rtl_priv *rtlpriv = rtl_priv(hw);
1278 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1279 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1280 u8 u1btmp;
1282 if (rtlhal->driver_going2unload)
1283 rtl_write_byte(rtlpriv, 0x560, 0x0);
1285 /* Power save for BB/RF */
1286 u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1287 u1btmp |= BIT(0);
1288 rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1289 rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1290 rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1291 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1292 udelay(100);
1293 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1294 rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1295 udelay(10);
1296 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1297 udelay(10);
1298 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1299 udelay(10);
1300 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1301 rtl_write_word(rtlpriv, CMDR, 0x0000);
1303 if (rtlhal->driver_going2unload) {
1304 u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1305 u1btmp &= ~(BIT(0));
1306 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1309 u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1311 /* Add description. After switch control path. register
1312 * after page1 will be invisible. We can not do any IO
1313 * for register>0x40. After resume&MACIO reset, we need
1314 * to remember previous reg content. */
1315 if (u1btmp & BIT(7)) {
1316 u1btmp &= ~(BIT(6) | BIT(7));
1317 if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1318 pr_err("Switch ctrl path fail\n");
1319 return;
1323 /* Power save for MAC */
1324 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
1325 !rtlhal->driver_going2unload) {
1326 /* enable LED function */
1327 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1328 /* SW/HW radio off or halt adapter!! For example S3/S4 */
1329 } else {
1330 /* LED function disable. Power range is about 8mA now. */
1331 /* if write 0xF1 disconnet_pci power
1332 * ifconfig wlan0 down power are both high 35:70 */
1333 /* if write oxF9 disconnet_pci power
1334 * ifconfig wlan0 down power are both low 12:45*/
1335 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1338 rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1339 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1340 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
1341 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1342 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1343 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1347 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1349 struct rtl_priv *rtlpriv = rtl_priv(hw);
1350 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1351 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1352 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1354 if (rtlpci->up_first_time == 1)
1355 return;
1357 if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1358 rtl92se_sw_led_on(hw, pLed0);
1359 else
1360 rtl92se_sw_led_off(hw, pLed0);
1364 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1366 struct rtl_priv *rtlpriv = rtl_priv(hw);
1367 u16 tmpu2b;
1368 u8 tmpu1b;
1370 rtlpriv->psc.pwrdomain_protect = true;
1372 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1373 if (tmpu1b & BIT(7)) {
1374 tmpu1b &= ~(BIT(6) | BIT(7));
1375 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1376 rtlpriv->psc.pwrdomain_protect = false;
1377 return;
1381 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1382 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1384 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1385 tmpu1b = rtl_read_byte(rtlpriv, SYS_FUNC_EN + 1);
1387 /* If IPS we need to turn LED on. So we not
1388 * not disable BIT 3/7 of reg3. */
1389 if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1390 tmpu1b &= 0xFB;
1391 else
1392 tmpu1b &= 0x73;
1394 rtl_write_byte(rtlpriv, SYS_FUNC_EN + 1, tmpu1b);
1395 /* wait for BIT 10/11/15 to pull high automatically!! */
1396 mdelay(1);
1398 rtl_write_byte(rtlpriv, CMDR, 0);
1399 rtl_write_byte(rtlpriv, TCR, 0);
1401 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1402 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1403 tmpu1b |= 0x08;
1404 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1405 tmpu1b &= ~(BIT(3));
1406 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1408 /* Enable AFE clock source */
1409 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1410 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1411 /* Delay 1.5ms */
1412 udelay(1500);
1413 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1414 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1416 /* Enable AFE Macro Block's Bandgap */
1417 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1418 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1419 mdelay(1);
