include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / scsi / libfc / fc_exch.c
blob1c60fcc44ca035f5d21233b15184c28bdaca14b6
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * Maintained at www.Open-FCoE.org
23 * Fibre Channel exchange and sequence handling.
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
31 #include <scsi/fc/fc_fc2.h>
33 #include <scsi/libfc.h>
34 #include <scsi/fc_encode.h>
36 #include "fc_libfc.h"
38 u16 fc_cpu_mask; /* cpu mask for possible cpus */
39 EXPORT_SYMBOL(fc_cpu_mask);
40 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
41 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
42 static struct workqueue_struct *fc_exch_workqueue;
45 * Structure and function definitions for managing Fibre Channel Exchanges
46 * and Sequences.
48 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
50 * fc_exch_mgr holds the exchange state for an N port
52 * fc_exch holds state for one exchange and links to its active sequence.
54 * fc_seq holds the state for an individual sequence.
57 /**
58 * struct fc_exch_pool - Per cpu exchange pool
59 * @next_index: Next possible free exchange index
60 * @total_exches: Total allocated exchanges
61 * @lock: Exch pool lock
62 * @ex_list: List of exchanges
64 * This structure manages per cpu exchanges in array of exchange pointers.
65 * This array is allocated followed by struct fc_exch_pool memory for
66 * assigned range of exchanges to per cpu pool.
68 struct fc_exch_pool {
69 u16 next_index;
70 u16 total_exches;
72 /* two cache of free slot in exch array */
73 u16 left;
74 u16 right;
76 spinlock_t lock;
77 struct list_head ex_list;
80 /**
81 * struct fc_exch_mgr - The Exchange Manager (EM).
82 * @class: Default class for new sequences
83 * @kref: Reference counter
84 * @min_xid: Minimum exchange ID
85 * @max_xid: Maximum exchange ID
86 * @ep_pool: Reserved exchange pointers
87 * @pool_max_index: Max exch array index in exch pool
88 * @pool: Per cpu exch pool
89 * @stats: Statistics structure
91 * This structure is the center for creating exchanges and sequences.
92 * It manages the allocation of exchange IDs.
94 struct fc_exch_mgr {
95 enum fc_class class;
96 struct kref kref;
97 u16 min_xid;
98 u16 max_xid;
99 mempool_t *ep_pool;
100 u16 pool_max_index;
101 struct fc_exch_pool *pool;
104 * currently exchange mgr stats are updated but not used.
105 * either stats can be expose via sysfs or remove them
106 * all together if not used XXX
108 struct {
109 atomic_t no_free_exch;
110 atomic_t no_free_exch_xid;
111 atomic_t xid_not_found;
112 atomic_t xid_busy;
113 atomic_t seq_not_found;
114 atomic_t non_bls_resp;
115 } stats;
119 * struct fc_exch_mgr_anchor - primary structure for list of EMs
120 * @ema_list: Exchange Manager Anchor list
121 * @mp: Exchange Manager associated with this anchor
122 * @match: Routine to determine if this anchor's EM should be used
124 * When walking the list of anchors the match routine will be called
125 * for each anchor to determine if that EM should be used. The last
126 * anchor in the list will always match to handle any exchanges not
127 * handled by other EMs. The non-default EMs would be added to the
128 * anchor list by HW that provides FCoE offloads.
130 struct fc_exch_mgr_anchor {
131 struct list_head ema_list;
132 struct fc_exch_mgr *mp;
133 bool (*match)(struct fc_frame *);
136 static void fc_exch_rrq(struct fc_exch *);
137 static void fc_seq_ls_acc(struct fc_frame *);
138 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
139 enum fc_els_rjt_explan);
140 static void fc_exch_els_rec(struct fc_frame *);
141 static void fc_exch_els_rrq(struct fc_frame *);
144 * Internal implementation notes.
146 * The exchange manager is one by default in libfc but LLD may choose
147 * to have one per CPU. The sequence manager is one per exchange manager
148 * and currently never separated.
150 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
151 * assigned by the Sequence Initiator that shall be unique for a specific
152 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
153 * qualified by exchange ID, which one might think it would be.
154 * In practice this limits the number of open sequences and exchanges to 256
155 * per session. For most targets we could treat this limit as per exchange.
157 * The exchange and its sequence are freed when the last sequence is received.
158 * It's possible for the remote port to leave an exchange open without
159 * sending any sequences.
161 * Notes on reference counts:
163 * Exchanges are reference counted and exchange gets freed when the reference
164 * count becomes zero.
166 * Timeouts:
167 * Sequences are timed out for E_D_TOV and R_A_TOV.
169 * Sequence event handling:
171 * The following events may occur on initiator sequences:
173 * Send.
174 * For now, the whole thing is sent.
175 * Receive ACK
176 * This applies only to class F.
177 * The sequence is marked complete.
178 * ULP completion.
179 * The upper layer calls fc_exch_done() when done
180 * with exchange and sequence tuple.
181 * RX-inferred completion.
182 * When we receive the next sequence on the same exchange, we can
183 * retire the previous sequence ID. (XXX not implemented).
184 * Timeout.
185 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
186 * E_D_TOV causes abort and calls upper layer response handler
187 * with FC_EX_TIMEOUT error.
188 * Receive RJT
189 * XXX defer.
190 * Send ABTS
191 * On timeout.
193 * The following events may occur on recipient sequences:
195 * Receive
196 * Allocate sequence for first frame received.
197 * Hold during receive handler.
198 * Release when final frame received.
199 * Keep status of last N of these for the ELS RES command. XXX TBD.
200 * Receive ABTS
201 * Deallocate sequence
202 * Send RJT
203 * Deallocate
205 * For now, we neglect conditions where only part of a sequence was
206 * received or transmitted, or where out-of-order receipt is detected.
210 * Locking notes:
212 * The EM code run in a per-CPU worker thread.
214 * To protect against concurrency between a worker thread code and timers,
215 * sequence allocation and deallocation must be locked.
216 * - exchange refcnt can be done atomicly without locks.
217 * - sequence allocation must be locked by exch lock.
218 * - If the EM pool lock and ex_lock must be taken at the same time, then the
219 * EM pool lock must be taken before the ex_lock.
223 * opcode names for debugging.
225 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
228 * fc_exch_name_lookup() - Lookup name by opcode
229 * @op: Opcode to be looked up
230 * @table: Opcode/name table
231 * @max_index: Index not to be exceeded
233 * This routine is used to determine a human-readable string identifying
234 * a R_CTL opcode.
236 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
237 unsigned int max_index)
239 const char *name = NULL;
241 if (op < max_index)
242 name = table[op];
243 if (!name)
244 name = "unknown";
245 return name;
249 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
250 * @op: The opcode to be looked up
252 static const char *fc_exch_rctl_name(unsigned int op)
254 return fc_exch_name_lookup(op, fc_exch_rctl_names,
255 ARRAY_SIZE(fc_exch_rctl_names));
259 * fc_exch_hold() - Increment an exchange's reference count
260 * @ep: Echange to be held
262 static inline void fc_exch_hold(struct fc_exch *ep)
264 atomic_inc(&ep->ex_refcnt);
268 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
269 * and determine SOF and EOF.
270 * @ep: The exchange to that will use the header
271 * @fp: The frame whose header is to be modified
272 * @f_ctl: F_CTL bits that will be used for the frame header
274 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
275 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
277 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
278 u32 f_ctl)
280 struct fc_frame_header *fh = fc_frame_header_get(fp);
281 u16 fill;
283 fr_sof(fp) = ep->class;
284 if (ep->seq.cnt)
285 fr_sof(fp) = fc_sof_normal(ep->class);
287 if (f_ctl & FC_FC_END_SEQ) {
288 fr_eof(fp) = FC_EOF_T;
289 if (fc_sof_needs_ack(ep->class))
290 fr_eof(fp) = FC_EOF_N;
292 * From F_CTL.
293 * The number of fill bytes to make the length a 4-byte
294 * multiple is the low order 2-bits of the f_ctl.
295 * The fill itself will have been cleared by the frame
296 * allocation.
297 * After this, the length will be even, as expected by
298 * the transport.
300 fill = fr_len(fp) & 3;
301 if (fill) {
302 fill = 4 - fill;
303 /* TODO, this may be a problem with fragmented skb */
304 skb_put(fp_skb(fp), fill);
305 hton24(fh->fh_f_ctl, f_ctl | fill);
307 } else {
308 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
309 fr_eof(fp) = FC_EOF_N;
313 * Initialize remainig fh fields
314 * from fc_fill_fc_hdr
316 fh->fh_ox_id = htons(ep->oxid);
317 fh->fh_rx_id = htons(ep->rxid);
318 fh->fh_seq_id = ep->seq.id;
319 fh->fh_seq_cnt = htons(ep->seq.cnt);
323 * fc_exch_release() - Decrement an exchange's reference count
324 * @ep: Exchange to be released
326 * If the reference count reaches zero and the exchange is complete,
327 * it is freed.
