Linux 2.6.25-rc4
[linux-2.6/next.git] / arch / ia64 / kernel / kprobes.c
blob615c3d2b634892b2c80cf7945f1c343bbfa60162
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
32 #include <linux/kdebug.h>
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
38 extern void jprobe_inst_return(void);
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
45 enum instruction_type {A, I, M, F, B, L, X, u};
46 static enum instruction_type bundle_encoding[32][3] = {
47 { M, I, I }, /* 00 */
48 { M, I, I }, /* 01 */
49 { M, I, I }, /* 02 */
50 { M, I, I }, /* 03 */
51 { M, L, X }, /* 04 */
52 { M, L, X }, /* 05 */
53 { u, u, u }, /* 06 */
54 { u, u, u }, /* 07 */
55 { M, M, I }, /* 08 */
56 { M, M, I }, /* 09 */
57 { M, M, I }, /* 0A */
58 { M, M, I }, /* 0B */
59 { M, F, I }, /* 0C */
60 { M, F, I }, /* 0D */
61 { M, M, F }, /* 0E */
62 { M, M, F }, /* 0F */
63 { M, I, B }, /* 10 */
64 { M, I, B }, /* 11 */
65 { M, B, B }, /* 12 */
66 { M, B, B }, /* 13 */
67 { u, u, u }, /* 14 */
68 { u, u, u }, /* 15 */
69 { B, B, B }, /* 16 */
70 { B, B, B }, /* 17 */
71 { M, M, B }, /* 18 */
72 { M, M, B }, /* 19 */
73 { u, u, u }, /* 1A */
74 { u, u, u }, /* 1B */
75 { M, F, B }, /* 1C */
76 { M, F, B }, /* 1D */
77 { u, u, u }, /* 1E */
78 { u, u, u }, /* 1F */
82 * In this function we check to see if the instruction
83 * is IP relative instruction and update the kprobe
84 * inst flag accordingly
86 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
87 uint major_opcode,
88 unsigned long kprobe_inst,
89 struct kprobe *p)
91 p->ainsn.inst_flag = 0;
92 p->ainsn.target_br_reg = 0;
93 p->ainsn.slot = slot;
95 /* Check for Break instruction
96 * Bits 37:40 Major opcode to be zero
97 * Bits 27:32 X6 to be zero
98 * Bits 32:35 X3 to be zero
100 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
101 /* is a break instruction */
102 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
103 return;
106 if (bundle_encoding[template][slot] == B) {
107 switch (major_opcode) {
108 case INDIRECT_CALL_OPCODE:
109 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
110 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
111 break;
112 case IP_RELATIVE_PREDICT_OPCODE:
113 case IP_RELATIVE_BRANCH_OPCODE:
114 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115 break;
116 case IP_RELATIVE_CALL_OPCODE:
117 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
118 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
119 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
120 break;
122 } else if (bundle_encoding[template][slot] == X) {
123 switch (major_opcode) {
124 case LONG_CALL_OPCODE:
125 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
126 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
127 break;
130 return;
134 * In this function we check to see if the instruction
135 * (qp) cmpx.crel.ctype p1,p2=r2,r3
136 * on which we are inserting kprobe is cmp instruction
137 * with ctype as unc.
139 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
140 uint major_opcode,
141 unsigned long kprobe_inst)
143 cmp_inst_t cmp_inst;
144 uint ctype_unc = 0;
146 if (!((bundle_encoding[template][slot] == I) ||
147 (bundle_encoding[template][slot] == M)))
148 goto out;
150 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
151 (major_opcode == 0xE)))
152 goto out;
154 cmp_inst.l = kprobe_inst;
155 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
156 /* Integer compare - Register Register (A6 type)*/
157 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
158 &&(cmp_inst.f.c == 1))
159 ctype_unc = 1;
160 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
161 /* Integer compare - Immediate Register (A8 type)*/
162 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
163 ctype_unc = 1;
165 out:
166 return ctype_unc;
170 * In this function we check to see if the instruction
171 * on which we are inserting kprobe is supported.