1421 /* Enable AFE Mbias */
1422 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1423 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1424 mdelay(1);
1426 /* Enable LDOA15 block */
1427 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1428 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1430 /* Set Digital Vdd to Retention isolation Path. */
1431 tmpu2b = rtl_read_word(rtlpriv, SYS_ISO_CTRL);
1432 rtl_write_word(rtlpriv, SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1435 /* For warm reboot NIC disappera bug. */
1436 tmpu2b = rtl_read_word(rtlpriv, SYS_FUNC_EN);
1437 rtl_write_word(rtlpriv, SYS_FUNC_EN, (tmpu2b | BIT(13)));
1439 rtl_write_byte(rtlpriv, SYS_ISO_CTRL + 1, 0x68);
1441 /* Enable AFE PLL Macro Block */
1442 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1443 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1444 /* Enable MAC 80MHZ clock */
1445 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1446 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1447 mdelay(1);
1449 /* Release isolation AFE PLL & MD */
1450 rtl_write_byte(rtlpriv, SYS_ISO_CTRL, 0xA6);
1452 /* Enable MAC clock */
1453 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1454 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1456 /* Enable Core digital and enable IOREG R/W */
1457 tmpu2b = rtl_read_word(rtlpriv, SYS_FUNC_EN);
1458 rtl_write_word(rtlpriv, SYS_FUNC_EN, (tmpu2b | BIT(11)));
1459 /* enable REG_EN */
1460 rtl_write_word(rtlpriv, SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1462 /* Switch the control path. */
1463 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1464 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1466 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1467 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1468 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1469 rtlpriv->psc.pwrdomain_protect = false;
1470 return;
1473 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1475 /* After MACIO reset,we must refresh LED state. */
1476 _rtl92se_gen_refreshledstate(hw);
1478 rtlpriv->psc.pwrdomain_protect = false;
1481 void rtl92se_card_disable(struct ieee80211_hw *hw)
1483 struct rtl_priv *rtlpriv = rtl_priv(hw);
1484 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1485 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1486 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1487 enum nl80211_iftype opmode;
1488 u8 wait = 30;
1490 rtlpriv->intf_ops->enable_aspm(hw);
1492 if (rtlpci->driver_is_goingto_unload ||
1493 ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1494 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1496 /* we should chnge GPIO to input mode
1497 * this will drop away current about 25mA*/
1498 rtl8192se_gpiobit3_cfg_inputmode(hw);
1500 /* this is very important for ips power save */
1501 while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1502 if (rtlpriv->psc.pwrdomain_protect)
1503 mdelay(20);
1504 else
1505 break;
1508 mac->link_state = MAC80211_NOLINK;
1509 opmode = NL80211_IFTYPE_UNSPECIFIED;
1510 _rtl92se_set_media_status(hw, opmode);
1512 _rtl92s_phy_set_rfhalt(hw);
1513 udelay(100);
1516 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1517 u32 *p_intb)
1519 struct rtl_priv *rtlpriv = rtl_priv(hw);
1520 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1522 *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1523 rtl_write_dword(rtlpriv, ISR, *p_inta);
1525 *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1526 rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1529 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1531 struct rtl_priv *rtlpriv = rtl_priv(hw);
1532 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1533 u16 bcntime_cfg = 0;
1534 u16 bcn_cw = 6, bcn_ifs = 0xf;
1535 u16 atim_window = 2;
1537 /* ATIM Window (in unit of TU). */
1538 rtl_write_word(rtlpriv, ATIMWND, atim_window);
1540 /* Beacon interval (in unit of TU). */
1541 rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1543 /* DrvErlyInt (in unit of TU). (Time to send
1544 * interrupt to notify driver to change
1545 * beacon content) */
1546 rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1548 /* BcnDMATIM(in unit of us). Indicates the
1549 * time before TBTT to perform beacon queue DMA */
1550 rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1552 /* Force beacon frame transmission even
1553 * after receiving beacon frame from
1554 * other ad hoc STA */
1555 rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1557 /* Beacon Time Configuration */
1558 if (mac->opmode == NL80211_IFTYPE_ADHOC)
1559 bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1561 /* TODO: bcn_ifs may required to be changed on ASIC */
1562 bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1564 /*for beacon changed */