329 static void fc_exch_release(struct fc_exch *ep)
331 struct fc_exch_mgr *mp;
333 if (atomic_dec_and_test(&ep->ex_refcnt)) {
334 mp = ep->em;
335 if (ep->destructor)
336 ep->destructor(&ep->seq, ep->arg);
337 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
338 mempool_free(ep, mp->ep_pool);
343 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
344 * @ep: The exchange that is complete
346 static int fc_exch_done_locked(struct fc_exch *ep)
348 int rc = 1;
351 * We must check for completion in case there are two threads
352 * tyring to complete this. But the rrq code will reuse the
353 * ep, and in that case we only clear the resp and set it as
354 * complete, so it can be reused by the timer to send the rrq.
356 ep->resp = NULL;
357 if (ep->state & FC_EX_DONE)
358 return rc;
359 ep->esb_stat |= ESB_ST_COMPLETE;
361 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
362 ep->state |= FC_EX_DONE;
363 if (cancel_delayed_work(&ep->timeout_work))
364 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
365 rc = 0;
367 return rc;
371 * fc_exch_ptr_get() - Return an exchange from an exchange pool
372 * @pool: Exchange Pool to get an exchange from
373 * @index: Index of the exchange within the pool
375 * Use the index to get an exchange from within an exchange pool. exches
376 * will point to an array of exchange pointers. The index will select
377 * the exchange within the array.
379 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
380 u16 index)
382 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
383 return exches[index];
387 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
388 * @pool: The pool to assign the exchange to
389 * @index: The index in the pool where the exchange will be assigned
390 * @ep: The exchange to assign to the pool
392 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
393 struct fc_exch *ep)
395 ((struct fc_exch **)(pool + 1))[index] = ep;
399 * fc_exch_delete() - Delete an exchange
400 * @ep: The exchange to be deleted
402 static void fc_exch_delete(struct fc_exch *ep)
404 struct fc_exch_pool *pool;
405 u16 index;
407 pool = ep->pool;
408 spin_lock_bh(&pool->lock);
409 WARN_ON(pool->total_exches <= 0);
410 pool->total_exches--;
412 /* update cache of free slot */
413 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
414 if (pool->left == FC_XID_UNKNOWN)
415 pool->left = index;
416 else if (pool->right == FC_XID_UNKNOWN)
417 pool->right = index;
418 else
419 pool->next_index = index;
421 fc_exch_ptr_set(pool, index, NULL);
422 list_del(&ep->ex_list);
423 spin_unlock_bh(&pool->lock);
424 fc_exch_release(ep); /* drop hold for exch in mp */
428 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
429 * the exchange lock held
430 * @ep: The exchange whose timer will start
431 * @timer_msec: The timeout period
433 * Used for upper level protocols to time out the exchange.
434 * The timer is cancelled when it fires or when the exchange completes.
436 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
437 unsigned int timer_msec)
439 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
440 return;
442 FC_EXCH_DBG(ep, "Exchange timer armed\n");
444 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
445 msecs_to_jiffies(timer_msec)))
446 fc_exch_hold(ep); /* hold for timer */
450 * fc_exch_timer_set() - Lock the exchange and set the timer
451 * @ep: The exchange whose timer will start
452 * @timer_msec: The timeout period
454 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
456 spin_lock_bh(&ep->ex_lock);
457 fc_exch_timer_set_locked(ep, timer_msec);
458 spin_unlock_bh(&ep->ex_lock);
462 * fc_seq_send() - Send a frame using existing sequence/exchange pair
463 * @lport: The local port that the exchange will be sent on
464 * @sp: The sequence to be sent
465 * @fp: The frame to be sent on the exchange
467 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
468 struct fc_frame *fp)
470 struct fc_exch *ep;
471 struct fc_frame_header *fh = fc_frame_header_get(fp);
472 int error;
473 u32 f_ctl;
475 ep = fc_seq_exch(sp);
476 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
478 f_ctl = ntoh24(fh->fh_f_ctl);
479 fc_exch_setup_hdr(ep, fp, f_ctl);
480 fr_encaps(fp) = ep->encaps;
483 * update sequence count if this frame is carrying
484 * multiple FC frames when sequence offload is enabled
485 * by LLD.
487 if (fr_max_payload(fp))
488 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
489 fr_max_payload(fp));
490 else
491 sp->cnt++;
494 * Send the frame.
496 error = lport->tt.frame_send(lport, fp);
499 * Update the exchange and sequence flags,
500 * assuming all frames for the sequence have been sent.
501 * We can only be called to send once for each sequence.
503 spin_lock_bh(&ep->ex_lock);
504 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
505 if (f_ctl & FC_FC_SEQ_INIT)
506 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
507 spin_unlock_bh(&ep->ex_lock);
508 return error;
512 * fc_seq_alloc() - Allocate a sequence for a given exchange
513 * @ep: The exchange to allocate a new sequence for
514 * @seq_id: The sequence ID to be used
516 * We don't support multiple originated sequences on the same exchange.
517 * By implication, any previously originated sequence on this exchange
518 * is complete, and we reallocate the same sequence.
520 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
522 struct fc_seq *sp;
524 sp = &ep->seq;
525 sp->ssb_stat = 0;
526 sp->cnt = 0;
527 sp->id = seq_id;
528 return sp;
532 * fc_seq_start_next_locked() - Allocate a new sequence on the same
533 * exchange as the supplied sequence
534 * @sp: The sequence/exchange to get a new sequence for
536 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
538 struct fc_exch *ep = fc_seq_exch(sp);
540 sp = fc_seq_alloc(ep, ep->seq_id++);
541 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
542 ep->f_ctl, sp->id);
543 return sp;
547 * fc_seq_start_next() - Lock the exchange and get a new sequence
548 * for a given sequence/exchange pair
549 * @sp: The sequence/exchange to get a new exchange for
551 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
553 struct fc_exch *ep = fc_seq_exch(sp);
555 spin_lock_bh(&ep->ex_lock);
556 sp = fc_seq_start_next_locked(sp);
557 spin_unlock_bh(&ep->ex_lock);
559 return sp;
563 * Set the response handler for the exchange associated with a sequence.
565 static void fc_seq_set_resp(struct fc_seq *sp,
566 void (*resp)(struct fc_seq *, struct fc_frame *,
567 void *),
568 void *arg)
570 struct fc_exch *ep = fc_seq_exch(sp);
572 spin_lock_bh(&ep->ex_lock);
573 ep->resp = resp;
574 ep->arg = arg;
575 spin_unlock_bh(&ep->ex_lock);
579 * fc_seq_exch_abort() - Abort an exchange and sequence
580 * @req_sp: The sequence to be aborted
581 * @timer_msec: The period of time to wait before aborting
583 * Generally called because of a timeout or an abort from the upper layer.
585 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
586 unsigned int timer_msec)
588 struct fc_seq *sp;
589 struct fc_exch *ep;
590 struct fc_frame *fp;
591 int error;
593 ep = fc_seq_exch(req_sp);
595 spin_lock_bh(&ep->ex_lock);
596 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
597 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
598 spin_unlock_bh(&ep->ex_lock);
599 return -ENXIO;
603 * Send the abort on a new sequence if possible.
605 sp = fc_seq_start_next_locked(&ep->seq);
606 if (!sp) {
607 spin_unlock_bh(&ep->ex_lock);
608 return -ENOMEM;
611 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
612 if (timer_msec)
613 fc_exch_timer_set_locked(ep, timer_msec);
614 spin_unlock_bh(&ep->ex_lock);
617 * If not logged into the fabric, don't send ABTS but leave
618 * sequence active until next timeout.
620 if (!ep->sid)
621 return 0;
624 * Send an abort for the sequence that timed out.
626 fp = fc_frame_alloc(ep->lp, 0);
627 if (fp) {
628 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
629 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
630 error = fc_seq_send(ep->lp, sp, fp);
631 } else
632 error = -ENOBUFS;
633 return error;
637 * fc_exch_timeout() - Handle exchange timer expiration
638 * @work: The work_struct identifying the exchange that timed out
640 static void fc_exch_timeout(struct work_struct *work)
642 struct fc_exch *ep = container_of(work, struct fc_exch,
643 timeout_work.work);
644 struct fc_seq *sp = &ep->seq;
645 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
646 void *arg;
647 u32 e_stat;
648 int rc = 1;
650 FC_EXCH_DBG(ep, "Exchange timed out\n");
652 spin_lock_bh(&ep->ex_lock);
653 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
654 goto unlock;
656 e_stat = ep->esb_stat;
657 if (e_stat & ESB_ST_COMPLETE) {
658 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
659 spin_unlock_bh(&ep->ex_lock);
660 if (e_stat & ESB_ST_REC_QUAL)
661 fc_exch_rrq(ep);
662 goto done;
663 } else {
664 resp = ep->resp;
665 arg = ep->arg;
666 ep->resp = NULL;
667 if (e_stat & ESB_ST_ABNORMAL)
668 rc = fc_exch_done_locked(ep);
669 spin_unlock_bh(&ep->ex_lock);
670 if (!rc)
671 fc_exch_delete(ep);
672 if (resp)
673 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
674 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
675 goto done;
677 unlock:
678 spin_unlock_bh(&ep->ex_lock);
679 done:
681 * This release matches the hold taken when the timer was set.
