include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / drivers / usb / host / oxu210hp-hcd.c
blobdcd889803f0f2eb920582403c268868e4b00e50c
1 /*
2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
6 * the chip is a quasi-EHCI compatible.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/init.h>
33 #include <linux/timer.h>
34 #include <linux/list.h>
35 #include <linux/interrupt.h>
36 #include <linux/usb.h>
37 #include <linux/usb/hcd.h>
38 #include <linux/moduleparam.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/io.h>
42 #include <asm/irq.h>
43 #include <asm/system.h>
44 #include <asm/unaligned.h>
46 #include <linux/irq.h>
47 #include <linux/platform_device.h>
49 #include "oxu210hp.h"
51 #define DRIVER_VERSION "0.0.50"
54 * Main defines
57 #define oxu_dbg(oxu, fmt, args...) \
58 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
59 #define oxu_err(oxu, fmt, args...) \
60 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
61 #define oxu_info(oxu, fmt, args...) \
62 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
64 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
66 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
69 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
71 return (struct oxu_hcd *) (hcd->hcd_priv);
75 * Debug stuff
78 #undef OXU_URB_TRACE
79 #undef OXU_VERBOSE_DEBUG
81 #ifdef OXU_VERBOSE_DEBUG
82 #define oxu_vdbg oxu_dbg
83 #else
84 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
85 #endif
87 #ifdef DEBUG
89 static int __attribute__((__unused__))
90 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
92 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
93 label, label[0] ? " " : "", status,
94 (status & STS_ASS) ? " Async" : "",
95 (status & STS_PSS) ? " Periodic" : "",
96 (status & STS_RECL) ? " Recl" : "",
97 (status & STS_HALT) ? " Halt" : "",
98 (status & STS_IAA) ? " IAA" : "",
99 (status & STS_FATAL) ? " FATAL" : "",
100 (status & STS_FLR) ? " FLR" : "",
101 (status & STS_PCD) ? " PCD" : "",
102 (status & STS_ERR) ? " ERR" : "",
103 (status & STS_INT) ? " INT" : ""
107 static int __attribute__((__unused__))
108 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
110 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
111 label, label[0] ? " " : "", enable,
112 (enable & STS_IAA) ? " IAA" : "",
113 (enable & STS_FATAL) ? " FATAL" : "",
114 (enable & STS_FLR) ? " FLR" : "",
115 (enable & STS_PCD) ? " PCD" : "",
116 (enable & STS_ERR) ? " ERR" : "",
117 (enable & STS_INT) ? " INT" : ""
121 static const char *const fls_strings[] =
122 { "1024", "512", "256", "??" };
124 static int dbg_command_buf(char *buf, unsigned len,
125 const char *label, u32 command)
127 return scnprintf(buf, len,
128 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
129 label, label[0] ? " " : "", command,
130 (command & CMD_PARK) ? "park" : "(park)",
131 CMD_PARK_CNT(command),
132 (command >> 16) & 0x3f,
133 (command & CMD_LRESET) ? " LReset" : "",
134 (command & CMD_IAAD) ? " IAAD" : "",
135 (command & CMD_ASE) ? " Async" : "",
136 (command & CMD_PSE) ? " Periodic" : "",
137 fls_strings[(command >> 2) & 0x3],
138 (command & CMD_RESET) ? " Reset" : "",
139 (command & CMD_RUN) ? "RUN" : "HALT"
143 static int dbg_port_buf(char *buf, unsigned len, const char *label,
144 int port, u32 status)
146 char *sig;
148 /* signaling state */
149 switch (status & (3 << 10)) {
150 case 0 << 10:
151 sig = "se0";
152 break;
153 case 1 << 10:
154 sig = "k"; /* low speed */
155 break;
156 case 2 << 10:
157 sig = "j";
158 break;
159 default:
160 sig = "?";
161 break;
164 return scnprintf(buf, len,
165 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
166 label, label[0] ? " " : "", port, status,
167 (status & PORT_POWER) ? " POWER" : "",
168 (status & PORT_OWNER) ? " OWNER" : "",
169 sig,
170 (status & PORT_RESET) ? " RESET" : "",
171 (status & PORT_SUSPEND) ? " SUSPEND" : "",
172 (status & PORT_RESUME) ? " RESUME" : "",
173 (status & PORT_OCC) ? " OCC" : "",
174 (status & PORT_OC) ? " OC" : "",
175 (status & PORT_PEC) ? " PEC" : "",
176 (status & PORT_PE) ? " PE" : "",
177 (status & PORT_CSC) ? " CSC" : "",
178 (status & PORT_CONNECT) ? " CONNECT" : ""
182 #else
184 static inline int __attribute__((__unused__))
185 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
186 { return 0; }
188 static inline int __attribute__((__unused__))
189 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
190 { return 0; }
192 static inline int __attribute__((__unused__))
193 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
194 { return 0; }
196 static inline int __attribute__((__unused__))
197 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
198 { return 0; }
200 #endif /* DEBUG */
202 /* functions have the "wrong" filename when they're output... */
203 #define dbg_status(oxu, label, status) { \
204 char _buf[80]; \
205 dbg_status_buf(_buf, sizeof _buf, label, status); \
206 oxu_dbg(oxu, "%s\n", _buf); \
209 #define dbg_cmd(oxu, label, command) { \
210 char _buf[80]; \
211 dbg_command_buf(_buf, sizeof _buf, label, command); \
212 oxu_dbg(oxu, "%s\n", _buf); \
215 #define dbg_port(oxu, label, port, status) { \
216 char _buf[80]; \
217 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
218 oxu_dbg(oxu, "%s\n", _buf); \
222 * Module parameters
225 /* Initial IRQ latency: faster than hw default */
226 static int log2_irq_thresh; /* 0 to 6 */
227 module_param(log2_irq_thresh, int, S_IRUGO);
228 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
230 /* Initial park setting: slower than hw default */
231 static unsigned park;
232 module_param(park, uint, S_IRUGO);
233 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
235 /* For flakey hardware, ignore overcurrent indicators */
236 static int ignore_oc;
237 module_param(ignore_oc, bool, S_IRUGO);
238 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
241 static void ehci_work(struct oxu_hcd *oxu);
242 static int oxu_hub_control(struct usb_hcd *hcd,
243 u16 typeReq, u16 wValue, u16 wIndex,
244 char *buf, u16 wLength);
247 * Local functions
250 /* Low level read/write registers functions */
251 static inline u32 oxu_readl(void *base, u32 reg)
253 return readl(base + reg);
256 static inline void oxu_writel(void *base, u32 reg, u32 val)
258 writel(val, base + reg);
261 static inline void timer_action_done(struct oxu_hcd *oxu,
262 enum ehci_timer_action action)
264 clear_bit(action, &oxu->actions);
267 static inline void timer_action(struct oxu_hcd *oxu,
268 enum ehci_timer_action action)
270 if (!test_and_set_bit(action, &oxu->actions)) {
271 unsigned long t;
273 switch (action) {
274 case TIMER_IAA_WATCHDOG:
275 t = EHCI_IAA_JIFFIES;
276 break;
277 case TIMER_IO_WATCHDOG:
278 t = EHCI_IO_JIFFIES;
279 break;
280 case TIMER_ASYNC_OFF:
281 t = EHCI_ASYNC_JIFFIES;
282 break;
283 case TIMER_ASYNC_SHRINK:
284 default:
285 t = EHCI_SHRINK_JIFFIES;
286 break;
288 t += jiffies;
289 /* all timings except IAA watchdog can be overridden.
290 * async queue SHRINK often precedes IAA. while it's ready
291 * to go OFF neither can matter, and afterwards the IO
292 * watchdog stops unless there's still periodic traffic.
294 if (action != TIMER_IAA_WATCHDOG
295 && t > oxu->watchdog.expires
296 && timer_pending(&oxu->watchdog))
297 return;
298 mod_timer(&oxu->watchdog, t);
303 * handshake - spin reading hc until handshake completes or fails
304 * @ptr: address of hc register to be read
305 * @mask: bits to look at in result of read
306 * @done: value of those bits when handshake succeeds
307 * @usec: timeout in microseconds
309 * Returns negative errno, or zero on success
311 * Success happens when the "mask" bits have the specified value (hardware
312 * handshake done). There are two failure modes: "usec" have passed (major
313 * hardware flakeout), or the register reads as all-ones (hardware removed).
315 * That last failure should_only happen in cases like physical cardbus eject
316 * before driver shutdown. But it also seems to be caused by bugs in cardbus
317 * bridge shutdown: shutting down the bridge before the devices using it.
319 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
320 u32 mask, u32 done, int usec)
322 u32 result;
324 do {
325 result = readl(ptr);
326 if (result == ~(u32)0) /* card removed */
327 return -ENODEV;
328 result &= mask;
329 if (result == done)
330 return 0;
331 udelay(1);
332 usec--;
333 } while (usec > 0);
334 return -ETIMEDOUT;
337 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
338 static int ehci_halt(struct oxu_hcd *oxu)
340 u32 temp = readl(&oxu->regs->status);
342 /* disable any irqs left enabled by previous code */
343 writel(0, &oxu->regs->intr_enable);
345 if ((temp & STS_HALT) != 0)
346 return 0;
348 temp = readl(&oxu->regs->command);
349 temp &= ~CMD_RUN;
350 writel(temp, &oxu->regs->command);
351 return handshake(oxu, &oxu->regs->status,
352 STS_HALT, STS_HALT, 16 * 125);
355 /* Put TDI/ARC silicon into EHCI mode */
356 static void tdi_reset(struct oxu_hcd *oxu)
358 u32 __iomem *reg_ptr;
359 u32 tmp;
361 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
362 tmp = readl(reg_ptr);
363 tmp |= 0x3;
364 writel(tmp, reg_ptr);
367 /* Reset a non-running (STS_HALT == 1) controller */
368 static int ehci_reset(struct oxu_hcd *oxu)
370 int retval;
371 u32 command = readl(&oxu->regs->command);
373 command |= CMD_RESET;
374 dbg_cmd(oxu, "reset", command);
375 writel(command, &oxu->regs->command);
376 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
377 oxu->next_statechange = jiffies;
378 retval = handshake(oxu, &oxu->regs->command,
379 CMD_RESET, 0, 250 * 1000);
381 if (retval)
382 return retval;
384 tdi_reset(oxu);
386 return retval;
389 /* Idle the controller (from running) */
390 static void ehci_quiesce(struct oxu_hcd *oxu)
392 u32 temp;
394 #ifdef DEBUG
395 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
396 BUG();
397 #endif
399 /* wait for any schedule enables/disables to take effect */
400 temp = readl(&oxu->regs->command) << 10;
401 temp &= STS_ASS | STS_PSS;
402 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
403 temp, 16 * 125) != 0) {
404 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
405 return;
408 /* then disable anything that's still active */
409 temp = readl(&oxu->regs->command);
410 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
411 writel(temp, &oxu->regs->command);
413 /* hardware can take 16 microframes to turn off ... */
414 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
415 0, 16 * 125) != 0) {
416 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
417 return;
421 static int check_reset_complete(struct oxu_hcd *oxu, int index,
422 u32 __iomem *status_reg, int port_status)
424 if (!(port_status & PORT_CONNECT)) {
425 oxu->reset_done[index] = 0;
426 return port_status;
429 /* if reset finished and it's still not enabled -- handoff */
430 if (!(port_status & PORT_PE)) {
431 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
432 index+1);
433 return port_status;
434 } else
435 oxu_dbg(oxu, "port %d high speed\n", index + 1);
437 return port_status;
440 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
441 struct usb_hub_descriptor *desc)
443 int ports = HCS_N_PORTS(oxu->hcs_params);
444 u16 temp;
446 desc->bDescriptorType = 0x29;
447 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
448 desc->bHubContrCurrent = 0;
450 desc->bNbrPorts = ports;
451 temp = 1 + (ports / 8);
452 desc->bDescLength = 7 + 2 * temp;
454 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
455 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
456 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
458 temp = 0x0008; /* per-port overcurrent reporting */
459 if (HCS_PPC(oxu->hcs_params))
460 temp |= 0x0001; /* per-port power control */
461 else
462 temp |= 0x0002; /* no power switching */
463 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
467 /* Allocate an OXU210HP on-chip memory data buffer
469 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
470 * Each transfer descriptor has one or more on-chip memory data buffers.
472 * Data buffers are allocated from a fix sized pool of data blocks.
473 * To minimise fragmentation and give reasonable memory utlisation,
474 * data buffers are allocated with sizes the power of 2 multiples of
475 * the block size, starting on an address a multiple of the allocated size.
477 * FIXME: callers of this function require a buffer to be allocated for
478 * len=0. This is a waste of on-chip memory and should be fix. Then this
479 * function should be changed to not allocate a buffer for len=0.