1565 rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1568 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1570 struct rtl_priv *rtlpriv = rtl_priv(hw);
1571 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1572 u16 bcn_interval = mac->beacon_interval;
1574 /* Beacon interval (in unit of TU). */
1575 rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1576 /* 2008.10.24 added by tynli for beacon changed. */
1577 rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1580 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1581 u32 add_msr, u32 rm_msr)
1583 struct rtl_priv *rtlpriv = rtl_priv(hw);
1584 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1586 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1587 ("add_msr:%x, rm_msr:%x\n", add_msr, rm_msr));
1589 if (add_msr)
1590 rtlpci->irq_mask[0] |= add_msr;
1592 if (rm_msr)
1593 rtlpci->irq_mask[0] &= (~rm_msr);
1595 rtl92se_disable_interrupt(hw);
1596 rtl92se_enable_interrupt(hw);
1599 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1601 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1602 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1603 u8 efuse_id;
1605 rtlhal->ic_class = IC_INFERIORITY_A;
1607 /* Only retrieving while using EFUSE. */
1608 if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1609 !rtlefuse->autoload_failflag) {
1610 efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1612 if (efuse_id == 0xfe)
1613 rtlhal->ic_class = IC_INFERIORITY_B;
1617 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1619 struct rtl_priv *rtlpriv = rtl_priv(hw);
1620 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1621 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1622 u16 i, usvalue;
1623 u16 eeprom_id;
1624 u8 tempval;
1625 u8 hwinfo[HWSET_MAX_SIZE_92S];
1626 u8 rf_path, index;
1628 if (rtlefuse->epromtype == EEPROM_93C46) {
1629 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1630 ("RTL819X Not boot from eeprom, check it !!"));
1631 } else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1632 rtl_efuse_shadow_map_update(hw);
1634 memcpy((void *)hwinfo, (void *)
1635 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1636 HWSET_MAX_SIZE_92S);
1639 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"),
1640 hwinfo, HWSET_MAX_SIZE_92S);
1642 eeprom_id = *((u16 *)&hwinfo[0]);
1643 if (eeprom_id != RTL8190_EEPROM_ID) {
1644 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1645 ("EEPROM ID(%#x) is invalid!!\n", eeprom_id));
1646 rtlefuse->autoload_failflag = true;
1647 } else {
1648 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
1649 rtlefuse->autoload_failflag = false;
1652 if (rtlefuse->autoload_failflag)
1653 return;
1655 _rtl8192se_get_IC_Inferiority(hw);
1657 /* Read IC Version && Channel Plan */
1658 /* VID, DID SE 0xA-D */
1659 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1660 rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1661 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1662 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1663 rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1665 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1666 ("EEPROMId = 0x%4x\n", eeprom_id));
1667 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1668 ("EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid));
1669 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1670 ("EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did));
1671 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1672 ("EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid));
1673 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1674 ("EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid));
1676 for (i = 0; i < 6; i += 2) {
1677 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1678 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1681 for (i = 0; i < 6; i++)
1682 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1684 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1685 ("%pM\n", rtlefuse->dev_addr));
1687 /* Get Tx Power Level by Channel */
1688 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1689 /* 92S suupport RF A & B */
1690 for (rf_path = 0; rf_path < 2; rf_path++) {
1691 for (i = 0; i < 3; i++) {
1692 /* Read CCK RF A & B Tx power */
1693 rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1694 hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1696 /* Read OFDM RF A & B Tx power for 1T */
1697 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1698 hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1700 /* Read OFDM RF A & B Tx power for 2T */
1701 rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][i]
1702 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1703 rf_path * 3 + i];
1707 for (rf_path = 0; rf_path < 2; rf_path++)
1708 for (i = 0; i < 3; i++)
1709 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1710 ("RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path,
