1 /* Copyright (C) 2004 Mips Technologies, Inc */
3 #include <linux/clockchips.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/cpumask.h>
7 #include <linux/interrupt.h>
8 #include <linux/kernel_stat.h>
9 #include <linux/module.h>
12 #include <asm/processor.h>
13 #include <asm/atomic.h>
14 #include <asm/system.h>
15 #include <asm/hardirq.h>
16 #include <asm/hazards.h>
18 #include <asm/mmu_context.h>
19 #include <asm/mipsregs.h>
20 #include <asm/cacheflush.h>
22 #include <asm/addrspace.h>
24 #include <asm/smtc_ipi.h>
25 #include <asm/smtc_proc.h>
28 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
29 * in do_IRQ. These are passed in setup_irq_smtc() and stored
32 unsigned long irq_hwmask
[NR_IRQS
];
34 #define LOCK_MT_PRA() \
35 local_irq_save(flags); \
38 #define UNLOCK_MT_PRA() \
40 local_irq_restore(flags)
42 #define LOCK_CORE_PRA() \
43 local_irq_save(flags); \
46 #define UNLOCK_CORE_PRA() \
48 local_irq_restore(flags)
51 * Data structures purely associated with SMTC parallelism
56 * Table for tracking ASIDs whose lifetime is prolonged.
59 asiduse smtc_live_asid
[MAX_SMTC_TLBS
][MAX_SMTC_ASIDS
];
62 * Clock interrupt "latch" buffers, per "CPU"
65 static atomic_t ipi_timer_latch
[NR_CPUS
];
68 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
71 #define IPIBUF_PER_CPU 4
73 static struct smtc_ipi_q IPIQ
[NR_CPUS
];
74 static struct smtc_ipi_q freeIPIq
;
77 /* Forward declarations */
79 void ipi_decode(struct smtc_ipi
*);
80 static void post_direct_ipi(int cpu
, struct smtc_ipi
*pipi
);
81 static void setup_cross_vpe_interrupts(unsigned int nvpe
);
82 void init_smtc_stats(void);
84 /* Global SMTC Status */
86 unsigned int smtc_status
= 0;
88 /* Boot command line configuration overrides */
91 static int ipibuffers
= 0;
92 static int nostlb
= 0;
93 static int asidmask
= 0;
94 unsigned long smtc_asid_mask
= 0xff;
96 static int __init
vpe0tcs(char *str
)
98 get_option(&str
, &vpe0limit
);
103 static int __init
ipibufs(char *str
)
105 get_option(&str
, &ipibuffers
);
109 static int __init
stlb_disable(char *s
)
115 static int __init
asidmask_set(char *str
)
117 get_option(&str
, &asidmask
);
127 smtc_asid_mask
= (unsigned long)asidmask
;
130 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask
);
135 __setup("vpe0tcs=", vpe0tcs
);
136 __setup("ipibufs=", ipibufs
);
137 __setup("nostlb", stlb_disable
);
138 __setup("asidmask=", asidmask_set
);
140 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
142 static int hang_trig
= 0;
144 static int __init
hangtrig_enable(char *s
)
151 __setup("hangtrig", hangtrig_enable
);
153 #define DEFAULT_BLOCKED_IPI_LIMIT 32
155 static int timerq_limit
= DEFAULT_BLOCKED_IPI_LIMIT
;
157 static int __init
tintq(char *str
)
159 get_option(&str
, &timerq_limit
);
163 __setup("tintq=", tintq
);
165 static int imstuckcount
[2][8];
166 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
167 static int vpemask
[2][8] = {
168 {0, 0, 1, 0, 0, 0, 0, 1},
169 {0, 0, 0, 0, 0, 0, 0, 1}
171 int tcnoprog
[NR_CPUS
];
172 static atomic_t idle_hook_initialized
= {0};
173 static int clock_hang_reported
[NR_CPUS
];
175 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
177 /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
179 void __init
sanitize_tlb_entries(void)
181 printk("Deprecated sanitize_tlb_entries() invoked\n");
186 * Configure shared TLB - VPC configuration bit must be set by caller
189 static void smtc_configure_tlb(void)
192 unsigned long mvpconf0
;
193 unsigned long config1val
;
195 /* Set up ASID preservation table */
196 for (vpes
=0; vpes
<MAX_SMTC_TLBS
; vpes
++) {
197 for(i
= 0; i
< MAX_SMTC_ASIDS
; i
++) {
198 smtc_live_asid
[vpes
][i
] = 0;
201 mvpconf0
= read_c0_mvpconf0();
203 if ((vpes
= ((mvpconf0
& MVPCONF0_PVPE
)
204 >> MVPCONF0_PVPE_SHIFT
) + 1) > 1) {
205 /* If we have multiple VPEs, try to share the TLB */
206 if ((mvpconf0
& MVPCONF0_TLBS
) && !nostlb
) {
208 * If TLB sizing is programmable, shared TLB
209 * size is the total available complement.
210 * Otherwise, we have to take the sum of all
211 * static VPE TLB entries.
