Linux 2.6.25-rc4
[linux-2.6/next.git] / arch / mips / kernel / i8253.c
blobfc4aa07b6d35f8aa9e7542345f3b2f81de55d817
1 /*
2 * i8253.c 8253/PIT functions
4 */
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
12 #include <asm/delay.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
15 #include <asm/time.h>
17 DEFINE_SPINLOCK(i8253_lock);
20 * Initialize the PIT timer.
22 * This is also called after resume to bring the PIT into operation again.
24 static void init_pit_timer(enum clock_event_mode mode,
25 struct clock_event_device *evt)
27 spin_lock(&i8253_lock);
29 switch(mode) {
30 case CLOCK_EVT_MODE_PERIODIC:
31 /* binary, mode 2, LSB/MSB, ch 0 */
32 outb_p(0x34, PIT_MODE);
33 outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
34 outb(LATCH >> 8 , PIT_CH0); /* MSB */
35 break;
37 case CLOCK_EVT_MODE_SHUTDOWN:
38 case CLOCK_EVT_MODE_UNUSED:
39 if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
40 evt->mode == CLOCK_EVT_MODE_ONESHOT) {
41 outb_p(0x30, PIT_MODE);
42 outb_p(0, PIT_CH0);
43 outb_p(0, PIT_CH0);
45 break;
47 case CLOCK_EVT_MODE_ONESHOT:
48 /* One shot setup */
49 outb_p(0x38, PIT_MODE);
50 break;
52 case CLOCK_EVT_MODE_RESUME:
53 /* Nothing to do here */
54 break;
56 spin_unlock(&i8253_lock);
60 * Program the next event in oneshot mode
62 * Delta is given in PIT ticks
64 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
66 spin_lock(&i8253_lock);
67 outb_p(delta & 0xff , PIT_CH0); /* LSB */
68 outb(delta >> 8 , PIT_CH0); /* MSB */
69 spin_unlock(&i8253_lock);
71 return 0;
75 * On UP the PIT can serve all of the possible timer functions. On SMP systems
76 * it can be solely used for the global tick.
78 * The profiling and update capabilites are switched off once the local apic is
79 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
80 * !using_apic_timer decisions in do_timer_interrupt_hook()
82 struct clock_event_device pit_clockevent = {
83 .name = "pit",
84 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
85 .set_mode = init_pit_timer,
86 .set_next_event = pit_next_event,
87 .irq = 0,
90 static irqreturn_t timer_interrupt(int irq, void *dev_id)
92 pit_clockevent.event_handler(&pit_clockevent);
94 return IRQ_HANDLED;
97 static struct irqaction irq0 = {
98 .handler = timer_interrupt,
99 .flags = IRQF_DISABLED | IRQF_NOBALANCING,
100 .mask = CPU_MASK_NONE,
101 .name = "timer"
105 * Initialize the conversion factor and the min/max deltas of the clock event
106 * structure and register the clock event source with the framework.
108 void __init setup_pit_timer(void)
110 struct clock_event_device *cd = &pit_clockevent;
111 unsigned int cpu = smp_processor_id();
114 * Start pit with the boot cpu mask and make it global after the
115 * IO_APIC has been initialized.
117 cd->cpumask = cpumask_of_cpu(cpu);
118 clockevent_set_clock(cd, CLOCK_TICK_RATE);
119 cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd);
120 cd->min_delta_ns = clockevent_delta2ns(0xF, cd);
121 clockevents_register_device(cd);
123 irq0.mask = cpumask_of_cpu(cpu);
124 setup_irq(0, &irq0);
128 * Since the PIT overflows every tick, its not very useful
129 * to just read by itself. So use jiffies to emulate a free
130 * running counter:
132 static cycle_t pit_read(void)
134 unsigned long flags;
135 int count;
136 u32 jifs;
137 static int old_count;
138 static u32 old_jifs;
140 spin_lock_irqsave(&i8253_lock, flags);
142 * Although our caller may have the read side of xtime_lock,
143 * this is now a seqlock, and we are cheating in this routine
144 * by having side effects on state that we cannot undo if
145 * there is a collision on the seqlock and our caller has to
146 * retry. (Namely, old_jifs and old_count.) So we must treat
147 * jiffies as volatile despite the lock. We read jiffies
148 * before latching the timer count to guarantee that although
149 * the jiffies value might be older than the count (that is,
150 * the counter may underflow between the last point where
151 * jiffies was incremented and the point where we latch the
152 * count), it cannot be newer.
154 jifs = jiffies;
155 outb_p(0x00, PIT_MODE); /* latch the count ASAP */
156 count = inb_p(PIT_CH0); /* read the latched count */
157 count |= inb_p(PIT_CH0) << 8;
159 /* VIA686a test code... reset the latch if count > max + 1 */
160 if (count > LATCH) {
161 outb_p(0x34, PIT_MODE);
162 outb_p(LATCH & 0xff, PIT_CH0);
163 outb(LATCH >> 8, PIT_CH0);
164 count = LATCH - 1;
168 * It's possible for count to appear to go the wrong way for a
169 * couple of reasons:
171 * 1. The timer counter underflows, but we haven't handled the
172 * resulting interrupt and incremented jiffies yet.
173 * 2. Hardware problem with the timer, not giving us continuous time,
174 * the counter does small "jumps" upwards on some Pentium systems,
175 * (see c't 95/10 page 335 for Neptun bug.)
177 * Previous attempts to handle these cases intelligently were
178 * buggy, so we just do the simple thing now.
180 if (count > old_count && jifs == old_jifs) {
181 count = old_count;
183 old_count = count;
184 old_jifs = jifs;
186 spin_unlock_irqrestore(&i8253_lock, flags);
188 count = (LATCH - 1) - count;
190 return (cycle_t)(jifs * LATCH) + count;
193 static struct clocksource clocksource_pit = {
194 .name = "pit",
195 .rating = 110,
196 .read = pit_read,
197 .mask = CLOCKSOURCE_MASK(32),
198 .mult = 0,
199 .shift = 20,
202 static int __init init_pit_clocksource(void)
204 if (num_possible_cpus() > 1) /* PIT does not scale! */
205 return 0;
207 clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
208 return clocksource_register(&clocksource_pit);
210 arch_initcall(init_pit_clocksource);