1711 i, rtlefuse->eeprom_chnlarea_txpwr_cck
1712 [rf_path][i]));
1713 for (rf_path = 0; rf_path < 2; rf_path++)
1714 for (i = 0; i < 3; i++)
1715 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1716 ("RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1717 rf_path, i,
1718 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1719 [rf_path][i]));
1720 for (rf_path = 0; rf_path < 2; rf_path++)
1721 for (i = 0; i < 3; i++)
1722 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1723 ("RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1724 rf_path, i,
1725 rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
1726 [rf_path][i]));
1728 for (rf_path = 0; rf_path < 2; rf_path++) {
1730 /* Assign dedicated channel tx power */
1731 for (i = 0; i < 14; i++) {
1732 /* channel 1~3 use the same Tx Power Level. */
1733 if (i < 3)
1734 index = 0;
1735 /* Channel 4-8 */
1736 else if (i < 8)
1737 index = 1;
1738 /* Channel 9-14 */
1739 else
1740 index = 2;
1742 /* Record A & B CCK /OFDM - 1T/2T Channel area
1743 * tx power */
1744 rtlefuse->txpwrlevel_cck[rf_path][i] =
1745 rtlefuse->eeprom_chnlarea_txpwr_cck
1746 [rf_path][index];
1747 rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
1748 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1749 [rf_path][index];
1750 rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
1751 rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
1752 [rf_path][index];
1755 for (i = 0; i < 14; i++) {
1756 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1757 ("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = "
1758 "[0x%x / 0x%x / 0x%x]\n", rf_path, i,
1759 rtlefuse->txpwrlevel_cck[rf_path][i],
1760 rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1761 rtlefuse->txpwrlevel_ht40_2s[rf_path][i]));
1765 for (rf_path = 0; rf_path < 2; rf_path++) {
1766 for (i = 0; i < 3; i++) {
1767 /* Read Power diff limit. */
1768 rtlefuse->eeprom_pwrgroup[rf_path][i] =
1769 hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1773 for (rf_path = 0; rf_path < 2; rf_path++) {
1774 /* Fill Pwr group */
1775 for (i = 0; i < 14; i++) {
1776 /* Chanel 1-3 */
1777 if (i < 3)
1778 index = 0;
1779 /* Channel 4-8 */
1780 else if (i < 8)
1781 index = 1;
1782 /* Channel 9-13 */
1783 else
1784 index = 2;
1786 rtlefuse->pwrgroup_ht20[rf_path][i] =
1787 (rtlefuse->eeprom_pwrgroup[rf_path][index] &
1788 0xf);
1789 rtlefuse->pwrgroup_ht40[rf_path][i] =
1790 ((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1791 0xf0) >> 4);
1793 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1794 ("RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1795 rf_path, i,
1796 rtlefuse->pwrgroup_ht20[rf_path][i]));
1797 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1798 ("RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1799 rf_path, i,
1800 rtlefuse->pwrgroup_ht40[rf_path][i]));
1804 for (i = 0; i < 14; i++) {
1805 /* Read tx power difference between HT OFDM 20/40 MHZ */
1806 /* channel 1-3 */
1807 if (i < 3)
1808 index = 0;
1809 /* Channel 4-8 */
1810 else if (i < 8)
1811 index = 1;
1812 /* Channel 9-14 */
1813 else
1814 index = 2;
1816 tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_HT20_DIFF +
1817 index]) & 0xff;
1818 rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1819 rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1820 ((tempval >> 4) & 0xF);
1822 /* Read OFDM<->HT tx power diff */
1823 /* Channel 1-3 */
1824 if (i < 3)
1825 index = 0;
1826 /* Channel 4-8 */
1827 else if (i < 8)
1828 index = 0x11;
1829 /* Channel 9-14 */
1830 else
1831 index = 1;
1833 tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index])
1834 & 0xff;
1835 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1836 (tempval & 0xF);
1837 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1838 ((tempval >> 4) & 0xF);
1840 tempval = (*(u8 *)&hwinfo[TX_PWR_SAFETY_CHK]);
1841 rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1844 rtlefuse->eeprom_regulatory = 0;
1845 if (rtlefuse->eeprom_version >= 2) {
1846 /* BIT(0)~2 */
1847 if (rtlefuse->eeprom_version >= 4)
1848 rtlefuse->eeprom_regulatory =
1849 (hwinfo[EEPROM_REGULATORY] & 0x7);
1850 else /* BIT(0) */
1851 rtlefuse->eeprom_regulatory =
1852 (hwinfo[EEPROM_REGULATORY] & 0x1);
1854 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1855 ("eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory));
1857 for (i = 0; i < 14; i++)
1858 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1859 ("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i,
1860 rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]));
1861 for (i = 0; i < 14; i++)
1862 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1863 ("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i,
1864 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]));
1865 for (i = 0; i < 14; i++)