213 if ((tlbsiz
= ((mvpconf0
& MVPCONF0_PTLBE
)
214 >> MVPCONF0_PTLBE_SHIFT
)) == 0) {
216 * If there's more than one VPE, there had better
217 * be more than one TC, because we need one to bind
218 * to each VPE in turn to be able to read
219 * its configuration state!
222 /* Stop the TC from doing anything foolish */
223 write_tc_c0_tchalt(TCHALT_H
);
225 /* No need to un-Halt - that happens later anyway */
226 for (i
=0; i
< vpes
; i
++) {
227 write_tc_c0_tcbind(i
);
229 * To be 100% sure we're really getting the right
230 * information, we exit the configuration state
231 * and do an IHB after each rebinding.
234 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC
);
237 * Only count if the MMU Type indicated is TLB
239 if (((read_vpe_c0_config() & MIPS_CONF_MT
) >> 7) == 1) {
240 config1val
= read_vpe_c0_config1();
241 tlbsiz
+= ((config1val
>> 25) & 0x3f) + 1;
244 /* Put core back in configuration state */
246 read_c0_mvpcontrol() | MVPCONTROL_VPC
);
250 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB
);
254 * Setup kernel data structures to use software total,
255 * rather than read the per-VPE Config1 value. The values
256 * for "CPU 0" gets copied to all the other CPUs as part
257 * of their initialization in smtc_cpu_setup().
260 /* MIPS32 limits TLB indices to 64 */
263 cpu_data
[0].tlbsize
= current_cpu_data
.tlbsize
= tlbsiz
;
264 smtc_status
|= SMTC_TLB_SHARED
;
265 local_flush_tlb_all();
267 printk("TLB of %d entry pairs shared by %d VPEs\n",
270 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
277 * Incrementally build the CPU map out of constituent MIPS MT cores,
278 * using the specified available VPEs and TCs. Plaform code needs
279 * to ensure that each MIPS MT core invokes this routine on reset,
282 * This version of the build_cpu_map and prepare_cpus routines assumes
283 * that *all* TCs of a MIPS MT core will be used for Linux, and that
284 * they will be spread across *all* available VPEs (to minimise the
285 * loss of efficiency due to exception service serialization).
286 * An improved version would pick up configuration information and
287 * possibly leave some TCs/VPEs as "slave" processors.
289 * Use c0_MVPConf0 to find out how many TCs are available, setting up
290 * phys_cpu_present_map and the logical/physical mappings.
293 int __init
mipsmt_build_cpu_map(int start_cpu_slot
)
298 * The CPU map isn't actually used for anything at this point,
299 * so it's not clear what else we should do apart from set
300 * everything up so that "logical" = "physical".
302 ntcs
= ((read_c0_mvpconf0() & MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
303 for (i
=start_cpu_slot
; i
<NR_CPUS
&& i
<ntcs
; i
++) {
304 cpu_set(i
, phys_cpu_present_map
);
305 __cpu_number_map
[i
] = i
;
306 __cpu_logical_map
[i
] = i
;
308 #ifdef CONFIG_MIPS_MT_FPAFF
309 /* Initialize map of CPUs with FPUs */
310 cpus_clear(mt_fpu_cpumask
);
313 /* One of those TC's is the one booting, and not a secondary... */
314 printk("%i available secondary CPU TC(s)\n", i
- 1);
320 * Common setup before any secondaries are started
321 * Make sure all CPU's are in a sensible state before we boot any of the
324 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
325 * as possible across the available VPEs.
328 static void smtc_tc_setup(int vpe
, int tc
, int cpu
)
331 write_tc_c0_tchalt(TCHALT_H
);
333 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
334 & ~(TCSTATUS_TKSU
| TCSTATUS_DA
| TCSTATUS_IXMT
))
336 write_tc_c0_tccontext(0);
338 write_tc_c0_tcbind(vpe
);
339 /* In general, all TCs should have the same cpu_data indications */
340 memcpy(&cpu_data
[cpu
], &cpu_data
[0], sizeof(struct cpuinfo_mips
));
341 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
342 if (cpu_data
[0].cputype
== CPU_34K
)
343 cpu_data
[cpu
].options
&= ~MIPS_CPU_FPU
;
344 cpu_data
[cpu
].vpe_id
= vpe
;
345 cpu_data
[cpu
].tc_id
= tc
;
349 void mipsmt_prepare_cpus(void)
351 int i
, vpe
, tc
, ntc
, nvpe
, tcpervpe
[NR_CPUS
], slop
, cpu
;
355 struct smtc_ipi
*pipi
;
357 /* disable interrupts so we can disable MT */
358 local_irq_save(flags
);
359 /* disable MT so we can configure */
363 spin_lock_init(&freeIPIq
.lock
);
366 * We probably don't have as many VPEs as we do SMP "CPUs",
367 * but it's possible - and in any case we'll never use more!
