2 * Copyright (C) 2005-2006 by Texas Instruments
4 * This file implements a DMA interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
9 #include <linux/platform_device.h>
10 #include <linux/slab.h>
11 #include <linux/usb.h>
13 #include "musb_core.h"
14 #include "musb_debug.h"
18 /* CPPI DMA status 7-mar-2006:
20 * - See musb_{host,gadget}.c for more info
22 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
23 * which can easily saturate the CPU under non-mass-storage loads.
25 * NOTES 24-aug-2006 (2.6.18-rc4):
27 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
28 * evidently after the 1 byte packet was received and acked, the queue
29 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
30 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
31 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
32 * of its next (512 byte) packet. IRQ issues?
34 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
35 * evidently also directly update the RX and TX CSRs ... so audit all
36 * host and peripheral side DMA code to avoid CSR access after DMA has
40 /* REVISIT now we can avoid preallocating these descriptors; or
41 * more simply, switch to a global freelist not per-channel ones.
42 * Note: at full speed, 64 descriptors == 4K bulk data.
44 #define NUM_TXCHAN_BD 64
45 #define NUM_RXCHAN_BD 64
47 static inline void cpu_drain_writebuffer(void)
50 #ifdef CONFIG_CPU_ARM926T
51 /* REVISIT this "should not be needed",
52 * but lack of it sure seemed to hurt ...
54 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
58 static inline struct cppi_descriptor
*cppi_bd_alloc(struct cppi_channel
*c
)
60 struct cppi_descriptor
*bd
= c
->freelist
;
63 c
->freelist
= bd
->next
;
68 cppi_bd_free(struct cppi_channel
*c
, struct cppi_descriptor
*bd
)
72 bd
->next
= c
->freelist
;
77 * Start DMA controller
79 * Initialize the DMA controller as necessary.
82 /* zero out entire rx state RAM entry for the channel */
83 static void cppi_reset_rx(struct cppi_rx_stateram __iomem
*rx
)
85 musb_writel(&rx
->rx_skipbytes
, 0, 0);
86 musb_writel(&rx
->rx_head
, 0, 0);
87 musb_writel(&rx
->rx_sop
, 0, 0);
88 musb_writel(&rx
->rx_current
, 0, 0);
89 musb_writel(&rx
->rx_buf_current
, 0, 0);
90 musb_writel(&rx
->rx_len_len
, 0, 0);
91 musb_writel(&rx
->rx_cnt_cnt
, 0, 0);
94 /* zero out entire tx state RAM entry for the channel */
95 static void cppi_reset_tx(struct cppi_tx_stateram __iomem
*tx
, u32 ptr
)
97 musb_writel(&tx
->tx_head
, 0, 0);
98 musb_writel(&tx
->tx_buf
, 0, 0);
99 musb_writel(&tx
->tx_current
, 0, 0);
100 musb_writel(&tx
->tx_buf_current
, 0, 0);
101 musb_writel(&tx
->tx_info
, 0, 0);
102 musb_writel(&tx
->tx_rem_len
, 0, 0);
103 /* musb_writel(&tx->tx_dummy, 0, 0); */
104 musb_writel(&tx
->tx_complete
, 0, ptr
);
107 static void __init
cppi_pool_init(struct cppi
*cppi
, struct cppi_channel
*c
)
111 /* initialize channel fields */
114 c
->last_processed
= NULL
;
115 c
->channel
.status
= MUSB_DMA_STATUS_UNKNOWN
;
116 c
->controller
= cppi
;
120 /* build the BD Free list for the channel */
121 for (j
= 0; j
< NUM_TXCHAN_BD
+ 1; j
++) {
122 struct cppi_descriptor
*bd
;
125 bd
= dma_pool_alloc(cppi
->pool
, GFP_KERNEL
, &dma
);
131 static int cppi_channel_abort(struct dma_channel
*);
133 static void cppi_pool_free(struct cppi_channel
*c
)
135 struct cppi
*cppi
= c
->controller
;
136 struct cppi_descriptor
*bd
;
138 (void) cppi_channel_abort(&c
->channel
);
139 c
->channel
.status
= MUSB_DMA_STATUS_UNKNOWN
;
140 c
->controller
= NULL
;
142 /* free all its bds */
143 bd
= c
->last_processed
;
146 dma_pool_free(cppi
->pool
, bd
, bd
->dma
);
147 bd
= cppi_bd_alloc(c
);
149 c
->last_processed
= NULL
;
152 static int __init
cppi_controller_start(struct dma_controller
*c
)
154 struct cppi
*controller
;
155 void __iomem
*tibase
;
158 controller
= container_of(c
, struct cppi
, controller
);
160 /* do whatever is necessary to start controller */
161 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
162 controller
->tx
[i
].transmit
= true;
163 controller
->tx
[i
].index
= i
;
165 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++) {
166 controller
->rx
[i
].transmit
= false;
167 controller
->rx
[i
].index
= i
;
170 /* setup BD list on a per channel basis */
171 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++)
172 cppi_pool_init(controller
, controller
->tx
+ i
);
173 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++)
174 cppi_pool_init(controller
, controller
->rx
+ i
);
176 tibase
= controller
->tibase
;
177 INIT_LIST_HEAD(&controller
->tx_complete
);
179 /* initialise tx/rx channel head pointers to zero */
180 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
181 struct cppi_channel
*tx_ch
= controller
->tx
+ i
;
182 struct cppi_tx_stateram __iomem
*tx
;
184 INIT_LIST_HEAD(&tx_ch
->tx_complete
);
186 tx
= tibase
+ DAVINCI_TXCPPI_STATERAM_OFFSET(i
);
187 tx_ch
->state_ram
= tx
;
188 cppi_reset_tx(tx
, 0);
190 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++) {
191 struct cppi_channel
*rx_ch
= controller
->rx
+ i
;
192 struct cppi_rx_stateram __iomem
*rx
;
194 INIT_LIST_HEAD(&rx_ch
->tx_complete
);
196 rx
= tibase
+ DAVINCI_RXCPPI_STATERAM_OFFSET(i
);
197 rx_ch
->state_ram
= rx
;
201 /* enable individual cppi channels */
202 musb_writel(tibase
, DAVINCI_TXCPPI_INTENAB_REG
,
203 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
204 musb_writel(tibase
, DAVINCI_RXCPPI_INTENAB_REG
,
205 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
207 /* enable tx/rx CPPI control */
208 musb_writel(tibase
, DAVINCI_TXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_ENABLE
);
209 musb_writel(tibase
, DAVINCI_RXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_ENABLE
);
211 /* disable RNDIS mode, also host rx RNDIS autorequest */
212 musb_writel(tibase
, DAVINCI_RNDIS_REG
, 0);
213 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, 0);
219 * Stop DMA controller
221 * De-Init the DMA controller as necessary.