1866 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1867 ("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i,
1868 rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]));
1869 for (i = 0; i < 14; i++)
1870 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1871 ("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i,
1872 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]));
1874 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("TxPwrSafetyFlag = %d\n",
1875 rtlefuse->txpwr_safetyflag));
1877 /* Read RF-indication and Tx Power gain
1878 * index diff of legacy to HT OFDM rate. */
1879 tempval = (*(u8 *)&hwinfo[EEPROM_RFIND_POWERDIFF]) & 0xff;
1880 rtlefuse->eeprom_txpowerdiff = tempval;
1881 rtlefuse->legacy_httxpowerdiff =
1882 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1884 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("TxPowerDiff = %#x\n",
1885 rtlefuse->eeprom_txpowerdiff));
1887 /* Get TSSI value for each path. */
1888 usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1889 rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1890 usvalue = *(u8 *)&hwinfo[EEPROM_TSSI_B];
1891 rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1893 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1894 rtlefuse->eeprom_tssi[RF90_PATH_A],
1895 rtlefuse->eeprom_tssi[RF90_PATH_B]));
1897 /* Read antenna tx power offset of B/C/D to A from EEPROM */
1898 /* and read ThermalMeter from EEPROM */
1899 tempval = *(u8 *)&hwinfo[EEPROM_THERMALMETER];
1900 rtlefuse->eeprom_thermalmeter = tempval;
1901 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("thermalmeter = 0x%x\n",
1902 rtlefuse->eeprom_thermalmeter));
1904 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1905 rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1906 rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1908 /* Read CrystalCap from EEPROM */
1909 tempval = (*(u8 *)&hwinfo[EEPROM_CRYSTALCAP]) >> 4;
1910 rtlefuse->eeprom_crystalcap = tempval;
1911 /* CrystalCap, BIT(12)~15 */
1912 rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1914 /* Read IC Version && Channel Plan */
1915 /* Version ID, Channel plan */
1916 rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
1917 rtlefuse->txpwr_fromeprom = true;
1918 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("EEPROM ChannelPlan = 0x%4x\n",
1919 rtlefuse->eeprom_channelplan));
1921 /* Read Customer ID or Board Type!!! */
1922 tempval = *(u8 *)&hwinfo[EEPROM_BOARDTYPE];
1923 /* Change RF type definition */
1924 if (tempval == 0)
1925 rtlphy->rf_type = RF_2T2R;
1926 else if (tempval == 1)
1927 rtlphy->rf_type = RF_1T2R;
1928 else if (tempval == 2)
1929 rtlphy->rf_type = RF_1T2R;
1930 else if (tempval == 3)
1931 rtlphy->rf_type = RF_1T1R;
1933 /* 1T2R but 1SS (1x1 receive combining) */
1934 rtlefuse->b1x1_recvcombine = false;
1935 if (rtlphy->rf_type == RF_1T2R) {
1936 tempval = rtl_read_byte(rtlpriv, 0x07);
1937 if (!(tempval & BIT(0))) {
1938 rtlefuse->b1x1_recvcombine = true;
1939 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1940 ("RF_TYPE=1T2R but only 1SS\n"));
1943 rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1944 rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMID];
1946 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("EEPROM Customer ID: 0x%2x",
1947 rtlefuse->eeprom_oemid));
1949 /* set channel paln to world wide 13 */
1950 rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
1953 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
1955 struct rtl_priv *rtlpriv = rtl_priv(hw);
1956 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1957 u8 tmp_u1b = 0;
1959 tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
1961 if (tmp_u1b & BIT(4)) {
1962 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from EEPROM\n"));
1963 rtlefuse->epromtype = EEPROM_93C46;
1964 } else {
1965 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from EFUSE\n"));
1966 rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1969 if (tmp_u1b & BIT(5)) {
1970 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
1971 rtlefuse->autoload_failflag = false;
1972 _rtl92se_read_adapter_info(hw);
1973 } else {
1974 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Autoload ERR!!\n"));
1975 rtlefuse->autoload_failflag = true;
1979 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
1980 struct ieee80211_sta *sta)
1982 struct rtl_priv *rtlpriv = rtl_priv(hw);
1983 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1984 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1985 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1986 u32 ratr_value;
1987 u8 ratr_index = 0;
1988 u8 nmode = mac->ht_enable;
1989 u8 mimo_ps = IEEE80211_SMPS_OFF;
1990 u16 shortgi_rate = 0;
1991 u32 tmp_ratr_value = 0;
1992 u8 curtxbw_40mhz = mac->bw_40;
1993 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1994 1 : 0;
1995 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1996 1 : 0;