172 * Returns qp value if supported
173 * Returns -EINVAL if unsupported
175 static int __kprobes unsupported_inst(uint template, uint slot,
176 uint major_opcode,
177 unsigned long kprobe_inst,
178 unsigned long addr)
180 int qp;
182 qp = kprobe_inst & 0x3f;
183 if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
184 if (slot == 1 && qp) {
185 printk(KERN_WARNING "Kprobes on cmp unc "
186 "instruction on slot 1 at <0x%lx> "
187 "is not supported\n", addr);
188 return -EINVAL;
191 qp = 0;
193 else if (bundle_encoding[template][slot] == I) {
194 if (major_opcode == 0) {
196 * Check for Integer speculation instruction
197 * - Bit 33-35 to be equal to 0x1
199 if (((kprobe_inst >> 33) & 0x7) == 1) {
200 printk(KERN_WARNING
201 "Kprobes on speculation inst at <0x%lx> not supported\n",
202 addr);
203 return -EINVAL;
206 * IP relative mov instruction
207 * - Bit 27-35 to be equal to 0x30
209 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
210 printk(KERN_WARNING
211 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
212 addr);
213 return -EINVAL;
217 else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) &&
218 (kprobe_inst & (0x1UL << 12))) {
219 /* test bit instructions, tbit,tnat,tf
220 * bit 33-36 to be equal to 0
221 * bit 12 to be equal to 1
223 if (slot == 1 && qp) {
224 printk(KERN_WARNING "Kprobes on test bit "
225 "instruction on slot at <0x%lx> "
226 "is not supported\n", addr);
227 return -EINVAL;
229 qp = 0;
232 else if (bundle_encoding[template][slot] == B) {
233 if (major_opcode == 7) {
234 /* IP-Relative Predict major code is 7 */
235 printk(KERN_WARNING "Kprobes on IP-Relative"
236 "Predict is not supported\n");
237 return -EINVAL;
239 else if (major_opcode == 2) {
240 /* Indirect Predict, major code is 2
241 * bit 27-32 to be equal to 10 or 11
243 int x6=(kprobe_inst >> 27) & 0x3F;
244 if ((x6 == 0x10) || (x6 == 0x11)) {
245 printk(KERN_WARNING "Kprobes on "
246 "Indirect Predict is not supported\n");
247 return -EINVAL;
251 /* kernel does not use float instruction, here for safety kprobe
252 * will judge whether it is fcmp/flass/float approximation instruction
254 else if (unlikely(bundle_encoding[template][slot] == F)) {
255 if ((major_opcode == 4 || major_opcode == 5) &&
256 (kprobe_inst & (0x1 << 12))) {
257 /* fcmp/fclass unc instruction */
258 if (slot == 1 && qp) {
259 printk(KERN_WARNING "Kprobes on fcmp/fclass "
260 "instruction on slot at <0x%lx> "
261 "is not supported\n", addr);
262 return -EINVAL;
265 qp = 0;
267 if ((major_opcode == 0 || major_opcode == 1) &&
268 (kprobe_inst & (0x1UL << 33))) {
269 /* float Approximation instruction */
270 if (slot == 1 && qp) {
271 printk(KERN_WARNING "Kprobes on float Approx "
272 "instr at <0x%lx> is not supported\n",
273 addr);
274 return -EINVAL;
276 qp = 0;
279 return qp;
283 * In this function we override the bundle with
284 * the break instruction at the given slot.
286 static void __kprobes prepare_break_inst(uint template, uint slot,
287 uint major_opcode,
288 unsigned long kprobe_inst,
289 struct kprobe *p,
290 int qp)
292 unsigned long break_inst = BREAK_INST;
293 bundle_t *bundle = &p->opcode.bundle;
296 * Copy the original kprobe_inst qualifying predicate(qp)
297 * to the break instruction
299 break_inst |= qp;
301 switch (slot) {
302 case 0:
303 bundle->quad0.slot0 = break_inst;
304 break;
305 case 1:
306 bundle->quad0.slot1_p0 = break_inst;
307 bundle->quad1.slot1_p1 = break_inst >> (64-46);
308 break;
309 case 2:
310 bundle->quad1.slot2 = break_inst;
311 break;
315 * Update the instruction flag, so that we can
316 * emulate the instruction properly after we
317 * single step on original instruction
319 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
322 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
323 unsigned long *kprobe_inst, uint *major_opcode)
325 unsigned long kprobe_inst_p0, kprobe_inst_p1;
326 unsigned int template;
328 template = bundle->quad0.template;
330 switch (slot) {
331 case 0:
332 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
333 *kprobe_inst = bundle->quad0.slot0;
334 break;
335 case 1:
336 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
337 kprobe_inst_p0 = bundle->quad0.slot1_p0;
338 kprobe_inst_p1 = bundle->quad1.slot1_p1;
339 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
340 break;
341 case 2:
342 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
343 *kprobe_inst = bundle->quad1.slot2;
344 break;
348 /* Returns non-zero if the addr is in the Interrupt Vector Table */
349 static int __kprobes in_ivt_functions(unsigned long addr)
