2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 static unsigned long nr_huge_pages
, free_huge_pages
, resv_huge_pages
;
26 static unsigned long surplus_huge_pages
;
27 static unsigned long nr_overcommit_huge_pages
;
28 unsigned long max_huge_pages
;
29 unsigned long sysctl_overcommit_huge_pages
;
30 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
31 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
32 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
33 static unsigned int surplus_huge_pages_node
[MAX_NUMNODES
];
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
36 static int hugetlb_next_nid
;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock
);
43 static void clear_huge_page(struct page
*page
, unsigned long addr
)
48 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); i
++) {
50 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
54 static void copy_huge_page(struct page
*dst
, struct page
*src
,
55 unsigned long addr
, struct vm_area_struct
*vma
)
60 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++) {
62 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
66 static void enqueue_huge_page(struct page
*page
)
68 int nid
= page_to_nid(page
);
69 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
71 free_huge_pages_node
[nid
]++;
74 static struct page
*dequeue_huge_page(void)
77 struct page
*page
= NULL
;
79 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
80 if (!list_empty(&hugepage_freelists
[nid
])) {
81 page
= list_entry(hugepage_freelists
[nid
].next
,
85 free_huge_pages_node
[nid
]--;
92 static struct page
*dequeue_huge_page_vma(struct vm_area_struct
*vma
,
93 unsigned long address
)
96 struct page
*page
= NULL
;
97 struct mempolicy
*mpol
;
98 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
99 htlb_alloc_mask
, &mpol
);
102 for (z
= zonelist
->zones
; *z
; z
++) {
103 nid
= zone_to_nid(*z
);
104 if (cpuset_zone_allowed_softwall(*z
, htlb_alloc_mask
) &&
105 !list_empty(&hugepage_freelists
[nid
])) {
106 page
= list_entry(hugepage_freelists
[nid
].next
,
108 list_del(&page
->lru
);
110 free_huge_pages_node
[nid
]--;
111 if (vma
&& vma
->vm_flags
& VM_MAYSHARE
)
116 mpol_free(mpol
); /* unref if mpol !NULL */
120 static void update_and_free_page(struct page
*page
)
124 nr_huge_pages_node
[page_to_nid(page
)]--;
125 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
126 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
127 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
128 1 << PG_private
| 1<< PG_writeback
);
130 set_compound_page_dtor(page
, NULL
);
131 set_page_refcounted(page
);
132 __free_pages(page
, HUGETLB_PAGE_ORDER
);
135 static void free_huge_page(struct page
*page
)
137 int nid
= page_to_nid(page
);
138 struct address_space
*mapping
;
140 mapping
= (struct address_space
*) page_private(page
);
141 set_page_private(page
, 0);
142 BUG_ON(page_count(page
));
143 INIT_LIST_HEAD(&page
->lru
);
145 spin_lock(&hugetlb_lock
);
146 if (surplus_huge_pages_node
[nid
]) {
147 update_and_free_page(page
);
148 surplus_huge_pages
--;
149 surplus_huge_pages_node
[nid
]--;
151 enqueue_huge_page(page
);
153 spin_unlock(&hugetlb_lock
);
155 hugetlb_put_quota(mapping
, 1);
159 * Increment or decrement surplus_huge_pages. Keep node-specific counters
160 * balanced by operating on them in a round-robin fashion.
161 * Returns 1 if an adjustment was made.