1997 enum wireless_mode wirelessmode = mac->mode;
1999 if (rtlhal->current_bandtype == BAND_ON_5G)
2000 ratr_value = sta->supp_rates[1] << 4;
2001 else
2002 ratr_value = sta->supp_rates[0];
2003 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2004 sta->ht_cap.mcs.rx_mask[0] << 12);
2005 switch (wirelessmode) {
2006 case WIRELESS_MODE_B:
2007 ratr_value &= 0x0000000D;
2008 break;
2009 case WIRELESS_MODE_G:
2010 ratr_value &= 0x00000FF5;
2011 break;
2012 case WIRELESS_MODE_N_24G:
2013 case WIRELESS_MODE_N_5G:
2014 nmode = 1;
2015 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2016 ratr_value &= 0x0007F005;
2017 } else {
2018 u32 ratr_mask;
2020 if (get_rf_type(rtlphy) == RF_1T2R ||
2021 get_rf_type(rtlphy) == RF_1T1R) {
2022 if (curtxbw_40mhz)
2023 ratr_mask = 0x000ff015;
2024 else
2025 ratr_mask = 0x000ff005;
2026 } else {
2027 if (curtxbw_40mhz)
2028 ratr_mask = 0x0f0ff015;
2029 else
2030 ratr_mask = 0x0f0ff005;
2033 ratr_value &= ratr_mask;
2035 break;
2036 default:
2037 if (rtlphy->rf_type == RF_1T2R)
2038 ratr_value &= 0x000ff0ff;
2039 else
2040 ratr_value &= 0x0f0ff0ff;
2042 break;
2045 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2046 ratr_value &= 0x0FFFFFFF;
2047 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2048 ratr_value &= 0x0FFFFFF0;
2050 if (nmode && ((curtxbw_40mhz &&
2051 curshortgi_40mhz) || (!curtxbw_40mhz &&
2052 curshortgi_20mhz))) {
2054 ratr_value |= 0x10000000;
2055 tmp_ratr_value = (ratr_value >> 12);
2057 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2058 if ((1 << shortgi_rate) & tmp_ratr_value)
2059 break;
2062 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2063 (shortgi_rate << 4) | (shortgi_rate);
2065 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2068 rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2069 if (ratr_value & 0xfffff000)
2070 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2071 else
2072 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2074 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
2075 ("%x\n", rtl_read_dword(rtlpriv, ARFR0)));
2078 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2079 struct ieee80211_sta *sta,
2080 u8 rssi_level)
2082 struct rtl_priv *rtlpriv = rtl_priv(hw);
2083 struct rtl_phy *rtlphy = &(rtlpriv->phy);
2084 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2085 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2086 struct rtl_sta_info *sta_entry = NULL;
2087 u32 ratr_bitmap;
2088 u8 ratr_index = 0;
2089 u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
2090 ? 1 : 0;
2091 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2092 1 : 0;
2093 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2094 1 : 0;
2095 enum wireless_mode wirelessmode = 0;
2096 bool shortgi = false;
2097 u32 ratr_value = 0;
2098 u8 shortgi_rate = 0;
2099 u32 mask = 0;
2100 u32 band = 0;
2101 bool bmulticast = false;
2102 u8 macid = 0;
2103 u8 mimo_ps = IEEE80211_SMPS_OFF;
2105 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2106 wirelessmode = sta_entry->wireless_mode;
2107 if (mac->opmode == NL80211_IFTYPE_STATION)
2108 curtxbw_40mhz = mac->bw_40;
2109 else if (mac->opmode == NL80211_IFTYPE_AP ||
2110 mac->opmode == NL80211_IFTYPE_ADHOC)
2111 macid = sta->aid + 1;
2113 if (rtlhal->current_bandtype == BAND_ON_5G)
2114 ratr_bitmap = sta->supp_rates[1] << 4;
2115 else
2116 ratr_bitmap = sta->supp_rates[0];
2117 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2118 sta->ht_cap.mcs.rx_mask[0] << 12);
2119 switch (wirelessmode) {
2120 case WIRELESS_MODE_B:
2121 band |= WIRELESS_11B;
2122 ratr_index = RATR_INX_WIRELESS_B;
2123 if (ratr_bitmap & 0x0000000c)
2124 ratr_bitmap &= 0x0000000d;
2125 else
2126 ratr_bitmap &= 0x0000000f;
2127 break;
2128 case WIRELESS_MODE_G:
2129 band |= (WIRELESS_11G | WIRELESS_11B);
2130 ratr_index = RATR_INX_WIRELESS_GB;
2132 if (rssi_level == 1)
2133 ratr_bitmap &= 0x00000f00;
2134 else if (rssi_level == 2)
2135 ratr_bitmap &= 0x00000ff0;
2136 else
2137 ratr_bitmap &= 0x00000ff5;
2138 break;
2139 case WIRELESS_MODE_A:
2140 band |= WIRELESS_11A;
2141 ratr_index = RATR_INX_WIRELESS_A;
2142 ratr_bitmap &= 0x00000ff0;
2143 break;
2144 case WIRELESS_MODE_N_24G:
2145 case WIRELESS_MODE_N_5G:
2146 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2147 ratr_index = RATR_INX_WIRELESS_NGB;
2149 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2150 if (rssi_level == 1)
2151 ratr_bitmap &= 0x00070000;
2152 else if (rssi_level == 2)
2153 ratr_bitmap &= 0x0007f000;
2154 else
2155 ratr_bitmap &= 0x0007f005;
2156 } else {
2157 if (rtlphy->rf_type == RF_1T2R ||
2158 rtlphy->rf_type == RF_1T1R) {
2159 if (rssi_level == 1) {
2160 ratr_bitmap &= 0x000f0000;
2161 } else if (rssi_level == 3) {
2162 ratr_bitmap &= 0x000fc000;
2163 } else if (rssi_level == 5) {
2164 ratr_bitmap &= 0x000ff000;
2165 } else {
2166 if (curtxbw_40mhz)