224 static int cppi_controller_stop(struct dma_controller
*c
)
226 struct cppi
*controller
;
227 void __iomem
*tibase
;
230 controller
= container_of(c
, struct cppi
, controller
);
232 tibase
= controller
->tibase
;
233 /* DISABLE INDIVIDUAL CHANNEL Interrupts */
234 musb_writel(tibase
, DAVINCI_TXCPPI_INTCLR_REG
,
235 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
236 musb_writel(tibase
, DAVINCI_RXCPPI_INTCLR_REG
,
237 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
239 dev_dbg(musb
->controller
, "Tearing down RX and TX Channels\n");
240 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
241 /* FIXME restructure of txdma to use bds like rxdma */
242 controller
->tx
[i
].last_processed
= NULL
;
243 cppi_pool_free(controller
->tx
+ i
);
245 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++)
246 cppi_pool_free(controller
->rx
+ i
);
248 /* in Tx Case proper teardown is supported. We resort to disabling
249 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
250 * complete TX CPPI cannot be disabled.
252 /*disable tx/rx cppi */
253 musb_writel(tibase
, DAVINCI_TXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_DISABLE
);
254 musb_writel(tibase
, DAVINCI_RXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_DISABLE
);
259 /* While dma channel is allocated, we only want the core irqs active
260 * for fault reports, otherwise we'd get irqs that we don't care about.
261 * Except for TX irqs, where dma done != fifo empty and reusable ...
263 * NOTE: docs don't say either way, but irq masking **enables** irqs.
265 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
267 static inline void core_rxirq_disable(void __iomem
*tibase
, unsigned epnum
)
269 musb_writel(tibase
, DAVINCI_USB_INT_MASK_CLR_REG
, 1 << (epnum
+ 8));
272 static inline void core_rxirq_enable(void __iomem
*tibase
, unsigned epnum
)
274 musb_writel(tibase
, DAVINCI_USB_INT_MASK_SET_REG
, 1 << (epnum
+ 8));
279 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
280 * each transfer direction of a non-control endpoint, so allocating
281 * (and deallocating) is mostly a way to notice bad housekeeping on
282 * the software side. We assume the irqs are always active.
284 static struct dma_channel
*
285 cppi_channel_allocate(struct dma_controller
*c
,
286 struct musb_hw_ep
*ep
, u8 transmit
)
288 struct cppi
*controller
;
290 struct cppi_channel
*cppi_ch
;
291 void __iomem
*tibase
;
293 controller
= container_of(c
, struct cppi
, controller
);
294 tibase
= controller
->tibase
;
296 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
297 index
= ep
->epnum
- 1;
299 /* return the corresponding CPPI Channel Handle, and
300 * probably disable the non-CPPI irq until we need it.
303 if (index
>= ARRAY_SIZE(controller
->tx
)) {
304 dev_dbg(musb
->controller
, "no %cX%d CPPI channel\n", 'T', index
);
307 cppi_ch
= controller
->tx
+ index
;
309 if (index
>= ARRAY_SIZE(controller
->rx
)) {
310 dev_dbg(musb
->controller
, "no %cX%d CPPI channel\n", 'R', index
);
313 cppi_ch
= controller
->rx
+ index
;
314 core_rxirq_disable(tibase
, ep
->epnum
);
317 /* REVISIT make this an error later once the same driver code works
318 * with the other DMA engine too
321 dev_dbg(musb
->controller
, "re-allocating DMA%d %cX channel %p\n",
322 index
, transmit
? 'T' : 'R', cppi_ch
);
324 cppi_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
325 cppi_ch
->channel
.max_len
= 0x7fffffff;
327 dev_dbg(musb
->controller
, "Allocate CPPI%d %cX\n", index
, transmit
? 'T' : 'R');
328 return &cppi_ch
->channel
;
331 /* Release a CPPI Channel. */
332 static void cppi_channel_release(struct dma_channel
*channel
)
334 struct cppi_channel
*c
;
335 void __iomem
*tibase
;
337 /* REVISIT: for paranoia, check state and abort if needed... */
339 c
= container_of(channel
, struct cppi_channel
, channel
);
340 tibase
= c
->controller
->tibase
;
342 dev_dbg(musb
->controller
, "releasing idle DMA channel %p\n", c
);
343 else if (!c
->transmit
)
344 core_rxirq_enable(tibase
, c
->index
+ 1);
346 /* for now, leave its cppi IRQ enabled (we won't trigger it) */
348 channel
->status
= MUSB_DMA_STATUS_UNKNOWN
;
351 /* Context: controller irqlocked */
353 cppi_dump_rx(int level
, struct cppi_channel
*c
, const char *tag
)
355 void __iomem
*base
= c
->controller
->mregs
;
356 struct cppi_rx_stateram __iomem
*rx
= c
->state_ram
;
358 musb_ep_select(base
, c
->index
+ 1);
360 DBG(level
, "RX DMA%d%s: %d left, csr %04x, "
361 "%08x H%08x S%08x C%08x, "
362 "B%08x L%08x %08x .. %08x"
365 musb_readl(c
->controller
->tibase
,
366 DAVINCI_RXCPPI_BUFCNT0_REG
+ 4 * c
->index
),
367 musb_readw(c
->hw_ep
->regs
, MUSB_RXCSR
),
369 musb_readl(&rx
->rx_skipbytes
, 0),
370 musb_readl(&rx
->rx_head
, 0),
371 musb_readl(&rx
->rx_sop
, 0),
372 musb_readl(&rx
->rx_current
, 0),
374 musb_readl(&rx
->rx_buf_current
, 0),
375 musb_readl(&rx
->rx_len_len
, 0),
376 musb_readl(&rx
->rx_cnt_cnt
, 0),
377 musb_readl(&rx
->rx_complete
, 0)
381 /* Context: controller irqlocked */
383 cppi_dump_tx(int level
, struct cppi_channel
*c
, const char *tag
)
385 void __iomem
*base
= c
->controller
->mregs
;
386 struct cppi_tx_stateram __iomem
*tx
= c
->state_ram
;
388 musb_ep_select(base
, c
->index
+ 1);
390 DBG(level
, "TX DMA%d%s: csr %04x, "
391 "H%08x S%08x C%08x %08x, "
392 "F%08x L%08x .. %08x"
395 musb_readw(c
->hw_ep
->regs
, MUSB_TXCSR
),
397 musb_readl(&tx
->tx_head
, 0),
398 musb_readl(&tx
->tx_buf
, 0),
399 musb_readl(&tx
->tx_current
, 0),
400 musb_readl(&tx