683 fc_exch_release(ep);
687 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
688 * @lport: The local port that the exchange is for
689 * @mp: The exchange manager that will allocate the exchange
691 * Returns pointer to allocated fc_exch with exch lock held.
693 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
694 struct fc_exch_mgr *mp)
696 struct fc_exch *ep;
697 unsigned int cpu;
698 u16 index;
699 struct fc_exch_pool *pool;
701 /* allocate memory for exchange */
702 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
703 if (!ep) {
704 atomic_inc(&mp->stats.no_free_exch);
705 goto out;
707 memset(ep, 0, sizeof(*ep));
709 cpu = get_cpu();
710 pool = per_cpu_ptr(mp->pool, cpu);
711 spin_lock_bh(&pool->lock);
712 put_cpu();
714 /* peek cache of free slot */
715 if (pool->left != FC_XID_UNKNOWN) {
716 index = pool->left;
717 pool->left = FC_XID_UNKNOWN;
718 goto hit;
720 if (pool->right != FC_XID_UNKNOWN) {
721 index = pool->right;
722 pool->right = FC_XID_UNKNOWN;
723 goto hit;
726 index = pool->next_index;
727 /* allocate new exch from pool */
728 while (fc_exch_ptr_get(pool, index)) {
729 index = index == mp->pool_max_index ? 0 : index + 1;
730 if (index == pool->next_index)
731 goto err;
733 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
734 hit:
735 fc_exch_hold(ep); /* hold for exch in mp */
736 spin_lock_init(&ep->ex_lock);
738 * Hold exch lock for caller to prevent fc_exch_reset()
739 * from releasing exch while fc_exch_alloc() caller is
740 * still working on exch.
742 spin_lock_bh(&ep->ex_lock);
744 fc_exch_ptr_set(pool, index, ep);
745 list_add_tail(&ep->ex_list, &pool->ex_list);
746 fc_seq_alloc(ep, ep->seq_id++);
747 pool->total_exches++;
748 spin_unlock_bh(&pool->lock);
751 * update exchange
753 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
754 ep->em = mp;
755 ep->pool = pool;
756 ep->lp = lport;
757 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
758 ep->rxid = FC_XID_UNKNOWN;
759 ep->class = mp->class;
760 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
761 out:
762 return ep;
763 err:
764 spin_unlock_bh(&pool->lock);
765 atomic_inc(&mp->stats.no_free_exch_xid);
766 mempool_free(ep, mp->ep_pool);
767 return NULL;
771 * fc_exch_alloc() - Allocate an exchange from an EM on a
772 * local port's list of EMs.
773 * @lport: The local port that will own the exchange
774 * @fp: The FC frame that the exchange will be for
776 * This function walks the list of exchange manager(EM)
777 * anchors to select an EM for a new exchange allocation. The
778 * EM is selected when a NULL match function pointer is encountered
779 * or when a call to a match function returns true.
781 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
782 struct fc_frame *fp)
784 struct fc_exch_mgr_anchor *ema;
786 list_for_each_entry(ema, &lport->ema_list, ema_list)
787 if (!ema->match || ema->match(fp))
788 return fc_exch_em_alloc(lport, ema->mp);
789 return NULL;
793 * fc_exch_find() - Lookup and hold an exchange
794 * @mp: The exchange manager to lookup the exchange from
795 * @xid: The XID of the exchange to look up
797 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
799 struct fc_exch_pool *pool;
800 struct fc_exch *ep = NULL;
802 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
803 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
804 spin_lock_bh(&pool->lock);
805 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
806 if (ep && ep->xid == xid)
807 fc_exch_hold(ep);
808 spin_unlock_bh(&pool->lock);
810 return ep;
815 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
816 * the memory allocated for the related objects may be freed.
817 * @sp: The sequence that has completed
819 static void fc_exch_done(struct fc_seq *sp)
821 struct fc_exch *ep = fc_seq_exch(sp);
822 int rc;
824 spin_lock_bh(&ep->ex_lock);
825 rc = fc_exch_done_locked(ep);
826 spin_unlock_bh(&ep->ex_lock);
827 if (!rc)
828 fc_exch_delete(ep);
832 * fc_exch_resp() - Allocate a new exchange for a response frame
833 * @lport: The local port that the exchange was for
834 * @mp: The exchange manager to allocate the exchange from
835 * @fp: The response frame
837 * Sets the responder ID in the frame header.
839 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
840 struct fc_exch_mgr *mp,
841 struct fc_frame *fp)
843 struct fc_exch *ep;
844 struct fc_frame_header *fh;
846 ep = fc_exch_alloc(lport, fp);
847 if (ep) {
848 ep->class = fc_frame_class(fp);
851 * Set EX_CTX indicating we're responding on this exchange.
853 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
854 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
855 fh = fc_frame_header_get(fp);
856 ep->sid = ntoh24(fh->fh_d_id);
857 ep->did = ntoh24(fh->fh_s_id);
858 ep->oid = ep->did;
861 * Allocated exchange has placed the XID in the
862 * originator field. Move it to the responder field,
863 * and set the originator XID from the frame.
865 ep->rxid = ep->xid;
866 ep->oxid = ntohs(fh->fh_ox_id);
867 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
868 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
869 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
871 fc_exch_hold(ep); /* hold for caller */
872 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
874 return ep;
878 * fc_seq_lookup_recip() - Find a sequence where the other end
879 * originated the sequence
880 * @lport: The local port that the frame was sent to
881 * @mp: The Exchange Manager to lookup the exchange from
882 * @fp: The frame associated with the sequence we're looking for
884 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
885 * on the ep that should be released by the caller.
887 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
888 struct fc_exch_mgr *mp,
889 struct fc_frame *fp)
891 struct fc_frame_header *fh = fc_frame_header_get(fp);
892 struct fc_exch *ep = NULL;
893 struct fc_seq *sp = NULL;
894 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
895 u32 f_ctl;
896 u16 xid;
898 f_ctl = ntoh24(fh->fh_f_ctl);
899 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
902 * Lookup or create the exchange if we will be creating the sequence.
904 if (f_ctl & FC_FC_EX_CTX) {
905 xid = ntohs(fh->fh_ox_id); /* we originated exch */
906 ep = fc_exch_find(mp, xid);
907 if (!ep) {
908 atomic_inc(&mp->stats.xid_not_found);
909 reject = FC_RJT_OX_ID;
910 goto out;
912 if (ep->rxid == FC_XID_UNKNOWN)
913 ep->rxid = ntohs(fh->fh_rx_id);
914 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
915 reject = FC_RJT_OX_ID;
916 goto rel;
918 } else {
919 xid = ntohs(fh->fh_rx_id); /* we are the responder */
922 * Special case for MDS issuing an ELS TEST with a
923 * bad rxid of 0.
924 * XXX take this out once we do the proper reject.
926 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
927 fc_frame_payload_op(fp) == ELS_TEST) {
928 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
929 xid = FC_XID_UNKNOWN;
933 * new sequence - find the exchange
935 ep = fc_exch_find(mp, xid);
936 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
937 if (ep) {
938 atomic_inc(&mp->stats.xid_busy);
939 reject = FC_RJT_RX_ID;
940 goto rel;
942 ep = fc_exch_resp(lport, mp, fp);
943 if (!ep) {
944 reject = FC_RJT_EXCH_EST; /* XXX */
945 goto out;
947 xid = ep->xid; /* get our XID */
948 } else if (!ep) {
949 atomic_inc(&mp->stats.xid_not_found);
950 reject = FC_RJT_RX_ID; /* XID not found */
951 goto out;
956 * At this point, we have the exchange held.
957 * Find or create the sequence.
959 if (fc_sof_is_init(fr_sof(fp))) {
960 sp = &ep->seq;
961 sp->ssb_stat |= SSB_ST_RESP;
962 sp->id = fh->fh_seq_id;
963 } else {
964 sp = &ep->seq;
965 if (sp->id != fh->fh_seq_id) {
966 atomic_inc(&mp->stats.seq_not_found);
967 if (f_ctl & FC_FC_END_SEQ) {
969 * Update sequence_id based on incoming last
970 * frame of sequence exchange. This is needed
971 * for FCoE target where DDP has been used
972 * on target where, stack is indicated only
973 * about last frame's (payload _header) header.