481 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
483 int n_blocks; /* minium blocks needed to hold len */
484 int a_blocks; /* blocks allocated */
485 int i, j;
487 /* Don't allocte bigger than supported */
488 if (len > BUFFER_SIZE * BUFFER_NUM) {
489 oxu_err(oxu, "buffer too big (%d)\n", len);
490 return -ENOMEM;
493 spin_lock(&oxu->mem_lock);
495 /* Number of blocks needed to hold len */
496 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
498 /* Round the number of blocks up to the power of 2 */
499 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
502 /* Find a suitable available data buffer */
503 for (i = 0; i < BUFFER_NUM;
504 i += max(a_blocks, (int)oxu->db_used[i])) {
506 /* Check all the required blocks are available */
507 for (j = 0; j < a_blocks; j++)
508 if (oxu->db_used[i + j])
509 break;
511 if (j != a_blocks)
512 continue;
514 /* Allocate blocks found! */
515 qtd->buffer = (void *) &oxu->mem->db_pool[i];
516 qtd->buffer_dma = virt_to_phys(qtd->buffer);
518 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
519 oxu->db_used[i] = a_blocks;
521 spin_unlock(&oxu->mem_lock);
523 return 0;
526 /* Failed */
528 spin_unlock(&oxu->mem_lock);
530 return -ENOMEM;
533 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
535 int index;
537 spin_lock(&oxu->mem_lock);
539 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
540 / BUFFER_SIZE;
541 oxu->db_used[index] = 0;
542 qtd->qtd_buffer_len = 0;
543 qtd->buffer_dma = 0;
544 qtd->buffer = NULL;
546 spin_unlock(&oxu->mem_lock);
549 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
551 memset(qtd, 0, sizeof *qtd);
552 qtd->qtd_dma = dma;
553 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
554 qtd->hw_next = EHCI_LIST_END;
555 qtd->hw_alt_next = EHCI_LIST_END;
556 INIT_LIST_HEAD(&qtd->qtd_list);
559 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
561 int index;
563 if (qtd->buffer)
564 oxu_buf_free(oxu, qtd);
566 spin_lock(&oxu->mem_lock);
568 index = qtd - &oxu->mem->qtd_pool[0];
569 oxu->qtd_used[index] = 0;
571 spin_unlock(&oxu->mem_lock);
574 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
576 int i;
577 struct ehci_qtd *qtd = NULL;
579 spin_lock(&oxu->mem_lock);
581 for (i = 0; i < QTD_NUM; i++)
582 if (!oxu->qtd_used[i])
583 break;
585 if (i < QTD_NUM) {
586 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
587 memset(qtd, 0, sizeof *qtd);
589 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
590 qtd->hw_next = EHCI_LIST_END;
591 qtd->hw_alt_next = EHCI_LIST_END;
592 INIT_LIST_HEAD(&qtd->qtd_list);
594 qtd->qtd_dma = virt_to_phys(qtd);
596 oxu->qtd_used[i] = 1;
599 spin_unlock(&oxu->mem_lock);
601 return qtd;
604 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
606 int index;
608 spin_lock(&oxu->mem_lock);
610 index = qh - &oxu->mem->qh_pool[0];
611 oxu->qh_used[index] = 0;
613 spin_unlock(&oxu->mem_lock);
616 static void qh_destroy(struct kref *kref)
618 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
619 struct oxu_hcd *oxu = qh->oxu;
621 /* clean qtds first, and know this is not linked */
622 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
623 oxu_dbg(oxu, "unused qh not empty!\n");
624 BUG();
626 if (qh->dummy)
627 oxu_qtd_free(oxu, qh->dummy);
628 oxu_qh_free(oxu, qh);
631 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
633 int i;
634 struct ehci_qh *qh = NULL;
636 spin_lock(&oxu->mem_lock);
638 for (i = 0; i < QHEAD_NUM; i++)
639 if (!oxu->qh_used[i])
640 break;
642 if (i < QHEAD_NUM) {
643 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
644 memset(qh, 0, sizeof *qh);
646 kref_init(&qh->kref);
647 qh->oxu = oxu;
648 qh->qh_dma = virt_to_phys(qh);
649 INIT_LIST_HEAD(&qh->qtd_list);
651 /* dummy td enables safe urb queuing */
652 qh->dummy = ehci_qtd_alloc(oxu);
653 if (qh->dummy == NULL) {
654 oxu_dbg(oxu, "no dummy td\n");
655 oxu->qh_used[i] = 0;
656 qh = NULL;
657 goto unlock;
660 oxu->qh_used[i] = 1;
662 unlock:
663 spin_unlock(&oxu->mem_lock);
665 return qh;
668 /* to share a qh (cpu threads, or hc) */
669 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
671 kref_get(&qh->kref);
672 return qh;
675 static inline void qh_put(struct ehci_qh *qh)
677 kref_put(&qh->kref, qh_destroy);
680 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
682 int index;
684 spin_lock(&oxu->mem_lock);
686 index = murb - &oxu->murb_pool[0];
687 oxu->murb_used[index] = 0;
689 spin_unlock(&oxu->mem_lock);
692 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
695 int i;
696 struct oxu_murb *murb = NULL;
698 spin_lock(&oxu->mem_lock);
700 for (i = 0; i < MURB_NUM; i++)
701 if (!oxu->murb_used[i])
702 break;
704 if (i < MURB_NUM) {
705 murb = &(oxu->murb_pool)[i];
707 oxu->murb_used[i] = 1;
710 spin_unlock(&oxu->mem_lock);
712 return murb;
715 /* The queue heads and transfer descriptors are managed from pools tied
716 * to each of the "per device" structures.
717 * This is the initialisation and cleanup code.
719 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
721 kfree(oxu->murb_pool);
722 oxu->murb_pool = NULL;
724 if (oxu->async)
725 qh_put(oxu->async);
726 oxu->async = NULL;
728 del_timer(&oxu->urb_timer);
730 oxu->periodic = NULL;
732 /* shadow periodic table */
733 kfree(oxu->pshadow);
734 oxu->pshadow = NULL;
737 /* Remember to add cleanup code (above) if you add anything here.
739 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
741 int i;
743 for (i = 0; i < oxu->periodic_size; i++)
744 oxu->mem->frame_list[i] = EHCI_LIST_END;
745 for (i = 0; i < QHEAD_NUM; i++)
746 oxu->qh_used[i] = 0;
747 for (i = 0; i < QTD_NUM; i++)
748 oxu->qtd_used[i] = 0;
750 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
751 if (!oxu->murb_pool)
752 goto fail;
754 for (i = 0; i < MURB_NUM; i++)
755 oxu->murb_used[i] = 0;
757 oxu->async = oxu_qh_alloc(oxu);
758 if (!oxu->async)
759 goto fail;
761 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
762 oxu->periodic_dma = virt_to_phys(oxu->periodic);
764 for (i = 0; i < oxu->periodic_size; i++)
765 oxu->periodic[i] = EHCI_LIST_END;
767 /* software shadow of hardware table */
768 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
769 if (oxu->pshadow != NULL)
770 return 0;
772 fail:
773 oxu_dbg(oxu, "couldn't init memory\n");
774 ehci_mem_cleanup(oxu);
775 return -ENOMEM;
778 /* Fill a qtd, returning how much of the buffer we were able to queue up.
780 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
781 int token, int maxpacket)
783 int i, count;
784 u64 addr = buf;
786 /* one buffer entry per 4K ... first might be short or unaligned */
787 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
788 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
789 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
790 if (likely(len < count)) /* ... iff needed */
791 count = len;
792 else {
793 buf += 0x1000;
794 buf &= ~0x0fff;
796 /* per-qtd limit: from 16K to 20K (best alignment) */
797 for (i = 1; count < len && i < 5; i++) {
798 addr = buf;
799 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
800 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
801 buf += 0x1000;
802 if ((count + 0x1000) < len)
803 count += 0x1000;
804 else
805 count = len;
808 /* short packets may only terminate transfers */
809 if (count != len)
810 count -= (count % maxpacket);
812 qtd->hw_token = cpu_to_le32((count << 16) | token);
813 qtd->length = count;
815 return count;
818 static inline void qh_update(struct oxu_hcd *oxu,
819 struct ehci_qh *qh, struct ehci_qtd *qtd)
821 /* writes to an active overlay are unsafe */
822 BUG_ON(qh->qh_state != QH_STATE_IDLE);
824 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
825 qh->hw_alt_next = EHCI_LIST_END;
827 /* Except for control endpoints, we make hardware maintain data
828 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
829 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
830 * ever clear it.
832 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
833 unsigned is_out, epnum;
835 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
836 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
837 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
838 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
839 usb_settoggle(qh->dev, epnum, is_out, 1);
843 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
844 wmb();
845 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
848 /* If it weren't for a common silicon quirk (writing the dummy into the qh
849 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
850 * recovery (including urb dequeue) would need software changes to a QH...
852 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
854 struct ehci_qtd *qtd;
856 if (list_empty(&qh->qtd_list))
857 qtd = qh->dummy;
858 else {
859 qtd = list_entry(qh->qtd_list.next,
860 struct ehci_qtd, qtd_list);
861 /* first qtd may already be partially processed */
862 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
863 qtd = NULL;
866 if (qtd)
867 qh_update(oxu, qh, qtd);
870 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
871 size_t length, u32 token)
873 /* count IN/OUT bytes, not SETUP (even short packets) */
874 if (likely(QTD_PID(token) != 2))
875 urb->actual_length += length - QTD_LENGTH(token);
877 /* don't modify error codes */
878 if (unlikely(urb->status != -EINPROGRESS))
879 return;
881 /* force cleanup after short read; not always an error */
882 if (unlikely(IS_SHORT_READ(token)))
883 urb->status = -EREMOTEIO;
885 /* serious "can't proceed" faults reported by the hardware */
886 if (token & QTD_STS_HALT) {
887 if (token & QTD_STS_BABBLE) {
888 /* FIXME "must" disable babbling device's port too */
889 urb->status = -EOVERFLOW;
890 } else if (token & QTD_STS_MMF) {
891 /* fs/ls interrupt xfer missed the complete-split */
892 urb->status = -EPROTO;
893 } else if (token & QTD_STS_DBE) {
894 urb->status = (QTD_PID(token) == 1) /* IN ? */
895 ? -ENOSR /* hc couldn't read data */
896 : -ECOMM; /* hc couldn't write data */
897 } else if (token & QTD_STS_XACT) {
898 /* timeout, bad crc, wrong PID, etc; retried */
899 if (QTD_CERR(token))
900 urb->status = -EPIPE;
901 else {
902 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
903 urb->dev->devpath,
904 usb_pipeendpoint(urb->pipe),
905 usb_pipein(urb->pipe) ? "in" : "out");
906 urb->status = -EPROTO;
908 /* CERR nonzero + no errors + halt --> stall */
909 } else if (QTD_CERR(token))
910 urb->status = -EPIPE;
911 else /* unknown */
912 urb->status = -EPROTO;
914 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
915 usb_pipedevice(urb->pipe),
916 usb_pipeendpoint(urb->pipe),
917 usb_pipein(urb->pipe) ? "in" : "out",
918 token, urb->status);
922 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
923 __releases(oxu->lock)
924 __acquires(oxu->lock)
926 if (likely(urb->hcpriv != NULL)) {
927 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
929 /* S-mask in a QH means it's an interrupt urb */
930 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
932 /* ... update hc-wide periodic stats (for usbfs) */
933 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
935 qh_put(qh);
938 urb->hcpriv = NULL;
939 switch (urb->status) {
940 case -EINPROGRESS: /* success */
941 urb->status = 0;
942 default: /* fault */
943 break;
944 case -EREMOTEIO: /* fault or normal */
945 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
946 urb->status = 0;
947 break;
948 case -ECONNRESET: /* canceled */
949 case -ENOENT:
950 break;
953 #ifdef OXU_URB_TRACE
954 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
955 __func__, urb->dev->devpath, urb,
956 usb_pipeendpoint(urb->pipe),
957 usb_pipein(urb->pipe) ? "in" : "out",
958 urb->status,
959 urb->actual_length, urb->transfer_buffer_length);
960 #endif
962 /* complete() can reenter this HCD */
963 spin_unlock(&oxu->lock);
964 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
965 spin_lock(&oxu->lock);
968 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
969 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
971 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
972 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
974 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
976 /* Process and free completed qtds for a qh, returning URBs to drivers.
977 * Chases up to qh->hw_current. Returns number of completions called,
978 * indicating how much "real" work we did.
980 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
982 struct ehci_qtd *last = NULL, *end = qh->dummy;
983 struct list_head *entry, *tmp;
984 int stopped;
985 unsigned count = 0;
986 int do_status = 0;
987 u8 state;
988 struct oxu_murb *murb = NULL;
990 if (unlikely(list_empty(&qh->qtd_list)))
991 return count;
993 /* completions (or tasks on other cpus) must never clobber HALT
994 * till we've gone through and cleaned everything up, even when
995 * they add urbs to this qh's queue or mark them for unlinking.
997 * NOTE: unlinking expects to be done in queue order.
999 state = qh->qh_state;
1000 qh->qh_state = QH_STATE_COMPLETING;
1001 stopped = (state == QH_STATE_IDLE);
1003 /* remove de-activated QTDs from front of queue.
1004 * after faults (including short reads), cleanup this urb
1005 * then let the queue advance.
1006 * if queue is stopped, handles unlinks.
1008 list_for_each_safe(entry, tmp, &qh->qtd_list) {
1009 struct ehci_qtd *qtd;
1010 struct urb *urb;
1011 u32 token = 0;
1013 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1014 urb = qtd->urb;
1016 /* Clean up any state from previous QTD ...*/
1017 if (last) {
1018 if (likely(last->urb != urb)) {
1019 if (last->urb->complete == NULL) {
1020 murb = (struct oxu_murb *) last->urb;
1021 last->urb = murb->main;
1022 if (murb->last) {
1023 ehci_urb_done(oxu, last->urb);
1024 count++;
1026 oxu_murb_free(oxu, murb);
1027 } else {
1028 ehci_urb_done(oxu, last->urb);
1029 count++;
1032 oxu_qtd_free(oxu, last);
1033 last = NULL;
1036 /* ignore urbs submitted during completions we reported */
1037 if (qtd == end)
1038 break;
1040 /* hardware copies qtd out of qh overlay */
1041 rmb();
1042 token = le32_to_cpu(qtd->hw_token);
1044 /* always clean up qtds the hc de-activated */
1045 if ((token & QTD_STS_ACTIVE) == 0) {
1047 if ((token & QTD_STS_HALT) != 0) {
1048 stopped = 1;
1050 /* magic dummy for some short reads; qh won't advance.
1051 * that silicon quirk can kick in with this dummy too.
1053 } else if (IS_SHORT_READ(token) &&
1054 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1055 stopped = 1;
1056 goto halt;
1059 /* stop scanning when we reach qtds the hc is using */
1060 } else if (likely(!stopped &&
1061 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1062 break;
1064 } else {
1065 stopped = 1;
1067 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1068 urb->status = -ESHUTDOWN;
1070 /* ignore active urbs unless some previous qtd
1071 * for the urb faulted (including short read) or
1072 * its urb was canceled. we may patch qh or qtds.