->tx_buf_current
, 0),
402 musb_readl(&tx
->tx_info
, 0),
403 musb_readl(&tx
->tx_rem_len
, 0),
404 /* dummy/unused word 6 */
405 musb_readl(&tx
->tx_complete
, 0)
409 /* Context: controller irqlocked */
411 cppi_rndis_update(struct cppi_channel
*c
, int is_rx
,
412 void __iomem
*tibase
, int is_rndis
)
414 /* we may need to change the rndis flag for this cppi channel */
415 if (c
->is_rndis
!= is_rndis
) {
416 u32 value
= musb_readl(tibase
, DAVINCI_RNDIS_REG
);
417 u32 temp
= 1 << (c
->index
);
425 musb_writel(tibase
, DAVINCI_RNDIS_REG
, value
);
426 c
->is_rndis
= is_rndis
;
430 #ifdef CONFIG_USB_MUSB_DEBUG
431 static void cppi_dump_rxbd(const char *tag
, struct cppi_descriptor
*bd
)
433 pr_debug("RXBD/%s %08x: "
434 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
436 bd
->hw_next
, bd
->hw_bufp
, bd
->hw_off_len
,
441 static void cppi_dump_rxq(int level
, const char *tag
, struct cppi_channel
*rx
)
443 #ifdef CONFIG_USB_MUSB_DEBUG
444 struct cppi_descriptor
*bd
;
446 if (!_dbg_level(level
))
448 cppi_dump_rx(level
, rx
, tag
);
449 if (rx
->last_processed
)
450 cppi_dump_rxbd("last", rx
->last_processed
);
451 for (bd
= rx
->head
; bd
; bd
= bd
->next
)
452 cppi_dump_rxbd("active", bd
);
457 /* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
458 * so we won't ever use it (see "CPPI RX Woes" below).
460 static inline int cppi_autoreq_update(struct cppi_channel
*rx
,
461 void __iomem
*tibase
, int onepacket
, unsigned n_bds
)
465 #ifdef RNDIS_RX_IS_USABLE
467 /* assert(is_host_active(musb)) */
469 /* start from "AutoReq never" */
470 tmp
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
471 val
= tmp
& ~((0x3) << (rx
->index
* 2));
473 /* HCD arranged reqpkt for packet #1. we arrange int
474 * for all but the last one, maybe in two segments.
478 /* use two segments, autoreq "all" then the last "never" */
479 val
|= ((0x3) << (rx
->index
* 2));
482 /* one segment, autoreq "all-but-last" */
483 val
|= ((0x1) << (rx
->index
* 2));
490 /* make sure that autoreq is updated before continuing */
491 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, val
);
493 tmp
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
501 /* REQPKT is turned off after each segment */
502 if (n_bds
&& rx
->channel
.actual_len
) {
503 void __iomem
*regs
= rx
->hw_ep
->regs
;
505 val
= musb_readw(regs
, MUSB_RXCSR
);
506 if (!(val
& MUSB_RXCSR_H_REQPKT
)) {
507 val
|= MUSB_RXCSR_H_REQPKT
| MUSB_RXCSR_H_WZC_BITS
;
508 musb_writew(regs
, MUSB_RXCSR
, val
);
509 /* flush writebufer */
510 val
= musb_readw(regs
, MUSB_RXCSR
);
517 /* Buffer enqueuing Logic:
519 * - RX builds new queues each time, to help handle routine "early
520 * termination" cases (faults, including errors and short reads)
523 * - for now, TX reuses the same queue of BDs every time
525 * REVISIT long term, we want a normal dynamic model.
526 * ... the goal will be to append to the
527 * existing queue, processing completed "dma buffers" (segments) on the fly.
529 * Otherwise we force an IRQ latency between requests, which slows us a lot
530 * (especially in "transparent" dma). Unfortunately that model seems to be
531 * inherent in the DMA model from the Mentor code, except in the rare case
532 * of transfers big enough (~128+ KB) that we could append "middle" segments
533 * in the TX paths. (RX can't do this, see below.)
535 * That's true even in the CPPI- friendly iso case, where most urbs have
536 * several small segments provided in a group and where the "packet at a time"
537 * "transparent" DMA model is always correct, even on the RX side.
543 * TX is a lot more reasonable than RX; it doesn't need to run in
544 * irq-per-packet mode very often. RNDIS mode seems to behave too
545 * (except how it handles the exactly-N-packets case). Building a
546 * txdma queue with multiple requests (urb or usb_request) looks
547 * like it would work ... but fault handling would need much testing.
549 * The main issue with TX mode RNDIS relates to transfer lengths that
550 * are an exact multiple of the packet length. It appears that there's
551 * a hiccup in that case (maybe the DMA completes before the ZLP gets
552 * written?) boiling down to not being able to rely on CPPI writing any
553 * terminating zero length packet before the next transfer is written.
554 * So that's punted to PIO; better yet, gadget drivers can avoid it.
556 * Plus, there's allegedly an undocumented constraint that rndis transfer
557 * length be a multiple of 64 bytes ... but the chip doesn't act that
558 * way, and we really don't _want_ that behavior anyway.
560 * On TX, "transparent" mode works ... although experiments have shown
561 * problems trying to use the SOP/EOP bits in different USB packets.
563 * REVISIT try to handle terminating zero length packets using CPPI
564 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
565 * links avoid that issue by forcing them to avoid zlps.)
568 cppi_next_tx_segment(struct musb
*musb
, struct cppi_channel
*tx
)
570 unsigned maxpacket
= tx
->maxpacket
;
571 dma_addr_t addr
= tx
->buf_dma
+ tx
->offset
;
572 size_t length
= tx
->buf_len
- tx
->offset
;
573 struct cppi_descriptor
*bd
;
576 struct cppi_tx_stateram __iomem
*tx_ram
= tx
->state_ram
;
579 /* TX can use the CPPI "rndis" mode, where we can probably fit this
580 * transfer in one BD and one IRQ. The only time we would NOT want
581 * to use it is when hardware constraints prevent it, or if we'd
582 * trigger the "send a ZLP?" confusion.