163 static int adjust_pool_surplus(int delta
)
169 VM_BUG_ON(delta
!= -1 && delta
!= 1);
171 nid
= next_node(nid
, node_online_map
);
172 if (nid
== MAX_NUMNODES
)
173 nid
= first_node(node_online_map
);
175 /* To shrink on this node, there must be a surplus page */
176 if (delta
< 0 && !surplus_huge_pages_node
[nid
])
178 /* Surplus cannot exceed the total number of pages */
179 if (delta
> 0 && surplus_huge_pages_node
[nid
] >=
180 nr_huge_pages_node
[nid
])
183 surplus_huge_pages
+= delta
;
184 surplus_huge_pages_node
[nid
] += delta
;
187 } while (nid
!= prev_nid
);
193 static struct page
*alloc_fresh_huge_page_node(int nid
)
197 page
= alloc_pages_node(nid
,
198 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|__GFP_NOWARN
,
201 set_compound_page_dtor(page
, free_huge_page
);
202 spin_lock(&hugetlb_lock
);
204 nr_huge_pages_node
[nid
]++;
205 spin_unlock(&hugetlb_lock
);
206 put_page(page
); /* free it into the hugepage allocator */
212 static int alloc_fresh_huge_page(void)
219 start_nid
= hugetlb_next_nid
;
222 page
= alloc_fresh_huge_page_node(hugetlb_next_nid
);
226 * Use a helper variable to find the next node and then
227 * copy it back to hugetlb_next_nid afterwards:
228 * otherwise there's a window in which a racer might
229 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
230 * But we don't need to use a spin_lock here: it really
231 * doesn't matter if occasionally a racer chooses the
232 * same nid as we do. Move nid forward in the mask even
233 * if we just successfully allocated a hugepage so that
234 * the next caller gets hugepages on the next node.
236 next_nid
= next_node(hugetlb_next_nid
, node_online_map
);
237 if (next_nid
== MAX_NUMNODES
)
238 next_nid
= first_node(node_online_map
);
239 hugetlb_next_nid
= next_nid
;
240 } while (!page
&& hugetlb_next_nid
!= start_nid
);
245 static struct page
*alloc_buddy_huge_page(struct vm_area_struct
*vma
,
246 unsigned long address
)
252 * Assume we will successfully allocate the surplus page to
253 * prevent racing processes from causing the surplus to exceed
256 * This however introduces a different race, where a process B
257 * tries to grow the static hugepage pool while alloc_pages() is
258 * called by process A. B will only examine the per-node
259 * counters in determining if surplus huge pages can be
260 * converted to normal huge pages in adjust_pool_surplus(). A
261 * won't be able to increment the per-node counter, until the
262 * lock is dropped by B, but B doesn't drop hugetlb_lock until
263 * no more huge pages can be converted from surplus to normal
264 * state (and doesn't try to convert again). Thus, we have a
265 * case where a surplus huge page exists, the pool is grown, and
266 * the surplus huge page still exists after, even though it
267 * should just have been converted to a normal huge page. This
268 * does not leak memory, though, as the hugepage will be freed
269 * once it is out of use. It also does not allow the counters to
270 * go out of whack in adjust_pool_surplus() as we don't modify
271 * the node values until we've gotten the hugepage and only the
272 * per-node value is checked there.
274 spin_lock(&hugetlb_lock
);
275 if (surplus_huge_pages
>= nr_overcommit_huge_pages
) {
276 spin_unlock(&hugetlb_lock
);
280 surplus_huge_pages
++;
282 spin_unlock(&hugetlb_lock
);
284 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|__GFP_NOWARN
,
287 spin_lock(&hugetlb_lock
);
289 nid
= page_to_nid(page
);
290 set_compound_page_dtor(page
, free_huge_page
);
292 * We incremented the global counters already
294 nr_huge_pages_node
[nid
]++;
295 surplus_huge_pages_node
[nid
]++;
298 surplus_huge_pages
--;
300 spin_unlock(&hugetlb_lock
);
306 * Increase the hugetlb pool such that it can accomodate a reservation
309 static int gather_surplus_pages(int delta
)
311 struct list_head surplus_list
;
312 struct page
*page
, *tmp
;
314 int needed
, allocated
;
316 needed
= (resv_huge_pages
+ delta
) - free_huge_pages
;
318 resv_huge_pages
+= delta
;
323 INIT_LIST_HEAD(&surplus_list
);
327 spin_unlock(&hugetlb_lock
);
328 for (i
= 0; i
< needed
; i
++) {
329 page
= alloc_buddy_huge_page(NULL
, 0);
332 * We were not able to allocate enough pages to
333 * satisfy the entire reservation so we free what
334 * we've allocated so far.
336 spin_lock(&hugetlb_lock
);
341 list_add(&page
->lru
, &surplus_list
);
346 * After retaking hugetlb_lock, we need to recalculate 'needed'
347 * because either resv_huge_pages or free_huge_pages may have changed.