369 for (i
=0; i
<NR_CPUS
; i
++) {
370 IPIQ
[i
].head
= IPIQ
[i
].tail
= NULL
;
371 spin_lock_init(&IPIQ
[i
].lock
);
373 atomic_set(&ipi_timer_latch
[i
], 0);
376 /* cpu_data index starts at zero */
378 cpu_data
[cpu
].vpe_id
= 0;
379 cpu_data
[cpu
].tc_id
= 0;
382 /* Report on boot-time options */
383 mips_mt_set_cpuoptions();
385 printk("Limit of %d VPEs set\n", vpelimit
);
387 printk("Limit of %d TCs set\n", tclimit
);
389 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
392 printk("ASID mask value override to 0x%x\n", asidmask
);
395 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
397 printk("Logic Analyser Trigger on suspected TC hang\n");
398 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
400 /* Put MVPE's into 'configuration state' */
401 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC
);
403 val
= read_c0_mvpconf0();
404 nvpe
= ((val
& MVPCONF0_PVPE
) >> MVPCONF0_PVPE_SHIFT
) + 1;
405 if (vpelimit
> 0 && nvpe
> vpelimit
)
407 ntc
= ((val
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
410 if (tclimit
> 0 && ntc
> tclimit
)
413 for (i
= 0; i
< nvpe
; i
++) {
414 tcpervpe
[i
] = ntc
/ nvpe
;
416 if((slop
- i
) > 0) tcpervpe
[i
]++;
419 /* Handle command line override for VPE0 */
420 if (vpe0limit
> ntc
) vpe0limit
= ntc
;
423 if (vpe0limit
< tcpervpe
[0]) {
424 /* Reducing TC count - distribute to others */
425 slop
= tcpervpe
[0] - vpe0limit
;
426 slopslop
= slop
% (nvpe
- 1);
427 tcpervpe
[0] = vpe0limit
;
428 for (i
= 1; i
< nvpe
; i
++) {
429 tcpervpe
[i
] += slop
/ (nvpe
- 1);
430 if(slopslop
&& ((slopslop
- (i
- 1) > 0)))
433 } else if (vpe0limit
> tcpervpe
[0]) {
434 /* Increasing TC count - steal from others */
435 slop
= vpe0limit
- tcpervpe
[0];
436 slopslop
= slop
% (nvpe
- 1);
437 tcpervpe
[0] = vpe0limit
;
438 for (i
= 1; i
< nvpe
; i
++) {
439 tcpervpe
[i
] -= slop
/ (nvpe
- 1);
440 if(slopslop
&& ((slopslop
- (i
- 1) > 0)))
446 /* Set up shared TLB */
447 smtc_configure_tlb();
449 for (tc
= 0, vpe
= 0 ; (vpe
< nvpe
) && (tc
< ntc
) ; vpe
++) {
454 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP
);
457 printk("VPE %d: TC", vpe
);
458 for (i
= 0; i
< tcpervpe
[vpe
]; i
++) {
460 * TC 0 is bound to VPE 0 at reset,
461 * and is presumably executing this
462 * code. Leave it alone!
465 smtc_tc_setup(vpe
, tc
, cpu
);
473 * Clear any stale software interrupts from VPE's Cause
475 write_vpe_c0_cause(0);
478 * Clear ERL/EXL of VPEs other than 0
479 * and set restricted interrupt enable/mask.
481 write_vpe_c0_status((read_vpe_c0_status()
482 & ~(ST0_BEV
| ST0_ERL
| ST0_EXL
| ST0_IM
))
483 | (STATUSF_IP0
| STATUSF_IP1
| STATUSF_IP7
486 * set config to be the same as vpe0,
487 * particularly kseg0 coherency alg
489 write_vpe_c0_config(read_c0_config());
490 /* Clear any pending timer interrupt */
491 write_vpe_c0_compare(0);
492 /* Propagate Config7 */
493 write_vpe_c0_config7(read_c0_config7());
494 write_vpe_c0_count(read_c0_count());
496 /* enable multi-threading within VPE */
497 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE
);
499 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA
);
503 * Pull any physically present but unused TCs out of circulation.
505 while (tc
< (((val
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1)) {
506 cpu_clear(tc
, phys_cpu_present_map
);
507 cpu_clear(tc
, cpu_present_map
);
511 /* release config state */
512 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC
);
516 /* Set up coprocessor affinity CPU mask(s) */
518 #ifdef CONFIG_MIPS_MT_FPAFF
519 for (tc
= 0; tc
< ntc
; tc
++) {
520 if (cpu_data
[tc
].options
& MIPS_CPU_FPU
)
521 cpu_set(tc
, mt_fpu_cpumask
);
525 /* set up ipi interrupts... */
527 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
529 setup_cross_vpe_interrupts(nvpe
);
531 /* Set up queue of free IPI "messages". */
532 nipi
= NR_CPUS
* IPIBUF_PER_CPU
;
536 pipi
= kmalloc(nipi
*sizeof(struct smtc_ipi
), GFP_KERNEL
);
538 panic("kmalloc of IPI message buffers failed\n");
540 printk("IPI buffer pool of %d buffers\n", nipi
);
541 for (i
= 0; i
< nipi
; i
++) {
542 smtc_ipi_nq(&freeIPIq
, pipi
);
546 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
549 local_irq_restore(flags
);
550 /* Initialize SMTC /proc statistics/diagnostics */
556 * Setup the PC, SP, and GP of a secondary processor and start it
558 * smp_bootstrap is the place to resume from
559 * __KSTK_TOS(idle) is apparently the stack pointer
560 * (unsigned long)idle->thread_info the gp
563 void __cpuinit
smtc_boot_secondary(int cpu
, struct task_struct
*idle
)
565 extern u32 kernelsp
[NR_CPUS
];
570 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
573 settc(cpu_data
[cpu
].tc_id
);
576 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap
);
579 kernelsp
[cpu
] = __KSTK_TOS(idle
);
580 write_tc_gpr_sp(__KSTK_TOS(idle
));
583 write_tc_gpr_gp((unsigned long)task_thread_info(idle
));
585 smtc_status
|= SMTC_MTC_ACTIVE
;
586 write_tc_c0_tchalt(0);
587 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
593 void smtc_init_secondary(void)
596 * Start timer on secondary VPEs if necessary.