584 rndis
= (maxpacket
& 0x3f) == 0
585 && length
> maxpacket
587 && (length
% maxpacket
) != 0;
593 n_bds
= length
/ maxpacket
;
594 if (!length
|| (length
% maxpacket
))
596 n_bds
= min(n_bds
, (unsigned) NUM_TXCHAN_BD
);
597 length
= min(n_bds
* maxpacket
, length
);
600 dev_dbg(musb
->controller
, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n",
603 rndis
? "rndis" : "transparent",
605 (unsigned long long)addr
, length
);
607 cppi_rndis_update(tx
, 0, musb
->ctrl_base
, rndis
);
609 /* assuming here that channel_program is called during
610 * transfer initiation ... current code maintains state
611 * for one outstanding request only (no queues, not even
612 * the implicit ones of an iso urb).
617 tx
->last_processed
= NULL
;
619 /* FIXME use BD pool like RX side does, and just queue
620 * the minimum number for this request.
623 /* Prepare queue of BDs first, then hand it to hardware.
624 * All BDs except maybe the last should be of full packet
625 * size; for RNDIS there _is_ only that last packet.
627 for (i
= 0; i
< n_bds
; ) {
628 if (++i
< n_bds
&& bd
->next
)
629 bd
->hw_next
= bd
->next
->dma
;
633 bd
->hw_bufp
= tx
->buf_dma
+ tx
->offset
;
635 /* FIXME set EOP only on the last packet,
636 * SOP only on the first ... avoid IRQs
638 if ((tx
->offset
+ maxpacket
) <= tx
->buf_len
) {
639 tx
->offset
+= maxpacket
;
640 bd
->hw_off_len
= maxpacket
;
641 bd
->hw_options
= CPPI_SOP_SET
| CPPI_EOP_SET
642 | CPPI_OWN_SET
| maxpacket
;
644 /* only this one may be a partial USB Packet */
647 partial_len
= tx
->buf_len
- tx
->offset
;
648 tx
->offset
= tx
->buf_len
;
649 bd
->hw_off_len
= partial_len
;
651 bd
->hw_options
= CPPI_SOP_SET
| CPPI_EOP_SET
652 | CPPI_OWN_SET
| partial_len
;
653 if (partial_len
== 0)
654 bd
->hw_options
|= CPPI_ZERO_SET
;
657 dev_dbg(musb
->controller
, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
658 bd
, bd
->hw_next
, bd
->hw_bufp
,
659 bd
->hw_off_len
, bd
->hw_options
);
661 /* update the last BD enqueued to the list */
666 /* BDs live in DMA-coherent memory, but writes might be pending */
667 cpu_drain_writebuffer();
669 /* Write to the HeadPtr in state RAM to trigger */
670 musb_writel(&tx_ram
->tx_head
, 0, (u32
)tx
->freelist
->dma
);
672 cppi_dump_tx(5, tx
, "/S");
678 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
679 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
680 * (Full speed transfers have similar scenarios.)
682 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
683 * and the next packet goes into a buffer that's queued later; while (b) fills
684 * the buffer with 1024 bytes. How to do that with CPPI?
686 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
687 * (b) loses **BADLY** because nothing (!) happens when that second packet
688 * fills the buffer, much less when a third one arrives. (Which makes this
689 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
690 * is optional, and it's fine if peripherals -- not hosts! -- pad messages
691 * out to end-of-buffer. Standard PCI host controller DMA descriptors
692 * implement that mode by default ... which is no accident.)
694 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
695 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX
696 * ignores SOP/EOP markings and processes both of those BDs; so both packets
697 * are loaded into the buffer (with a 212 byte gap between them), and the next
698 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
699 * are intended as outputs for RX queues, not inputs...)
701 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
702 * reliably make both cases work, with software handling both cases correctly
703 * and at the significant penalty of needing an IRQ per packet. (The lack of
704 * I/O overlap can be slightly ameliorated by enabling double buffering.)
706 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could
707 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
708 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
709 * with guaranteed driver level fault recovery and scrubbing out what's left
710 * of that garbaged datastream.
712 * But there seems to be no way to identify the cases where CPPI RNDIS mode
713 * is appropriate -- which do NOT include RNDIS host drivers, but do include
714 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
715 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
716 * that applies best on the peripheral side (and which could fail rudely).
718 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
719 * cases other than mass storage class. Otherwise we're correct but slow,
720 * since CPPI penalizes our need for a "true RNDIS" default mode.
724 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
727 * (a) peripheral mode ... since rndis peripherals could pad their
728 * writes to hosts, causing i/o failure; or we'd have to cope with
729 * a largely unknowable variety of host side protocol variants
730 * (b) and short reads are NOT errors ... since full reads would
731 * cause those same i/o failures
732 * (c) and read length is
733 * - less than 64KB (max per cppi descriptor)
734 * - not a multiple of 4096 (g_zero default, full reads typical)
735 * - N (>1) packets long, ditto (full reads not EXPECTED)
739 * Cost of heuristic failing: RXDMA wedges at the end of transfers that
740 * fill out the whole buffer. Buggy host side usb network drivers could
741 * trigger that, but "in the field" such bugs seem to be all but unknown.
743 * So this module parameter lets the heuristic be disabled. When using
744 * gadgetfs, the heuristic will probably need to be disabled.
746 static int cppi_rx_rndis
= 1;
748 module_param(cppi_rx_rndis
, bool, 0);
749 MODULE_PARM_DESC(cppi_rx_rndis
, "enable/disable RX RNDIS heuristic");
753 * cppi_next_rx_segment - dma read for the next chunk of a buffer
754 * @musb: the controller
756 * @onepacket: true unless caller treats short reads as errors, and
757 * performs fault recovery above usbcore.
758 * Context: controller irqlocked
760 * See above notes about why we can't use multi-BD RX queues except in
761 * rare cases (mass storage class), and can never use the hardware "rndis"
762 * mode (since it's not a "true" RNDIS mode) with complete safety..
764 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
765 * code to recover from corrupted datastreams after each short transfer.