1074 if (likely(urb->status == -EINPROGRESS))
1075 continue;
1077 /* issue status after short control reads */
1078 if (unlikely(do_status != 0)
1079 && QTD_PID(token) == 0 /* OUT */) {
1080 do_status = 0;
1081 continue;
1084 /* token in overlay may be most current */
1085 if (state == QH_STATE_IDLE
1086 && cpu_to_le32(qtd->qtd_dma)
1087 == qh->hw_current)
1088 token = le32_to_cpu(qh->hw_token);
1090 /* force halt for unlinked or blocked qh, so we'll
1091 * patch the qh later and so that completions can't
1092 * activate it while we "know" it's stopped.
1094 if ((HALT_BIT & qh->hw_token) == 0) {
1095 halt:
1096 qh->hw_token |= HALT_BIT;
1097 wmb();
1101 /* Remove it from the queue */
1102 qtd_copy_status(oxu, urb->complete ?
1103 urb : ((struct oxu_murb *) urb)->main,
1104 qtd->length, token);
1105 if ((usb_pipein(qtd->urb->pipe)) &&
1106 (NULL != qtd->transfer_buffer))
1107 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1108 do_status = (urb->status == -EREMOTEIO)
1109 && usb_pipecontrol(urb->pipe);
1111 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1112 last = list_entry(qtd->qtd_list.prev,
1113 struct ehci_qtd, qtd_list);
1114 last->hw_next = qtd->hw_next;
1116 list_del(&qtd->qtd_list);
1117 last = qtd;
1120 /* last urb's completion might still need calling */
1121 if (likely(last != NULL)) {
1122 if (last->urb->complete == NULL) {
1123 murb = (struct oxu_murb *) last->urb;
1124 last->urb = murb->main;
1125 if (murb->last) {
1126 ehci_urb_done(oxu, last->urb);
1127 count++;
1129 oxu_murb_free(oxu, murb);
1130 } else {
1131 ehci_urb_done(oxu, last->urb);
1132 count++;
1134 oxu_qtd_free(oxu, last);
1137 /* restore original state; caller must unlink or relink */
1138 qh->qh_state = state;
1140 /* be sure the hardware's done with the qh before refreshing
1141 * it after fault cleanup, or recovering from silicon wrongly
1142 * overlaying the dummy qtd (which reduces DMA chatter).
1144 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1145 switch (state) {
1146 case QH_STATE_IDLE:
1147 qh_refresh(oxu, qh);
1148 break;
1149 case QH_STATE_LINKED:
1150 /* should be rare for periodic transfers,
1151 * except maybe high bandwidth ...
1153 if ((cpu_to_le32(QH_SMASK)
1154 & qh->hw_info2) != 0) {
1155 intr_deschedule(oxu, qh);
1156 (void) qh_schedule(oxu, qh);
1157 } else
1158 unlink_async(oxu, qh);
1159 break;
1160 /* otherwise, unlink already started */
1164 return count;
1167 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1168 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1169 /* ... and packet size, for any kind of endpoint descriptor */
1170 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1172 /* Reverse of qh_urb_transaction: free a list of TDs.
1173 * used for cleanup after errors, before HC sees an URB's TDs.
1175 static void qtd_list_free(struct oxu_hcd *oxu,
1176 struct urb *urb, struct list_head *qtd_list)
1178 struct list_head *entry, *temp;
1180 list_for_each_safe(entry, temp, qtd_list) {
1181 struct ehci_qtd *qtd;
1183 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1184 list_del(&qtd->qtd_list);
1185 oxu_qtd_free(oxu, qtd);
1189 /* Create a list of filled qtds for this URB; won't link into qh.
1191 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1192 struct urb *urb,
1193 struct list_head *head,
1194 gfp_t flags)
1196 struct ehci_qtd *qtd, *qtd_prev;
1197 dma_addr_t buf;
1198 int len, maxpacket;
1199 int is_input;
1200 u32 token;
1201 void *transfer_buf = NULL;
1202 int ret;
1205 * URBs map to sequences of QTDs: one logical transaction
1207 qtd = ehci_qtd_alloc(oxu);
1208 if (unlikely(!qtd))
1209 return NULL;
1210 list_add_tail(&qtd->qtd_list, head);
1211 qtd->urb = urb;
1213 token = QTD_STS_ACTIVE;
1214 token |= (EHCI_TUNE_CERR << 10);
1215 /* for split transactions, SplitXState initialized to zero */
1217 len = urb->transfer_buffer_length;
1218 is_input = usb_pipein(urb->pipe);
1219 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1220 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1222 if (usb_pipecontrol(urb->pipe)) {
1223 /* SETUP pid */
1224 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1225 if (ret)
1226 goto cleanup;
1228 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1229 token | (2 /* "setup" */ << 8), 8);
1230 memcpy(qtd->buffer, qtd->urb->setup_packet,
1231 sizeof(struct usb_ctrlrequest));
1233 /* ... and always at least one more pid */
1234 token ^= QTD_TOGGLE;
1235 qtd_prev = qtd;
1236 qtd = ehci_qtd_alloc(oxu);
1237 if (unlikely(!qtd))
1238 goto cleanup;
1239 qtd->urb = urb;
1240 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1241 list_add_tail(&qtd->qtd_list, head);
1243 /* for zero length DATA stages, STATUS is always IN */
1244 if (len == 0)
1245 token |= (1 /* "in" */ << 8);
1249 * Data transfer stage: buffer setup
1252 ret = oxu_buf_alloc(oxu, qtd, len);
1253 if (ret)
1254 goto cleanup;
1256 buf = qtd->buffer_dma;
1257 transfer_buf = urb->transfer_buffer;
1259 if (!is_input)
1260 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1262 if (is_input)
1263 token |= (1 /* "in" */ << 8);
1264 /* else it's already initted to "out" pid (0 << 8) */
1266 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1269 * buffer gets wrapped in one or more qtds;
1270 * last one may be "short" (including zero len)
1271 * and may serve as a control status ack
1273 for (;;) {
1274 int this_qtd_len;
1276 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1277 qtd->transfer_buffer = transfer_buf;
1278 len -= this_qtd_len;
1279 buf += this_qtd_len;
1280 transfer_buf += this_qtd_len;
1281 if (is_input)
1282 qtd->hw_alt_next = oxu->async->hw_alt_next;
1284 /* qh makes control packets use qtd toggle; maybe switch it */
1285 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1286 token ^= QTD_TOGGLE;
1288 if (likely(len <= 0))
1289 break;
1291 qtd_prev = qtd;
1292 qtd = ehci_qtd_alloc(oxu);
1293 if (unlikely(!qtd))
1294 goto cleanup;
1295 if (likely(len > 0)) {
1296 ret = oxu_buf_alloc(oxu, qtd, len);
1297 if (ret)
1298 goto cleanup;
1300 qtd->urb = urb;
1301 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1302 list_add_tail(&qtd->qtd_list, head);
1305 /* unless the bulk/interrupt caller wants a chance to clean
1306 * up after short reads, hc should advance qh past this urb
1308 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1309 || usb_pipecontrol(urb->pipe)))
1310 qtd->hw_alt_next = EHCI_LIST_END;
1313 * control requests may need a terminating data "status" ack;
1314 * bulk ones may need a terminating short packet (zero length).
1316 if (likely(urb->transfer_buffer_length != 0)) {
1317 int one_more = 0;
1319 if (usb_pipecontrol(urb->pipe)) {
1320 one_more = 1;
1321 token ^= 0x0100; /* "in" <--> "out" */
1322 token |= QTD_TOGGLE; /* force DATA1 */
1323 } else if (usb_pipebulk(urb->pipe)
1324 && (urb->transfer_flags & URB_ZERO_PACKET)
1325 && !(urb->transfer_buffer_length % maxpacket)) {
1326 one_more = 1;
1328 if (one_more) {
1329 qtd_prev = qtd;
1330 qtd = ehci_qtd_alloc(oxu);
1331 if (unlikely(!qtd))
1332 goto cleanup;
1333 qtd->urb = urb;
1334 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1335 list_add_tail(&qtd->qtd_list, head);
1337 /* never any data in such packets */
1338 qtd_fill(qtd, 0, 0, token, 0);
1342 /* by default, enable interrupt on urb completion */
1343 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1344 return head;
1346 cleanup:
1347 qtd_list_free(oxu, urb, head);
1348 return NULL;
1351 /* Each QH holds a qtd list; a QH is used for everything except iso.
1353 * For interrupt urbs, the scheduler must set the microframe scheduling
1354 * mask(s) each time the QH gets scheduled. For highspeed, that's
1355 * just one microframe in the s-mask. For split interrupt transactions
1356 * there are additional complications: c-mask, maybe FSTNs.
1358 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1359 struct urb *urb, gfp_t flags)
1361 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1362 u32 info1 = 0, info2 = 0;
1363 int is_input, type;
1364 int maxp = 0;
1366 if (!qh)
1367 return qh;
1370 * init endpoint/device data for this QH
1372 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1373 info1 |= usb_pipedevice(urb->pipe) << 0;
1375 is_input = usb_pipein(urb->pipe);
1376 type = usb_pipetype(urb->pipe);
1377 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1379 /* Compute interrupt scheduling parameters just once, and save.
1380 * - allowing for high bandwidth, how many nsec/uframe are used?
1381 * - split transactions need a second CSPLIT uframe; same question
1382 * - splits also need a schedule gap (for full/low speed I/O)
1383 * - qh has a polling interval
1385 * For control/bulk requests, the HC or TT handles these.
1387 if (type == PIPE_INTERRUPT) {
1388 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1389 is_input, 0,
1390 hb_mult(maxp) * max_packet(maxp)));
1391 qh->start = NO_FRAME;
1393 if (urb->dev->speed == USB_SPEED_HIGH) {
1394 qh->c_usecs = 0;
1395 qh->gap_uf = 0;
1397 qh->period = urb->interval >> 3;
1398 if (qh->period == 0 && urb->interval != 1) {
1399 /* NOTE interval 2 or 4 uframes could work.
1400 * But interval 1 scheduling is simpler, and
1401 * includes high bandwidth.
1403 dbg("intr period %d uframes, NYET!",
1404 urb->interval);
1405 goto done;
1407 } else {
1408 struct usb_tt *tt = urb->dev->tt;
1409 int think_time;
1411 /* gap is f(FS/LS transfer times) */
1412 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1413 is_input, 0, maxp) / (125 * 1000);
1415 /* FIXME this just approximates SPLIT/CSPLIT times */
1416 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1417 qh->c_usecs = qh->usecs + HS_USECS(0);
1418 qh->usecs = HS_USECS(1);
1419 } else { /* SPLIT+DATA, gap, CSPLIT */
1420 qh->usecs += HS_USECS(1);
1421 qh->c_usecs = HS_USECS(0);
1424 think_time = tt ? tt->think_time : 0;
1425 qh->tt_usecs = NS_TO_US(think_time +
1426 usb_calc_bus_time(urb->dev->speed,
1427 is_input, 0, max_packet(maxp)));
1428 qh->period = urb->interval;
1432 /* support for tt scheduling, and access to toggles */
1433 qh->dev = urb->dev;
1435 /* using TT? */
1436 switch (urb->dev->speed) {
1437 case USB_SPEED_LOW:
1438 info1 |= (1 << 12); /* EPS "low" */
1439 /* FALL THROUGH */
1441 case USB_SPEED_FULL:
1442 /* EPS 0 means "full" */
1443 if (type != PIPE_INTERRUPT)
1444 info1 |= (EHCI_TUNE_RL_TT << 28);
1445 if (type == PIPE_CONTROL) {
1446 info1 |= (1 << 27); /* for TT */
1447 info1 |= 1 << 14; /* toggle from qtd */
1449 info1 |= maxp << 16;
1451 info2 |= (EHCI_TUNE_MULT_TT << 30);
1452 info2 |= urb->dev->ttport << 23;
1454 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1456 break;
1458 case USB_SPEED_HIGH: /* no TT involved */
1459 info1 |= (2 << 12); /* EPS "high" */
1460 if (type == PIPE_CONTROL) {
1461 info1 |= (EHCI_TUNE_RL_HS << 28);
1462 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1463 info1 |= 1 << 14; /* toggle from qtd */
1464 info2 |= (EHCI_TUNE_MULT_HS << 30);
1465 } else if (type == PIPE_BULK) {
1466 info1 |= (EHCI_TUNE_RL_HS << 28);
1467 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1468 info2 |= (EHCI_TUNE_MULT_HS << 30);
1469 } else { /* PIPE_INTERRUPT */
1470 info1 |= max_packet(maxp) << 16;
1471 info2 |= hb_mult(maxp) << 30;
1473 break;
1474 default:
1475 dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed);
1476 done:
1477 qh_put(qh);
1478 return NULL;
1481 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1483 /* init as live, toggle clear, advance to dummy */
1484 qh->qh_state = QH_STATE_IDLE;
1485 qh->hw_info1 = cpu_to_le32(info1);
1486 qh->hw_info2 = cpu_to_le32(info2);
1487 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1488 qh_refresh(oxu, qh);
1489 return qh;
1492 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1494 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1496 __le32 dma = QH_NEXT(qh->qh_dma);
1497 struct ehci_qh *head;
1499 /* (re)start the async schedule? */
1500 head = oxu->async;
1501 timer_action_done(oxu, TIMER_ASYNC_OFF);
1502 if (!head->qh_next.qh) {
1503 u32 cmd = readl(&oxu->regs->command);
1505 if (!(cmd & CMD_ASE)) {
1506 /* in case a clear of CMD_ASE didn't take yet */
1507 (void)handshake(oxu, &oxu->regs->status,
1508 STS_ASS, 0, 150);
1509 cmd |= CMD_ASE | CMD_RUN;
1510 writel(cmd, &oxu->regs->command);
1511 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1512 /* posted write need not be known to HC yet ... */
1516 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1517 if (qh->qh_state == QH_STATE_IDLE)
1518 qh_refresh(oxu, qh);
1520 /* splice right after start */
1521 qh->qh_next = head->qh_next;
1522 qh->hw_next = head->hw_next;
1523 wmb();
1525 head->qh_next.qh = qh;
1526 head->hw_next = dma;
1528 qh->qh_state = QH_STATE_LINKED;
1529 /* qtd completions reported later by interrupt */
1532 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1535 * For control/bulk/interrupt, return QH with these TDs appended.