349 spin_lock(&hugetlb_lock
);
350 needed
= (resv_huge_pages
+ delta
) - (free_huge_pages
+ allocated
);
355 * The surplus_list now contains _at_least_ the number of extra pages
356 * needed to accomodate the reservation. Add the appropriate number
357 * of pages to the hugetlb pool and free the extras back to the buddy
358 * allocator. Commit the entire reservation here to prevent another
359 * process from stealing the pages as they are added to the pool but
360 * before they are reserved.
363 resv_huge_pages
+= delta
;
366 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
367 list_del(&page
->lru
);
369 enqueue_huge_page(page
);
372 * Decrement the refcount and free the page using its
373 * destructor. This must be done with hugetlb_lock
374 * unlocked which is safe because free_huge_page takes
375 * hugetlb_lock before deciding how to free the page.
377 spin_unlock(&hugetlb_lock
);
379 spin_lock(&hugetlb_lock
);
387 * When releasing a hugetlb pool reservation, any surplus pages that were
388 * allocated to satisfy the reservation must be explicitly freed if they were
391 static void return_unused_surplus_pages(unsigned long unused_resv_pages
)
395 unsigned long nr_pages
;
397 /* Uncommit the reservation */
398 resv_huge_pages
-= unused_resv_pages
;
400 nr_pages
= min(unused_resv_pages
, surplus_huge_pages
);
403 nid
= next_node(nid
, node_online_map
);
404 if (nid
== MAX_NUMNODES
)
405 nid
= first_node(node_online_map
);
407 if (!surplus_huge_pages_node
[nid
])
410 if (!list_empty(&hugepage_freelists
[nid
])) {
411 page
= list_entry(hugepage_freelists
[nid
].next
,
413 list_del(&page
->lru
);
414 update_and_free_page(page
);
416 free_huge_pages_node
[nid
]--;
417 surplus_huge_pages
--;
418 surplus_huge_pages_node
[nid
]--;
425 static struct page
*alloc_huge_page_shared(struct vm_area_struct
*vma
,
430 spin_lock(&hugetlb_lock
);
431 page
= dequeue_huge_page_vma(vma
, addr
);
432 spin_unlock(&hugetlb_lock
);
433 return page
? page
: ERR_PTR(-VM_FAULT_OOM
);
436 static struct page
*alloc_huge_page_private(struct vm_area_struct
*vma
,
439 struct page
*page
= NULL
;
441 if (hugetlb_get_quota(vma
->vm_file
->f_mapping
, 1))
442 return ERR_PTR(-VM_FAULT_SIGBUS
);
444 spin_lock(&hugetlb_lock
);
445 if (free_huge_pages
> resv_huge_pages
)
446 page
= dequeue_huge_page_vma(vma
, addr
);
447 spin_unlock(&hugetlb_lock
);
449 page
= alloc_buddy_huge_page(vma
, addr
);
451 hugetlb_put_quota(vma
->vm_file
->f_mapping
, 1);
452 return ERR_PTR(-VM_FAULT_OOM
);
458 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
462 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
464 if (vma
->vm_flags
& VM_MAYSHARE
)
465 page
= alloc_huge_page_shared(vma
, addr
);
467 page
= alloc_huge_page_private(vma
, addr
);
470 set_page_refcounted(page
);
471 set_page_private(page
, (unsigned long) mapping
);
476 static int __init
hugetlb_init(void)
480 if (HPAGE_SHIFT
== 0)
483 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
484 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
486 hugetlb_next_nid
= first_node(node_online_map
);
488 for (i
= 0; i
< max_huge_pages
; ++i
) {
489 if (!alloc_fresh_huge_page())
492 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
493 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
496 module_init(hugetlb_init
);
498 static int __init
hugetlb_setup(char *s
)
500 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
504 __setup("hugepages=", hugetlb_setup
);
506 static unsigned int cpuset_mems_nr(unsigned int *array
)
511 for_each_node_mask(node
, cpuset_current_mems_allowed
)
518 #ifdef CONFIG_HIGHMEM
519 static void try_to_free_low(unsigned long count
)
523 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
524 struct page
*page
, *next
;
525 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
526 if (count
>= nr_huge_pages
)
528 if (PageHighMem(page
))
530 list_del(&page
->lru
);
531 update_and_free_page(page
);
533 free_huge_pages_node
[page_to_nid(page
)]--;
538 static inline void try_to_free_low(unsigned long count
)
543 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
544 static unsigned long set_max_huge_pages(unsigned long count
)
546 unsigned long min_count
, ret
;
549 * Increase the pool size
550 * First take pages out of surplus state. Then make up the
551 * remaining difference by allocating fresh huge pages.