768 cppi_next_rx_segment(struct musb
*musb
, struct cppi_channel
*rx
, int onepacket
)
770 unsigned maxpacket
= rx
->maxpacket
;
771 dma_addr_t addr
= rx
->buf_dma
+ rx
->offset
;
772 size_t length
= rx
->buf_len
- rx
->offset
;
773 struct cppi_descriptor
*bd
, *tail
;
776 void __iomem
*tibase
= musb
->ctrl_base
;
778 struct cppi_rx_stateram __iomem
*rx_ram
= rx
->state_ram
;
781 /* almost every USB driver, host or peripheral side */
784 /* maybe apply the heuristic above */
786 && is_peripheral_active(musb
)
787 && length
> maxpacket
788 && (length
& ~0xffff) == 0
789 && (length
& 0x0fff) != 0
790 && (length
& (maxpacket
- 1)) == 0) {
795 /* virtually nothing except mass storage class */
796 if (length
> 0xffff) {
797 n_bds
= 0xffff / maxpacket
;
798 length
= n_bds
* maxpacket
;
800 n_bds
= length
/ maxpacket
;
801 if (length
% maxpacket
)
807 n_bds
= min(n_bds
, (unsigned) NUM_RXCHAN_BD
);
810 /* In host mode, autorequest logic can generate some IN tokens; it's
811 * tricky since we can't leave REQPKT set in RXCSR after the transfer
812 * finishes. So: multipacket transfers involve two or more segments.
813 * And always at least two IRQs ... RNDIS mode is not an option.
815 if (is_host_active(musb
))
816 n_bds
= cppi_autoreq_update(rx
, tibase
, onepacket
, n_bds
);
818 cppi_rndis_update(rx
, 1, musb
->ctrl_base
, is_rndis
);
820 length
= min(n_bds
* maxpacket
, length
);
822 dev_dbg(musb
->controller
, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
823 "dma 0x%llx len %u %u/%u\n",
824 rx
->index
, maxpacket
,
826 ? (is_rndis
? "rndis" : "onepacket")
830 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
832 (unsigned long long)addr
, length
,
833 rx
->channel
.actual_len
, rx
->buf_len
);
835 /* only queue one segment at a time, since the hardware prevents
836 * correct queue shutdown after unexpected short packets
838 bd
= cppi_bd_alloc(rx
);
841 /* Build BDs for all packets in this segment */
842 for (i
= 0, tail
= NULL
; bd
&& i
< n_bds
; i
++, tail
= bd
) {
846 bd
= cppi_bd_alloc(rx
);
850 tail
->hw_next
= bd
->dma
;
854 /* all but the last packet will be maxpacket size */
855 if (maxpacket
< length
)
862 rx
->offset
+= bd_len
;
864 bd
->hw_off_len
= (0 /*offset*/ << 16) + bd_len
;
867 bd
->hw_options
= CPPI_OWN_SET
| (i
== 0 ? length
: 0);
871 /* we always expect at least one reusable BD! */
873 WARNING("rx dma%d -- no BDs? need %d\n", rx
->index
, n_bds
);
875 } else if (i
< n_bds
)
876 WARNING("rx dma%d -- only %d of %d BDs\n", rx
->index
, i
, n_bds
);
884 /* short reads and other faults should terminate this entire
885 * dma segment. we want one "dma packet" per dma segment, not
886 * one per USB packet, terminating the whole queue at once...
887 * NOTE that current hardware seems to ignore SOP and EOP.
889 bd
->hw_options
|= CPPI_SOP_SET
;
890 tail
->hw_options
|= CPPI_EOP_SET
;
892 #ifdef CONFIG_USB_MUSB_DEBUG
894 struct cppi_descriptor
*d
;
896 for (d
= rx
->head
; d
; d
= d
->next
)
897 cppi_dump_rxbd("S", d
);
901 /* in case the preceding transfer left some state... */
902 tail
= rx
->last_processed
;
905 tail
->hw_next
= bd
->dma
;
908 core_rxirq_enable(tibase
, rx
->index
+ 1);
910 /* BDs live in DMA-coherent memory, but writes might be pending */
911 cpu_drain_writebuffer();
913 /* REVISIT specs say to write this AFTER the BUFCNT register
914 * below ... but that loses badly.
916 musb_writel(&rx_ram
->rx_head
, 0, bd
->dma
);
918 /* bufferCount must be at least 3, and zeroes on completion
919 * unless it underflows below zero, or stops at two, or keeps
922 i
= musb_readl(tibase
,
923 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
928 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
930 else if (n_bds
> (i
- 3))
932 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
935 i
= musb_readl(tibase
,
936 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
938 if (i
< (2 + n_bds
)) {
939 dev_dbg(musb
->controller
, "bufcnt%d underrun - %d (for %d)\n",
940 rx
->index
, i
, n_bds
);
942 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
946 cppi_dump_rx(4, rx
, "/S");
950 * cppi_channel_program - program channel for data transfer
952 * @maxpacket: max packet size
953 * @mode: For RX, 1 unless the usb protocol driver promised to treat
954 * all short reads as errors and kick in high level fault recovery.
955 * For TX, ignored because of RNDIS mode races/glitches.