1536 * Allocates and initializes the QH if necessary.
1537 * Returns null if it can't allocate a QH it needs to.
1538 * If the QH has TDs (urbs) already, that's great.
1540 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1541 struct urb *urb, struct list_head *qtd_list,
1542 int epnum, void **ptr)
1544 struct ehci_qh *qh = NULL;
1546 qh = (struct ehci_qh *) *ptr;
1547 if (unlikely(qh == NULL)) {
1548 /* can't sleep here, we have oxu->lock... */
1549 qh = qh_make(oxu, urb, GFP_ATOMIC);
1550 *ptr = qh;
1552 if (likely(qh != NULL)) {
1553 struct ehci_qtd *qtd;
1555 if (unlikely(list_empty(qtd_list)))
1556 qtd = NULL;
1557 else
1558 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1559 qtd_list);
1561 /* control qh may need patching ... */
1562 if (unlikely(epnum == 0)) {
1564 /* usb_reset_device() briefly reverts to address 0 */
1565 if (usb_pipedevice(urb->pipe) == 0)
1566 qh->hw_info1 &= ~QH_ADDR_MASK;
1569 /* just one way to queue requests: swap with the dummy qtd.
1570 * only hc or qh_refresh() ever modify the overlay.
1572 if (likely(qtd != NULL)) {
1573 struct ehci_qtd *dummy;
1574 dma_addr_t dma;
1575 __le32 token;
1577 /* to avoid racing the HC, use the dummy td instead of
1578 * the first td of our list (becomes new dummy). both
1579 * tds stay deactivated until we're done, when the
1580 * HC is allowed to fetch the old dummy (4.10.2).
1582 token = qtd->hw_token;
1583 qtd->hw_token = HALT_BIT;
1584 wmb();
1585 dummy = qh->dummy;
1587 dma = dummy->qtd_dma;
1588 *dummy = *qtd;
1589 dummy->qtd_dma = dma;
1591 list_del(&qtd->qtd_list);
1592 list_add(&dummy->qtd_list, qtd_list);
1593 list_splice(qtd_list, qh->qtd_list.prev);
1595 ehci_qtd_init(qtd, qtd->qtd_dma);
1596 qh->dummy = qtd;
1598 /* hc must see the new dummy at list end */
1599 dma = qtd->qtd_dma;
1600 qtd = list_entry(qh->qtd_list.prev,
1601 struct ehci_qtd, qtd_list);
1602 qtd->hw_next = QTD_NEXT(dma);
1604 /* let the hc process these next qtds */
1605 dummy->hw_token = (token & ~(0x80));
1606 wmb();
1607 dummy->hw_token = token;
1609 urb->hcpriv = qh_get(qh);
1612 return qh;
1615 static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
1616 struct list_head *qtd_list, gfp_t mem_flags)
1618 struct ehci_qtd *qtd;
1619 int epnum;
1620 unsigned long flags;
1621 struct ehci_qh *qh = NULL;
1622 int rc = 0;
1624 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1625 epnum = urb->ep->desc.bEndpointAddress;
1627 #ifdef OXU_URB_TRACE
1628 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1629 __func__, urb->dev->devpath, urb,
1630 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1631 urb->transfer_buffer_length,
1632 qtd, urb->ep->hcpriv);
1633 #endif
1635 spin_lock_irqsave(&oxu->lock, flags);
1636 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1637 rc = -ESHUTDOWN;
1638 goto done;
1641 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1642 if (unlikely(qh == NULL)) {
1643 rc = -ENOMEM;
1644 goto done;
1647 /* Control/bulk operations through TTs don't need scheduling,
1648 * the HC and TT handle it when the TT has a buffer ready.
1650 if (likely(qh->qh_state == QH_STATE_IDLE))
1651 qh_link_async(oxu, qh_get(qh));
1652 done:
1653 spin_unlock_irqrestore(&oxu->lock, flags);
1654 if (unlikely(qh == NULL))
1655 qtd_list_free(oxu, urb, qtd_list);
1656 return rc;
1659 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1661 static void end_unlink_async(struct oxu_hcd *oxu)
1663 struct ehci_qh *qh = oxu->reclaim;
1664 struct ehci_qh *next;
1666 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1668 qh->qh_state = QH_STATE_IDLE;
1669 qh->qh_next.qh = NULL;
1670 qh_put(qh); /* refcount from reclaim */
1672 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1673 next = qh->reclaim;
1674 oxu->reclaim = next;
1675 oxu->reclaim_ready = 0;
1676 qh->reclaim = NULL;
1678 qh_completions(oxu, qh);
1680 if (!list_empty(&qh->qtd_list)
1681 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1682 qh_link_async(oxu, qh);
1683 else {
1684 qh_put(qh); /* refcount from async list */
1686 /* it's not free to turn the async schedule on/off; leave it
1687 * active but idle for a while once it empties.
1689 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1690 && oxu->async->qh_next.qh == NULL)
1691 timer_action(oxu, TIMER_ASYNC_OFF);
1694 if (next) {
1695 oxu->reclaim = NULL;
1696 start_unlink_async(oxu, next);
1700 /* makes sure the async qh will become idle */
1701 /* caller must own oxu->lock */
1703 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1705 int cmd = readl(&oxu->regs->command);
1706 struct ehci_qh *prev;
1708 #ifdef DEBUG
1709 assert_spin_locked(&oxu->lock);
1710 if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1711 && qh->qh_state != QH_STATE_UNLINK_WAIT))
1712 BUG();
1713 #endif
1715 /* stop async schedule right now? */
1716 if (unlikely(qh == oxu->async)) {
1717 /* can't get here without STS_ASS set */
1718 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1719 && !oxu->reclaim) {
1720 /* ... and CMD_IAAD clear */
1721 writel(cmd & ~CMD_ASE, &oxu->regs->command);
1722 wmb();
1723 /* handshake later, if we need to */
1724 timer_action_done(oxu, TIMER_ASYNC_OFF);
1726 return;
1729 qh->qh_state = QH_STATE_UNLINK;
1730 oxu->reclaim = qh = qh_get(qh);
1732 prev = oxu->async;
1733 while (prev->qh_next.qh != qh)
1734 prev = prev->qh_next.qh;
1736 prev->hw_next = qh->hw_next;
1737 prev->qh_next = qh->qh_next;
1738 wmb();
1740 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1741 /* if (unlikely(qh->reclaim != 0))
1742 * this will recurse, probably not much
1744 end_unlink_async(oxu);
1745 return;
1748 oxu->reclaim_ready = 0;
1749 cmd |= CMD_IAAD;
1750 writel(cmd, &oxu->regs->command);
1751 (void) readl(&oxu->regs->command);
1752 timer_action(oxu, TIMER_IAA_WATCHDOG);
1755 static void scan_async(struct oxu_hcd *oxu)
1757 struct ehci_qh *qh;
1758 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1760 if (!++(oxu->stamp))
1761 oxu->stamp++;
1762 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1763 rescan:
1764 qh = oxu->async->qh_next.qh;
1765 if (likely(qh != NULL)) {
1766 do {
1767 /* clean any finished work for this qh */
1768 if (!list_empty(&qh->qtd_list)
1769 && qh->stamp != oxu->stamp) {
1770 int temp;
1772 /* unlinks could happen here; completion
1773 * reporting drops the lock. rescan using
1774 * the latest schedule, but don't rescan
1775 * qhs we already finished (no looping).
1777 qh = qh_get(qh);
1778 qh->stamp = oxu->stamp;
1779 temp = qh_completions(oxu, qh);
1780 qh_put(qh);
1781 if (temp != 0)
1782 goto rescan;
1785 /* unlink idle entries, reducing HC PCI usage as well
1786 * as HCD schedule-scanning costs. delay for any qh
1787 * we just scanned, there's a not-unusual case that it
1788 * doesn't stay idle for long.
1789 * (plus, avoids some kind of re-activation race.)
1791 if (list_empty(&qh->qtd_list)) {
1792 if (qh->stamp == oxu->stamp)
1793 action = TIMER_ASYNC_SHRINK;
1794 else if (!oxu->reclaim
1795 && qh->qh_state == QH_STATE_LINKED)
1796 start_unlink_async(oxu, qh);
1799 qh = qh->qh_next.qh;
1800 } while (qh);
1802 if (action == TIMER_ASYNC_SHRINK)
1803 timer_action(oxu, TIMER_ASYNC_SHRINK);
1807 * periodic_next_shadow - return "next" pointer on shadow list
1808 * @periodic: host pointer to qh/itd/sitd
1809 * @tag: hardware tag for type of this record
1811 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1812 __le32 tag)
1814 switch (tag) {
1815 default:
1816 case Q_TYPE_QH:
1817 return &periodic->qh->qh_next;
1821 /* caller must hold oxu->lock */
1822 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1824 union ehci_shadow *prev_p = &oxu->pshadow[frame];
1825 __le32 *hw_p = &oxu->periodic[frame];
1826 union ehci_shadow here = *prev_p;
1828 /* find predecessor of "ptr"; hw and shadow lists are in sync */
1829 while (here.ptr && here.ptr != ptr) {
1830 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1831 hw_p = here.hw_next;
1832 here = *prev_p;
1834 /* an interrupt entry (at list end) could have been shared */
1835 if (!here.ptr)
1836 return;
1838 /* update shadow and hardware lists ... the old "next" pointers
1839 * from ptr may still be in use, the caller updates them.
1841 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1842 *hw_p = *here.hw_next;
1845 /* how many of the uframe's 125 usecs are allocated? */
1846 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1847 unsigned frame, unsigned uframe)
1849 __le32 *hw_p = &oxu->periodic[frame];
1850 union ehci_shadow *q = &oxu->pshadow[frame];
1851 unsigned usecs = 0;
1853 while (q->ptr) {
1854 switch (Q_NEXT_TYPE(*hw_p)) {
1855 case Q_TYPE_QH:
1856 default:
1857 /* is it in the S-mask? */
1858 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1859 usecs += q->qh->usecs;
1860 /* ... or C-mask? */
1861 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1862 usecs += q->qh->c_usecs;
1863 hw_p = &q->qh->hw_next;
1864 q = &q->qh->qh_next;
1865 break;
1868 #ifdef DEBUG
1869 if (usecs > 100)
1870 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1871 frame * 8 + uframe, usecs);
1872 #endif
1873 return usecs;
1876 static int enable_periodic(struct oxu_hcd *oxu)
1878 u32 cmd;
1879 int status;
1881 /* did clearing PSE did take effect yet?
1882 * takes effect only at frame boundaries...
1884 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1885 if (status != 0) {
1886 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1887 usb_hc_died(oxu_to_hcd(oxu));
1888 return status;
1891 cmd = readl(&oxu->regs->command) | CMD_PSE;
1892 writel(cmd, &oxu->regs->command);
1893 /* posted write ... PSS happens later */
1894 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1896 /* make sure ehci_work scans these */
1897 oxu->next_uframe = readl(&oxu->regs->frame_index)
1898 % (oxu->periodic_size << 3);
1899 return 0;
1902 static int disable_periodic(struct oxu_hcd *oxu)
1904 u32 cmd;
1905 int status;
1907 /* did setting PSE not take effect yet?
1908 * takes effect only at frame boundaries...
1910 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1911 if (status != 0) {
1912 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1913 usb_hc_died(oxu_to_hcd(oxu));
1914 return status;
1917 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1918 writel(cmd, &oxu->regs->command);
1919 /* posted write ... */
1921 oxu->next_uframe = -1;
1922 return 0;
1925 /* periodic schedule slots have iso tds (normal or split) first, then a
1926 * sparse tree for active interrupt transfers.
1928 * this just links in a qh; caller guarantees uframe masks are set right.
1929 * no FSTN support (yet; oxu 0.96+)
1931 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1933 unsigned i;
1934 unsigned period = qh->period;
1936 dev_dbg(&qh->dev->dev,
1937 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1938 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1939 qh, qh->start, qh->usecs, qh->c_usecs);
1941 /* high bandwidth, or otherwise every microframe */
1942 if (period == 0)
1943 period = 1;
1945 for (i = qh->start; i < oxu->periodic_size; i += period) {
1946 union ehci_shadow *prev = &oxu->pshadow[i];
1947 __le32 *hw_p = &oxu->periodic[i];
1948 union ehci_shadow here = *prev;
1949 __le32 type = 0;
1951 /* skip the iso nodes at list head */
1952 while (here.ptr) {
1953 type = Q_NEXT_TYPE(*hw_p);
1954 if (type == Q_TYPE_QH)
1955 break;
1956 prev = periodic_next_shadow(prev, type);
1957 hw_p = &here.qh->hw_next;
1958 here = *prev;
1961 /* sorting each branch by period (slow-->fast)
1962 * enables sharing interior tree nodes
1964 while (here.ptr && qh != here.qh) {
1965 if (qh->period > here.qh->period)
1966 break;
1967 prev = &here.qh->qh_next;
1968 hw_p = &here.qh->hw_next;
1969 here = *prev;
1971 /* link in this qh, unless some earlier pass did that */
1972 if (qh != here.qh) {
1973 qh->qh_next = here;
1974 if (here.qh)
1975 qh->hw_next = *hw_p;
1976 wmb();
1977 prev->qh = qh;
1978 *hw_p = QH_NEXT(qh->qh_dma);
1981 qh->qh_state = QH_STATE_LINKED;
1982 qh_get(qh);
1984 /* update per-qh bandwidth for usbfs */
1985 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1986 ? ((qh->usecs + qh->c_usecs) / qh->period)
1987 : (qh->usecs * 8);
1989 /* maybe enable periodic schedule processing */
1990 if (!oxu->periodic_sched++)
1991 return enable_periodic(oxu);
1993 return 0;
1996 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1998 unsigned i;
1999 unsigned period;
2001 /* FIXME:
2002 * IF this isn't high speed
2003 * and this qh is active in the current uframe
2004 * (and overlay token SplitXstate is false?)