553 * We might race with alloc_buddy_huge_page() here and be unable
554 * to convert a surplus huge page to a normal huge page. That is
555 * not critical, though, it just means the overall size of the
556 * pool might be one hugepage larger than it needs to be, but
557 * within all the constraints specified by the sysctls.
559 spin_lock(&hugetlb_lock
);
560 while (surplus_huge_pages
&& count
> persistent_huge_pages
) {
561 if (!adjust_pool_surplus(-1))
565 while (count
> persistent_huge_pages
) {
568 * If this allocation races such that we no longer need the
569 * page, free_huge_page will handle it by freeing the page
570 * and reducing the surplus.
572 spin_unlock(&hugetlb_lock
);
573 ret
= alloc_fresh_huge_page();
574 spin_lock(&hugetlb_lock
);
581 * Decrease the pool size
582 * First return free pages to the buddy allocator (being careful
583 * to keep enough around to satisfy reservations). Then place
584 * pages into surplus state as needed so the pool will shrink
585 * to the desired size as pages become free.
587 * By placing pages into the surplus state independent of the
588 * overcommit value, we are allowing the surplus pool size to
589 * exceed overcommit. There are few sane options here. Since
590 * alloc_buddy_huge_page() is checking the global counter,
591 * though, we'll note that we're not allowed to exceed surplus
592 * and won't grow the pool anywhere else. Not until one of the
593 * sysctls are changed, or the surplus pages go out of use.
595 min_count
= resv_huge_pages
+ nr_huge_pages
- free_huge_pages
;
596 min_count
= max(count
, min_count
);
597 try_to_free_low(min_count
);
598 while (min_count
< persistent_huge_pages
) {
599 struct page
*page
= dequeue_huge_page();
602 update_and_free_page(page
);
604 while (count
< persistent_huge_pages
) {
605 if (!adjust_pool_surplus(1))
609 ret
= persistent_huge_pages
;
610 spin_unlock(&hugetlb_lock
);
614 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
615 struct file
*file
, void __user
*buffer
,
616 size_t *length
, loff_t
*ppos
)
618 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
619 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
623 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
624 struct file
*file
, void __user
*buffer
,
625 size_t *length
, loff_t
*ppos
)
627 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
628 if (hugepages_treat_as_movable
)
629 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
631 htlb_alloc_mask
= GFP_HIGHUSER
;
635 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
636 struct file
*file
, void __user
*buffer
,
637 size_t *length
, loff_t
*ppos
)
639 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
640 spin_lock(&hugetlb_lock
);
641 nr_overcommit_huge_pages
= sysctl_overcommit_huge_pages
;
642 spin_unlock(&hugetlb_lock
);
646 #endif /* CONFIG_SYSCTL */
648 int hugetlb_report_meminfo(char *buf
)
651 "HugePages_Total: %5lu\n"
652 "HugePages_Free: %5lu\n"
653 "HugePages_Rsvd: %5lu\n"
654 "HugePages_Surp: %5lu\n"
655 "Hugepagesize: %5lu kB\n",
663 int hugetlb_report_node_meminfo(int nid
, char *buf
)
666 "Node %d HugePages_Total: %5u\n"
667 "Node %d HugePages_Free: %5u\n",
668 nid
, nr_huge_pages_node
[nid
],
669 nid
, free_huge_pages_node
[nid
]);
672 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
673 unsigned long hugetlb_total_pages(void)
675 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
679 * We cannot handle pagefaults against hugetlb pages at all. They cause
680 * handle_mm_fault() to try to instantiate regular-sized pages in the
681 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
684 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
690 struct vm_operations_struct hugetlb_vm_ops
= {
691 .fault
= hugetlb_vm_op_fault
,
694 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
701 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
703 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
705 entry
= pte_mkyoung(entry
);
706 entry
= pte_mkhuge(entry
);
711 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
