Merge branch 'akpm'
[linux-2.6/next.git] / Documentation / workqueue.txt
bloba0b577de918f7cd3fcdec46f06b72f7de074d6d8
2 Concurrency Managed Workqueue (cmwq)
4 September, 2010         Tejun Heo <tj@kernel.org>
5                         Florian Mickler <florian@mickler.org>
7 CONTENTS
9 1. Introduction
10 2. Why cmwq?
11 3. The Design
12 4. Application Programming Interface (API)
13 5. Example Execution Scenarios
14 6. Guidelines
15 7. Debugging
18 1. Introduction
20 There are many cases where an asynchronous process execution context
21 is needed and the workqueue (wq) API is the most commonly used
22 mechanism for such cases.
24 When such an asynchronous execution context is needed, a work item
25 describing which function to execute is put on a queue.  An
26 independent thread serves as the asynchronous execution context.  The
27 queue is called workqueue and the thread is called worker.
29 While there are work items on the workqueue the worker executes the
30 functions associated with the work items one after the other.  When
31 there is no work item left on the workqueue the worker becomes idle.
32 When a new work item gets queued, the worker begins executing again.
35 2. Why cmwq?
37 In the original wq implementation, a multi threaded (MT) wq had one
38 worker thread per CPU and a single threaded (ST) wq had one worker
39 thread system-wide.  A single MT wq needed to keep around the same
40 number of workers as the number of CPUs.  The kernel grew a lot of MT
41 wq users over the years and with the number of CPU cores continuously
42 rising, some systems saturated the default 32k PID space just booting
43 up.
45 Although MT wq wasted a lot of resource, the level of concurrency
46 provided was unsatisfactory.  The limitation was common to both ST and
47 MT wq albeit less severe on MT.  Each wq maintained its own separate
48 worker pool.  A MT wq could provide only one execution context per CPU
49 while a ST wq one for the whole system.  Work items had to compete for
50 those very limited execution contexts leading to various problems
51 including proneness to deadlocks around the single execution context.
53 The tension between the provided level of concurrency and resource
54 usage also forced its users to make unnecessary tradeoffs like libata
55 choosing to use ST wq for polling PIOs and accepting an unnecessary
56 limitation that no two polling PIOs can progress at the same time.  As
57 MT wq don't provide much better concurrency, users which require
58 higher level of concurrency, like async or fscache, had to implement
59 their own thread pool.
61 Concurrency Managed Workqueue (cmwq) is a reimplementation of wq with
62 focus on the following goals.
64 * Maintain compatibility with the original workqueue API.
66 * Use per-CPU unified worker pools shared by all wq to provide
67   flexible level of concurrency on demand without wasting a lot of
68   resource.
70 * Automatically regulate worker pool and level of concurrency so that
71   the API users don't need to worry about such details.
74 3. The Design
76 In order to ease the asynchronous execution of functions a new
77 abstraction, the work item, is introduced.
79 A work item is a simple struct that holds a pointer to the function
80 that is to be executed asynchronously.  Whenever a driver or subsystem
81 wants a function to be executed asynchronously it has to set up a work
82 item pointing to that function and queue that work item on a
83 workqueue.
85 Special purpose threads, called worker threads, execute the functions
86 off of the queue, one after the other.  If no work is queued, the
87 worker threads become idle.  These worker threads are managed in so
88 called thread-pools.
90 The cmwq design differentiates between the user-facing workqueues that
91 subsystems and drivers queue work items on and the backend mechanism
92 which manages thread-pool and processes the queued work items.
94 The backend is called gcwq.  There is one gcwq for each possible CPU
95 and one gcwq to serve work items queued on unbound workqueues.
97 Subsystems and drivers can create and queue work items through special
98 workqueue API functions as they see fit. They can influence some
99 aspects of the way the work items are executed by setting flags on the
100 workqueue they are putting the work item on. These flags include
101 things like CPU locality, reentrancy, concurrency limits and more. To
102 get a detailed overview refer to the API description of
103 alloc_workqueue() below.