2005 * THEN
2006 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2009 /* high bandwidth, or otherwise part of every microframe */
2010 period = qh->period;
2011 if (period == 0)
2012 period = 1;
2014 for (i = qh->start; i < oxu->periodic_size; i += period)
2015 periodic_unlink(oxu, i, qh);
2017 /* update per-qh bandwidth for usbfs */
2018 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2019 ? ((qh->usecs + qh->c_usecs) / qh->period)
2020 : (qh->usecs * 8);
2022 dev_dbg(&qh->dev->dev,
2023 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2024 qh->period,
2025 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2026 qh, qh->start, qh->usecs, qh->c_usecs);
2028 /* qh->qh_next still "live" to HC */
2029 qh->qh_state = QH_STATE_UNLINK;
2030 qh->qh_next.ptr = NULL;
2031 qh_put(qh);
2033 /* maybe turn off periodic schedule */
2034 oxu->periodic_sched--;
2035 if (!oxu->periodic_sched)
2036 (void) disable_periodic(oxu);
2039 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2041 unsigned wait;
2043 qh_unlink_periodic(oxu, qh);
2045 /* simple/paranoid: always delay, expecting the HC needs to read
2046 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2047 * expect khubd to clean up after any CSPLITs we won't issue.
2048 * active high speed queues may need bigger delays...
2050 if (list_empty(&qh->qtd_list)
2051 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2052 wait = 2;
2053 else
2054 wait = 55; /* worst case: 3 * 1024 */
2056 udelay(wait);
2057 qh->qh_state = QH_STATE_IDLE;
2058 qh->hw_next = EHCI_LIST_END;
2059 wmb();
2062 static int check_period(struct oxu_hcd *oxu,
2063 unsigned frame, unsigned uframe,
2064 unsigned period, unsigned usecs)
2066 int claimed;
2068 /* complete split running into next frame?
2069 * given FSTN support, we could sometimes check...
2071 if (uframe >= 8)
2072 return 0;
2075 * 80% periodic == 100 usec/uframe available
2076 * convert "usecs we need" to "max already claimed"
2078 usecs = 100 - usecs;
2080 /* we "know" 2 and 4 uframe intervals were rejected; so
2081 * for period 0, check _every_ microframe in the schedule.
2083 if (unlikely(period == 0)) {
2084 do {
2085 for (uframe = 0; uframe < 7; uframe++) {
2086 claimed = periodic_usecs(oxu, frame, uframe);
2087 if (claimed > usecs)
2088 return 0;
2090 } while ((frame += 1) < oxu->periodic_size);
2092 /* just check the specified uframe, at that period */
2093 } else {
2094 do {
2095 claimed = periodic_usecs(oxu, frame, uframe);
2096 if (claimed > usecs)
2097 return 0;
2098 } while ((frame += period) < oxu->periodic_size);
2101 return 1;
2104 static int check_intr_schedule(struct oxu_hcd *oxu,
2105 unsigned frame, unsigned uframe,
2106 const struct ehci_qh *qh, __le32 *c_maskp)
2108 int retval = -ENOSPC;
2110 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2111 goto done;
2113 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2114 goto done;
2115 if (!qh->c_usecs) {
2116 retval = 0;
2117 *c_maskp = 0;
2118 goto done;
2121 done:
2122 return retval;
2125 /* "first fit" scheduling policy used the first time through,
2126 * or when the previous schedule slot can't be re-used.
2128 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2130 int status;
2131 unsigned uframe;
2132 __le32 c_mask;
2133 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2135 qh_refresh(oxu, qh);
2136 qh->hw_next = EHCI_LIST_END;
2137 frame = qh->start;
2139 /* reuse the previous schedule slots, if we can */
2140 if (frame < qh->period) {
2141 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2142 status = check_intr_schedule(oxu, frame, --uframe,
2143 qh, &c_mask);
2144 } else {
2145 uframe = 0;
2146 c_mask = 0;
2147 status = -ENOSPC;
2150 /* else scan the schedule to find a group of slots such that all
2151 * uframes have enough periodic bandwidth available.
2153 if (status) {
2154 /* "normal" case, uframing flexible except with splits */
2155 if (qh->period) {
2156 frame = qh->period - 1;
2157 do {
2158 for (uframe = 0; uframe < 8; uframe++) {
2159 status = check_intr_schedule(oxu,
2160 frame, uframe, qh,
2161 &c_mask);
2162 if (status == 0)
2163 break;
2165 } while (status && frame--);
2167 /* qh->period == 0 means every uframe */
2168 } else {
2169 frame = 0;
2170 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2172 if (status)
2173 goto done;
2174 qh->start = frame;
2176 /* reset S-frame and (maybe) C-frame masks */
2177 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2178 qh->hw_info2 |= qh->period
2179 ? cpu_to_le32(1 << uframe)
2180 : cpu_to_le32(QH_SMASK);
2181 qh->hw_info2 |= c_mask;
2182 } else
2183 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2185 /* stuff into the periodic schedule */
2186 status = qh_link_periodic(oxu, qh);
2187 done:
2188 return status;
2191 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2192 struct list_head *qtd_list, gfp_t mem_flags)
2194 unsigned epnum;
2195 unsigned long flags;
2196 struct ehci_qh *qh;
2197 int status = 0;
2198 struct list_head empty;
2200 /* get endpoint and transfer/schedule data */
2201 epnum = urb->ep->desc.bEndpointAddress;
2203 spin_lock_irqsave(&oxu->lock, flags);
2205 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2206 status = -ESHUTDOWN;
2207 goto done;
2210 /* get qh and force any scheduling errors */
2211 INIT_LIST_HEAD(&empty);
2212 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2213 if (qh == NULL) {
2214 status = -ENOMEM;
2215 goto done;
2217 if (qh->qh_state == QH_STATE_IDLE) {
2218 status = qh_schedule(oxu, qh);
2219 if (status != 0)
2220 goto done;
2223 /* then queue the urb's tds to the qh */
2224 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2225 BUG_ON(qh == NULL);
2227 /* ... update usbfs periodic stats */
2228 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2230 done:
2231 spin_unlock_irqrestore(&oxu->lock, flags);
2232 if (status)
2233 qtd_list_free(oxu, urb, qtd_list);
2235 return status;
2238 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2239 gfp_t mem_flags)
2241 oxu_dbg(oxu, "iso support is missing!\n");
2242 return -ENOSYS;
2245 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2246 gfp_t mem_flags)
2248 oxu_dbg(oxu, "split iso support is missing!\n");
2249 return -ENOSYS;
2252 static void scan_periodic(struct oxu_hcd *oxu)
2254 unsigned frame, clock, now_uframe, mod;
2255 unsigned modified;
2257 mod = oxu->periodic_size << 3;
2260 * When running, scan from last scan point up to "now"
2261 * else clean up by scanning everything that's left.
2262 * Touches as few pages as possible: cache-friendly.
2264 now_uframe = oxu->next_uframe;
2265 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2266 clock = readl(&oxu->regs->frame_index);
2267 else
2268 clock = now_uframe + mod - 1;
2269 clock %= mod;
2271 for (;;) {
2272 union ehci_shadow q, *q_p;
2273 __le32 type, *hw_p;
2274 unsigned uframes;
2276 /* don't scan past the live uframe */
2277 frame = now_uframe >> 3;
2278 if (frame == (clock >> 3))
2279 uframes = now_uframe & 0x07;
2280 else {
2281 /* safe to scan the whole frame at once */
2282 now_uframe |= 0x07;
2283 uframes = 8;
2286 restart:
2287 /* scan each element in frame's queue for completions */
2288 q_p = &oxu->pshadow[frame];
2289 hw_p = &oxu->periodic[frame];
2290 q.ptr = q_p->ptr;
2291 type = Q_NEXT_TYPE(*hw_p);
2292 modified = 0;
2294 while (q.ptr != NULL) {
2295 union ehci_shadow temp;
2296 int live;
2298 live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2299 switch (type) {
2300 case Q_TYPE_QH:
2301 /* handle any completions */
2302 temp.qh = qh_get(q.qh);
2303 type = Q_NEXT_TYPE(q.qh->hw_next);
2304 q = q.qh->qh_next;
2305 modified = qh_completions(oxu, temp.qh);
2306 if (unlikely(list_empty(&temp.qh->qtd_list)))
2307 intr_deschedule(oxu, temp.qh);
2308 qh_put(temp.qh);
2309 break;
2310 default:
2311 dbg("corrupt type %d frame %d shadow %p",
2312 type, frame, q.ptr);
2313 q.ptr = NULL;
2316 /* assume completion callbacks modify the queue */
2317 if (unlikely(modified))
2318 goto restart;
2321 /* Stop when we catch up to the HC */
2323 /* FIXME: this assumes we won't get lapped when
2324 * latencies climb; that should be rare, but...
2325 * detect it, and just go all the way around.
2326 * FLR might help detect this case, so long as latencies
2327 * don't exceed periodic_size msec (default 1.024 sec).
2330 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2332 if (now_uframe == clock) {
2333 unsigned now;
2335 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2336 break;
2337 oxu->next_uframe = now_uframe;
2338 now = readl(&oxu->regs->frame_index) % mod;
2339 if (now_uframe == now)
2340 break;
2342 /* rescan the rest of this frame, then ... */
2343 clock = now;
2344 } else {
2345 now_uframe++;
2346 now_uframe %= mod;
2351 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2352 * The firmware seems to think that powering off is a wakeup event!
2353 * This routine turns off remote wakeup and everything else, on all ports.
2355 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2357 int port = HCS_N_PORTS(oxu->hcs_params);
2359 while (port--)
2360 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2363 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2365 unsigned port;
2367 if (!HCS_PPC(oxu->hcs_params))
2368 return;
2370 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2371 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2372 (void) oxu_hub_control(oxu_to_hcd(oxu),
2373 is_on ? SetPortFeature : ClearPortFeature,
2374 USB_PORT_FEAT_POWER,
2375 port--, NULL, 0);
2376 msleep(20);
2379 /* Called from some interrupts, timers, and so on.
2380 * It calls driver completion functions, after dropping oxu->lock.
2382 static void ehci_work(struct oxu_hcd *oxu)
2384 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2385 if (oxu->reclaim_ready)
2386 end_unlink_async(oxu);
2388 /* another CPU may drop oxu->lock during a schedule scan while
2389 * it reports urb completions. this flag guards against bogus
2390 * attempts at re-entrant schedule scanning.
2392 if (oxu->scanning)
2393 return;
2394 oxu->scanning = 1;
2395 scan_async(oxu);
2396 if (oxu->next_uframe != -1)
2397 scan_periodic(oxu);
2398 oxu->scanning = 0;
2400 /* the IO watchdog guards against hardware or driver bugs that
2401 * misplace IRQs, and should let us run completely without IRQs.
2402 * such lossage has been observed on both VT6202 and VT8235.
2404 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2405 (oxu->async->qh_next.ptr != NULL ||
2406 oxu->periodic_sched != 0))
2407 timer_action(oxu, TIMER_IO_WATCHDOG);
2410 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2412 /* if we need to use IAA and it's busy, defer */
2413 if (qh->qh_state == QH_STATE_LINKED
2414 && oxu->reclaim
2415 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2416 struct ehci_qh *last;
2418 for (last = oxu->reclaim;
2419 last->reclaim;
2420 last = last->reclaim)
2421 continue;
2422 qh->qh_state = QH_STATE_UNLINK_WAIT;
2423 last->reclaim = qh;
2425 /* bypass IAA if the hc can't care */
2426 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2427 end_unlink_async(oxu);
2429 /* something else might have unlinked the qh by now */
2430 if (qh->qh_state == QH_STATE_LINKED)
2431 start_unlink_async(oxu, qh);
2435 * USB host controller methods
2438 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2440 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2441 u32 status, pcd_status = 0;
2442 int bh;
2444 spin_lock(&oxu->lock);
2446 status = readl(&oxu->regs->status);
2448 /* e.g. cardbus physical eject */
2449 if (status == ~(u32) 0) {
2450 oxu_dbg(oxu, "device removed\n");
2451 goto dead;
2454 /* Shared IRQ? */
2455 status &= INTR_MASK;
2456 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2457 spin_unlock(&oxu->lock);
2458 return IRQ_NONE;
2461 /* clear (just) interrupts */
2462 writel(status, &oxu->regs->status);
2463 readl(&oxu->regs->command); /* unblock posted write */
2464 bh = 0;
2466 #ifdef OXU_VERBOSE_DEBUG
2467 /* unrequested/ignored: Frame List Rollover */
2468 dbg_status(oxu, "irq", status);
2469 #endif
2471 /* INT, ERR, and IAA interrupt rates can be throttled */
2473 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2474 if (likely((status & (STS_INT|STS_ERR)) != 0))
2475 bh = 1;
2477 /* complete the unlinking of some qh [4.15.2.3] */
2478 if (status & STS_IAA) {
2479 oxu->reclaim_ready = 1;
2480 bh = 1;
2483 /* remote wakeup [4.3.1] */
2484 if (status & STS_PCD) {
2485 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2486 pcd_status = status;
2488 /* resume root hub? */
2489 if (!(readl(&oxu->regs->command) & CMD_RUN))
2490 usb_hcd_resume_root_hub(hcd);
2492 while (i--) {
2493 int pstatus = readl(&oxu->regs->port_status[i]);
2495 if (pstatus & PORT_OWNER)
2496 continue;
2497 if (!(pstatus & PORT_RESUME)
2498 || oxu->reset_done[i] != 0)
2499 continue;
2501 /* start 20 msec resume signaling from this port,
2502 * and make khubd collect PORT_STAT_C_SUSPEND to
2503 * stop that signaling.