351 return (addr >= (unsigned long)__start_ivt_text
352 && addr < (unsigned long)__end_ivt_text);
355 static int __kprobes valid_kprobe_addr(int template, int slot,
356 unsigned long addr)
358 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
359 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
360 "at 0x%lx\n", addr);
361 return -EINVAL;
364 if (in_ivt_functions(addr)) {
365 printk(KERN_WARNING "Kprobes can't be inserted inside "
366 "IVT functions at 0x%lx\n", addr);
367 return -EINVAL;
370 return 0;
373 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
375 unsigned int i;
376 i = atomic_add_return(1, &kcb->prev_kprobe_index);
377 kcb->prev_kprobe[i-1].kp = kprobe_running();
378 kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
381 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
383 unsigned int i;
384 i = atomic_read(&kcb->prev_kprobe_index);
385 __get_cpu_var(current_kprobe) = kcb->prev_kprobe[i-1].kp;
386 kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
387 atomic_sub(1, &kcb->prev_kprobe_index);
390 static void __kprobes set_current_kprobe(struct kprobe *p,
391 struct kprobe_ctlblk *kcb)
393 __get_cpu_var(current_kprobe) = p;
396 static void kretprobe_trampoline(void)
401 * At this point the target function has been tricked into
402 * returning into our trampoline. Lookup the associated instance
403 * and then:
404 * - call the handler function
405 * - cleanup by marking the instance as unused
406 * - long jump back to the original return address
408 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
410 struct kretprobe_instance *ri = NULL;
411 struct hlist_head *head, empty_rp;
412 struct hlist_node *node, *tmp;
413 unsigned long flags, orig_ret_address = 0;
414 unsigned long trampoline_address =
415 ((struct fnptr *)kretprobe_trampoline)->ip;
417 INIT_HLIST_HEAD(&empty_rp);
418 spin_lock_irqsave(&kretprobe_lock, flags);
419 head = kretprobe_inst_table_head(current);
422 * It is possible to have multiple instances associated with a given
423 * task either because an multiple functions in the call path
424 * have a return probe installed on them, and/or more then one return
425 * return probe was registered for a target function.
427 * We can handle this because:
428 * - instances are always inserted at the head of the list
429 * - when multiple return probes are registered for the same
430 * function, the first instance's ret_addr will point to the
431 * real return address, and all the rest will point to
432 * kretprobe_trampoline
434 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
435 if (ri->task != current)
436 /* another task is sharing our hash bucket */
437 continue;
439 orig_ret_address = (unsigned long)ri->ret_addr;
440 if (orig_ret_address != trampoline_address)
442 * This is the real return address. Any other
443 * instances associated with this task are for
444 * other calls deeper on the call stack
446 break;
449 regs->cr_iip = orig_ret_address;
451 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
452 if (ri->task != current)
453 /* another task is sharing our hash bucket */
454 continue;
456 if (ri->rp && ri->rp->handler)
457 ri->rp->handler(ri, regs);
459 orig_ret_address = (unsigned long)ri->ret_addr;
460 recycle_rp_inst(ri, &empty_rp);
462 if (orig_ret_address != trampoline_address)
464 * This is the real return address. Any other
465 * instances associated with this task are for
466 * other calls deeper on the call stack
468 break;
471 kretprobe_assert(ri, orig_ret_address, trampoline_address);
473 reset_current_kprobe();
474 spin_unlock_irqrestore(&kretprobe_lock, flags);
475 preempt_enable_no_resched();
477 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
478 hlist_del(&ri->hlist);
479 kfree(ri);
482 * By returning a non-zero value, we are telling
483 * kprobe_handler() that we don't want the post_handler
484 * to run (and have re-enabled preemption)
486 return 1;
489 /* Called with kretprobe_lock held */
490 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
491 struct pt_regs *regs)
493 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
495 /* Replace the return addr with trampoline addr */
496 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
499 int __kprobes arch_prepare_kprobe(struct kprobe *p)
501 unsigned long addr = (unsigned long) p->addr;
502 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
503 unsigned long kprobe_inst=0;
504 unsigned int slot = addr & 0xf, template, major_opcode = 0;
505 bundle_t *bundle;
506 int qp;
508 bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