597 * plat_timer_setup has already have been invoked by init/main
598 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
599 * SMTC init code assigns TCs consdecutively and in ascending order
600 * to across available VPEs.
602 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
603 ((read_c0_tcbind() & TCBIND_CURVPE
)
604 != cpu_data
[smp_processor_id() - 1].vpe_id
)){
605 write_c0_compare(read_c0_count() + mips_hpt_frequency
/HZ
);
611 void smtc_smp_finish(void)
613 printk("TC %d going on-line as CPU %d\n",
614 cpu_data
[smp_processor_id()].tc_id
, smp_processor_id());
617 void smtc_cpus_done(void)
622 * Support for SMTC-optimized driver IRQ registration
626 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
627 * in do_IRQ. These are passed in setup_irq_smtc() and stored
631 int setup_irq_smtc(unsigned int irq
, struct irqaction
* new,
632 unsigned long hwmask
)
634 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
635 unsigned int vpe
= current_cpu_data
.vpe_id
;
637 vpemask
[vpe
][irq
- MIPS_CPU_IRQ_BASE
] = 1;
639 irq_hwmask
[irq
] = hwmask
;
641 return setup_irq(irq
, new);
644 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
646 * Support for IRQ affinity to TCs
649 void smtc_set_irq_affinity(unsigned int irq
, cpumask_t affinity
)
652 * If a "fast path" cache of quickly decodable affinity state
653 * is maintained, this is where it gets done, on a call up
654 * from the platform affinity code.
658 void smtc_forward_irq(unsigned int irq
)
663 * OK wise guy, now figure out how to get the IRQ
664 * to be serviced on an authorized "CPU".
666 * Ideally, to handle the situation where an IRQ has multiple
667 * eligible CPUS, we would maintain state per IRQ that would
668 * allow a fair distribution of service requests. Since the
669 * expected use model is any-or-only-one, for simplicity
670 * and efficiency, we just pick the easiest one to find.
673 target
= first_cpu(irq_desc
[irq
].affinity
);
676 * We depend on the platform code to have correctly processed
677 * IRQ affinity change requests to ensure that the IRQ affinity
678 * mask has been purged of bits corresponding to nonexistent and
679 * offline "CPUs", and to TCs bound to VPEs other than the VPE
680 * connected to the physical interrupt input for the interrupt
681 * in question. Otherwise we have a nasty problem with interrupt
682 * mask management. This is best handled in non-performance-critical
683 * platform IRQ affinity setting code, to minimize interrupt-time
687 /* If no one is eligible, service locally */
688 if (target
>= NR_CPUS
) {
689 do_IRQ_no_affinity(irq
);
693 smtc_send_ipi(target
, IRQ_AFFINITY_IPI
, irq
);
696 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
699 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
700 * Within a VPE one TC can interrupt another by different approaches.
701 * The easiest to get right would probably be to make all TCs except
702 * the target IXMT and set a software interrupt, but an IXMT-based
703 * scheme requires that a handler must run before a new IPI could
704 * be sent, which would break the "broadcast" loops in MIPS MT.
705 * A more gonzo approach within a VPE is to halt the TC, extract
706 * its Restart, Status, and a couple of GPRs, and program the Restart
707 * address to emulate an interrupt.
709 * Within a VPE, one can be confident that the target TC isn't in
710 * a critical EXL state when halted, since the write to the Halt
711 * register could not have issued on the writing thread if the
712 * halting thread had EXL set. So k0 and k1 of the target TC
713 * can be used by the injection code. Across VPEs, one can't
714 * be certain that the target TC isn't in a critical exception
715 * state. So we try a two-step process of sending a software
716 * interrupt to the target VPE, which either handles the event
717 * itself (if it was the target) or injects the event within
721 static void smtc_ipi_qdump(void)
725 for (i
= 0; i
< NR_CPUS
;i
++) {
726 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
727 i
, (unsigned)IPIQ
[i
].head
, (unsigned)IPIQ
[i
].tail
,
733 * The standard atomic.h primitives don't quite do what we want
734 * here: We need an atomic add-and-return-previous-value (which
735 * could be done with atomic_add_return and a decrement) and an
736 * atomic set/zero-and-return-previous-value (which can't really
737 * be done with the atomic.h primitives). And since this is
738 * MIPS MT, we can assume that we have LL/SC.