974 * Whereas "seq_id" which is part of
975 * frame_header is allocated by initiator
976 * which is totally different from "seq_id"
977 * allocated when XFER_RDY was sent by target.
978 * To avoid false -ve which results into not
979 * sending RSP, hence write request on other
980 * end never finishes.
982 spin_lock_bh(&ep->ex_lock);
983 sp->ssb_stat |= SSB_ST_RESP;
984 sp->id = fh->fh_seq_id;
985 spin_unlock_bh(&ep->ex_lock);
986 } else {
987 /* sequence/exch should exist */
988 reject = FC_RJT_SEQ_ID;
989 goto rel;
993 WARN_ON(ep != fc_seq_exch(sp));
995 if (f_ctl & FC_FC_SEQ_INIT)
996 ep->esb_stat |= ESB_ST_SEQ_INIT;
998 fr_seq(fp) = sp;
999 out:
1000 return reject;
1001 rel:
1002 fc_exch_done(&ep->seq);
1003 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1004 return reject;
1008 * fc_seq_lookup_orig() - Find a sequence where this end
1009 * originated the sequence
1010 * @mp: The Exchange Manager to lookup the exchange from
1011 * @fp: The frame associated with the sequence we're looking for
1013 * Does not hold the sequence for the caller.
1015 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1016 struct fc_frame *fp)
1018 struct fc_frame_header *fh = fc_frame_header_get(fp);
1019 struct fc_exch *ep;
1020 struct fc_seq *sp = NULL;
1021 u32 f_ctl;
1022 u16 xid;
1024 f_ctl = ntoh24(fh->fh_f_ctl);
1025 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1026 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1027 ep = fc_exch_find(mp, xid);
1028 if (!ep)
1029 return NULL;
1030 if (ep->seq.id == fh->fh_seq_id) {
1032 * Save the RX_ID if we didn't previously know it.
1034 sp = &ep->seq;
1035 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1036 ep->rxid == FC_XID_UNKNOWN) {
1037 ep->rxid = ntohs(fh->fh_rx_id);
1040 fc_exch_release(ep);
1041 return sp;
1045 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1046 * @ep: The exchange to set the addresses for
1047 * @orig_id: The originator's ID
1048 * @resp_id: The responder's ID
1050 * Note this must be done before the first sequence of the exchange is sent.
1052 static void fc_exch_set_addr(struct fc_exch *ep,
1053 u32 orig_id, u32 resp_id)
1055 ep->oid = orig_id;
1056 if (ep->esb_stat & ESB_ST_RESP) {
1057 ep->sid = resp_id;
1058 ep->did = orig_id;
1059 } else {
1060 ep->sid = orig_id;
1061 ep->did = resp_id;
1066 * fc_seq_els_rsp_send() - Send an ELS response using information from
1067 * the existing sequence/exchange.
1068 * @fp: The received frame
1069 * @els_cmd: The ELS command to be sent
1070 * @els_data: The ELS data to be sent
1072 * The received frame is not freed.
1074 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1075 struct fc_seq_els_data *els_data)
1077 switch (els_cmd) {
1078 case ELS_LS_RJT:
1079 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1080 break;
1081 case ELS_LS_ACC:
1082 fc_seq_ls_acc(fp);
1083 break;
1084 case ELS_RRQ:
1085 fc_exch_els_rrq(fp);
1086 break;
1087 case ELS_REC:
1088 fc_exch_els_rec(fp);
1089 break;
1090 default:
1091 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1096 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1097 * @sp: The sequence that is to be sent
1098 * @fp: The frame that will be sent on the sequence
1099 * @rctl: The R_CTL information to be sent
1100 * @fh_type: The frame header type
1102 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1103 enum fc_rctl rctl, enum fc_fh_type fh_type)
1105 u32 f_ctl;
1106 struct fc_exch *ep = fc_seq_exch(sp);
1108 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1109 f_ctl |= ep->f_ctl;
1110 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1111 fc_seq_send(ep->lp, sp, fp);
1115 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1116 * @sp: The sequence to send the ACK on
1117 * @rx_fp: The received frame that is being acknoledged
1119 * Send ACK_1 (or equiv.) indicating we received something.
1121 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1123 struct fc_frame *fp;
1124 struct fc_frame_header *rx_fh;
1125 struct fc_frame_header *fh;
1126 struct fc_exch *ep = fc_seq_exch(sp);
1127 struct fc_lport *lport = ep->lp;
1128 unsigned int f_ctl;
1131 * Don't send ACKs for class 3.
1133 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1134 fp = fc_frame_alloc(lport, 0);
1135 if (!fp)
1136 return;
1138 fh = fc_frame_header_get(fp);
1139 fh->fh_r_ctl = FC_RCTL_ACK_1;
1140 fh->fh_type = FC_TYPE_BLS;
1143 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1144 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1145 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1146 * Last ACK uses bits 7-6 (continue sequence),
1147 * bits 5-4 are meaningful (what kind of ACK to use).
1149 rx_fh = fc_frame_header_get(rx_fp);
1150 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1151 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1152 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1153 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1154 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1155 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1156 hton24(fh->fh_f_ctl, f_ctl);
1158 fc_exch_setup_hdr(ep, fp, f_ctl);
1159 fh->fh_seq_id = rx_fh->fh_seq_id;
1160 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1161 fh->fh_parm_offset = htonl(1); /* ack single frame */
1163 fr_sof(fp) = fr_sof(rx_fp);
1164 if (f_ctl & FC_FC_END_SEQ)
1165 fr_eof(fp) = FC_EOF_T;
1166 else
1167 fr_eof(fp) = FC_EOF_N;
1169 lport->tt.frame_send(lport, fp);
1174 * fc_exch_send_ba_rjt() - Send BLS Reject
1175 * @rx_fp: The frame being rejected
1176 * @reason: The reason the frame is being rejected
1177 * @explan: The explanation for the rejection
1179 * This is for rejecting BA_ABTS only.
1181 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1182 enum fc_ba_rjt_reason reason,
1183 enum fc_ba_rjt_explan explan)
1185 struct fc_frame *fp;
1186 struct fc_frame_header *rx_fh;
1187 struct fc_frame_header *fh;
1188 struct fc_ba_rjt *rp;
1189 struct fc_lport *lport;
1190 unsigned int f_ctl;
1192 lport = fr_dev(rx_fp);
1193 fp = fc_frame_alloc(lport, sizeof(*rp));
1194 if (!fp)
1195 return;
1196 fh = fc_frame_header_get(fp);
1197 rx_fh = fc_frame_header_get(rx_fp);
1199 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1201 rp = fc_frame_payload_get(fp, sizeof(*rp));
1202 rp->br_reason = reason;
1203 rp->br_explan = explan;
1206 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1208 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1209 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1210 fh->fh_ox_id = rx_fh->fh_ox_id;
1211 fh->fh_rx_id = rx_fh->fh_rx_id;
1212 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1213 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1214 fh->fh_type = FC_TYPE_BLS;
1217 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1218 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1219 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1220 * Last ACK uses bits 7-6 (continue sequence),
1221 * bits 5-4 are meaningful (what kind of ACK to use).
1222 * Always set LAST_SEQ, END_SEQ.
1224 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1225 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1226 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1227 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1228 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1229 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1230 f_ctl &= ~FC_FC_FIRST_SEQ;
1231 hton24(fh->fh_f_ctl, f_ctl);
1233 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1234 fr_eof(fp) = FC_EOF_T;
1235 if (fc_sof_needs_ack(fr_sof(fp)))
1236 fr_eof(fp) = FC_EOF_N;
1238 lport->tt.frame_send(lport, fp);
1242 * fc_exch_recv_abts() - Handle an incoming ABTS
1243 * @ep: The exchange the abort was on
1244 * @rx_fp: The ABTS frame
1246 * This would be for target mode usually, but could be due to lost
1247 * FCP transfer ready, confirm or RRQ. We always handle this as an
1248 * exchange abort, ignoring the parameter.
1250 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1252 struct fc_frame *fp;
1253 struct fc_ba_acc *ap;
1254 struct fc_frame_header *fh;
1255 struct fc_seq *sp;
1257 if (!ep)
1258 goto reject;
1259 spin_lock_bh(&ep->ex_lock);
1260 if (ep->esb_stat & ESB_ST_COMPLETE) {
1261 spin_unlock_bh(&ep->ex_lock);
1262 goto reject;
1264 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1265 fc_exch_hold(ep); /* hold for REC_QUAL */
1266 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1267 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1269 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1270 if (!fp) {
1271 spin_unlock_bh(&ep->ex_lock);
1272 goto free;
1274 fh = fc_frame_header_get(fp);
1275 ap = fc_frame_payload_get(fp, sizeof(*ap));
1276 memset(ap, 0, sizeof(*ap));
1277 sp = &ep->seq;
1278 ap->ba_high_seq_cnt = htons(0xffff);
1279 if (sp->ssb_stat & SSB_ST_RESP) {
1280 ap->ba_seq_id = sp->id;
1281 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1282 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1283 ap->ba_low_seq_cnt = htons(sp->cnt);
1285 sp = fc_seq_start_next_locked(sp);
1286 spin_unlock_bh(&ep->ex_lock);
1287 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1288 fc_frame_free(rx_fp);
1289 return;
1291 reject:
1292 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1293 free:
1294 fc_frame_free(rx_fp);
1298 * fc_seq_assign() - Assign exchange and sequence for incoming request
1299 * @lport: The local port that received the request
1300 * @fp: The request frame
1302 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1303 * A reference will be held on the exchange/sequence for the caller, which
1304 * must call fc_seq_release().