509 template = bundle->quad0.template;
511 if(valid_kprobe_addr(template, slot, addr))
512 return -EINVAL;
514 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
515 if (slot == 1 && bundle_encoding[template][1] == L)
516 slot++;
518 /* Get kprobe_inst and major_opcode from the bundle */
519 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
521 qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
522 if (qp < 0)
523 return -EINVAL;
525 p->ainsn.insn = get_insn_slot();
526 if (!p->ainsn.insn)
527 return -ENOMEM;
528 memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
529 memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
531 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
533 return 0;
536 void __kprobes arch_arm_kprobe(struct kprobe *p)
538 unsigned long arm_addr;
539 bundle_t *src, *dest;
541 arm_addr = ((unsigned long)p->addr) & ~0xFUL;
542 dest = &((kprobe_opcode_t *)arm_addr)->bundle;
543 src = &p->opcode.bundle;
545 flush_icache_range((unsigned long)p->ainsn.insn,
546 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
547 switch (p->ainsn.slot) {
548 case 0:
549 dest->quad0.slot0 = src->quad0.slot0;
550 break;
551 case 1:
552 dest->quad1.slot1_p1 = src->quad1.slot1_p1;
553 break;
554 case 2:
555 dest->quad1.slot2 = src->quad1.slot2;
556 break;
558 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
561 void __kprobes arch_disarm_kprobe(struct kprobe *p)
563 unsigned long arm_addr;
564 bundle_t *src, *dest;
566 arm_addr = ((unsigned long)p->addr) & ~0xFUL;
567 dest = &((kprobe_opcode_t *)arm_addr)->bundle;
568 /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
569 src = &p->ainsn.insn->bundle;
570 switch (p->ainsn.slot) {
571 case 0:
572 dest->quad0.slot0 = src->quad0.slot0;
573 break;
574 case 1:
575 dest->quad1.slot1_p1 = src->quad1.slot1_p1;
576 break;
577 case 2:
578 dest->quad1.slot2 = src->quad1.slot2;
579 break;
581 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
584 void __kprobes arch_remove_kprobe(struct kprobe *p)
586 mutex_lock(&kprobe_mutex);
587 free_insn_slot(p->ainsn.insn, 0);
588 mutex_unlock(&kprobe_mutex);
591 * We are resuming execution after a single step fault, so the pt_regs
592 * structure reflects the register state after we executed the instruction
593 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
594 * the ip to point back to the original stack address. To set the IP address
595 * to original stack address, handle the case where we need to fixup the
596 * relative IP address and/or fixup branch register.
598 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
600 unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
601 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
602 unsigned long template;
603 int slot = ((unsigned long)p->addr & 0xf);
605 template = p->ainsn.insn->bundle.quad0.template;
607 if (slot == 1 && bundle_encoding[template][1] == L)
608 slot = 2;
610 if (p->ainsn.inst_flag) {
612 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
613 /* Fix relative IP address */
614 regs->cr_iip = (regs->cr_iip - bundle_addr) +
615 resume_addr;
618 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
620 * Fix target branch register, software convention is
621 * to use either b0 or b6 or b7, so just checking
622 * only those registers
624 switch (p->ainsn.target_br_reg) {
625 case 0:
626 if ((regs->b0 == bundle_addr) ||
627 (regs->b0 == bundle_addr + 0x10)) {
628 regs->b0 = (regs->b0 - bundle_addr) +
629 resume_addr;
631 break;
632 case 6:
633 if ((regs->b6 == bundle_addr) ||
634 (regs->b6 == bundle_addr + 0x10)) {
635 regs->b6 = (regs->b6 - bundle_addr) +
636 resume_addr;
638 break;
639 case 7:
640 if ((regs->b7 == bundle_addr) ||
641 (regs->b7 == bundle_addr + 0x10)) {
642 regs->b7 = (regs->b7 - bundle_addr) +
643 resume_addr;
645 break;
646 } /* end switch */
648 goto turn_ss_off;
651 if (slot == 2) {
652 if (regs->cr_iip == bundle_addr + 0x10) {
653 regs->cr_iip = resume_addr + 0x10;
655 } else {
656 if (regs->cr_iip == bundle_addr) {
657 regs->cr_iip = resume_addr;
661 turn_ss_off:
662 /* Turn off Single Step bit */
663 ia64_psr(regs)->ss = 0;
666 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
668 unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
669 unsigned long slot = (unsigned long)p->addr & 0xf;
671 /* single step inline if break instruction */
672 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
673 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
674 else
675 regs->cr_iip = bundle_addr & ~0xFULL;
677 if (slot > 2)
678 slot = 0;