740 static inline int atomic_postincrement(atomic_t
*v
)
742 unsigned long result
;
746 __asm__
__volatile__(
752 : "=&r" (result
), "=&r" (temp
), "=m" (v
->counter
)
759 void smtc_send_ipi(int cpu
, int type
, unsigned int action
)
762 struct smtc_ipi
*pipi
;
766 if (cpu
== smp_processor_id()) {
767 printk("Cannot Send IPI to self!\n");
770 /* Set up a descriptor, to be delivered either promptly or queued */
771 pipi
= smtc_ipi_dq(&freeIPIq
);
774 mips_mt_regdump(dvpe());
775 panic("IPI Msg. Buffers Depleted\n");
778 pipi
->arg
= (void *)action
;
780 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
781 if (type
== SMTC_CLOCK_TICK
)
782 atomic_inc(&ipi_timer_latch
[cpu
]);
783 /* If not on same VPE, enqueue and send cross-VPE interrupt */
784 smtc_ipi_nq(&IPIQ
[cpu
], pipi
);
786 settc(cpu_data
[cpu
].tc_id
);
787 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1
);
791 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
792 * since ASID shootdown on the other VPE may
793 * collide with this operation.
796 settc(cpu_data
[cpu
].tc_id
);
797 /* Halt the targeted TC */
798 write_tc_c0_tchalt(TCHALT_H
);
802 * Inspect TCStatus - if IXMT is set, we have to queue
803 * a message. Otherwise, we set up the "interrupt"
806 tcstatus
= read_tc_c0_tcstatus();
808 if ((tcstatus
& TCSTATUS_IXMT
) != 0) {
810 * Spin-waiting here can deadlock,
811 * so we queue the message for the target TC.
813 write_tc_c0_tchalt(0);
815 /* Try to reduce redundant timer interrupt messages */
816 if (type
== SMTC_CLOCK_TICK
) {
817 if (atomic_postincrement(&ipi_timer_latch
[cpu
])!=0){
818 smtc_ipi_nq(&freeIPIq
, pipi
);
822 smtc_ipi_nq(&IPIQ
[cpu
], pipi
);
824 if (type
== SMTC_CLOCK_TICK
)
825 atomic_inc(&ipi_timer_latch
[cpu
]);
826 post_direct_ipi(cpu
, pipi
);
827 write_tc_c0_tchalt(0);
834 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
836 static void post_direct_ipi(int cpu
, struct smtc_ipi
*pipi
)
838 struct pt_regs
*kstack
;
839 unsigned long tcstatus
;
840 unsigned long tcrestart
;
841 extern u32 kernelsp
[NR_CPUS
];
842 extern void __smtc_ipi_vector(void);
843 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
845 /* Extract Status, EPC from halted TC */
846 tcstatus
= read_tc_c0_tcstatus();
847 tcrestart
= read_tc_c0_tcrestart();
848 /* If TCRestart indicates a WAIT instruction, advance the PC */
849 if ((tcrestart
& 0x80000000)
850 && ((*(unsigned int *)tcrestart
& 0xfe00003f) == 0x42000020)) {
854 * Save on TC's future kernel stack
856 * CU bit of Status is indicator that TC was
857 * already running on a kernel stack...
859 if (tcstatus
& ST0_CU0
) {
860 /* Note that this "- 1" is pointer arithmetic */
861 kstack
= ((struct pt_regs
*)read_tc_gpr_sp()) - 1;
863 kstack
= ((struct pt_regs
*)kernelsp
[cpu
]) - 1;
866 kstack
->cp0_epc
= (long)tcrestart
;
868 kstack
->cp0_tcstatus
= tcstatus
;
869 /* Pass token of operation to be performed kernel stack pad area */
870 kstack
->pad0
[4] = (unsigned long)pipi
;
871 /* Pass address of function to be called likewise */
872 kstack
->pad0
[5] = (unsigned long)&ipi_decode
;
873 /* Set interrupt exempt and kernel mode */
874 tcstatus
|= TCSTATUS_IXMT
;
875 tcstatus
&= ~TCSTATUS_TKSU
;
876 write_tc_c0_tcstatus(tcstatus
);
878 /* Set TC Restart address to be SMTC IPI vector */
879 write_tc_c0_tcrestart(__smtc_ipi_vector
);
882 static void ipi_resched_interrupt(void)
884 /* Return from interrupt should be enough to cause scheduler check */
888 static void ipi_call_interrupt(void)
890 /* Invoke generic function invocation code in smp.c */
891 smp_call_function_interrupt();
894 DECLARE_PER_CPU(struct clock_event_device
, smtc_dummy_clockevent_device
);
896 void ipi_decode(struct smtc_ipi
*pipi
)
898 unsigned int cpu
= smp_processor_id();
899 struct clock_event_device
*cd
;
900 void *arg_copy
= pipi
->arg
;
901 int type_copy
= pipi
->type
;
904 smtc_ipi_nq(&freeIPIq
, pipi
);
906 case SMTC_CLOCK_TICK
:
908 kstat_this_cpu
.irqs
[MIPS_CPU_IRQ_BASE
+ 1]++;
909 cd
= &per_cpu(smtc_dummy_clockevent_device
, cpu
);
910 ticks
= atomic_read(&ipi_timer_latch
[cpu
]);
911 atomic_sub(ticks
, &ipi_timer_latch
[cpu
]);
913 cd
->event_handler(cd
);
920 switch ((int)arg_copy
) {
921 case SMP_RESCHEDULE_YOURSELF
:
922 ipi_resched_interrupt();
924 case SMP_CALL_FUNCTION
:
925 ipi_call_interrupt();
928 printk("Impossible SMTC IPI Argument 0x%x\n",
933 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
934 case IRQ_AFFINITY_IPI
:
936 * Accept a "forwarded" interrupt that was initially
937 * taken by a TC who doesn't have affinity for the IRQ.