1306 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1308 struct fc_exch_mgr_anchor *ema;
1310 WARN_ON(lport != fr_dev(fp));
1311 WARN_ON(fr_seq(fp));
1312 fr_seq(fp) = NULL;
1314 list_for_each_entry(ema, &lport->ema_list, ema_list)
1315 if ((!ema->match || ema->match(fp)) &&
1316 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1317 break;
1318 return fr_seq(fp);
1322 * fc_seq_release() - Release the hold
1323 * @sp: The sequence.
1325 static void fc_seq_release(struct fc_seq *sp)
1327 fc_exch_release(fc_seq_exch(sp));
1331 * fc_exch_recv_req() - Handler for an incoming request
1332 * @lport: The local port that received the request
1333 * @mp: The EM that the exchange is on
1334 * @fp: The request frame
1336 * This is used when the other end is originating the exchange
1337 * and the sequence.
1339 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1340 struct fc_frame *fp)
1342 struct fc_frame_header *fh = fc_frame_header_get(fp);
1343 struct fc_seq *sp = NULL;
1344 struct fc_exch *ep = NULL;
1345 enum fc_pf_rjt_reason reject;
1347 /* We can have the wrong fc_lport at this point with NPIV, which is a
1348 * problem now that we know a new exchange needs to be allocated
1350 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1351 if (!lport) {
1352 fc_frame_free(fp);
1353 return;
1355 fr_dev(fp) = lport;
1357 BUG_ON(fr_seq(fp)); /* XXX remove later */
1360 * If the RX_ID is 0xffff, don't allocate an exchange.
1361 * The upper-level protocol may request one later, if needed.
1363 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1364 return lport->tt.lport_recv(lport, fp);
1366 reject = fc_seq_lookup_recip(lport, mp, fp);
1367 if (reject == FC_RJT_NONE) {
1368 sp = fr_seq(fp); /* sequence will be held */
1369 ep = fc_seq_exch(sp);
1370 fc_seq_send_ack(sp, fp);
1371 ep->encaps = fr_encaps(fp);
1374 * Call the receive function.
1376 * The receive function may allocate a new sequence
1377 * over the old one, so we shouldn't change the
1378 * sequence after this.
1380 * The frame will be freed by the receive function.
1381 * If new exch resp handler is valid then call that
1382 * first.
1384 if (ep->resp)
1385 ep->resp(sp, fp, ep->arg);
1386 else
1387 lport->tt.lport_recv(lport, fp);
1388 fc_exch_release(ep); /* release from lookup */
1389 } else {
1390 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1391 reject);
1392 fc_frame_free(fp);
1397 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1398 * end is the originator of the sequence that is a
1399 * response to our initial exchange
1400 * @mp: The EM that the exchange is on
1401 * @fp: The response frame
1403 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1405 struct fc_frame_header *fh = fc_frame_header_get(fp);
1406 struct fc_seq *sp;
1407 struct fc_exch *ep;
1408 enum fc_sof sof;
1409 u32 f_ctl;
1410 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1411 void *ex_resp_arg;
1412 int rc;
1414 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1415 if (!ep) {
1416 atomic_inc(&mp->stats.xid_not_found);
1417 goto out;
1419 if (ep->esb_stat & ESB_ST_COMPLETE) {
1420 atomic_inc(&mp->stats.xid_not_found);
1421 goto rel;
1423 if (ep->rxid == FC_XID_UNKNOWN)
1424 ep->rxid = ntohs(fh->fh_rx_id);
1425 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1426 atomic_inc(&mp->stats.xid_not_found);
1427 goto rel;
1429 if (ep->did != ntoh24(fh->fh_s_id) &&
1430 ep->did != FC_FID_FLOGI) {
1431 atomic_inc(&mp->stats.xid_not_found);
1432 goto rel;
1434 sof = fr_sof(fp);
1435 sp = &ep->seq;
1436 if (fc_sof_is_init(sof)) {
1437 sp->ssb_stat |= SSB_ST_RESP;
1438 sp->id = fh->fh_seq_id;
1439 } else if (sp->id != fh->fh_seq_id) {
1440 atomic_inc(&mp->stats.seq_not_found);
1441 goto rel;
1444 f_ctl = ntoh24(fh->fh_f_ctl);
1445 fr_seq(fp) = sp;
1446 if (f_ctl & FC_FC_SEQ_INIT)
1447 ep->esb_stat |= ESB_ST_SEQ_INIT;
1449 if (fc_sof_needs_ack(sof))
1450 fc_seq_send_ack(sp, fp);
1451 resp = ep->resp;
1452 ex_resp_arg = ep->arg;
1454 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1455 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1456 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1457 spin_lock_bh(&ep->ex_lock);
1458 resp = ep->resp;
1459 rc = fc_exch_done_locked(ep);
1460 WARN_ON(fc_seq_exch(sp) != ep);
1461 spin_unlock_bh(&ep->ex_lock);
1462 if (!rc)
1463 fc_exch_delete(ep);
1467 * Call the receive function.
1468 * The sequence is held (has a refcnt) for us,
1469 * but not for the receive function.
1471 * The receive function may allocate a new sequence
1472 * over the old one, so we shouldn't change the
1473 * sequence after this.
1475 * The frame will be freed by the receive function.
1476 * If new exch resp handler is valid then call that
1477 * first.
1479 if (resp)
1480 resp(sp, fp, ex_resp_arg);
1481 else
1482 fc_frame_free(fp);
1483 fc_exch_release(ep);
1484 return;
1485 rel:
1486 fc_exch_release(ep);
1487 out:
1488 fc_frame_free(fp);
1492 * fc_exch_recv_resp() - Handler for a sequence where other end is
1493 * responding to our sequence
1494 * @mp: The EM that the exchange is on
1495 * @fp: The response frame
1497 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1499 struct fc_seq *sp;
1501 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1503 if (!sp)
1504 atomic_inc(&mp->stats.xid_not_found);
1505 else
1506 atomic_inc(&mp->stats.non_bls_resp);
1508 fc_frame_free(fp);
1512 * fc_exch_abts_resp() - Handler for a response to an ABT
1513 * @ep: The exchange that the frame is on
1514 * @fp: The response frame
1516 * This response would be to an ABTS cancelling an exchange or sequence.
1517 * The response can be either BA_ACC or BA_RJT
1519 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1521 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1522 void *ex_resp_arg;
1523 struct fc_frame_header *fh;
1524 struct fc_ba_acc *ap;
1525 struct fc_seq *sp;
1526 u16 low;
1527 u16 high;
1528 int rc = 1, has_rec = 0;
1530 fh = fc_frame_header_get(fp);
1531 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1532 fc_exch_rctl_name(fh->fh_r_ctl));
1534 if (cancel_delayed_work_sync(&ep->timeout_work))
1535 fc_exch_release(ep); /* release from pending timer hold */
1537 spin_lock_bh(&ep->ex_lock);
1538 switch (fh->fh_r_ctl) {
1539 case FC_RCTL_BA_ACC:
1540 ap = fc_frame_payload_get(fp, sizeof(*ap));
1541 if (!ap)
1542 break;
1545 * Decide whether to establish a Recovery Qualifier.
1546 * We do this if there is a non-empty SEQ_CNT range and
1547 * SEQ_ID is the same as the one we aborted.
1549 low = ntohs(ap->ba_low_seq_cnt);
1550 high = ntohs(ap->ba_high_seq_cnt);
1551 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1552 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1553 ap->ba_seq_id == ep->seq_id) && low != high) {
1554 ep->esb_stat |= ESB_ST_REC_QUAL;
1555 fc_exch_hold(ep); /* hold for recovery qualifier */
1556 has_rec = 1;
1558 break;
1559 case FC_RCTL_BA_RJT:
1560 break;
1561 default:
1562 break;
1565 resp = ep->resp;
1566 ex_resp_arg = ep->arg;
1568 /* do we need to do some other checks here. Can we reuse more of
1569 * fc_exch_recv_seq_resp
1571 sp = &ep->seq;
1573 * do we want to check END_SEQ as well as LAST_SEQ here?