105 When a work item is queued to a workqueue, the target gcwq is
106 determined according to the queue parameters and workqueue attributes
107 and appended on the shared worklist of the gcwq.  For example, unless
108 specifically overridden, a work item of a bound workqueue will be
109 queued on the worklist of exactly that gcwq that is associated to the
110 CPU the issuer is running on.
112 For any worker pool implementation, managing the concurrency level
113 (how many execution contexts are active) is an important issue.  cmwq
114 tries to keep the concurrency at a minimal but sufficient level.
115 Minimal to save resources and sufficient in that the system is used at
116 its full capacity.
118 Each gcwq bound to an actual CPU implements concurrency management by
119 hooking into the scheduler.  The gcwq is notified whenever an active
120 worker wakes up or sleeps and keeps track of the number of the
121 currently runnable workers.  Generally, work items are not expected to
122 hog a CPU and consume many cycles.  That means maintaining just enough
123 concurrency to prevent work processing from stalling should be
124 optimal.  As long as there are one or more runnable workers on the
125 CPU, the gcwq doesn't start execution of a new work, but, when the
126 last running worker goes to sleep, it immediately schedules a new
127 worker so that the CPU doesn't sit idle while there are pending work
128 items.  This allows using a minimal number of workers without losing
129 execution bandwidth.
131 Keeping idle workers around doesn't cost other than the memory space
132 for kthreads, so cmwq holds onto idle ones for a while before killing
133 them.
135 For an unbound wq, the above concurrency management doesn't apply and
136 the gcwq for the pseudo unbound CPU tries to start executing all work
137 items as soon as possible.  The responsibility of regulating
138 concurrency level is on the users.  There is also a flag to mark a
139 bound wq to ignore the concurrency management.  Please refer to the
140 API section for details.
142 Forward progress guarantee relies on that workers can be created when
143 more execution contexts are necessary, which in turn is guaranteed
144 through the use of rescue workers.  All work items which might be used
145 on code paths that handle memory reclaim are required to be queued on
146 wq's that have a rescue-worker reserved for execution under memory
147 pressure.  Else it is possible that the thread-pool deadlocks waiting
148 for execution contexts to free up.
151 4. Application Programming Interface (API)
153 alloc_workqueue() allocates a wq.  The original create_*workqueue()
154 functions are deprecated and scheduled for removal.  alloc_workqueue()
155 takes three arguments - @name, @flags and @max_active.  @name is the
156 name of the wq and also used as the name of the rescuer thread if
157 there is one.
159 A wq no longer manages execution resources but serves as a domain for
160 forward progress guarantee, flush and work item attributes.  @flags
161 and @max_active control how work items are assigned execution
162 resources, scheduled and executed.
164 @flags:
166   WQ_NON_REENTRANT
168         By default, a wq guarantees non-reentrance only on the same
169         CPU.  A work item may not be executed concurrently on the same
170         CPU by multiple workers but is allowed to be executed
171         concurrently on multiple CPUs.  This flag makes sure
172         non-reentrance is enforced across all CPUs.  Work items queued
173         to a non-reentrant wq are guaranteed to be executed by at most
174         one worker system-wide at any given time.
176   WQ_UNBOUND
178         Work items queued to an unbound wq are served by a special
179         gcwq which hosts workers which are not bound to any specific
180         CPU.  This makes the wq behave as a simple execution context
181         provider without concurrency management.  The unbound gcwq
182         tries to start execution of work items as soon as possible.
183         Unbound wq sacrifices locality but is useful for the following
184         cases.
186         * Wide fluctuation in the concurrency level requirement is
187           expected and using bound wq may end up creating large number
188           of mostly unused workers across different CPUs as the issuer
189           hops through different CPUs.
191         * Long running CPU intensive workloads which can be better
192           managed by the system scheduler.