2505 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
2506 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2507 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2511 /* PCI errors [4.15.2.4] */
2512 if (unlikely((status & STS_FATAL) != 0)) {
2513 /* bogus "fatal" IRQs appear on some chips... why? */
2514 status = readl(&oxu->regs->status);
2515 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2516 dbg_status(oxu, "fatal", status);
2517 if (status & STS_HALT) {
2518 oxu_err(oxu, "fatal error\n");
2519 dead:
2520 ehci_reset(oxu);
2521 writel(0, &oxu->regs->configured_flag);
2522 usb_hc_died(hcd);
2523 /* generic layer kills/unlinks all urbs, then
2524 * uses oxu_stop to clean up the rest
2526 bh = 1;
2530 if (bh)
2531 ehci_work(oxu);
2532 spin_unlock(&oxu->lock);
2533 if (pcd_status & STS_PCD)
2534 usb_hcd_poll_rh_status(hcd);
2535 return IRQ_HANDLED;
2538 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2540 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2541 int ret = IRQ_HANDLED;
2543 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2544 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2546 /* Disable all interrupt */
2547 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2549 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2550 (!oxu->is_otg && (status & OXU_USBSPHI)))
2551 oxu210_hcd_irq(hcd);
2552 else
2553 ret = IRQ_NONE;
2555 /* Enable all interrupt back */
2556 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2558 return ret;
2561 static void oxu_watchdog(unsigned long param)
2563 struct oxu_hcd *oxu = (struct oxu_hcd *) param;
2564 unsigned long flags;
2566 spin_lock_irqsave(&oxu->lock, flags);
2568 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2569 if (oxu->reclaim) {
2570 u32 status = readl(&oxu->regs->status);
2571 if (status & STS_IAA) {
2572 oxu_vdbg(oxu, "lost IAA\n");
2573 writel(STS_IAA, &oxu->regs->status);
2574 oxu->reclaim_ready = 1;
2578 /* stop async processing after it's idled a bit */
2579 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2580 start_unlink_async(oxu, oxu->async);
2582 /* oxu could run by timer, without IRQs ... */
2583 ehci_work(oxu);
2585 spin_unlock_irqrestore(&oxu->lock, flags);
2588 /* One-time init, only for memory state.
2590 static int oxu_hcd_init(struct usb_hcd *hcd)
2592 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2593 u32 temp;
2594 int retval;
2595 u32 hcc_params;
2597 spin_lock_init(&oxu->lock);
2599 init_timer(&oxu->watchdog);
2600 oxu->watchdog.function = oxu_watchdog;
2601 oxu->watchdog.data = (unsigned long) oxu;
2604 * hw default: 1K periodic list heads, one per frame.
2605 * periodic_size can shrink by USBCMD update if hcc_params allows.
2607 oxu->periodic_size = DEFAULT_I_TDPS;
2608 retval = ehci_mem_init(oxu, GFP_KERNEL);
2609 if (retval < 0)
2610 return retval;
2612 /* controllers may cache some of the periodic schedule ... */
2613 hcc_params = readl(&oxu->caps->hcc_params);
2614 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
2615 oxu->i_thresh = 8;
2616 else /* N microframes cached */
2617 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2619 oxu->reclaim = NULL;
2620 oxu->reclaim_ready = 0;
2621 oxu->next_uframe = -1;
2624 * dedicate a qh for the async ring head, since we couldn't unlink
2625 * a 'real' qh without stopping the async schedule [4.8]. use it
2626 * as the 'reclamation list head' too.
2627 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2628 * from automatically advancing to the next td after short reads.
2630 oxu->async->qh_next.qh = NULL;
2631 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2632 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2633 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2634 oxu->async->hw_qtd_next = EHCI_LIST_END;
2635 oxu->async->qh_state = QH_STATE_LINKED;
2636 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2638 /* clear interrupt enables, set irq latency */
2639 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2640 log2_irq_thresh = 0;
2641 temp = 1 << (16 + log2_irq_thresh);
2642 if (HCC_CANPARK(hcc_params)) {
2643 /* HW default park == 3, on hardware that supports it (like
2644 * NVidia and ALI silicon), maximizes throughput on the async
2645 * schedule by avoiding QH fetches between transfers.
2647 * With fast usb storage devices and NForce2, "park" seems to
2648 * make problems: throughput reduction (!), data errors...
2650 if (park) {
2651 park = min(park, (unsigned) 3);
2652 temp |= CMD_PARK;
2653 temp |= park << 8;
2655 oxu_dbg(oxu, "park %d\n", park);
2657 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2658 /* periodic schedule size can be smaller than default */
2659 temp &= ~(3 << 2);
2660 temp |= (EHCI_TUNE_FLS << 2);
2662 oxu->command = temp;
2664 return 0;
2667 /* Called during probe() after chip reset completes.
2669 static int oxu_reset(struct usb_hcd *hcd)
2671 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2672 int ret;
2674 spin_lock_init(&oxu->mem_lock);
2675 INIT_LIST_HEAD(&oxu->urb_list);
2676 oxu->urb_len = 0;
2678 /* FIMXE */
2679 hcd->self.controller->dma_mask = NULL;
2681 if (oxu->is_otg) {
2682 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2683 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2684 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2686 oxu->mem = hcd->regs + OXU_SPH_MEM;
2687 } else {
2688 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2689 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2690 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2692 oxu->mem = hcd->regs + OXU_OTG_MEM;
2695 oxu->hcs_params = readl(&oxu->caps->hcs_params);
2696 oxu->sbrn = 0x20;
2698 ret = oxu_hcd_init(hcd);
2699 if (ret)
2700 return ret;
2702 return 0;
2705 static int oxu_run(struct usb_hcd *hcd)
2707 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2708 int retval;
2709 u32 temp, hcc_params;
2711 hcd->uses_new_polling = 1;
2713 /* EHCI spec section 4.1 */
2714 retval = ehci_reset(oxu);
2715 if (retval != 0) {
2716 ehci_mem_cleanup(oxu);
2717 return retval;
2719 writel(oxu->periodic_dma, &oxu->regs->frame_list);
2720 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2722 /* hcc_params controls whether oxu->regs->segment must (!!!)
2723 * be used; it constrains QH/ITD/SITD and QTD locations.
2724 * pci_pool consistent memory always uses segment zero.
2725 * streaming mappings for I/O buffers, like pci_map_single(),
2726 * can return segments above 4GB, if the device allows.
2728 * NOTE: the dma mask is visible through dma_supported(), so
2729 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2730 * Scsi_Host.highmem_io, and so forth. It's readonly to all
2731 * host side drivers though.
2733 hcc_params = readl(&oxu->caps->hcc_params);
2734 if (HCC_64BIT_ADDR(hcc_params))
2735 writel(0, &oxu->regs->segment);
2737 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2738 CMD_ASE | CMD_RESET);
2739 oxu->command |= CMD_RUN;
2740 writel(oxu->command, &oxu->regs->command);
2741 dbg_cmd(oxu, "init", oxu->command);
2744 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2745 * are explicitly handed to companion controller(s), so no TT is
2746 * involved with the root hub. (Except where one is integrated,
2747 * and there's no companion controller unless maybe for USB OTG.)
2749 hcd->state = HC_STATE_RUNNING;
2750 writel(FLAG_CF, &oxu->regs->configured_flag);
2751 readl(&oxu->regs->command); /* unblock posted writes */
2753 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2754 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2755 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2756 temp >> 8, temp & 0xff, DRIVER_VERSION,
2757 ignore_oc ? ", overcurrent ignored" : "");
2759 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2761 return 0;
2764 static void oxu_stop(struct usb_hcd *hcd)
2766 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2768 /* Turn off port power on all root hub ports. */
2769 ehci_port_power(oxu, 0);
2771 /* no more interrupts ... */
2772 del_timer_sync(&oxu->watchdog);
2774 spin_lock_irq(&oxu->lock);
2775 if (HC_IS_RUNNING(hcd->state))
2776 ehci_quiesce(oxu);
2778 ehci_reset(oxu);
2779 writel(0, &oxu->regs->intr_enable);
2780 spin_unlock_irq(&oxu->lock);
2782 /* let companion controllers work when we aren't */
2783 writel(0, &oxu->regs->configured_flag);
2785 /* root hub is shut down separately (first, when possible) */
2786 spin_lock_irq(&oxu->lock);
2787 if (oxu->async)
2788 ehci_work(oxu);
2789 spin_unlock_irq(&oxu->lock);
2790 ehci_mem_cleanup(oxu);
2792 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2795 /* Kick in for silicon on any bus (not just pci, etc).
2796 * This forcibly disables dma and IRQs, helping kexec and other cases
2797 * where the next system software may expect clean state.
2799 static void oxu_shutdown(struct usb_hcd *hcd)
2801 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2803 (void) ehci_halt(oxu);
2804 ehci_turn_off_all_ports(oxu);
2806 /* make BIOS/etc use companion controller during reboot */
2807 writel(0, &oxu->regs->configured_flag);
2809 /* unblock posted writes */
2810 readl(&oxu->regs->configured_flag);
2813 /* Non-error returns are a promise to giveback() the urb later
2814 * we drop ownership so next owner (or urb unlink) can get it
2816 * urb + dev is in hcd.self.controller.urb_list
2817 * we're queueing TDs onto software and hardware lists
2819 * hcd-specific init for hcpriv hasn't been done yet
2821 * NOTE: control, bulk, and interrupt share the same code to append TDs
2822 * to a (possibly active) QH, and the same QH scanning code.
2824 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2825 gfp_t mem_flags)
2827 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2828 struct list_head qtd_list;
2830 INIT_LIST_HEAD(&qtd_list);
2832 switch (usb_pipetype(urb->pipe)) {
2833 case PIPE_CONTROL:
2834 case PIPE_BULK:
2835 default:
2836 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2837 return -ENOMEM;
2838 return submit_async(oxu, urb, &qtd_list, mem_flags);
2840 case PIPE_INTERRUPT:
2841 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2842 return -ENOMEM;
2843 return intr_submit(oxu, urb, &qtd_list, mem_flags);
2845 case PIPE_ISOCHRONOUS:
2846 if (urb->dev->speed == USB_SPEED_HIGH)
2847 return itd_submit(oxu, urb, mem_flags);
2848 else
2849 return sitd_submit(oxu, urb, mem_flags);
2853 /* This function is responsible for breaking URBs with big data size
2854 * into smaller size and processing small urbs in sequence.
2856 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2857 gfp_t mem_flags)
2859 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2860 int num, rem;
2861 int transfer_buffer_length;
2862 void *transfer_buffer;
2863 struct urb *murb;
2864 int i, ret;
2866 /* If not bulk pipe just enqueue the URB */
2867 if (!usb_pipebulk(urb->pipe))
2868 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2870 /* Otherwise we should verify the USB transfer buffer size! */
2871 transfer_buffer = urb->transfer_buffer;
2872 transfer_buffer_length = urb->transfer_buffer_length;
2874 num = urb->transfer_buffer_length / 4096;
2875 rem = urb->transfer_buffer_length % 4096;
2876 if (rem != 0)
2877 num++;
2879 /* If URB is smaller than 4096 bytes just enqueue it! */
2880 if (num == 1)
2881 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2883 /* Ok, we have more job to do! :) */
2885 for (i = 0; i < num - 1; i++) {
2886 /* Get free micro URB poll till a free urb is received */
2888 do {
2889 murb = (struct urb *) oxu_murb_alloc(oxu);
2890 if (!murb)
2891 schedule();
2892 } while (!murb);
2894 /* Coping the urb */
2895 memcpy(murb, urb, sizeof(struct urb));
2897 murb->transfer_buffer_length = 4096;
2898 murb->transfer_buffer = transfer_buffer + i * 4096;
2900 /* Null pointer for the encodes that this is a micro urb */
2901 murb->complete = NULL;
2903 ((struct oxu_murb *) murb)->main = urb;
2904 ((struct oxu_murb *) murb)->last = 0;
2906 /* This loop is to guarantee urb to be processed when there's
2907 * not enough resources at a particular time by retrying.
2909 do {
2910 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2911 if (ret)
2912 schedule();
2913 } while (ret);
2916 /* Last urb requires special handling */
2918 /* Get free micro URB poll till a free urb is received */
2919 do {
2920 murb = (struct urb *) oxu_murb_alloc(oxu);
2921 if (!murb)
2922 schedule();
2923 } while (!murb);
2925 /* Coping the urb */
2926 memcpy(murb, urb, sizeof(struct urb));
2928 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2929 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2931 /* Null pointer for the encodes that this is a micro urb */
2932 murb->complete = NULL;
2934 ((struct oxu_murb *) murb)->main = urb;
2935 ((struct oxu_murb *) murb)->last = 1;
2937 do {
2938 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2939 if (ret)
2940 schedule();
2941 } while (ret);
2943 return ret;
2946 /* Remove from hardware lists.
2947 * Completions normally happen asynchronously
2949 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2951 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2952 struct ehci_qh *qh;
2953 unsigned long flags;
2955 spin_lock_irqsave(&oxu->lock, flags);
2956 switch (usb_pipetype(urb->pipe)) {
2957 case PIPE_CONTROL:
2958 case PIPE_BULK:
2959 default:
2960 qh = (struct ehci_qh *) urb->hcpriv;
2961 if (!qh)
2962 break;
2963 unlink_async(oxu, qh);
2964 break;
2966 case PIPE_INTERRUPT:
2967 qh = (struct ehci_qh *) urb->hcpriv;
2968 if (!qh)
2969 break;
2970 switch (qh->qh_state) {
2971 case QH_STATE_LINKED:
2972 intr_deschedule(oxu, qh);
2973 /* FALL THROUGH */
2974 case QH_STATE_IDLE:
2975 qh_completions(oxu, qh);
2976 break;
2977 default:
2978 oxu_dbg(oxu, "bogus qh %p state %d\n",
2979 qh, qh->qh_state);
2980 goto done;
2983 /* reschedule QH iff another request is queued */
2984 if (!list_empty(&qh->qtd_list)
2985 && HC_IS_RUNNING(hcd->state)) {
2986 int status;
2988 status = qh_schedule(oxu, qh);
2989 spin_unlock_irqrestore(&oxu->lock, flags);
2991 if (status != 0) {
2992 /* shouldn't happen often, but ...