1575 if (ep->fh_type != FC_TYPE_FCP &&
1576 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1577 rc = fc_exch_done_locked(ep);
1578 spin_unlock_bh(&ep->ex_lock);
1579 if (!rc)
1580 fc_exch_delete(ep);
1582 if (resp)
1583 resp(sp, fp, ex_resp_arg);
1584 else
1585 fc_frame_free(fp);
1587 if (has_rec)
1588 fc_exch_timer_set(ep, ep->r_a_tov);
1593 * fc_exch_recv_bls() - Handler for a BLS sequence
1594 * @mp: The EM that the exchange is on
1595 * @fp: The request frame
1597 * The BLS frame is always a sequence initiated by the remote side.
1598 * We may be either the originator or recipient of the exchange.
1600 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1602 struct fc_frame_header *fh;
1603 struct fc_exch *ep;
1604 u32 f_ctl;
1606 fh = fc_frame_header_get(fp);
1607 f_ctl = ntoh24(fh->fh_f_ctl);
1608 fr_seq(fp) = NULL;
1610 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1611 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1612 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1613 spin_lock_bh(&ep->ex_lock);
1614 ep->esb_stat |= ESB_ST_SEQ_INIT;
1615 spin_unlock_bh(&ep->ex_lock);
1617 if (f_ctl & FC_FC_SEQ_CTX) {
1619 * A response to a sequence we initiated.
1620 * This should only be ACKs for class 2 or F.
1622 switch (fh->fh_r_ctl) {
1623 case FC_RCTL_ACK_1:
1624 case FC_RCTL_ACK_0:
1625 break;
1626 default:
1627 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1628 fh->fh_r_ctl,
1629 fc_exch_rctl_name(fh->fh_r_ctl));
1630 break;
1632 fc_frame_free(fp);
1633 } else {
1634 switch (fh->fh_r_ctl) {
1635 case FC_RCTL_BA_RJT:
1636 case FC_RCTL_BA_ACC:
1637 if (ep)
1638 fc_exch_abts_resp(ep, fp);
1639 else
1640 fc_frame_free(fp);
1641 break;
1642 case FC_RCTL_BA_ABTS:
1643 fc_exch_recv_abts(ep, fp);
1644 break;
1645 default: /* ignore junk */
1646 fc_frame_free(fp);
1647 break;
1650 if (ep)
1651 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1655 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1656 * @rx_fp: The received frame, not freed here.
1658 * If this fails due to allocation or transmit congestion, assume the
1659 * originator will repeat the sequence.
1661 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1663 struct fc_lport *lport;
1664 struct fc_els_ls_acc *acc;
1665 struct fc_frame *fp;
1667 lport = fr_dev(rx_fp);
1668 fp = fc_frame_alloc(lport, sizeof(*acc));
1669 if (!fp)
1670 return;
1671 acc = fc_frame_payload_get(fp, sizeof(*acc));
1672 memset(acc, 0, sizeof(*acc));
1673 acc->la_cmd = ELS_LS_ACC;
1674 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1675 lport->tt.frame_send(lport, fp);
1679 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1680 * @rx_fp: The received frame, not freed here.
1681 * @reason: The reason the sequence is being rejected
1682 * @explan: The explanation for the rejection
1684 * If this fails due to allocation or transmit congestion, assume the
1685 * originator will repeat the sequence.
1687 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1688 enum fc_els_rjt_explan explan)
1690 struct fc_lport *lport;
1691 struct fc_els_ls_rjt *rjt;
1692 struct fc_frame *fp;
1694 lport = fr_dev(rx_fp);
1695 fp = fc_frame_alloc(lport, sizeof(*rjt));
1696 if (!fp)
1697 return;
1698 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1699 memset(rjt, 0, sizeof(*rjt));
1700 rjt->er_cmd = ELS_LS_RJT;
1701 rjt->er_reason = reason;
1702 rjt->er_explan = explan;
1703 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1704 lport->tt.frame_send(lport, fp);
1708 * fc_exch_reset() - Reset an exchange
1709 * @ep: The exchange to be reset
1711 static void fc_exch_reset(struct fc_exch *ep)
1713 struct fc_seq *sp;
1714 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1715 void *arg;
1716 int rc = 1;
1718 spin_lock_bh(&ep->ex_lock);
1719 ep->state |= FC_EX_RST_CLEANUP;
1720 if (cancel_delayed_work(&ep->timeout_work))
1721 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1722 resp = ep->resp;
1723 ep->resp = NULL;
1724 if (ep->esb_stat & ESB_ST_REC_QUAL)
1725 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1726 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1727 arg = ep->arg;
1728 sp = &ep->seq;
1729 rc = fc_exch_done_locked(ep);
1730 spin_unlock_bh(&ep->ex_lock);
1731 if (!rc)
1732 fc_exch_delete(ep);
1734 if (resp)
1735 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1739 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1740 * @lport: The local port that the exchange pool is on
1741 * @pool: The exchange pool to be reset
1742 * @sid: The source ID
1743 * @did: The destination ID
1745 * Resets a per cpu exches pool, releasing all of its sequences
1746 * and exchanges. If sid is non-zero then reset only exchanges
1747 * we sourced from the local port's FID. If did is non-zero then
1748 * only reset exchanges destined for the local port's FID.
1750 static void fc_exch_pool_reset(struct fc_lport *lport,
1751 struct fc_exch_pool *pool,
1752 u32 sid, u32 did)
1754 struct fc_exch *ep;
1755 struct fc_exch *next;
1757 spin_lock_bh(&pool->lock);
1758 restart:
1759 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1760 if ((lport == ep->lp) &&
1761 (sid == 0 || sid == ep->sid) &&
1762 (did == 0 || did == ep->did)) {
1763 fc_exch_hold(ep);
1764 spin_unlock_bh(&pool->lock);
1766 fc_exch_reset(ep);
1768 fc_exch_release(ep);
1769 spin_lock_bh(&pool->lock);
1772 * must restart loop incase while lock
1773 * was down multiple eps were released.
1775 goto restart;
1778 spin_unlock_bh(&pool->lock);
1782 * fc_exch_mgr_reset() - Reset all EMs of a local port
1783 * @lport: The local port whose EMs are to be reset
1784 * @sid: The source ID
1785 * @did: The destination ID
1787 * Reset all EMs associated with a given local port. Release all
1788 * sequences and exchanges. If sid is non-zero then reset only the
1789 * exchanges sent from the local port's FID. If did is non-zero then
1790 * reset only exchanges destined for the local port's FID.
1792 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1794 struct fc_exch_mgr_anchor *ema;
1795 unsigned int cpu;
1797 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1798 for_each_possible_cpu(cpu)
1799 fc_exch_pool_reset(lport,
1800 per_cpu_ptr(ema->mp->pool, cpu),
1801 sid, did);
1804 EXPORT_SYMBOL(fc_exch_mgr_reset);
1807 * fc_exch_lookup() - find an exchange
1808 * @lport: The local port
1809 * @xid: The exchange ID
1811 * Returns exchange pointer with hold for caller, or NULL if not found.
1813 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1815 struct fc_exch_mgr_anchor *ema;
1817 list_for_each_entry(ema, &lport->ema_list, ema_list)
1818 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1819 return fc_exch_find(ema->mp, xid);
1820 return NULL;
1824 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1825 * @rfp: The REC frame, not freed here.
1827 * Note that the requesting port may be different than the S_ID in the request.
1829 static void fc_exch_els_rec(struct fc_frame *rfp)
1831 struct fc_lport *lport;
1832 struct fc_frame *fp;
1833 struct fc_exch *ep;
1834 struct fc_els_rec *rp;
1835 struct fc_els_rec_acc *acc;
1836 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1837 enum fc_els_rjt_explan explan;
1838 u32 sid;
1839 u16 rxid;
1840 u16 oxid;
1842 lport = fr_dev(rfp);
1843 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1844 explan = ELS_EXPL_INV_LEN;
1845 if (!rp)
1846 goto reject;
1847 sid = ntoh24(rp->rec_s_id);
1848 rxid = ntohs(rp->rec_rx_id);
1849 oxid = ntohs(rp->rec_ox_id);
1851 ep = fc_exch_lookup(lport,
1852 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1853 explan = ELS_EXPL_OXID_RXID;
1854 if (!ep)
1855 goto reject;
1856 if (ep->oid != sid || oxid != ep->oxid)
1857 goto rel;
1858 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1859 goto rel;
1860 fp = fc_frame_alloc(lport, sizeof(*acc));
1861 if (!fp)
1862 goto out;
1864 acc = fc_frame_payload_get(fp, sizeof(*acc));
1865 memset(acc, 0, sizeof(*acc));
1866 acc->reca_cmd = ELS_LS_ACC;
1867 acc->reca_ox_id = rp->rec_ox_id;
1868 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1869 acc->reca_rx_id = htons(ep->rxid);
1870 if (ep->sid == ep->oid)
1871 hton24(acc->reca_rfid, ep->did);
1872 else
1873 hton24(acc->reca_rfid, ep->sid);
1874 acc->reca_fc4value = htonl(ep->seq.rec_data);
1875 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1876 ESB_ST_SEQ_INIT |
1877 ESB_ST_COMPLETE));
1878 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1879 lport->tt.frame_send(lport, fp);
1880 out:
1881 fc_exch_release(ep);
1882 return;
1884 rel:
1885 fc_exch_release(ep);
1886 reject:
1887 fc_seq_ls_rjt(rfp, reason, explan);
1891 * fc_exch_rrq_resp() - Handler for RRQ responses
1892 * @sp: The sequence that the RRQ is on
1893 * @fp: The RRQ frame
1894 * @arg: The exchange that the RRQ is on
1896 * TODO: fix error handler.
