2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
28 static struct ia64_cpu
*sysfs_cpus
;
30 int arch_register_cpu(int num
)
32 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
34 * If CPEI can be re-targetted or if this is not
35 * CPEI target, then it is hotpluggable
37 if (can_cpei_retarget() || !is_cpu_cpei_target(num
))
38 sysfs_cpus
[num
].cpu
.hotpluggable
= 1;
39 map_cpu_to_node(num
, node_cpuid
[num
].nid
);
42 return register_cpu(&sysfs_cpus
[num
].cpu
, num
);
45 #ifdef CONFIG_HOTPLUG_CPU
47 void arch_unregister_cpu(int num
)
49 unregister_cpu(&sysfs_cpus
[num
].cpu
);
50 unmap_cpu_from_node(num
, cpu_to_node(num
));
52 EXPORT_SYMBOL(arch_register_cpu
);
53 EXPORT_SYMBOL(arch_unregister_cpu
);
54 #endif /*CONFIG_HOTPLUG_CPU*/
57 static int __init
topology_init(void)
63 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
65 for_each_online_node(i
) {
66 if ((err
= register_one_node(i
)))
71 sysfs_cpus
= kzalloc(sizeof(struct ia64_cpu
) * NR_CPUS
, GFP_KERNEL
);
73 panic("kzalloc in topology_init failed - NR_CPUS too big?");
75 for_each_present_cpu(i
) {
76 if((err
= arch_register_cpu(i
)))
83 subsys_initcall(topology_init
);
87 * Export cpu cache information through sysfs
91 * A bunch of string array to get pretty printing
93 static const char *cache_types
[] = {
97 "Unified" /* unified */
100 static const char *cache_mattrib
[]={
108 pal_cache_config_info_t cci
;
109 cpumask_t shared_cpu_map
;
115 struct cpu_cache_info
{
116 struct cache_info
*cache_leaves
;
117 int num_cache_leaves
;
121 static struct cpu_cache_info all_cpu_cache_info
[NR_CPUS
] __cpuinitdata
;
122 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
125 static void __cpuinit
cache_shared_cpu_map_setup( unsigned int cpu
,
126 struct cache_info
* this_leaf
)
128 pal_cache_shared_info_t csi
;
129 int num_shared
, i
= 0;
132 if (cpu_data(cpu
)->threads_per_core
<= 1 &&
133 cpu_data(cpu
)->cores_per_socket
<= 1) {
134 cpu_set(cpu
, this_leaf
->shared_cpu_map
);
138 if (ia64_pal_cache_shared_info(this_leaf
->level
,
141 &csi
) != PAL_STATUS_SUCCESS
)
144 num_shared
= (int) csi
.num_shared
;
146 for_each_possible_cpu(j
)
147 if (cpu_data(cpu
)->socket_id
== cpu_data(j
)->socket_id
148 && cpu_data(j
)->core_id
== csi
.log1_cid
149 && cpu_data(j
)->thread_id
== csi
.log1_tid
)
150 cpu_set(j
, this_leaf
->shared_cpu_map
);
153 } while (i
< num_shared
&&
154 ia64_pal_cache_shared_info(this_leaf
->level
,
157 &csi
) == PAL_STATUS_SUCCESS
);
160 static void __cpuinit
cache_shared_cpu_map_setup(unsigned int cpu
,
161 struct cache_info
* this_leaf
)
163 cpu_set(cpu
, this_leaf
->shared_cpu_map
);
168 static ssize_t
show_coherency_line_size(struct cache_info
*this_leaf
,
171 return sprintf(buf
, "%u\n", 1 << this_leaf
->cci
.pcci_line_size
);
174 static ssize_t
show_ways_of_associativity(struct cache_info
*this_leaf
,
177 return sprintf(buf
, "%u\n", this_leaf
->cci
.pcci_assoc
);
180 static ssize_t
show_attributes(struct cache_info
*this_leaf
, char *buf
)
184 cache_mattrib
[this_leaf
->cci
.pcci_cache_attr
]);