2167 ratr_bitmap &= 0x000ff015;
2168 else
2169 ratr_bitmap &= 0x000ff005;
2171 } else {
2172 if (rssi_level == 1) {
2173 ratr_bitmap &= 0x0f8f0000;
2174 } else if (rssi_level == 3) {
2175 ratr_bitmap &= 0x0f8fc000;
2176 } else if (rssi_level == 5) {
2177 ratr_bitmap &= 0x0f8ff000;
2178 } else {
2179 if (curtxbw_40mhz)
2180 ratr_bitmap &= 0x0f8ff015;
2181 else
2182 ratr_bitmap &= 0x0f8ff005;
2187 if ((curtxbw_40mhz && curshortgi_40mhz) ||
2188 (!curtxbw_40mhz && curshortgi_20mhz)) {
2189 if (macid == 0)
2190 shortgi = true;
2191 else if (macid == 1)
2192 shortgi = false;
2194 break;
2195 default:
2196 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2197 ratr_index = RATR_INX_WIRELESS_NGB;
2199 if (rtlphy->rf_type == RF_1T2R)
2200 ratr_bitmap &= 0x000ff0ff;
2201 else
2202 ratr_bitmap &= 0x0f8ff0ff;
2203 break;
2206 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2207 ratr_bitmap &= 0x0FFFFFFF;
2208 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2209 ratr_bitmap &= 0x0FFFFFF0;
2211 if (shortgi) {
2212 ratr_bitmap |= 0x10000000;
2213 /* Get MAX MCS available. */
2214 ratr_value = (ratr_bitmap >> 12);
2215 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2216 if ((1 << shortgi_rate) & ratr_value)
2217 break;
2220 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2221 (shortgi_rate << 4) | (shortgi_rate);
2222 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2225 mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2227 RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, ("mask = %x, bitmap = %x\n",
2228 mask, ratr_bitmap));
2229 rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2230 rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2232 if (macid != 0)
2233 sta_entry->ratr_index = ratr_index;
2236 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2237 struct ieee80211_sta *sta, u8 rssi_level)
2239 struct rtl_priv *rtlpriv = rtl_priv(hw);
2241 if (rtlpriv->dm.useramask)
2242 rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2243 else
2244 rtl92se_update_hal_rate_table(hw, sta);
2247 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2249 struct rtl_priv *rtlpriv = rtl_priv(hw);
2250 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2251 u16 sifs_timer;
2253 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2254 (u8 *)&mac->slot_time);
2255 sifs_timer = 0x0e0e;
2256 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2260 /* this ifunction is for RFKILL, it's different with windows,
2261 * because UI will disable wireless when GPIO Radio Off.
2262 * And here we not check or Disable/Enable ASPM like windows*/
2263 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2265 struct rtl_priv *rtlpriv = rtl_priv(hw);
2266 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2267 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2268 enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2269 unsigned long flag = 0;
2270 bool actuallyset = false;
2271 bool turnonbypowerdomain = false;
2273 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2274 if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2275 return false;
2277 if (ppsc->swrf_processing)
2278 return false;
2280 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2281 if (ppsc->rfchange_inprogress) {
2282 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2283 return false;
2284 } else {
2285 ppsc->rfchange_inprogress = true;
2286 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2289 /* cur_rfstate = ppsc->rfpwr_state;*/
2291 /* because after _rtl92s_phy_set_rfhalt, all power
2292 * closed, so we must open some power for GPIO check,
2293 * or we will always check GPIO RFOFF here,
2294 * And we should close power after GPIO check */
2295 if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2296 _rtl92se_power_domain_init(hw);
2297 turnonbypowerdomain = true;
2300 rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2302 if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2303 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2304 ("RFKILL-HW Radio ON, RF ON\n"));
2306 rfpwr_toset = ERFON;
2307 ppsc->hwradiooff = false;
2308 actuallyset = true;
2309 } else if ((ppsc->hwradiooff == false) && (rfpwr_toset == ERFOFF)) {
2310 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2311 ("RFKILL-HW Radio OFF, RF OFF\n"));
2313 rfpwr_toset = ERFOFF;
2314 ppsc->hwradiooff = true;
2315 actuallyset = true;
2318 if (actuallyset) {
2319 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2320 ppsc->rfchange_inprogress = false;
2321 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2323 /* this not include ifconfig wlan0 down case */
2324 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2325 } else {
2326 /* because power_domain_init may be happen when
2327 * _rtl92s_phy_set_rfhalt, this will open some powers
2328 * and cause current increasing about 40 mA for ips,
2329 * rfoff and ifconfig down, so we set