1898 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1900 struct fc_exch *aborted_ep = arg;
1901 unsigned int op;
1903 if (IS_ERR(fp)) {
1904 int err = PTR_ERR(fp);
1906 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1907 goto cleanup;
1908 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1909 "frame error %d\n", err);
1910 return;
1913 op = fc_frame_payload_op(fp);
1914 fc_frame_free(fp);
1916 switch (op) {
1917 case ELS_LS_RJT:
1918 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1919 /* fall through */
1920 case ELS_LS_ACC:
1921 goto cleanup;
1922 default:
1923 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1924 "for RRQ", op);
1925 return;
1928 cleanup:
1929 fc_exch_done(&aborted_ep->seq);
1930 /* drop hold for rec qual */
1931 fc_exch_release(aborted_ep);
1936 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1937 * @lport: The local port to send the frame on
1938 * @fp: The frame to be sent
1939 * @resp: The response handler for this request
1940 * @destructor: The destructor for the exchange
1941 * @arg: The argument to be passed to the response handler
1942 * @timer_msec: The timeout period for the exchange
1944 * The frame pointer with some of the header's fields must be
1945 * filled before calling this routine, those fields are:
1947 * - routing control
1948 * - FC port did
1949 * - FC port sid
1950 * - FC header type
1951 * - frame control
1952 * - parameter or relative offset
1954 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1955 struct fc_frame *fp,
1956 void (*resp)(struct fc_seq *,
1957 struct fc_frame *fp,
1958 void *arg),
1959 void (*destructor)(struct fc_seq *,
1960 void *),
1961 void *arg, u32 timer_msec)
1963 struct fc_exch *ep;
1964 struct fc_seq *sp = NULL;
1965 struct fc_frame_header *fh;
1966 int rc = 1;
1968 ep = fc_exch_alloc(lport, fp);
1969 if (!ep) {
1970 fc_frame_free(fp);
1971 return NULL;
1973 ep->esb_stat |= ESB_ST_SEQ_INIT;
1974 fh = fc_frame_header_get(fp);
1975 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1976 ep->resp = resp;
1977 ep->destructor = destructor;
1978 ep->arg = arg;
1979 ep->r_a_tov = FC_DEF_R_A_TOV;
1980 ep->lp = lport;
1981 sp = &ep->seq;
1983 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1984 ep->f_ctl = ntoh24(fh->fh_f_ctl);
1985 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1986 sp->cnt++;
1988 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1989 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1991 if (unlikely(lport->tt.frame_send(lport, fp)))
1992 goto err;
1994 if (timer_msec)
1995 fc_exch_timer_set_locked(ep, timer_msec);
1996 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
1998 if (ep->f_ctl & FC_FC_SEQ_INIT)
1999 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2000 spin_unlock_bh(&ep->ex_lock);
2001 return sp;
2002 err:
2003 fc_fcp_ddp_done(fr_fsp(fp));
2004 rc = fc_exch_done_locked(ep);
2005 spin_unlock_bh(&ep->ex_lock);
2006 if (!rc)
2007 fc_exch_delete(ep);
2008 return NULL;
2012 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2013 * @ep: The exchange to send the RRQ on
2015 * This tells the remote port to stop blocking the use of
2016 * the exchange and the seq_cnt range.
2018 static void fc_exch_rrq(struct fc_exch *ep)
2020 struct fc_lport *lport;
2021 struct fc_els_rrq *rrq;
2022 struct fc_frame *fp;
2023 u32 did;
2025 lport = ep->lp;
2027 fp = fc_frame_alloc(lport, sizeof(*rrq));
2028 if (!fp)
2029 goto retry;
2031 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2032 memset(rrq, 0, sizeof(*rrq));
2033 rrq->rrq_cmd = ELS_RRQ;
2034 hton24(rrq->rrq_s_id, ep->sid);
2035 rrq->rrq_ox_id = htons(ep->oxid);
2036 rrq->rrq_rx_id = htons(ep->rxid);
2038 did = ep->did;
2039 if (ep->esb_stat & ESB_ST_RESP)
2040 did = ep->sid;
2042 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2043 lport->port_id, FC_TYPE_ELS,
2044 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2046 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2047 lport->e_d_tov))
2048 return;
2050 retry:
2051 spin_lock_bh(&ep->ex_lock);
2052 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2053 spin_unlock_bh(&ep->ex_lock);
2054 /* drop hold for rec qual */
2055 fc_exch_release(ep);
2056 return;
2058 ep->esb_stat |= ESB_ST_REC_QUAL;
2059 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2060 spin_unlock_bh(&ep->ex_lock);
2064 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2065 * @fp: The RRQ frame, not freed here.
2067 static void fc_exch_els_rrq(struct fc_frame *fp)
2069 struct fc_lport *lport;
2070 struct fc_exch *ep = NULL; /* request or subject exchange */
2071 struct fc_els_rrq *rp;
2072 u32 sid;
2073 u16 xid;
2074 enum fc_els_rjt_explan explan;
2076 lport = fr_dev(fp);
2077 rp = fc_frame_payload_get(fp, sizeof(*rp));
2078 explan = ELS_EXPL_INV_LEN;
2079 if (!rp)
2080 goto reject;
2083 * lookup subject exchange.
2085 sid = ntoh24(rp->rrq_s_id); /* subject source */
2086 xid = fc_host_port_id(lport->host) == sid ?
2087 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2088 ep = fc_exch_lookup(lport, xid);
2089 explan = ELS_EXPL_OXID_RXID;
2090 if (!ep)
2091 goto reject;
2092 spin_lock_bh(&ep->ex_lock);
2093 if (ep->oxid != ntohs(rp->rrq_ox_id))
2094 goto unlock_reject;
2095 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2096 ep->rxid != FC_XID_UNKNOWN)
2097 goto unlock_reject;
2098 explan = ELS_EXPL_SID;
2099 if (ep->sid != sid)
2100 goto unlock_reject;
2103 * Clear Recovery Qualifier state, and cancel timer if complete.
2105 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2106 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2107 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2109 if (ep->esb_stat & ESB_ST_COMPLETE) {
2110 if (cancel_delayed_work(&ep->timeout_work))
2111 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2114 spin_unlock_bh(&ep->ex_lock);
2117 * Send LS_ACC.
2119 fc_seq_ls_acc(fp);
2120 goto out;
2122 unlock_reject:
2123 spin_unlock_bh(&ep->ex_lock);
2124 reject:
2125 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2126 out:
2127 if (ep)
2128 fc_exch_release(ep); /* drop hold from fc_exch_find */
2132 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2133 * @lport: The local port to add the exchange manager to
2134 * @mp: The exchange manager to be added to the local port
2135 * @match: The match routine that indicates when this EM should be used
2137 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2138 struct fc_exch_mgr *mp,
2139 bool (*match)(struct fc_frame *))
2141 struct fc_exch_mgr_anchor *ema;
2143 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2144 if (!ema)
2145 return ema;
2147 ema->mp = mp;
2148 ema->match = match;
2149 /* add EM anchor to EM anchors list */
2150 list_add_tail(&ema->ema_list, &lport->ema_list);
2151 kref_get(&mp->kref);
2152 return ema;
2154 EXPORT_SYMBOL(fc_exch_mgr_add);
2157 * fc_exch_mgr_destroy() - Destroy an exchange manager
2158 * @kref: The reference to the EM to be destroyed
2160 static void fc_exch_mgr_destroy(struct kref *kref)
2162 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2164 mempool_destroy(mp->ep_pool);
2165 free_percpu(mp->pool);
2166 kfree(mp);
2170 * fc_exch_mgr_del() - Delete an EM from a local port's list
2171 * @ema: The exchange manager anchor identifying the EM to be deleted
2173 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2175 /* remove EM anchor from EM anchors list */
2176 list_del(&ema->ema_list);
2177 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2178 kfree(ema);
2180 EXPORT_SYMBOL(fc_exch_mgr_del);
2183 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2184 * @src: Source lport to clone exchange managers from
2185 * @dst: New lport that takes references to all the exchange managers
2187 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2189 struct fc_exch_mgr_anchor *ema, *tmp;
2191 list_for_each_entry(ema, &src->ema_list, ema_list) {
2192 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2193 goto err;
2195 return 0;
2196 err:
2197 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2198 fc_exch_mgr_del(ema);
2199 return -ENOMEM;
2201 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2204 * fc_exch_mgr_alloc() - Allocate an exchange manager
2205 * @lport: The local port that the new EM will be associated with
2206 * @class: The default FC class for new exchanges
2207 * @min_xid: The minimum XID for exchanges from the new EM
2208 * @max_xid: The maximum XID for exchanges from the new EM
2209 * @match: The match routine for the new EM
2211 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2212 enum fc_class class,
2213 u16 min_xid, u16 max_xid,
2214 bool (*match)(struct fc_frame *))
2216 struct fc_exch_mgr *mp;
2217 u16 pool_exch_range;
2218 size_t pool_size;
2219 unsigned int cpu;
2220 struct fc_exch_pool *pool;
2222 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2223 (min_xid & fc_cpu_mask) != 0) {
2224 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2225 min_xid, max_xid);
2226 return NULL;
2230 * allocate memory for EM
2232 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2233 if (!mp)
2234 return NULL;
2236 mp->class = class;
2237 /* adjust em exch xid range for offload */
2238 mp->min_xid = min_xid;
2239 mp->max_xid = max_xid;
2241 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2242 if (!mp->ep_pool)
2243 goto free_mp;
2246 * Setup per cpu exch pool with entire exchange id range equally
2247 * divided across all cpus. The exch pointers array memory is
2248 * allocated for exch range per pool.