187 static ssize_t
show_size(struct cache_info
*this_leaf
, char *buf
)
189 return sprintf(buf
, "%uK\n", this_leaf
->cci
.pcci_cache_size
/ 1024);
192 static ssize_t
show_number_of_sets(struct cache_info
*this_leaf
, char *buf
)
194 unsigned number_of_sets
= this_leaf
->cci
.pcci_cache_size
;
195 number_of_sets
/= this_leaf
->cci
.pcci_assoc
;
196 number_of_sets
/= 1 << this_leaf
->cci
.pcci_line_size
;
198 return sprintf(buf
, "%u\n", number_of_sets
);
201 static ssize_t
show_shared_cpu_map(struct cache_info
*this_leaf
, char *buf
)
204 cpumask_t shared_cpu_map
;
206 cpus_and(shared_cpu_map
, this_leaf
->shared_cpu_map
, cpu_online_map
);
207 len
= cpumask_scnprintf(buf
, NR_CPUS
+1, shared_cpu_map
);
208 len
+= sprintf(buf
+len
, "\n");
212 static ssize_t
show_type(struct cache_info
*this_leaf
, char *buf
)
214 int type
= this_leaf
->type
+ this_leaf
->cci
.pcci_unified
;
215 return sprintf(buf
, "%s\n", cache_types
[type
]);
218 static ssize_t
show_level(struct cache_info
*this_leaf
, char *buf
)
220 return sprintf(buf
, "%u\n", this_leaf
->level
);
224 struct attribute attr
;
225 ssize_t (*show
)(struct cache_info
*, char *);
226 ssize_t (*store
)(struct cache_info
*, const char *, size_t count
);
232 #define define_one_ro(_name) \
233 static struct cache_attr _name = \
234 __ATTR(_name, 0444, show_##_name, NULL)
236 define_one_ro(level
);
238 define_one_ro(coherency_line_size
);
239 define_one_ro(ways_of_associativity
);
241 define_one_ro(number_of_sets
);
242 define_one_ro(shared_cpu_map
);
243 define_one_ro(attributes
);
245 static struct attribute
* cache_default_attrs
[] = {
248 &coherency_line_size
.attr
,
249 &ways_of_associativity
.attr
,
252 &number_of_sets
.attr
,
253 &shared_cpu_map
.attr
,
257 #define to_object(k) container_of(k, struct cache_info, kobj)
258 #define to_attr(a) container_of(a, struct cache_attr, attr)
260 static ssize_t
cache_show(struct kobject
* kobj
, struct attribute
* attr
, char * buf
)
262 struct cache_attr
*fattr
= to_attr(attr
);
263 struct cache_info
*this_leaf
= to_object(kobj
);
266 ret
= fattr
->show
? fattr
->show(this_leaf
, buf
) : 0;
270 static struct sysfs_ops cache_sysfs_ops
= {
274 static struct kobj_type cache_ktype
= {
275 .sysfs_ops
= &cache_sysfs_ops
,
276 .default_attrs
= cache_default_attrs
,
279 static struct kobj_type cache_ktype_percpu_entry
= {
280 .sysfs_ops
= &cache_sysfs_ops
,
283 static void __cpuinit
cpu_cache_sysfs_exit(unsigned int cpu
)
285 kfree(all_cpu_cache_info
[cpu
].cache_leaves
);
286 all_cpu_cache_info
[cpu
].cache_leaves
= NULL
;
287 all_cpu_cache_info
[cpu
].num_cache_leaves
= 0;
288 memset(&all_cpu_cache_info
[cpu
].kobj
, 0, sizeof(struct kobject
));
292 static int __cpuinit
cpu_cache_sysfs_init(unsigned int cpu
)
294 u64 i
, levels
, unique_caches
;
295 pal_cache_config_info_t cci
;
298 struct cache_info
*this_cache
;
299 int num_cache_leaves
= 0;
301 if ((status
= ia64_pal_cache_summary(&levels
, &unique_caches
)) != 0) {
302 printk(KERN_ERR
"ia64_pal_cache_summary=%ld\n", status
);
306 this_cache