956 * @dma_addr: dma address of buffer
957 * @len: length of buffer
958 * Context: controller irqlocked
960 static int cppi_channel_program(struct dma_channel
*ch
,
961 u16 maxpacket
, u8 mode
,
962 dma_addr_t dma_addr
, u32 len
)
964 struct cppi_channel
*cppi_ch
;
965 struct cppi
*controller
;
968 cppi_ch
= container_of(ch
, struct cppi_channel
, channel
);
969 controller
= cppi_ch
->controller
;
970 musb
= controller
->musb
;
972 switch (ch
->status
) {
973 case MUSB_DMA_STATUS_BUS_ABORT
:
974 case MUSB_DMA_STATUS_CORE_ABORT
:
975 /* fault irq handler should have handled cleanup */
976 WARNING("%cX DMA%d not cleaned up after abort!\n",
977 cppi_ch
->transmit
? 'T' : 'R',
981 case MUSB_DMA_STATUS_BUSY
:
982 WARNING("program active channel? %cX DMA%d\n",
983 cppi_ch
->transmit
? 'T' : 'R',
987 case MUSB_DMA_STATUS_UNKNOWN
:
988 dev_dbg(musb
->controller
, "%cX DMA%d not allocated!\n",
989 cppi_ch
->transmit
? 'T' : 'R',
992 case MUSB_DMA_STATUS_FREE
:
996 ch
->status
= MUSB_DMA_STATUS_BUSY
;
998 /* set transfer parameters, then queue up its first segment */
999 cppi_ch
->buf_dma
= dma_addr
;
1000 cppi_ch
->offset
= 0;
1001 cppi_ch
->maxpacket
= maxpacket
;
1002 cppi_ch
->buf_len
= len
;
1003 cppi_ch
->channel
.actual_len
= 0;
1005 /* TX channel? or RX? */
1006 if (cppi_ch
->transmit
)
1007 cppi_next_tx_segment(musb
, cppi_ch
);
1009 cppi_next_rx_segment(musb
, cppi_ch
, mode
);
1014 static bool cppi_rx_scan(struct cppi
*cppi
, unsigned ch
)
1016 struct cppi_channel
*rx
= &cppi
->rx
[ch
];
1017 struct cppi_rx_stateram __iomem
*state
= rx
->state_ram
;
1018 struct cppi_descriptor
*bd
;
1019 struct cppi_descriptor
*last
= rx
->last_processed
;
1020 bool completed
= false;
1023 dma_addr_t safe2ack
;
1024 void __iomem
*regs
= rx
->hw_ep
->regs
;
1026 cppi_dump_rx(6, rx
, "/K");
1028 bd
= last
? last
->next
: rx
->head
;
1032 /* run through all completed BDs */
1033 for (i
= 0, safe2ack
= musb_readl(&state
->rx_complete
, 0);
1034 (safe2ack
|| completed
) && bd
&& i
< NUM_RXCHAN_BD
;
1035 i
++, bd
= bd
->next
) {
1038 /* catch latest BD writes from CPPI */
1040 if (!completed
&& (bd
->hw_options
& CPPI_OWN_SET
))
1043 dev_dbg(musb
->controller
, "C/RXBD %llx: nxt %08x buf %08x "
1044 "off.len %08x opt.len %08x (%d)\n",
1045 (unsigned long long)bd
->dma
, bd
->hw_next
, bd
->hw_bufp
,
1046 bd
->hw_off_len
, bd
->hw_options
,
1047 rx
->channel
.actual_len
);
1049 /* actual packet received length */
1050 if ((bd
->hw_options
& CPPI_SOP_SET
) && !completed
)
1051 len
= bd
->hw_off_len
& CPPI_RECV_PKTLEN_MASK
;
1055 if (bd
->hw_options
& CPPI_EOQ_MASK
)
1058 if (!completed
&& len
< bd
->buflen
) {
1059 /* NOTE: when we get a short packet, RXCSR_H_REQPKT
1060 * must have been cleared, and no more DMA packets may
1061 * active be in the queue... TI docs didn't say, but
1062 * CPPI ignores those BDs even though OWN is still set.
1065 dev_dbg(musb
->controller
, "rx short %d/%d (%d)\n",
1067 rx
->channel
.actual_len
);
1070 /* If we got here, we expect to ack at least one BD; meanwhile
1071 * CPPI may completing other BDs while we scan this list...
1073 * RACE: we can notice OWN cleared before CPPI raises the
1074 * matching irq by writing that BD as the completion pointer.
1075 * In such cases, stop scanning and wait for the irq, avoiding
1076 * lost acks and states where BD ownership is unclear.
1078 if (bd
->dma
== safe2ack
) {
1079 musb_writel(&state
->rx_complete
, 0, safe2ack
);
1080 safe2ack
= musb_readl(&state
->rx_complete
, 0);
1082 if (bd
->dma
== safe2ack
)
1086 rx
->channel
.actual_len
+= len
;
1088 cppi_bd_free(rx
, last
);
1091 /* stop scanning on end-of-segment */
1092 if (bd
->hw_next
== 0)
1095 rx
->last_processed
= last
;
1097 /* dma abort, lost ack, or ... */
1098 if (!acked
&& last
) {
1101 if (safe2ack
== 0 || safe2ack
== rx
->last_processed
->dma
)
1102 musb_writel(&state
->rx_complete
, 0, safe2ack
);
1103 if (safe2ack
== 0) {
1104 cppi_bd_free(rx
, last
);
1105 rx
->last_processed
= NULL
;
1107 /* if we land here on the host side, H_REQPKT will
1108 * be clear and we need to restart the queue...
1112 musb_ep_select(cppi
->mregs
, rx
->index
+ 1);
1113 csr
= musb_readw(regs
, MUSB_RXCSR
);
1114 if (csr
& MUSB_RXCSR_DMAENAB
) {
1115 dev_dbg(musb
->controller
, "list%d %p/%p, last %llx%s, csr %04x\n",
1119 ? (unsigned long long)
1120 rx
->last_processed
->dma
1122 completed
? ", completed" : "",
1124 cppi_dump_rxq(4, "/what?", rx
);
1132 /* REVISIT seems like "autoreq all but EOP" doesn't...
1133 * setting it here "should" be racey, but seems to work
1135 csr
= musb_readw(rx
->hw_ep
->regs
, MUSB_RXCSR
);
1136 if (is_host_active(cppi
->musb
)
1138 && !(csr
& MUSB_RXCSR_H_REQPKT
)) {
1139 csr
|= MUSB_RXCSR_H_REQPKT
;
1140 musb_writew(regs
, MUSB_RXCSR
,
1141 MUSB_RXCSR_H_WZC_BITS
| csr
);
1142 csr
= musb_readw(rx
->hw_ep
->regs
, MUSB_RXCSR
);
1149 cppi_dump_rx(6, rx
, completed
? "/completed" : "/cleaned");
1153 irqreturn_t
cppi_interrupt(int irq
, void *dev_id
)
1155 struct musb
*musb
= dev_id
;
1157 void __iomem
*tibase
;
1158 struct musb_hw_ep
*hw_ep
= NULL
;
1161 unsigned long uninitialized_var(flags
);
1163 cppi
= container_of(musb
->dma_controller
, struct cppi
, controller
);
1165 spin_lock_irqsave(&musb
->lock
, flags
);
1167 tibase
= musb
->ctrl_base
;
1169 tx
= musb_readl(tibase
, DAVINCI_TXCPPI_MASKED_REG
);
1170 rx
= musb_readl(tibase
, DAVINCI_RXCPPI_MASKED_REG
);
1174 spin_unlock_irqrestore(&musb
->lock
, flags
);
1178 dev_dbg(musb
->controller
, "CPPI IRQ Tx%x Rx%x\n", tx
, rx
);
1180 /* process TX channels */
1181 for (index
= 0; tx
; tx
= tx
>> 1, index
++) {
1182 struct cppi_channel
*tx_ch
;
1183 struct cppi_tx_stateram __iomem
*tx_ram
;
1184 bool completed
= false;
1185 struct cppi_descriptor
*bd
;
1190 tx_ch
= cppi
->tx
+ index
;
1191 tx_ram
= tx_ch
->state_ram
;
1193 /* FIXME need a cppi_tx_scan() routine, which
1194 * can also be called from abort code
1197 cppi_dump_tx(5, tx_ch
, "/E");
1202 * If Head is null then this could mean that a abort interrupt
1203 * that needs to be acknowledged.