712 unsigned long address
, pte_t
*ptep
)
716 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
717 if (ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
718 update_mmu_cache(vma
, address
, entry
);
723 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
724 struct vm_area_struct
*vma
)
726 pte_t
*src_pte
, *dst_pte
, entry
;
727 struct page
*ptepage
;
731 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
733 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
734 src_pte
= huge_pte_offset(src
, addr
);
737 dst_pte
= huge_pte_alloc(dst
, addr
);
741 /* If the pagetables are shared don't copy or take references */
742 if (dst_pte
== src_pte
)
745 spin_lock(&dst
->page_table_lock
);
746 spin_lock(&src
->page_table_lock
);
747 if (!pte_none(*src_pte
)) {
749 ptep_set_wrprotect(src
, addr
, src_pte
);
751 ptepage
= pte_page(entry
);
753 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
755 spin_unlock(&src
->page_table_lock
);
756 spin_unlock(&dst
->page_table_lock
);
764 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
767 struct mm_struct
*mm
= vma
->vm_mm
;
768 unsigned long address
;
774 * A page gathering list, protected by per file i_mmap_lock. The
775 * lock is used to avoid list corruption from multiple unmapping
776 * of the same page since we are using page->lru.
778 LIST_HEAD(page_list
);
780 WARN_ON(!is_vm_hugetlb_page(vma
));
781 BUG_ON(start
& ~HPAGE_MASK
);
782 BUG_ON(end
& ~HPAGE_MASK
);
784 spin_lock(&mm
->page_table_lock
);
785 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
786 ptep
= huge_pte_offset(mm
, address
);
790 if (huge_pmd_unshare(mm
, &address
, ptep
))
793 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
797 page
= pte_page(pte
);
799 set_page_dirty(page
);
800 list_add(&page
->lru
, &page_list
);
802 spin_unlock(&mm
->page_table_lock
);
803 flush_tlb_range(vma
, start
, end
);
804 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
805 list_del(&page
->lru
);
810 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
814 * It is undesirable to test vma->vm_file as it should be non-null
815 * for valid hugetlb area. However, vm_file will be NULL in the error
816 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
817 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
818 * to clean up. Since no pte has actually been setup, it is safe to
819 * do nothing in this case.
822 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
823 __unmap_hugepage_range(vma
, start
, end
);
824 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
828 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
829 unsigned long address
, pte_t
*ptep
, pte_t pte
)
831 struct page
*old_page
, *new_page
;
834 old_page
= pte_page(pte
);
836 /* If no-one else is actually using this page, avoid the copy
837 * and just make the page writable */
838 avoidcopy
= (page_count(old_page
) == 1);
840 set_huge_ptep_writable(vma
, address
, ptep
);
844 page_cache_get(old_page
);
845 new_page
= alloc_huge_page(vma
, address
);
847 if (IS_ERR(new_page
)) {
848 page_cache_release(old_page
);
849 return -PTR_ERR(new_page
);
852 spin_unlock(&mm
->page_table_lock
);
853 copy_huge_page(new_page
, old_page
, address
, vma
);
854 __SetPageUptodate(new_page
);
855 spin_lock(&mm
->page_table_lock
);
857 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
858 if (likely(pte_same(*ptep
, pte
))) {
860 set_huge_pte_at(mm
, address
, ptep
,
861 make_huge_pte(vma
, new_page
, 1));
862 /* Make the old page be freed below */
865 page_cache_release(new_page
);
866 page_cache_release(old_page
);
870 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
871 unsigned long address
, pte_t
*ptep
, int write_access
)
873 int ret
= VM_FAULT_SIGBUS
;
877 struct address_space
*mapping
;
880 mapping
= vma
->vm_file
->f_mapping
;
881 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
882 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
885 * Use page lock to guard against racing truncation
886 * before we get page_table_lock.