939 do_IRQ_no_affinity((int)arg_copy
);
941 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
943 printk("Impossible SMTC IPI Type 0x%x\n", type_copy
);
948 void deferred_smtc_ipi(void)
950 struct smtc_ipi
*pipi
;
953 int q
= smp_processor_id();
956 * Test is not atomic, but much faster than a dequeue,
957 * and the vast majority of invocations will have a null queue.
959 if (IPIQ
[q
].head
!= NULL
) {
960 while((pipi
= smtc_ipi_dq(&IPIQ
[q
])) != NULL
) {
961 /* ipi_decode() should be called with interrupts off */
962 local_irq_save(flags
);
964 local_irq_restore(flags
);
970 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
971 * set via cross-VPE MTTR manipulation of the Cause register. It would be
972 * in some regards preferable to have external logic for "doorbell" hardware
976 static int cpu_ipi_irq
= MIPS_CPU_IRQ_BASE
+ MIPS_CPU_IPI_IRQ
;
978 static irqreturn_t
ipi_interrupt(int irq
, void *dev_idm
)
980 int my_vpe
= cpu_data
[smp_processor_id()].vpe_id
;
981 int my_tc
= cpu_data
[smp_processor_id()].tc_id
;
983 struct smtc_ipi
*pipi
;
984 unsigned long tcstatus
;
987 unsigned int mtflags
;
988 unsigned int vpflags
;
991 * So long as cross-VPE interrupts are done via
992 * MFTR/MTTR read-modify-writes of Cause, we need
993 * to stop other VPEs whenever the local VPE does
996 local_irq_save(flags
);
998 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ
);
999 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ
);
1000 irq_enable_hazard();
1002 local_irq_restore(flags
);
1005 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1006 * queued for TCs on this VPE other than the current one.
1007 * Return-from-interrupt should cause us to drain the queue
1008 * for the current TC, so we ought not to have to do it explicitly here.
1011 for_each_online_cpu(cpu
) {
1012 if (cpu_data
[cpu
].vpe_id
!= my_vpe
)
1015 pipi
= smtc_ipi_dq(&IPIQ
[cpu
]);
1017 if (cpu_data
[cpu
].tc_id
!= my_tc
) {
1020 settc(cpu_data
[cpu
].tc_id
);
1021 write_tc_c0_tchalt(TCHALT_H
);
1023 tcstatus
= read_tc_c0_tcstatus();
1024 if ((tcstatus
& TCSTATUS_IXMT
) == 0) {
1025 post_direct_ipi(cpu
, pipi
);
1028 write_tc_c0_tchalt(0);
1031 smtc_ipi_req(&IPIQ
[cpu
], pipi
);
1035 * ipi_decode() should be called
1036 * with interrupts off
1038 local_irq_save(flags
);
1040 local_irq_restore(flags
);
1048 static void ipi_irq_dispatch(void)
1050 do_IRQ(cpu_ipi_irq
);
1053 static struct irqaction irq_ipi
= {
1054 .handler
= ipi_interrupt
,
1055 .flags
= IRQF_DISABLED
,
1057 .flags
= IRQF_PERCPU
1060 static void setup_cross_vpe_interrupts(unsigned int nvpe
)
1066 panic("SMTC Kernel requires Vectored Interrupt support");
1068 set_vi_handler(MIPS_CPU_IPI_IRQ
, ipi_irq_dispatch
);
1070 setup_irq_smtc(cpu_ipi_irq
, &irq_ipi
, (0x100 << MIPS_CPU_IPI_IRQ
));
1072 set_irq_handler(cpu_ipi_irq
, handle_percpu_irq
);
1076 * SMTC-specific hacks invoked from elsewhere in the kernel.
1078 * smtc_ipi_replay is called from raw_local_irq_restore which is only ever
1079 * called with interrupts disabled. We do rely on interrupts being disabled
1080 * here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
1081 * result in a recursive call to raw_local_irq_restore().
1084 static void __smtc_ipi_replay(void)
1086 unsigned int cpu
= smp_processor_id();
1089 * To the extent that we've ever turned interrupts off,
1090 * we may have accumulated deferred IPIs. This is subtle.