2993 * FIXME kill those tds' urbs
2995 err("can't reschedule qh %p, err %d",
2996 qh, status);
2998 return status;
3000 break;
3002 done:
3003 spin_unlock_irqrestore(&oxu->lock, flags);
3004 return 0;
3007 /* Bulk qh holds the data toggle */
3008 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3009 struct usb_host_endpoint *ep)
3011 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3012 unsigned long flags;
3013 struct ehci_qh *qh, *tmp;
3015 /* ASSERT: any requests/urbs are being unlinked */
3016 /* ASSERT: nobody can be submitting urbs for this any more */
3018 rescan:
3019 spin_lock_irqsave(&oxu->lock, flags);
3020 qh = ep->hcpriv;
3021 if (!qh)
3022 goto done;
3024 /* endpoints can be iso streams. for now, we don't
3025 * accelerate iso completions ... so spin a while.
3027 if (qh->hw_info1 == 0) {
3028 oxu_vdbg(oxu, "iso delay\n");
3029 goto idle_timeout;
3032 if (!HC_IS_RUNNING(hcd->state))
3033 qh->qh_state = QH_STATE_IDLE;
3034 switch (qh->qh_state) {
3035 case QH_STATE_LINKED:
3036 for (tmp = oxu->async->qh_next.qh;
3037 tmp && tmp != qh;
3038 tmp = tmp->qh_next.qh)
3039 continue;
3040 /* periodic qh self-unlinks on empty */
3041 if (!tmp)
3042 goto nogood;
3043 unlink_async(oxu, qh);
3044 /* FALL THROUGH */
3045 case QH_STATE_UNLINK: /* wait for hw to finish? */
3046 idle_timeout:
3047 spin_unlock_irqrestore(&oxu->lock, flags);
3048 schedule_timeout_uninterruptible(1);
3049 goto rescan;
3050 case QH_STATE_IDLE: /* fully unlinked */
3051 if (list_empty(&qh->qtd_list)) {
3052 qh_put(qh);
3053 break;
3055 /* else FALL THROUGH */
3056 default:
3057 nogood:
3058 /* caller was supposed to have unlinked any requests;
3059 * that's not our job. just leak this memory.
3061 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3062 qh, ep->desc.bEndpointAddress, qh->qh_state,
3063 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3064 break;
3066 ep->hcpriv = NULL;
3067 done:
3068 spin_unlock_irqrestore(&oxu->lock, flags);
3071 static int oxu_get_frame(struct usb_hcd *hcd)
3073 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3075 return (readl(&oxu->regs->frame_index) >> 3) %
3076 oxu->periodic_size;
3079 /* Build "status change" packet (one or two bytes) from HC registers */
3080 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3082 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3083 u32 temp, mask, status = 0;
3084 int ports, i, retval = 1;
3085 unsigned long flags;
3087 /* if !USB_SUSPEND, root hub timers won't get shut down ... */
3088 if (!HC_IS_RUNNING(hcd->state))
3089 return 0;
3091 /* init status to no-changes */
3092 buf[0] = 0;
3093 ports = HCS_N_PORTS(oxu->hcs_params);
3094 if (ports > 7) {
3095 buf[1] = 0;
3096 retval++;
3099 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3100 * causing massive log spam unless we completely ignore them. It
3101 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3102 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3103 * PORT_POWER; that's surprising, but maybe within-spec.
3105 if (!ignore_oc)
3106 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3107 else
3108 mask = PORT_CSC | PORT_PEC;
3110 /* no hub change reports (bit 0) for now (power, ...) */
3112 /* port N changes (bit N)? */
3113 spin_lock_irqsave(&oxu->lock, flags);
3114 for (i = 0; i < ports; i++) {
3115 temp = readl(&oxu->regs->port_status[i]);
3118 * Return status information even for ports with OWNER set.
3119 * Otherwise khubd wouldn't see the disconnect event when a
3120 * high-speed device is switched over to the companion
3121 * controller by the user.
3124 if (!(temp & PORT_CONNECT))
3125 oxu->reset_done[i] = 0;
3126 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3127 time_after_eq(jiffies, oxu->reset_done[i]))) {
3128 if (i < 7)
3129 buf[0] |= 1 << (i + 1);
3130 else
3131 buf[1] |= 1 << (i - 7);
3132 status = STS_PCD;
3135 /* FIXME autosuspend idle root hubs */
3136 spin_unlock_irqrestore(&oxu->lock, flags);
3137 return status ? retval : 0;
3140 /* Returns the speed of a device attached to a port on the root hub. */
3141 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3142 unsigned int portsc)
3144 switch ((portsc >> 26) & 3) {
3145 case 0:
3146 return 0;
3147 case 1:
3148 return USB_PORT_STAT_LOW_SPEED;
3149 case 2:
3150 default:
3151 return USB_PORT_STAT_HIGH_SPEED;
3155 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3156 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3157 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3159 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3160 int ports = HCS_N_PORTS(oxu->hcs_params);
3161 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3162 u32 temp, status;
3163 unsigned long flags;
3164 int retval = 0;
3165 unsigned selector;
3168 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3169 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3170 * (track current state ourselves) ... blink for diagnostics,
3171 * power, "this is the one", etc. EHCI spec supports this.
3174 spin_lock_irqsave(&oxu->lock, flags);
3175 switch (typeReq) {
3176 case ClearHubFeature:
3177 switch (wValue) {
3178 case C_HUB_LOCAL_POWER:
3179 case C_HUB_OVER_CURRENT:
3180 /* no hub-wide feature/status flags */
3181 break;
3182 default:
3183 goto error;
3185 break;
3186 case ClearPortFeature:
3187 if (!wIndex || wIndex > ports)
3188 goto error;
3189 wIndex--;
3190 temp = readl(status_reg);
3193 * Even if OWNER is set, so the port is owned by the
3194 * companion controller, khubd needs to be able to clear
3195 * the port-change status bits (especially
3196 * USB_PORT_STAT_C_CONNECTION).
3199 switch (wValue) {
3200 case USB_PORT_FEAT_ENABLE:
3201 writel(temp & ~PORT_PE, status_reg);
3202 break;
3203 case USB_PORT_FEAT_C_ENABLE:
3204 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3205 break;
3206 case USB_PORT_FEAT_SUSPEND:
3207 if (temp & PORT_RESET)
3208 goto error;
3209 if (temp & PORT_SUSPEND) {
3210 if ((temp & PORT_PE) == 0)
3211 goto error;
3212 /* resume signaling for 20 msec */
3213 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3214 writel(temp | PORT_RESUME, status_reg);
3215 oxu->reset_done[wIndex] = jiffies
3216 + msecs_to_jiffies(20);
3218 break;
3219 case USB_PORT_FEAT_C_SUSPEND:
3220 /* we auto-clear this feature */
3221 break;
3222 case USB_PORT_FEAT_POWER:
3223 if (HCS_PPC(oxu->hcs_params))
3224 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3225 status_reg);
3226 break;
3227 case USB_PORT_FEAT_C_CONNECTION:
3228 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3229 break;
3230 case USB_PORT_FEAT_C_OVER_CURRENT:
3231 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3232 break;
3233 case USB_PORT_FEAT_C_RESET:
3234 /* GetPortStatus clears reset */
3235 break;
3236 default:
3237 goto error;
3239 readl(&oxu->regs->command); /* unblock posted write */
3240 break;
3241 case GetHubDescriptor:
3242 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3243 buf);
3244 break;
3245 case GetHubStatus:
3246 /* no hub-wide feature/status flags */
3247 memset(buf, 0, 4);
3248 break;
3249 case GetPortStatus:
3250 if (!wIndex || wIndex > ports)
3251 goto error;
3252 wIndex--;
3253 status = 0;
3254 temp = readl(status_reg);
3256 /* wPortChange bits */
3257 if (temp & PORT_CSC)
3258 status |= USB_PORT_STAT_C_CONNECTION << 16;
3259 if (temp & PORT_PEC)
3260 status |= USB_PORT_STAT_C_ENABLE << 16;
3261 if ((temp & PORT_OCC) && !ignore_oc)
3262 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3264 /* whoever resumes must GetPortStatus to complete it!! */
3265 if (temp & PORT_RESUME) {
3267 /* Remote Wakeup received? */
3268 if (!oxu->reset_done[wIndex]) {
3269 /* resume signaling for 20 msec */
3270 oxu->reset_done[wIndex] = jiffies
3271 + msecs_to_jiffies(20);
3272 /* check the port again */
3273 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3274 oxu->reset_done[wIndex]);
3277 /* resume completed? */
3278 else if (time_after_eq(jiffies,
3279 oxu->reset_done[wIndex])) {
3280 status |= USB_PORT_STAT_C_SUSPEND << 16;
3281 oxu->reset_done[wIndex] = 0;
3283 /* stop resume signaling */
3284 temp = readl(status_reg);
3285 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3286 status_reg);
3287 retval = handshake(oxu, status_reg,
3288 PORT_RESUME, 0, 2000 /* 2msec */);
3289 if (retval != 0) {
3290 oxu_err(oxu,
3291 "port %d resume error %d\n",
3292 wIndex + 1, retval);
3293 goto error;
3295 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3299 /* whoever resets must GetPortStatus to complete it!! */
3300 if ((temp & PORT_RESET)
3301 && time_after_eq(jiffies,
3302 oxu->reset_done[wIndex])) {
3303 status |= USB_PORT_STAT_C_RESET << 16;
3304 oxu->reset_done[wIndex] = 0;
3306 /* force reset to complete */
3307 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3308 status_reg);
3309 /* REVISIT: some hardware needs 550+ usec to clear
3310 * this bit; seems too long to spin routinely...
3312 retval = handshake(oxu, status_reg,
3313 PORT_RESET, 0, 750);
3314 if (retval != 0) {
3315 oxu_err(oxu, "port %d reset error %d\n",
3316 wIndex + 1, retval);
3317 goto error;
3320 /* see what we found out */
3321 temp = check_reset_complete(oxu, wIndex, status_reg,
3322 readl(status_reg));
3325 /* transfer dedicated ports to the companion hc */
3326 if ((temp & PORT_CONNECT) &&
3327 test_bit(wIndex, &oxu->companion_ports)) {
3328 temp &= ~PORT_RWC_BITS;
3329 temp |= PORT_OWNER;
3330 writel(temp, status_reg);
3331 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3332 temp = readl(status_reg);
3336 * Even if OWNER is set, there's no harm letting khubd
3337 * see the wPortStatus values (they should all be 0 except
3338 * for PORT_POWER anyway).
3341 if (temp & PORT_CONNECT) {
3342 status |= USB_PORT_STAT_CONNECTION;
3343 /* status may be from integrated TT */
3344 status |= oxu_port_speed(oxu, temp);
3346 if (temp & PORT_PE)
3347 status |= USB_PORT_STAT_ENABLE;
3348 if (temp & (PORT_SUSPEND|PORT_RESUME))
3349 status |= USB_PORT_STAT_SUSPEND;
3350 if (temp & PORT_OC)
3351 status |= USB_PORT_STAT_OVERCURRENT;
3352 if (temp & PORT_RESET)
3353 status |= USB_PORT_STAT_RESET;
3354 if (temp & PORT_POWER)
3355 status |= USB_PORT_STAT_POWER;
3357 #ifndef OXU_VERBOSE_DEBUG
3358 if (status & ~0xffff) /* only if wPortChange is interesting */
3359 #endif
3360 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3361 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3362 break;
3363 case SetHubFeature:
3364 switch (wValue) {
3365 case C_HUB_LOCAL_POWER:
3366 case C_HUB_OVER_CURRENT:
3367 /* no hub-wide feature/status flags */
3368 break;
3369 default:
3370 goto error;
3372 break;
3373 case SetPortFeature:
3374 selector = wIndex >> 8;
3375 wIndex &= 0xff;
3376 if (!wIndex || wIndex > ports)
3377 goto error;
3378 wIndex--;
3379 temp = readl(status_reg);
3380 if (temp & PORT_OWNER)
3381 break;
3383 temp &= ~PORT_RWC_BITS;
3384 switch (wValue) {
3385 case USB_PORT_FEAT_SUSPEND:
3386 if ((temp & PORT_PE) == 0
3387 || (temp & PORT_RESET) != 0)
3388 goto error;
3389 if (device_may_wakeup(&hcd->self.root_hub->dev))
3390 temp |= PORT_WAKE_BITS;
3391 writel(temp | PORT_SUSPEND, status_reg);
3392 break;
3393 case USB_PORT_FEAT_POWER:
3394 if (HCS_PPC(oxu->hcs_params))
3395 writel(temp | PORT_POWER, status_reg);
3396 break;
3397 case USB_PORT_FEAT_RESET:
3398 if (temp & PORT_RESUME)
3399 goto error;
3400 /* line status bits may report this as low speed,
3401 * which can be fine if this root hub has a
3402 * transaction translator built in.
3404 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3405 temp |= PORT_RESET;
3406 temp &= ~PORT_PE;
3409 * caller must wait, then call GetPortStatus
3410 * usb 2.0 spec says 50 ms resets on root
3412 oxu->reset_done[wIndex] = jiffies
3413 + msecs_to_jiffies(50);
3414 writel(temp, status_reg);
3415 break;
3417 /* For downstream facing ports (these): one hub port is put
3418 * into test mode according to USB2 11.24.2.13, then the hub
3419 * must be reset (which for root hub now means rmmod+modprobe,
3420 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3421 * about the EHCI-specific stuff.