889 page
= find_lock_page(mapping
, idx
);
891 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
894 page
= alloc_huge_page(vma
, address
);
896 ret
= -PTR_ERR(page
);
899 clear_huge_page(page
, address
);
900 __SetPageUptodate(page
);
902 if (vma
->vm_flags
& VM_SHARED
) {
904 struct inode
*inode
= mapping
->host
;
906 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
914 spin_lock(&inode
->i_lock
);
915 inode
->i_blocks
+= BLOCKS_PER_HUGEPAGE
;
916 spin_unlock(&inode
->i_lock
);
921 spin_lock(&mm
->page_table_lock
);
922 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
927 if (!pte_none(*ptep
))
930 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
931 && (vma
->vm_flags
& VM_SHARED
)));
932 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
934 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
935 /* Optimization, do the COW without a second fault */
936 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
939 spin_unlock(&mm
->page_table_lock
);
945 spin_unlock(&mm
->page_table_lock
);
951 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
952 unsigned long address
, int write_access
)
957 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
959 ptep
= huge_pte_alloc(mm
, address
);
964 * Serialize hugepage allocation and instantiation, so that we don't
965 * get spurious allocation failures if two CPUs race to instantiate
966 * the same page in the page cache.
968 mutex_lock(&hugetlb_instantiation_mutex
);
970 if (pte_none(entry
)) {
971 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
972 mutex_unlock(&hugetlb_instantiation_mutex
);
978 spin_lock(&mm
->page_table_lock
);
979 /* Check for a racing update before calling hugetlb_cow */
980 if (likely(pte_same(entry
, *ptep
)))
981 if (write_access
&& !pte_write(entry
))
982 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
983 spin_unlock(&mm
->page_table_lock
);
984 mutex_unlock(&hugetlb_instantiation_mutex
);
989 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
990 struct page
**pages
, struct vm_area_struct
**vmas
,
991 unsigned long *position
, int *length
, int i
,
994 unsigned long pfn_offset
;
995 unsigned long vaddr
= *position
;
996 int remainder
= *length
;
998 spin_lock(&mm
->page_table_lock
);
999 while (vaddr
< vma
->vm_end
&& remainder
) {
1004 * Some archs (sparc64, sh*) have multiple pte_ts to
1005 * each hugepage. We have to make * sure we get the
1006 * first, for the page indexing below to work.
1008 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
1010 if (!pte
|| pte_none(*pte
) || (write
&& !pte_write(*pte
))) {
1013 spin_unlock(&mm
->page_table_lock
);
1014 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
1015 spin_lock(&mm
->page_table_lock
);
1016 if (!(ret
& VM_FAULT_ERROR
))
1025 pfn_offset
= (vaddr
& ~HPAGE_MASK
) >> PAGE_SHIFT
;
1026 page
= pte_page(*pte
);
1030 pages
[i
] = page
+ pfn_offset
;
1040 if (vaddr
< vma
->vm_end
&& remainder
&&
1041 pfn_offset
< HPAGE_SIZE
/PAGE_SIZE
) {
1043 * We use pfn_offset to avoid touching the pageframes
1044 * of this compound page.
1049 spin_unlock(&mm
->page_table_lock
);
1050 *length
= remainder
;
1056 void hugetlb_change_protection(struct vm_area_struct
*vma
,
1057 unsigned long address
, unsigned long end
, pgprot_t newprot
)
1059 struct mm_struct
*mm
= vma
->vm_mm
;
1060 unsigned long start
= address
;
1064 BUG_ON(address
>= end
);
1065 flush_cache_range(vma
, address
, end
);
1067 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1068 spin_lock(&mm
->page_table_lock
);
1069 for (; address
< end
; address
+= HPAGE_SIZE
) {
1070 ptep
= huge_pte_offset(mm
, address
);
1073 if (huge_pmd_unshare(mm
, &address
, ptep
))
1075 if (!pte_none(*ptep
)) {
1076 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1077 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
1078 set_huge_pte_at(mm
, address
, ptep
, pte
);
1081 spin_unlock(&mm
->page_table_lock
);
1082 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1084 flush_tlb_range(vma
, start
, end
);
1087 struct file_region
{
1088 struct list_head link
;
1093 static long region_add(struct list_head
*head
, long f
, long t
)
1095 struct file_region
*rg
, *nrg
, *trg
;
1097 /* Locate the region we are either in or before. */
1098 list_for_each_entry(rg
, head
, link
)
1102 /* Round our left edge to the current segment if it encloses us. */
1106 /* Check for and consume any regions we now overlap with. */
1108 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1109 if (&rg
->link
== head
)
1114 /* If this area reaches higher then extend our area to
1115 * include it completely. If this is not the first area
1116 * which we intend to reuse, free it. */
1120 list_del(&rg
->link
);
1129 static long region_chg(struct list_head
*head
, long f
, long t
)
1131 struct file_region
*rg
, *nrg
;
1134 /* Locate the region we are before or in. */
1135 list_for_each_entry(rg
, head
, link
)
1139 /* If we are below the current region then a new region is required.