1091 * If we use the smtc_ipi_qdepth() macro, we'll get an
1092 * exact number - but we'll also disable interrupts
1093 * and create a window of failure where a new IPI gets
1094 * queued after we test the depth but before we re-enable
1095 * interrupts. So long as IXMT never gets set, however,
1096 * we should be OK: If we pick up something and dispatch
1097 * it here, that's great. If we see nothing, but concurrent
1098 * with this operation, another TC sends us an IPI, IXMT
1099 * is clear, and we'll handle it as a real pseudo-interrupt
1100 * and not a pseudo-pseudo interrupt.
1102 if (IPIQ
[cpu
].depth
> 0) {
1104 struct smtc_ipi_q
*q
= &IPIQ
[cpu
];
1105 struct smtc_ipi
*pipi
;
1106 extern void self_ipi(struct smtc_ipi
*);
1108 spin_lock(&q
->lock
);
1109 pipi
= __smtc_ipi_dq(q
);
1110 spin_unlock(&q
->lock
);
1115 smtc_cpu_stats
[cpu
].selfipis
++;
1120 void smtc_ipi_replay(void)
1122 raw_local_irq_disable();
1123 __smtc_ipi_replay();
1126 EXPORT_SYMBOL(smtc_ipi_replay
);
1128 void smtc_idle_loop_hook(void)
1130 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1139 * printk within DMT-protected regions can deadlock,
1140 * so buffer diagnostic messages for later output.
1143 char id_ho_db_msg
[768]; /* worst-case use should be less than 700 */
1145 if (atomic_read(&idle_hook_initialized
) == 0) { /* fast test */
1146 if (atomic_add_return(1, &idle_hook_initialized
) == 1) {
1148 /* Tedious stuff to just do once */
1149 mvpconf0
= read_c0_mvpconf0();
1150 hook_ntcs
= ((mvpconf0
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
1151 if (hook_ntcs
> NR_CPUS
)
1152 hook_ntcs
= NR_CPUS
;
1153 for (tc
= 0; tc
< hook_ntcs
; tc
++) {
1155 clock_hang_reported
[tc
] = 0;
1157 for (vpe
= 0; vpe
< 2; vpe
++)
1158 for (im
= 0; im
< 8; im
++)
1159 imstuckcount
[vpe
][im
] = 0;
1160 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs
);
1161 atomic_set(&idle_hook_initialized
, 1000);
1163 /* Someone else is initializing in parallel - let 'em finish */
1164 while (atomic_read(&idle_hook_initialized
) < 1000)
1169 /* Have we stupidly left IXMT set somewhere? */
1170 if (read_c0_tcstatus() & 0x400) {
1171 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1173 printk("Dangling IXMT in cpu_idle()\n");
1176 /* Have we stupidly left an IM bit turned off? */
1177 #define IM_LIMIT 2000
1178 local_irq_save(flags
);
1180 pdb_msg
= &id_ho_db_msg
[0];
1181 im
= read_c0_status();
1182 vpe
= current_cpu_data
.vpe_id
;
1183 for (bit
= 0; bit
< 8; bit
++) {
1185 * In current prototype, I/O interrupts
1186 * are masked for VPE > 0
1188 if (vpemask
[vpe
][bit
]) {
1189 if (!(im
& (0x100 << bit
)))
1190 imstuckcount
[vpe
][bit
]++;
1192 imstuckcount
[vpe
][bit
] = 0;
1193 if (imstuckcount
[vpe
][bit
] > IM_LIMIT
) {
1194 set_c0_status(0x100 << bit
);
1196 imstuckcount
[vpe
][bit
] = 0;
1197 pdb_msg
+= sprintf(pdb_msg
,
1198 "Dangling IM %d fixed for VPE %d\n", bit
,
1205 * Now that we limit outstanding timer IPIs, check for hung TC
1207 for (tc
= 0; tc
< NR_CPUS
; tc
++) {
1208 /* Don't check ourself - we'll dequeue IPIs just below */
1209 if ((tc
!= smp_processor_id()) &&
1210 atomic_read(&ipi_timer_latch
[tc
]) > timerq_limit
) {
1211 if (clock_hang_reported
[tc
] == 0) {
1212 pdb_msg
+= sprintf(pdb_msg
,
1213 "TC %d looks hung with timer latch at %d\n",
1214 tc
, atomic_read(&ipi_timer_latch
[tc
]));
1215 clock_hang_reported
[tc
]++;
1220 local_irq_restore(flags
);
1221 if (pdb_msg
!= &id_ho_db_msg
[0])
1222 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg
);
1223 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1226 * Replay any accumulated deferred IPIs. If "Instant Replay"
1227 * is in use, there should never be any.