2250 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2251 mp->pool_max_index = pool_exch_range - 1;
2254 * Allocate and initialize per cpu exch pool
2256 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2257 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2258 if (!mp->pool)
2259 goto free_mempool;
2260 for_each_possible_cpu(cpu) {
2261 pool = per_cpu_ptr(mp->pool, cpu);
2262 pool->left = FC_XID_UNKNOWN;
2263 pool->right = FC_XID_UNKNOWN;
2264 spin_lock_init(&pool->lock);
2265 INIT_LIST_HEAD(&pool->ex_list);
2268 kref_init(&mp->kref);
2269 if (!fc_exch_mgr_add(lport, mp, match)) {
2270 free_percpu(mp->pool);
2271 goto free_mempool;
2275 * Above kref_init() sets mp->kref to 1 and then
2276 * call to fc_exch_mgr_add incremented mp->kref again,
2277 * so adjust that extra increment.
2279 kref_put(&mp->kref, fc_exch_mgr_destroy);
2280 return mp;
2282 free_mempool:
2283 mempool_destroy(mp->ep_pool);
2284 free_mp:
2285 kfree(mp);
2286 return NULL;
2288 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2291 * fc_exch_mgr_free() - Free all exchange managers on a local port
2292 * @lport: The local port whose EMs are to be freed
2294 void fc_exch_mgr_free(struct fc_lport *lport)
2296 struct fc_exch_mgr_anchor *ema, *next;
2298 flush_workqueue(fc_exch_workqueue);
2299 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2300 fc_exch_mgr_del(ema);
2302 EXPORT_SYMBOL(fc_exch_mgr_free);
2305 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2306 * upon 'xid'.
2307 * @f_ctl: f_ctl
2308 * @lport: The local port the frame was received on
2309 * @fh: The received frame header
2311 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2312 struct fc_lport *lport,
2313 struct fc_frame_header *fh)
2315 struct fc_exch_mgr_anchor *ema;
2316 u16 xid;
2318 if (f_ctl & FC_FC_EX_CTX)
2319 xid = ntohs(fh->fh_ox_id);
2320 else {
2321 xid = ntohs(fh->fh_rx_id);
2322 if (xid == FC_XID_UNKNOWN)
2323 return list_entry(lport->ema_list.prev,
2324 typeof(*ema), ema_list);
2327 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2328 if ((xid >= ema->mp->min_xid) &&
2329 (xid <= ema->mp->max_xid))
2330 return ema;
2332 return NULL;
2335 * fc_exch_recv() - Handler for received frames
2336 * @lport: The local port the frame was received on
2337 * @fp: The received frame
2339 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2341 struct fc_frame_header *fh = fc_frame_header_get(fp);
2342 struct fc_exch_mgr_anchor *ema;
2343 u32 f_ctl;
2345 /* lport lock ? */
2346 if (!lport || lport->state == LPORT_ST_DISABLED) {
2347 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2348 "has not been initialized correctly\n");
2349 fc_frame_free(fp);
2350 return;
2353 f_ctl = ntoh24(fh->fh_f_ctl);
2354 ema = fc_find_ema(f_ctl, lport, fh);
2355 if (!ema) {
2356 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2357 "fc_ctl <0x%x>, xid <0x%x>\n",
2358 f_ctl,
2359 (f_ctl & FC_FC_EX_CTX) ?
2360 ntohs(fh->fh_ox_id) :
2361 ntohs(fh->fh_rx_id));
2362 fc_frame_free(fp);
2363 return;
2367 * If frame is marked invalid, just drop it.
2369 switch (fr_eof(fp)) {
2370 case FC_EOF_T:
2371 if (f_ctl & FC_FC_END_SEQ)
2372 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2373 /* fall through */
2374 case FC_EOF_N:
2375 if (fh->fh_type == FC_TYPE_BLS)
2376 fc_exch_recv_bls(ema->mp, fp);
2377 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2378 FC_FC_EX_CTX)
2379 fc_exch_recv_seq_resp(ema->mp, fp);
2380 else if (f_ctl & FC_FC_SEQ_CTX)
2381 fc_exch_recv_resp(ema->mp, fp);
2382 else /* no EX_CTX and no SEQ_CTX */
2383 fc_exch_recv_req(lport, ema->mp, fp);
2384 break;
2385 default:
2386 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2387 fr_eof(fp));
2388 fc_frame_free(fp);
2391 EXPORT_SYMBOL(fc_exch_recv);
2394 * fc_exch_init() - Initialize the exchange layer for a local port
2395 * @lport: The local port to initialize the exchange layer for
2397 int fc_exch_init(struct fc_lport *lport)
2399 if (!lport->tt.seq_start_next)
2400 lport->tt.seq_start_next = fc_seq_start_next;
2402 if (!lport->tt.seq_set_resp)
2403 lport->tt.seq_set_resp = fc_seq_set_resp;
2405 if (!lport->tt.exch_seq_send)
2406 lport->tt.exch_seq_send = fc_exch_seq_send;
2408 if (!lport->tt.seq_send)
2409 lport->tt.seq_send = fc_seq_send;
2411 if (!lport->tt.seq_els_rsp_send)
2412 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2414 if (!lport->tt.exch_done)
2415 lport->tt.exch_done = fc_exch_done;
2417 if (!lport->tt.exch_mgr_reset)
2418 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2420 if (!lport->tt.seq_exch_abort)
2421 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2423 if (!lport->tt.seq_assign)
2424 lport->tt.seq_assign = fc_seq_assign;
2426 if (!lport->tt.seq_release)
2427 lport->tt.seq_release = fc_seq_release;
2429 return 0;
2431 EXPORT_SYMBOL(fc_exch_init);
2434 * fc_setup_exch_mgr() - Setup an exchange manager
2436 int fc_setup_exch_mgr(void)
2438 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2439 0, SLAB_HWCACHE_ALIGN, NULL);
2440 if (!fc_em_cachep)
2441 return -ENOMEM;
2444 * Initialize fc_cpu_mask and fc_cpu_order. The
2445 * fc_cpu_mask is set for nr_cpu_ids rounded up
2446 * to order of 2's * power and order is stored
2447 * in fc_cpu_order as this is later required in
2448 * mapping between an exch id and exch array index
2449 * in per cpu exch pool.
2451 * This round up is required to align fc_cpu_mask
2452 * to exchange id's lower bits such that all incoming
2453 * frames of an exchange gets delivered to the same
2454 * cpu on which exchange originated by simple bitwise
2455 * AND operation between fc_cpu_mask and exchange id.
2457 fc_cpu_mask = 1;
2458 fc_cpu_order = 0;
2459 while (fc_cpu_mask < nr_cpu_ids) {
2460 fc_cpu_mask <<= 1;
2461 fc_cpu_order++;
2463 fc_cpu_mask--;
2465 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2466 if (!fc_exch_workqueue)
2467 goto err;
2468 return 0;
2469 err:
2470 kmem_cache_destroy(fc_em_cachep);
2471 return -ENOMEM;
2475 * fc_destroy_exch_mgr() - Destroy an exchange manager
2477 void fc_destroy_exch_mgr(void)
2479 destroy_workqueue(fc_exch_workqueue);
2480 kmem_cache_destroy(fc_em_cachep);