=kzalloc(sizeof(struct cache_info
)*unique_caches
,
308 if (this_cache
== NULL
)
311 for (i
=0; i
< levels
; i
++) {
312 for (j
=2; j
>0 ; j
--) {
313 if ((status
=ia64_pal_cache_config_info(i
,j
, &cci
)) !=
317 this_cache
[num_cache_leaves
].cci
= cci
;
318 this_cache
[num_cache_leaves
].level
= i
+ 1;
319 this_cache
[num_cache_leaves
].type
= j
;
321 cache_shared_cpu_map_setup(cpu
,
322 &this_cache
[num_cache_leaves
]);
327 all_cpu_cache_info
[cpu
].cache_leaves
= this_cache
;
328 all_cpu_cache_info
[cpu
].num_cache_leaves
= num_cache_leaves
;
330 memset(&all_cpu_cache_info
[cpu
].kobj
, 0, sizeof(struct kobject
));
335 /* Add cache interface for CPU device */
336 static int __cpuinit
cache_add_dev(struct sys_device
* sys_dev
)
338 unsigned int cpu
= sys_dev
->id
;
340 struct cache_info
*this_object
;
344 if (all_cpu_cache_info
[cpu
].kobj
.parent
)
347 oldmask
= current
->cpus_allowed
;
348 retval
= set_cpus_allowed(current
, cpumask_of_cpu(cpu
));
349 if (unlikely(retval
))
352 retval
= cpu_cache_sysfs_init(cpu
);
353 set_cpus_allowed(current
, oldmask
);
354 if (unlikely(retval
< 0))
357 retval
= kobject_init_and_add(&all_cpu_cache_info
[cpu
].kobj
,
358 &cache_ktype_percpu_entry
, &sys_dev
->kobj
,
361 for (i
= 0; i
< all_cpu_cache_info
[cpu
].num_cache_leaves
; i
++) {
362 this_object
= LEAF_KOBJECT_PTR(cpu
,i
);
363 retval
= kobject_init_and_add(&(this_object
->kobj
),
365 &all_cpu_cache_info
[cpu
].kobj
,
367 if (unlikely(retval
)) {
368 for (j
= 0; j
< i
; j
++) {
369 kobject_put(&(LEAF_KOBJECT_PTR(cpu
,j
)->kobj
));
371 kobject_put(&all_cpu_cache_info
[cpu
].kobj
);
372 cpu_cache_sysfs_exit(cpu
);
375 kobject_uevent(&(this_object
->kobj
), KOBJ_ADD
);
377 kobject_uevent(&all_cpu_cache_info
[cpu
].kobj
, KOBJ_ADD
);
381 /* Remove cache interface for CPU device */
382 static int __cpuinit
cache_remove_dev(struct sys_device
* sys_dev
)
384 unsigned int cpu
= sys_dev
->id
;
387 for (i
= 0; i
< all_cpu_cache_info
[cpu
].num_cache_leaves
; i
++)
388 kobject_put(&(LEAF_KOBJECT_PTR(cpu
,i
)->kobj
));
390 if (all_cpu_cache_info
[cpu
].kobj
.parent
) {
391 kobject_put(&all_cpu_cache_info
[cpu
].kobj
);
392 memset(&all_cpu_cache_info
[cpu
].kobj
,
394 sizeof(struct kobject
));
397 cpu_cache_sysfs_exit(cpu
);
403 * When a cpu is hot-plugged, do a check and initiate
404 * cache kobject if necessary
406 static int __cpuinit
cache_cpu_callback(struct notifier_block
*nfb
,
407 unsigned long action
, void *hcpu
)
409 unsigned int cpu
= (unsigned long)hcpu
;
410 struct sys_device
*sys_dev
;
412 sys_dev
= get_cpu_sysdev(cpu
);
415 case CPU_ONLINE_FROZEN
:
416 cache_add_dev(sys_dev
);
419 case CPU_DEAD_FROZEN
:
420 cache_remove_dev(sys_dev
);
426 static struct notifier_block __cpuinitdata cache_cpu_notifier
=
428 .notifier_call
= cache_cpu_callback
431 static int __init
cache_sysfs_init(void)
435 for_each_online_cpu(i
) {
436 struct sys_device
*sys_dev
= get_cpu_sysdev((unsigned int)i
);
437 cache_add_dev(sys_dev
);
440 register_hotcpu_notifier(&cache_cpu_notifier
);
445 device_initcall(cache_sysfs_init
);