1229 #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1231 unsigned long flags
;
1233 local_irq_save(flags
);
1234 __smtc_ipi_replay();
1235 local_irq_restore(flags
);
1237 #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1240 void smtc_soft_dump(void)
1244 printk("Counter Interrupts taken per CPU (TC)\n");
1245 for (i
=0; i
< NR_CPUS
; i
++) {
1246 printk("%d: %ld\n", i
, smtc_cpu_stats
[i
].timerints
);
1248 printk("Self-IPI invocations:\n");
1249 for (i
=0; i
< NR_CPUS
; i
++) {
1250 printk("%d: %ld\n", i
, smtc_cpu_stats
[i
].selfipis
);
1253 printk("Timer IPI Backlogs:\n");
1254 for (i
=0; i
< NR_CPUS
; i
++) {
1255 printk("%d: %d\n", i
, atomic_read(&ipi_timer_latch
[i
]));
1257 printk("%d Recoveries of \"stolen\" FPU\n",
1258 atomic_read(&smtc_fpu_recoveries
));
1263 * TLB management routines special to SMTC
1266 void smtc_get_new_mmu_context(struct mm_struct
*mm
, unsigned long cpu
)
1268 unsigned long flags
, mtflags
, tcstat
, prevhalt
, asid
;
1272 * It would be nice to be able to use a spinlock here,
1273 * but this is invoked from within TLB flush routines
1274 * that protect themselves with DVPE, so if a lock is
1275 * held by another TC, it'll never be freed.
1277 * DVPE/DMT must not be done with interrupts enabled,
1278 * so even so most callers will already have disabled
1279 * them, let's be really careful...
1282 local_irq_save(flags
);
1283 if (smtc_status
& SMTC_TLB_SHARED
) {
1288 tlb
= cpu_data
[cpu
].vpe_id
;
1290 asid
= asid_cache(cpu
);
1293 if (!((asid
+= ASID_INC
) & ASID_MASK
) ) {
1294 if (cpu_has_vtag_icache
)
1296 /* Traverse all online CPUs (hack requires contigous range) */
1297 for_each_online_cpu(i
) {
1299 * We don't need to worry about our own CPU, nor those of
1300 * CPUs who don't share our TLB.
1302 if ((i
!= smp_processor_id()) &&
1303 ((smtc_status
& SMTC_TLB_SHARED
) ||
1304 (cpu_data
[i
].vpe_id
== cpu_data
[cpu
].vpe_id
))) {
1305 settc(cpu_data
[i
].tc_id
);
1306 prevhalt
= read_tc_c0_tchalt() & TCHALT_H
;
1308 write_tc_c0_tchalt(TCHALT_H
);
1311 tcstat
= read_tc_c0_tcstatus();
1312 smtc_live_asid
[tlb
][(tcstat
& ASID_MASK
)] |= (asiduse
)(0x1 << i
);
1314 write_tc_c0_tchalt(0);
1317 if (!asid
) /* fix version if needed */
1318 asid
= ASID_FIRST_VERSION
;
1319 local_flush_tlb_all(); /* start new asid cycle */
1321 } while (smtc_live_asid
[tlb
][(asid
& ASID_MASK
)]);
1324 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1326 for_each_online_cpu(i
) {
1327 if ((smtc_status
& SMTC_TLB_SHARED
) ||
1328 (cpu_data
[i
].vpe_id
== cpu_data
[cpu
].vpe_id
))
1329 cpu_context(i
, mm
) = asid_cache(i
) = asid
;
1332 if (smtc_status
& SMTC_TLB_SHARED
)
1336 local_irq_restore(flags
);
1340 * Invoked from macros defined in mmu_context.h
1341 * which must already have disabled interrupts
1342 * and done a DVPE or DMT as appropriate.
1345 void smtc_flush_tlb_asid(unsigned long asid
)
1350 entry
= read_c0_wired();
1352 /* Traverse all non-wired entries */
1353 while (entry
< current_cpu_data
.tlbsize
) {
1354 write_c0_index(entry
);
1358 ehi
= read_c0_entryhi();
1359 if ((ehi
& ASID_MASK
) == asid
) {
1361 * Invalidate only entries with specified ASID,
1362 * makiing sure all entries differ.
1364 write_c0_entryhi(CKSEG0
+ (entry
<< (PAGE_SHIFT
+ 1)));
1365 write_c0_entrylo0(0);
1366 write_c0_entrylo1(0);
1368 tlb_write_indexed();
1372 write_c0_index(PARKED_INDEX
);
1377 * Support for single-threading cache flush operations.
1380 static int halt_state_save
[NR_CPUS
];
1383 * To really, really be sure that nothing is being done
1384 * by other TCs, halt them all. This code assumes that
1385 * a DVPE has already been done, so while their Halted
1386 * state is theoretically architecturally unstable, in
1387 * practice, it's not going to change while we're looking
1391 void smtc_cflush_lockdown(void)
1395 for_each_online_cpu(cpu
) {
1396 if (cpu
!= smp_processor_id()) {
1397 settc(cpu_data
[cpu
].tc_id
);
1398 halt_state_save
[cpu
] = read_tc_c0_tchalt();
1399 write_tc_c0_tchalt(TCHALT_H
);
1405 /* It would be cheating to change the cpu_online states during a flush! */
1407 void smtc_cflush_release(void)
1412 * Start with a hazard barrier to ensure
1413 * that all CACHE ops have played through.
1417 for_each_online_cpu(cpu
) {
1418 if (cpu
!= smp_processor_id()) {
1419 settc(cpu_data
[cpu
].tc_id
);
1420 write_tc_c0_tchalt(halt_state_save
[cpu
]);