3423 case USB_PORT_FEAT_TEST:
3424 if (!selector || selector > 5)
3425 goto error;
3426 ehci_quiesce(oxu);
3427 ehci_halt(oxu);
3428 temp |= selector << 16;
3429 writel(temp, status_reg);
3430 break;
3432 default:
3433 goto error;
3435 readl(&oxu->regs->command); /* unblock posted writes */
3436 break;
3438 default:
3439 error:
3440 /* "stall" on error */
3441 retval = -EPIPE;
3443 spin_unlock_irqrestore(&oxu->lock, flags);
3444 return retval;
3447 #ifdef CONFIG_PM
3449 static int oxu_bus_suspend(struct usb_hcd *hcd)
3451 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3452 int port;
3453 int mask;
3455 oxu_dbg(oxu, "suspend root hub\n");
3457 if (time_before(jiffies, oxu->next_statechange))
3458 msleep(5);
3460 port = HCS_N_PORTS(oxu->hcs_params);
3461 spin_lock_irq(&oxu->lock);
3463 /* stop schedules, clean any completed work */
3464 if (HC_IS_RUNNING(hcd->state)) {
3465 ehci_quiesce(oxu);
3466 hcd->state = HC_STATE_QUIESCING;
3468 oxu->command = readl(&oxu->regs->command);
3469 if (oxu->reclaim)
3470 oxu->reclaim_ready = 1;
3471 ehci_work(oxu);
3473 /* Unlike other USB host controller types, EHCI doesn't have
3474 * any notion of "global" or bus-wide suspend. The driver has
3475 * to manually suspend all the active unsuspended ports, and
3476 * then manually resume them in the bus_resume() routine.
3478 oxu->bus_suspended = 0;
3479 while (port--) {
3480 u32 __iomem *reg = &oxu->regs->port_status[port];
3481 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3482 u32 t2 = t1;
3484 /* keep track of which ports we suspend */
3485 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3486 !(t1 & PORT_SUSPEND)) {
3487 t2 |= PORT_SUSPEND;
3488 set_bit(port, &oxu->bus_suspended);
3491 /* enable remote wakeup on all ports */
3492 if (device_may_wakeup(&hcd->self.root_hub->dev))
3493 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3494 else
3495 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3497 if (t1 != t2) {
3498 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3499 port + 1, t1, t2);
3500 writel(t2, reg);
3504 /* turn off now-idle HC */
3505 del_timer_sync(&oxu->watchdog);
3506 ehci_halt(oxu);
3507 hcd->state = HC_STATE_SUSPENDED;
3509 /* allow remote wakeup */
3510 mask = INTR_MASK;
3511 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3512 mask &= ~STS_PCD;
3513 writel(mask, &oxu->regs->intr_enable);
3514 readl(&oxu->regs->intr_enable);
3516 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3517 spin_unlock_irq(&oxu->lock);
3518 return 0;
3521 /* Caller has locked the root hub, and should reset/reinit on error */
3522 static int oxu_bus_resume(struct usb_hcd *hcd)
3524 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3525 u32 temp;
3526 int i;
3528 if (time_before(jiffies, oxu->next_statechange))
3529 msleep(5);
3530 spin_lock_irq(&oxu->lock);
3532 /* Ideally and we've got a real resume here, and no port's power
3533 * was lost. (For PCI, that means Vaux was maintained.) But we
3534 * could instead be restoring a swsusp snapshot -- so that BIOS was
3535 * the last user of the controller, not reset/pm hardware keeping
3536 * state we gave to it.
3538 temp = readl(&oxu->regs->intr_enable);
3539 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3541 /* at least some APM implementations will try to deliver
3542 * IRQs right away, so delay them until we're ready.
3544 writel(0, &oxu->regs->intr_enable);
3546 /* re-init operational registers */
3547 writel(0, &oxu->regs->segment);
3548 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3549 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3551 /* restore CMD_RUN, framelist size, and irq threshold */
3552 writel(oxu->command, &oxu->regs->command);
3554 /* Some controller/firmware combinations need a delay during which
3555 * they set up the port statuses. See Bugzilla #8190. */
3556 mdelay(8);
3558 /* manually resume the ports we suspended during bus_suspend() */
3559 i = HCS_N_PORTS(oxu->hcs_params);
3560 while (i--) {
3561 temp = readl(&oxu->regs->port_status[i]);
3562 temp &= ~(PORT_RWC_BITS
3563 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3564 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3565 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3566 temp |= PORT_RESUME;
3568 writel(temp, &oxu->regs->port_status[i]);
3570 i = HCS_N_PORTS(oxu->hcs_params);
3571 mdelay(20);
3572 while (i--) {
3573 temp = readl(&oxu->regs->port_status[i]);
3574 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3575 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3576 writel(temp, &oxu->regs->port_status[i]);
3577 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3580 (void) readl(&oxu->regs->command);
3582 /* maybe re-activate the schedule(s) */
3583 temp = 0;
3584 if (oxu->async->qh_next.qh)
3585 temp |= CMD_ASE;
3586 if (oxu->periodic_sched)
3587 temp |= CMD_PSE;
3588 if (temp) {
3589 oxu->command |= temp;
3590 writel(oxu->command, &oxu->regs->command);
3593 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3594 hcd->state = HC_STATE_RUNNING;
3596 /* Now we can safely re-enable irqs */
3597 writel(INTR_MASK, &oxu->regs->intr_enable);
3599 spin_unlock_irq(&oxu->lock);
3600 return 0;
3603 #else
3605 static int oxu_bus_suspend(struct usb_hcd *hcd)
3607 return 0;
3610 static int oxu_bus_resume(struct usb_hcd *hcd)
3612 return 0;
3615 #endif /* CONFIG_PM */
3617 static const struct hc_driver oxu_hc_driver = {
3618 .description = "oxu210hp_hcd",
3619 .product_desc = "oxu210hp HCD",
3620 .hcd_priv_size = sizeof(struct oxu_hcd),
3623 * Generic hardware linkage
3625 .irq = oxu_irq,
3626 .flags = HCD_MEMORY | HCD_USB2,
3629 * Basic lifecycle operations
3631 .reset = oxu_reset,
3632 .start = oxu_run,
3633 .stop = oxu_stop,
3634 .shutdown = oxu_shutdown,
3637 * Managing i/o requests and associated device resources
3639 .urb_enqueue = oxu_urb_enqueue,
3640 .urb_dequeue = oxu_urb_dequeue,
3641 .endpoint_disable = oxu_endpoint_disable,
3644 * Scheduling support
3646 .get_frame_number = oxu_get_frame,
3649 * Root hub support
3651 .hub_status_data = oxu_hub_status_data,
3652 .hub_control = oxu_hub_control,
3653 .bus_suspend = oxu_bus_suspend,
3654 .bus_resume = oxu_bus_resume,
3658 * Module stuff
3661 static void oxu_configuration(struct platform_device *pdev, void *base)
3663 u32 tmp;
3665 /* Initialize top level registers.
3666 * First write ever
3668 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3669 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3670 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3672 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3673 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3675 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3676 OXU_COMPARATOR | OXU_ASO_OP);
3678 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3679 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3681 /* Clear all top interrupt enable */
3682 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3684 /* Clear all top interrupt status */
3685 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3687 /* Enable all needed top interrupt except OTG SPH core */
3688 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3691 static int oxu_verify_id(struct platform_device *pdev, void *base)
3693 u32 id;
3694 static const char * const bo[] = {
3695 "reserved",
3696 "128-pin LQFP",
3697 "84-pin TFBGA",
3698 "reserved",
3701 /* Read controller signature register to find a match */
3702 id = oxu_readl(base, OXU_DEVICEID);
3703 dev_info(&pdev->dev, "device ID %x\n", id);
3704 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3705 return -1;
3707 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3708 id >> OXU_REV_SHIFT,
3709 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3710 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3711 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3713 return 0;
3716 static const struct hc_driver oxu_hc_driver;
3717 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3718 unsigned long memstart, unsigned long memlen,
3719 void *base, int irq, int otg)
3721 struct device *dev = &pdev->dev;
3723 struct usb_hcd *hcd;
3724 struct oxu_hcd *oxu;
3725 int ret;
3727 /* Set endian mode and host mode */
3728 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3729 OXU_USBMODE,
3730 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3732 hcd = usb_create_hcd(&oxu_hc_driver, dev,
3733 otg ? "oxu210hp_otg" : "oxu210hp_sph");
3734 if (!hcd)
3735 return ERR_PTR(-ENOMEM);
3737 hcd->rsrc_start = memstart;
3738 hcd->rsrc_len = memlen;
3739 hcd->regs = base;
3740 hcd->irq = irq;
3741 hcd->state = HC_STATE_HALT;
3743 oxu = hcd_to_oxu(hcd);
3744 oxu->is_otg = otg;
3746 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3747 if (ret < 0)
3748 return ERR_PTR(ret);
3750 return hcd;
3753 static int oxu_init(struct platform_device *pdev,
3754 unsigned long memstart, unsigned long memlen,
3755 void *base, int irq)
3757 struct oxu_info *info = platform_get_drvdata(pdev);
3758 struct usb_hcd *hcd;
3759 int ret;
3761 /* First time configuration at start up */
3762 oxu_configuration(pdev, base);
3764 ret = oxu_verify_id(pdev, base);
3765 if (ret) {
3766 dev_err(&pdev->dev, "no devices found!\n");
3767 return -ENODEV;
3770 /* Create the OTG controller */
3771 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3772 if (IS_ERR(hcd)) {
3773 dev_err(&pdev->dev, "cannot create OTG controller!\n");
3774 ret = PTR_ERR(hcd);
3775 goto error_create_otg;
3777 info->hcd[0] = hcd;
3779 /* Create the SPH host controller */
3780 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3781 if (IS_ERR(hcd)) {
3782 dev_err(&pdev->dev, "cannot create SPH controller!\n");
3783 ret = PTR_ERR(hcd);
3784 goto error_create_sph;
3786 info->hcd[1] = hcd;
3788 oxu_writel(base, OXU_CHIPIRQEN_SET,
3789 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3791 return 0;
3793 error_create_sph:
3794 usb_remove_hcd(info->hcd[0]);
3795 usb_put_hcd(info->hcd[0]);
3797 error_create_otg:
3798 return ret;
3801 static int oxu_drv_probe(struct platform_device *pdev)
3803 struct resource *res;
3804 void *base;
3805 unsigned long memstart, memlen;
3806 int irq, ret;
3807 struct oxu_info *info;
3809 if (usb_disabled())
3810 return -ENODEV;
3813 * Get the platform resources
3815 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3816 if (!res) {
3817 dev_err(&pdev->dev,
3818 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3819 return -ENODEV;
3821 irq = res->start;
3822 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3824 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3825 if (!res) {
3826 dev_err(&pdev->dev, "no registers address! Check %s setup!\n",
3827 dev_name(&pdev->dev));
3828 return -ENODEV;
3830 memstart = res->start;
3831 memlen = resource_size(res);
3832 dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen);
3833 if (!request_mem_region(memstart, memlen,
3834 oxu_hc_driver.description)) {
3835 dev_dbg(&pdev->dev, "memory area already in use\n");
3836 return -EBUSY;
3839 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3840 if (ret) {
3841 dev_err(&pdev->dev, "error setting irq type\n");
3842 ret = -EFAULT;
3843 goto error_set_irq_type;
3846 base = ioremap(memstart, memlen);
3847 if (!base) {
3848 dev_dbg(&pdev->dev, "error mapping memory\n");
3849 ret = -EFAULT;
3850 goto error_ioremap;
3853 /* Allocate a driver data struct to hold useful info for both
3854 * SPH & OTG devices
3856 info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL);
3857 if (!info) {
3858 dev_dbg(&pdev->dev, "error allocating memory\n");
3859 ret = -EFAULT;
3860 goto error_alloc;
3862 platform_set_drvdata(pdev, info);
3864 ret = oxu_init(pdev, memstart, memlen, base, irq);
3865 if (ret < 0) {
3866 dev_dbg(&pdev->dev, "cannot init USB devices\n");
3867 goto error_init;
3870 dev_info(&pdev->dev, "devices enabled and running\n");
3871 platform_set_drvdata(pdev, info);
3873 return 0;
3875 error_init:
3876 kfree(info);
3877 platform_set_drvdata(pdev, NULL);
3879 error_alloc:
3880 iounmap(base);
3882 error_set_irq_type:
3883 error_ioremap:
3884 release_mem_region(memstart, memlen);
3886 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3887 return ret;
3890 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3892 usb_remove_hcd(hcd);
3893 usb_put_hcd(hcd);
3896 static int oxu_drv_remove(struct platform_device *pdev)
3898 struct oxu_info *info = platform_get_drvdata(pdev);
3899 unsigned long memstart = info->hcd[0]->rsrc_start,
3900 memlen = info->hcd[0]->rsrc_len;
3901 void *base = info->hcd[0]->regs;
3903 oxu_remove(pdev, info->hcd[0]);
3904 oxu_remove(pdev, info->hcd[1]);
3906 iounmap(base);
3907 release_mem_region(memstart, memlen);
3909 kfree(info);
3910 platform_set_drvdata(pdev, NULL);
3912 return 0;
3915 static void oxu_drv_shutdown(struct platform_device *pdev)
3917 oxu_drv_remove(pdev);
3920 #if 0
3921 /* FIXME: TODO */
3922 static int oxu_drv_suspend(struct device *dev)
3924 struct platform_device *pdev = to_platform_device(dev);
3925 struct usb_hcd *hcd = dev_get_drvdata(dev);
3927 return 0;
3930 static int oxu_drv_resume(struct device *dev)
3932 struct platform_device *pdev = to_platform_device(dev);
3933 struct usb_hcd *hcd = dev_get_drvdata(dev);
3935 return 0;
3937 #else
3938 #define oxu_drv_suspend NULL
3939 #define oxu_drv_resume NULL
3940 #endif
3942 static struct platform_driver oxu_driver = {
3943 .probe = oxu_drv_probe,
3944 .remove = oxu_drv_remove,
3945 .shutdown = oxu_drv_shutdown,
3946 .suspend = oxu_drv_suspend,
3947 .resume = oxu_drv_resume,
3948 .driver = {
3949 .name = "oxu210hp-hcd",
3950 .bus = &platform_bus_type
3954 static int __init oxu_module_init(void)
3956 int retval = 0;
3958 retval = platform_driver_register(&oxu_driver);
3959 if (retval < 0)
3960 return retval;
3962 return retval;
3965 static void __exit oxu_module_cleanup(void)
3967 platform_driver_unregister(&oxu_driver);
3970 module_init(oxu_module_init);
3971 module_exit(oxu_module_cleanup);
3973 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3974 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3975 MODULE_LICENSE("GPL");