1206 dev_dbg(musb
->controller
, "null BD\n");
1207 musb_writel(&tx_ram
->tx_complete
, 0, 0);
1211 /* run through all completed BDs */
1212 for (i
= 0; !completed
&& bd
&& i
< NUM_TXCHAN_BD
;
1213 i
++, bd
= bd
->next
) {
1216 /* catch latest BD writes from CPPI */
1218 if (bd
->hw_options
& CPPI_OWN_SET
)
1221 dev_dbg(musb
->controller
, "C/TXBD %p n %x b %x off %x opt %x\n",
1222 bd
, bd
->hw_next
, bd
->hw_bufp
,
1223 bd
->hw_off_len
, bd
->hw_options
);
1225 len
= bd
->hw_off_len
& CPPI_BUFFER_LEN_MASK
;
1226 tx_ch
->channel
.actual_len
+= len
;
1228 tx_ch
->last_processed
= bd
;
1230 /* write completion register to acknowledge
1231 * processing of completed BDs, and possibly
1232 * release the IRQ; EOQ might not be set ...
1234 * REVISIT use the same ack strategy as rx
1236 * REVISIT have observed bit 18 set; huh??
1238 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1239 musb_writel(&tx_ram
->tx_complete
, 0, bd
->dma
);
1241 /* stop scanning on end-of-segment */
1242 if (bd
->hw_next
== 0)
1246 /* on end of segment, maybe go to next one */
1248 /* cppi_dump_tx(4, tx_ch, "/complete"); */
1250 /* transfer more, or report completion */
1251 if (tx_ch
->offset
>= tx_ch
->buf_len
) {
1254 tx_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
1256 hw_ep
= tx_ch
->hw_ep
;
1258 musb_dma_completion(musb
, index
+ 1, 1);
1261 /* Bigger transfer than we could fit in
1262 * that first batch of descriptors...
1264 cppi_next_tx_segment(musb
, tx_ch
);
1270 /* Start processing the RX block */
1271 for (index
= 0; rx
; rx
= rx
>> 1, index
++) {
1274 struct cppi_channel
*rx_ch
;
1276 rx_ch
= cppi
->rx
+ index
;
1278 /* let incomplete dma segments finish */
1279 if (!cppi_rx_scan(cppi
, index
))
1282 /* start another dma segment if needed */
1283 if (rx_ch
->channel
.actual_len
!= rx_ch
->buf_len
1284 && rx_ch
->channel
.actual_len
1286 cppi_next_rx_segment(musb
, rx_ch
, 1);
1290 /* all segments completed! */
1291 rx_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
1293 hw_ep
= rx_ch
->hw_ep
;
1295 core_rxirq_disable(tibase
, index
+ 1);
1296 musb_dma_completion(musb
, index
+ 1, 0);
1300 /* write to CPPI EOI register to re-enable interrupts */
1301 musb_writel(tibase
, DAVINCI_CPPI_EOI_REG
, 0);
1304 spin_unlock_irqrestore(&musb
->lock
, flags
);
1309 /* Instantiate a software object representing a DMA controller. */
1310 struct dma_controller
*__init
1311 dma_controller_create(struct musb
*musb
, void __iomem
*mregs
)
1313 struct cppi
*controller
;
1314 struct device
*dev
= musb
->controller
;
1315 struct platform_device
*pdev
= to_platform_device(dev
);
1316 int irq
= platform_get_irq_byname(pdev
, "dma");
1318 controller
= kzalloc(sizeof *controller
, GFP_KERNEL
);
1322 controller
->mregs
= mregs
;
1323 controller
->tibase
= mregs
- DAVINCI_BASE_OFFSET
;
1325 controller
->musb
= musb
;
1326 controller
->controller
.start
= cppi_controller_start
;
1327 controller
->controller
.stop
= cppi_controller_stop
;
1328 controller
->controller
.channel_alloc
= cppi_channel_allocate
;
1329 controller
->controller
.channel_release
= cppi_channel_release
;
1330 controller
->controller
.channel_program
= cppi_channel_program
;
1331 controller
->controller
.channel_abort
= cppi_channel_abort
;
1333 /* NOTE: allocating from on-chip SRAM would give the least
1334 * contention for memory access, if that ever matters here.
1337 /* setup BufferPool */
1338 controller
->pool
= dma_pool_create("cppi",
1339 controller
->musb
->controller
,
1340 sizeof(struct cppi_descriptor
),
1341 CPPI_DESCRIPTOR_ALIGN
, 0);
1342 if (!controller
->pool
) {
1348 if (request_irq(irq
, cppi_interrupt
, 0, "cppi-dma", musb
)) {
1349 dev_err(dev
, "request_irq %d failed!\n", irq
);
1350 dma_controller_destroy(&controller
->controller
);
1353 controller
->irq
= irq
;
1356 return &controller
->controller
;
1360 * Destroy a previously-instantiated DMA controller.