1140 * Subtle, allocate a new region at the position but make it zero
1141 * size such that we can guarantee to record the reservation. */
1142 if (&rg
->link
== head
|| t
< rg
->from
) {
1143 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
1148 INIT_LIST_HEAD(&nrg
->link
);
1149 list_add(&nrg
->link
, rg
->link
.prev
);
1154 /* Round our left edge to the current segment if it encloses us. */
1159 /* Check for and consume any regions we now overlap with. */
1160 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
1161 if (&rg
->link
== head
)
1166 /* We overlap with this area, if it extends futher than
1167 * us then we must extend ourselves. Account for its
1168 * existing reservation. */
1173 chg
-= rg
->to
- rg
->from
;
1178 static long region_truncate(struct list_head
*head
, long end
)
1180 struct file_region
*rg
, *trg
;
1183 /* Locate the region we are either in or before. */
1184 list_for_each_entry(rg
, head
, link
)
1187 if (&rg
->link
== head
)
1190 /* If we are in the middle of a region then adjust it. */
1191 if (end
> rg
->from
) {
1194 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
1197 /* Drop any remaining regions. */
1198 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1199 if (&rg
->link
== head
)
1201 chg
+= rg
->to
- rg
->from
;
1202 list_del(&rg
->link
);
1208 static int hugetlb_acct_memory(long delta
)
1212 spin_lock(&hugetlb_lock
);
1214 * When cpuset is configured, it breaks the strict hugetlb page
1215 * reservation as the accounting is done on a global variable. Such
1216 * reservation is completely rubbish in the presence of cpuset because
1217 * the reservation is not checked against page availability for the
1218 * current cpuset. Application can still potentially OOM'ed by kernel
1219 * with lack of free htlb page in cpuset that the task is in.
1220 * Attempt to enforce strict accounting with cpuset is almost
1221 * impossible (or too ugly) because cpuset is too fluid that
1222 * task or memory node can be dynamically moved between cpusets.
1224 * The change of semantics for shared hugetlb mapping with cpuset is
1225 * undesirable. However, in order to preserve some of the semantics,
1226 * we fall back to check against current free page availability as
1227 * a best attempt and hopefully to minimize the impact of changing
1228 * semantics that cpuset has.
1231 if (gather_surplus_pages(delta
) < 0)
1234 if (delta
> cpuset_mems_nr(free_huge_pages_node
)) {
1235 return_unused_surplus_pages(delta
);
1242 return_unused_surplus_pages((unsigned long) -delta
);
1245 spin_unlock(&hugetlb_lock
);
1249 int hugetlb_reserve_pages(struct inode
*inode
, long from
, long to
)
1253 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
1257 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1259 ret
= hugetlb_acct_memory(chg
);
1261 hugetlb_put_quota(inode
->i_mapping
, chg
);
1264 region_add(&inode
->i_mapping
->private_list
, from
, to
);
1268 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
1270 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
1272 spin_lock(&inode
->i_lock
);
1273 inode
->i_blocks
-= BLOCKS_PER_HUGEPAGE
* freed
;
1274 spin_unlock(&inode
->i_lock
);
1276 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
1277 hugetlb_acct_memory(-(chg
- freed
));