2330 * _rtl92s_phy_set_rfhalt again here */
2331 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2332 turnonbypowerdomain) {
2333 _rtl92s_phy_set_rfhalt(hw);
2334 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2337 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2338 ppsc->rfchange_inprogress = false;
2339 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2342 *valid = 1;
2343 return !ppsc->hwradiooff;
2347 /* Is_wepkey just used for WEP used as group & pairwise key
2348 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2349 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2350 bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2352 struct rtl_priv *rtlpriv = rtl_priv(hw);
2353 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2354 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2355 u8 *macaddr = p_macaddr;
2357 u32 entry_id = 0;
2358 bool is_pairwise = false;
2360 static u8 cam_const_addr[4][6] = {
2361 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2362 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2363 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2364 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2366 static u8 cam_const_broad[] = {
2367 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2370 if (clear_all) {
2371 u8 idx = 0;
2372 u8 cam_offset = 0;
2373 u8 clear_number = 5;
2375 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, ("clear_all\n"));
2377 for (idx = 0; idx < clear_number; idx++) {
2378 rtl_cam_mark_invalid(hw, cam_offset + idx);
2379 rtl_cam_empty_entry(hw, cam_offset + idx);
2381 if (idx < 5) {
2382 memset(rtlpriv->sec.key_buf[idx], 0,
2383 MAX_KEY_LEN);
2384 rtlpriv->sec.key_len[idx] = 0;
2388 } else {
2389 switch (enc_algo) {
2390 case WEP40_ENCRYPTION:
2391 enc_algo = CAM_WEP40;
2392 break;
2393 case WEP104_ENCRYPTION:
2394 enc_algo = CAM_WEP104;
2395 break;
2396 case TKIP_ENCRYPTION:
2397 enc_algo = CAM_TKIP;
2398 break;
2399 case AESCCMP_ENCRYPTION:
2400 enc_algo = CAM_AES;
2401 break;
2402 default:
2403 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2404 ("switch case not process\n"));
2405 enc_algo = CAM_TKIP;
2406 break;
2409 if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2410 macaddr = cam_const_addr[key_index];
2411 entry_id = key_index;
2412 } else {
2413 if (is_group) {
2414 macaddr = cam_const_broad;
2415 entry_id = key_index;
2416 } else {
2417 if (mac->opmode == NL80211_IFTYPE_AP) {
2418 entry_id = rtl_cam_get_free_entry(hw,
2419 p_macaddr);
2420 if (entry_id >= TOTAL_CAM_ENTRY) {
2421 RT_TRACE(rtlpriv,
2422 COMP_SEC, DBG_EMERG,
2423 ("Can not find free hw"
2424 " security cam entry\n"));
2425 return;
2427 } else {
2428 entry_id = CAM_PAIRWISE_KEY_POSITION;
2431 key_index = PAIRWISE_KEYIDX;
2432 is_pairwise = true;
2436 if (rtlpriv->sec.key_len[key_index] == 0) {
2437 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2438 ("delete one entry, entry_id is %d\n",
2439 entry_id));
2440 if (mac->opmode == NL80211_IFTYPE_AP)
2441 rtl_cam_del_entry(hw, p_macaddr);
2442 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2443 } else {
2444 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2445 ("The insert KEY length is %d\n",
2446 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]));
2447 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2448 ("The insert KEY is %x %x\n",
2449 rtlpriv->sec.key_buf[0][0],
2450 rtlpriv->sec.key_buf[0][1]));
2452 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2453 ("add one entry\n"));
2454 if (is_pairwise) {
2455 RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2456 "Pairwiase Key content :",
2457 rtlpriv->sec.pairwise_key,
2458 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2460 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2461 ("set Pairwiase key\n"));
2463 rtl_cam_add_one_entry(hw, macaddr, key_index,
2464 entry_id, enc_algo,
2465 CAM_CONFIG_NO_USEDK,
2466 rtlpriv->sec.key_buf[key_index]);
2467 } else {
2468 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2469 ("set group key\n"));
2471 if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2472 rtl_cam_add_one_entry(hw,
2473 rtlefuse->dev_addr,
2474 PAIRWISE_KEYIDX,
2475 CAM_PAIRWISE_KEY_POSITION,
2476 enc_algo, CAM_CONFIG_NO_USEDK,
2477 rtlpriv->sec.key_buf[entry_id]);
2480 rtl_cam_add_one_entry(hw, macaddr, key_index,
2481 entry_id, enc_algo,
2482 CAM_CONFIG_NO_USEDK,
2483 rtlpriv->sec.key_buf[entry_id]);
2490 void rtl92se_suspend(struct ieee80211_hw *hw)
2492 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2494 rtlpci->up_first_time = true;
2497 void rtl92se_resume(struct ieee80211_hw *hw)
2499 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2500 u32 val;
2502 pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2503 if ((val & 0x0000ff00) != 0)
2504 pci_write_config_dword(rtlpci->pdev, 0x40,
2505 val & 0xffff00ff);