680 ia64_psr(regs)->ri = slot;
682 /* turn on single stepping */
683 ia64_psr(regs)->ss = 1;
686 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
688 unsigned int slot = ia64_psr(regs)->ri;
689 unsigned int template, major_opcode;
690 unsigned long kprobe_inst;
691 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
692 bundle_t bundle;
694 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
695 template = bundle.quad0.template;
697 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
698 if (slot == 1 && bundle_encoding[template][1] == L)
699 slot++;
701 /* Get Kprobe probe instruction at given slot*/
702 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
704 /* For break instruction,
705 * Bits 37:40 Major opcode to be zero
706 * Bits 27:32 X6 to be zero
707 * Bits 32:35 X3 to be zero
709 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
710 /* Not a break instruction */
711 return 0;
714 /* Is a break instruction */
715 return 1;
718 static int __kprobes pre_kprobes_handler(struct die_args *args)
720 struct kprobe *p;
721 int ret = 0;
722 struct pt_regs *regs = args->regs;
723 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
724 struct kprobe_ctlblk *kcb;
727 * We don't want to be preempted for the entire
728 * duration of kprobe processing
730 preempt_disable();
731 kcb = get_kprobe_ctlblk();
733 /* Handle recursion cases */
734 if (kprobe_running()) {
735 p = get_kprobe(addr);
736 if (p) {
737 if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
738 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
739 ia64_psr(regs)->ss = 0;
740 goto no_kprobe;
742 /* We have reentered the pre_kprobe_handler(), since
743 * another probe was hit while within the handler.
744 * We here save the original kprobes variables and
745 * just single step on the instruction of the new probe
746 * without calling any user handlers.
748 save_previous_kprobe(kcb);
749 set_current_kprobe(p, kcb);
750 kprobes_inc_nmissed_count(p);
751 prepare_ss(p, regs);
752 kcb->kprobe_status = KPROBE_REENTER;
753 return 1;
754 } else if (args->err == __IA64_BREAK_JPROBE) {
756 * jprobe instrumented function just completed
758 p = __get_cpu_var(current_kprobe);
759 if (p->break_handler && p->break_handler(p, regs)) {
760 goto ss_probe;
762 } else if (!is_ia64_break_inst(regs)) {
763 /* The breakpoint instruction was removed by
764 * another cpu right after we hit, no further
765 * handling of this interrupt is appropriate
767 ret = 1;
768 goto no_kprobe;
769 } else {
770 /* Not our break */
771 goto no_kprobe;
775 p = get_kprobe(addr);
776 if (!p) {
777 if (!is_ia64_break_inst(regs)) {
779 * The breakpoint instruction was removed right
780 * after we hit it. Another cpu has removed
781 * either a probepoint or a debugger breakpoint
782 * at this address. In either case, no further
783 * handling of this interrupt is appropriate.
785 ret = 1;
789 /* Not one of our break, let kernel handle it */
790 goto no_kprobe;
793 set_current_kprobe(p, kcb);
794 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
796 if (p->pre_handler && p->pre_handler(p, regs))
798 * Our pre-handler is specifically requesting that we just
799 * do a return. This is used for both the jprobe pre-handler
800 * and the kretprobe trampoline
802 return 1;
804 ss_probe:
805 prepare_ss(p, regs);
806 kcb->kprobe_status = KPROBE_HIT_SS;
807 return 1;
809 no_kprobe:
810 preempt_enable_no_resched();
811 return ret;
814 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
816 struct kprobe *cur = kprobe_running();
817 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
819 if (!cur)
820 return 0;
822 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
823 kcb->kprobe_status = KPROBE_HIT_SSDONE;
824 cur->post_handler(cur, regs, 0);
827 resume_execution(cur, regs);
829 /*Restore back the original saved kprobes variables and continue. */
830 if (kcb->kprobe_status == KPROBE_REENTER) {
831 restore_previous_kprobe(kcb);
832 goto out;
834 reset_current_kprobe();
836 out:
837 preempt_enable_no_resched();
838 return 1;
841 int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
843 struct kprobe *cur = kprobe_running();
844 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
847 switch(kcb->kprobe_status) {
848 case KPROBE_HIT_SS:
849 case KPROBE_REENTER:
851 * We are here because the instruction being single
852 * stepped caused a page fault. We reset the current
853 * kprobe and the instruction pointer points back to
854 * the probe address and allow the page fault handler
855 * to continue as a normal page fault.