1362 void dma_controller_destroy(struct dma_controller
*c
)
1366 cppi
= container_of(c
, struct cppi
, controller
);
1369 free_irq(cppi
->irq
, cppi
->musb
);
1371 /* assert: caller stopped the controller first */
1372 dma_pool_destroy(cppi
->pool
);
1378 * Context: controller irqlocked, endpoint selected
1380 static int cppi_channel_abort(struct dma_channel
*channel
)
1382 struct cppi_channel
*cppi_ch
;
1383 struct cppi
*controller
;
1384 void __iomem
*mbase
;
1385 void __iomem
*tibase
;
1388 struct cppi_descriptor
*queue
;
1390 cppi_ch
= container_of(channel
, struct cppi_channel
, channel
);
1392 controller
= cppi_ch
->controller
;
1394 switch (channel
->status
) {
1395 case MUSB_DMA_STATUS_BUS_ABORT
:
1396 case MUSB_DMA_STATUS_CORE_ABORT
:
1397 /* from RX or TX fault irq handler */
1398 case MUSB_DMA_STATUS_BUSY
:
1399 /* the hardware needs shutting down */
1400 regs
= cppi_ch
->hw_ep
->regs
;
1402 case MUSB_DMA_STATUS_UNKNOWN
:
1403 case MUSB_DMA_STATUS_FREE
:
1409 if (!cppi_ch
->transmit
&& cppi_ch
->head
)
1410 cppi_dump_rxq(3, "/abort", cppi_ch
);
1412 mbase
= controller
->mregs
;
1413 tibase
= controller
->tibase
;
1415 queue
= cppi_ch
->head
;
1416 cppi_ch
->head
= NULL
;
1417 cppi_ch
->tail
= NULL
;
1419 /* REVISIT should rely on caller having done this,
1420 * and caller should rely on us not changing it.
1421 * peripheral code is safe ... check host too.
1423 musb_ep_select(mbase
, cppi_ch
->index
+ 1);
1425 if (cppi_ch
->transmit
) {
1426 struct cppi_tx_stateram __iomem
*tx_ram
;
1427 /* REVISIT put timeouts on these controller handshakes */
1429 cppi_dump_tx(6, cppi_ch
, " (teardown)");
1431 /* teardown DMA engine then usb core */
1433 value
= musb_readl(tibase
, DAVINCI_TXCPPI_TEAR_REG
);
1434 } while (!(value
& CPPI_TEAR_READY
));
1435 musb_writel(tibase
, DAVINCI_TXCPPI_TEAR_REG
, cppi_ch
->index
);
1437 tx_ram
= cppi_ch
->state_ram
;
1439 value
= musb_readl(&tx_ram
->tx_complete
, 0);
1440 } while (0xFFFFFFFC != value
);
1442 /* FIXME clean up the transfer state ... here?
1443 * the completion routine should get called with
1444 * an appropriate status code.
1447 value
= musb_readw(regs
, MUSB_TXCSR
);
1448 value
&= ~MUSB_TXCSR_DMAENAB
;
1449 value
|= MUSB_TXCSR_FLUSHFIFO
;
1450 musb_writew(regs
, MUSB_TXCSR
, value
);
1451 musb_writew(regs
, MUSB_TXCSR
, value
);
1454 * 1. Write to completion Ptr value 0x1(bit 0 set)
1456 * 2. Wait for abort interrupt and then put the channel in
1457 * compare mode by writing 1 to the tx_complete register.
1459 cppi_reset_tx(tx_ram
, 1);
1460 cppi_ch
->head
= NULL
;
1461 musb_writel(&tx_ram
->tx_complete
, 0, 1);
1462 cppi_dump_tx(5, cppi_ch
, " (done teardown)");
1464 /* REVISIT tx side _should_ clean up the same way
1465 * as the RX side ... this does no cleanup at all!
1471 /* NOTE: docs don't guarantee any of this works ... we
1472 * expect that if the usb core stops telling the cppi core
1473 * to pull more data from it, then it'll be safe to flush
1474 * current RX DMA state iff any pending fifo transfer is done.
1477 core_rxirq_disable(tibase
, cppi_ch
->index
+ 1);
1479 /* for host, ensure ReqPkt is never set again */
1480 if (is_host_active(cppi_ch
->controller
->musb
)) {
1481 value
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
1482 value
&= ~((0x3) << (cppi_ch
->index
* 2));
1483 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, value
);
1486 csr
= musb_readw(regs
, MUSB_RXCSR
);
1488 /* for host, clear (just) ReqPkt at end of current packet(s) */
1489 if (is_host_active(cppi_ch
->controller
->musb
)) {
1490 csr
|= MUSB_RXCSR_H_WZC_BITS
;
1491 csr
&= ~MUSB_RXCSR_H_REQPKT
;
1493 csr
|= MUSB_RXCSR_P_WZC_BITS
;
1495 /* clear dma enable */
1496 csr
&= ~(MUSB_RXCSR_DMAENAB
);
1497 musb_writew(regs
, MUSB_RXCSR
, csr
);
1498 csr
= musb_readw(regs
, MUSB_RXCSR
);
1500 /* Quiesce: wait for current dma to finish (if not cleanup).
1501 * We can't use bit zero of stateram->rx_sop, since that
1502 * refers to an entire "DMA packet" not just emptying the
1503 * current fifo. Most segments need multiple usb packets.
1505 if (channel
->status
== MUSB_DMA_STATUS_BUSY
)
1508 /* scan the current list, reporting any data that was
1509 * transferred and acking any IRQ
1511 cppi_rx_scan(controller
, cppi_ch
->index
);
1513 /* clobber the existing state once it's idle
1515 * NOTE: arguably, we should also wait for all the other
1516 * RX channels to quiesce (how??) and then temporarily
1517 * disable RXCPPI_CTRL_REG ... but it seems that we can
1518 * rely on the controller restarting from state ram, with
1519 * only RXCPPI_BUFCNT state being bogus. BUFCNT will
1520 * correct itself after the next DMA transfer though.
1522 * REVISIT does using rndis mode change that?
1524 cppi_reset_rx(cppi_ch
->state_ram
);
1526 /* next DMA request _should_ load cppi head ptr */
1528 /* ... we don't "free" that list, only mutate it in place. */
1529 cppi_dump_rx(5, cppi_ch
, " (done abort)");
1531 /* clean up previously pending bds */
1532 cppi_bd_free(cppi_ch
, cppi_ch
->last_processed
);
1533 cppi_ch
->last_processed
= NULL
;
1536 struct cppi_descriptor
*tmp
= queue
->next
;
1538 cppi_bd_free(cppi_ch
, queue
);
1543 channel
->status
= MUSB_DMA_STATUS_FREE
;
1544 cppi_ch
->buf_dma
= 0;
1545 cppi_ch
->offset
= 0;
1546 cppi_ch
->buf_len
= 0;
1547 cppi_ch
->maxpacket
= 0;
1553 * Power Management ... probably turn off cppi during suspend, restart;
1554 * check state ram? Clocking is presumably shared with usb core.