857 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
858 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
859 if (kcb->kprobe_status == KPROBE_REENTER)
860 restore_previous_kprobe(kcb);
861 else
862 reset_current_kprobe();
863 preempt_enable_no_resched();
864 break;
865 case KPROBE_HIT_ACTIVE:
866 case KPROBE_HIT_SSDONE:
868 * We increment the nmissed count for accounting,
869 * we can also use npre/npostfault count for accouting
870 * these specific fault cases.
872 kprobes_inc_nmissed_count(cur);
875 * We come here because instructions in the pre/post
876 * handler caused the page_fault, this could happen
877 * if handler tries to access user space by
878 * copy_from_user(), get_user() etc. Let the
879 * user-specified handler try to fix it first.
881 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
882 return 1;
884 * In case the user-specified fault handler returned
885 * zero, try to fix up.
887 if (ia64_done_with_exception(regs))
888 return 1;
891 * Let ia64_do_page_fault() fix it.
893 break;
894 default:
895 break;
898 return 0;
901 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
902 unsigned long val, void *data)
904 struct die_args *args = (struct die_args *)data;
905 int ret = NOTIFY_DONE;
907 if (args->regs && user_mode(args->regs))
908 return ret;
910 switch(val) {
911 case DIE_BREAK:
912 /* err is break number from ia64_bad_break() */
913 if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
914 || args->err == __IA64_BREAK_JPROBE
915 || args->err == 0)
916 if (pre_kprobes_handler(args))
917 ret = NOTIFY_STOP;
918 break;
919 case DIE_FAULT:
920 /* err is vector number from ia64_fault() */
921 if (args->err == 36)
922 if (post_kprobes_handler(args->regs))
923 ret = NOTIFY_STOP;
924 break;
925 default:
926 break;
928 return ret;
931 struct param_bsp_cfm {
932 unsigned long ip;
933 unsigned long *bsp;
934 unsigned long cfm;
937 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
939 unsigned long ip;
940 struct param_bsp_cfm *lp = arg;
942 do {
943 unw_get_ip(info, &ip);
944 if (ip == 0)
945 break;
946 if (ip == lp->ip) {
947 unw_get_bsp(info, (unsigned long*)&lp->bsp);
948 unw_get_cfm(info, (unsigned long*)&lp->cfm);
949 return;
951 } while (unw_unwind(info) >= 0);
952 lp->bsp = NULL;
953 lp->cfm = 0;
954 return;
957 unsigned long arch_deref_entry_point(void *entry)
959 return ((struct fnptr *)entry)->ip;
962 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
964 struct jprobe *jp = container_of(p, struct jprobe, kp);
965 unsigned long addr = arch_deref_entry_point(jp->entry);
966 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
967 struct param_bsp_cfm pa;
968 int bytes;
971 * Callee owns the argument space and could overwrite it, eg
972 * tail call optimization. So to be absolutely safe
973 * we save the argument space before transferring the control
974 * to instrumented jprobe function which runs in
975 * the process context
977 pa.ip = regs->cr_iip;
978 unw_init_running(ia64_get_bsp_cfm, &pa);
979 bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
980 - (char *)pa.bsp;
981 memcpy( kcb->jprobes_saved_stacked_regs,
982 pa.bsp,
983 bytes );
984 kcb->bsp = pa.bsp;
985 kcb->cfm = pa.cfm;
987 /* save architectural state */
988 kcb->jprobe_saved_regs = *regs;
990 /* after rfi, execute the jprobe instrumented function */
991 regs->cr_iip = addr & ~0xFULL;
992 ia64_psr(regs)->ri = addr & 0xf;
993 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
996 * fix the return address to our jprobe_inst_return() function
997 * in the jprobes.S file
999 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
1001 return 1;
1004 /* ia64 does not need this */
1005 void __kprobes jprobe_return(void)
1009 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1011 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1012 int bytes;
1014 /* restoring architectural state */
1015 *regs = kcb->jprobe_saved_regs;
1017 /* restoring the original argument space */
1018 flush_register_stack();
1019 bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
1020 - (char *)kcb->bsp;
1021 memcpy( kcb->bsp,
1022 kcb->jprobes_saved_stacked_regs,
1023 bytes );
1024 invalidate_stacked_regs();
1026 preempt_enable_no_resched();
1027 return 1;
1030 static struct kprobe trampoline_p = {
1031 .pre_handler = trampoline_probe_handler
1034 int __init arch_init_kprobes(void)
1036 trampoline_p.addr =
1037 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1038 return register_kprobe(&trampoline_p);
1041 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1043 if (p->addr ==
1044 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1045 return 1;
1047 return 0;