194   WQ_FREEZABLE
196         A freezable wq participates in the freeze phase of the system
197         suspend operations.  Work items on the wq are drained and no
198         new work item starts execution until thawed.
200   WQ_MEM_RECLAIM
202         All wq which might be used in the memory reclaim paths _MUST_
203         have this flag set.  The wq is guaranteed to have at least one
204         execution context regardless of memory pressure.
206   WQ_HIGHPRI
208         Work items of a highpri wq are queued at the head of the
209         worklist of the target gcwq and start execution regardless of
210         the current concurrency level.  In other words, highpri work
211         items will always start execution as soon as execution
212         resource is available.
214         Ordering among highpri work items is preserved - a highpri
215         work item queued after another highpri work item will start
216         execution after the earlier highpri work item starts.
218         Although highpri work items are not held back by other
219         runnable work items, they still contribute to the concurrency
220         level.  Highpri work items in runnable state will prevent
221         non-highpri work items from starting execution.
223         This flag is meaningless for unbound wq.
225   WQ_CPU_INTENSIVE
227         Work items of a CPU intensive wq do not contribute to the
228         concurrency level.  In other words, runnable CPU intensive
229         work items will not prevent other work items from starting
230         execution.  This is useful for bound work items which are
231         expected to hog CPU cycles so that their execution is
232         regulated by the system scheduler.
234         Although CPU intensive work items don't contribute to the
235         concurrency level, start of their executions is still
236         regulated by the concurrency management and runnable
237         non-CPU-intensive work items can delay execution of CPU
238         intensive work items.
240         This flag is meaningless for unbound wq.
242   WQ_HIGHPRI | WQ_CPU_INTENSIVE
244         This combination makes the wq avoid interaction with
245         concurrency management completely and behave as a simple
246         per-CPU execution context provider.  Work items queued on a
247         highpri CPU-intensive wq start execution as soon as resources
248         are available and don't affect execution of other work items.
250 @max_active:
252 @max_active determines the maximum number of execution contexts per
253 CPU which can be assigned to the work items of a wq.  For example,
254 with @max_active of 16, at most 16 work items of the wq can be
255 executing at the same time per CPU.
257 Currently, for a bound wq, the maximum limit for @max_active is 512
258 and the default value used when 0 is specified is 256.  For an unbound
259 wq, the limit is higher of 512 and 4 * num_possible_cpus().  These
260 values are chosen sufficiently high such that they are not the
261 limiting factor while providing protection in runaway cases.
263 The number of active work items of a wq is usually regulated by the
264 users of the wq, more specifically, by how many work items the users
265 may queue at the same time.  Unless there is a specific need for
266 throttling the number of active work items, specifying '0' is
267 recommended.
269 Some users depend on the strict execution ordering of ST wq.  The
270 combination of @max_active of 1 and WQ_UNBOUND is used to achieve this
271 behavior.  Work items on such wq are always queued to the unbound gcwq
272 and only one work item can be active at any given time thus achieving
273 the same ordering property as ST wq.
276 5. Example Execution Scenarios
278 The following example execution scenarios try to illustrate how cmwq
279 behave under different configurations.
281  Work items w0, w1, w2 are queued to a bound wq q0 on the same CPU.
282  w0 burns CPU for 5ms then sleeps for 10ms then burns CPU for 5ms
283  again before finishing.  w1 and w2 burn CPU for 5ms then sleep for
284  10ms.
286 Ignoring all other tasks, works and processing overhead, and assuming
287 simple FIFO scheduling, the following is one highly simplified version
288 of possible sequences of events with the original wq.
290  TIME IN MSECS  EVENT
291  0              w0 starts and burns CPU
292  5              w0 sleeps
293  15             w0 wakes up and burns CPU
294  20             w0 finishes
295  20             w1 starts and burns CPU
296  25             w1 sleeps
297  35             w1 wakes up and finishes
298  35             w2 starts and burns CPU
299  40             w2 sleeps
300  50             w2 wakes up and finishes
302 And with cmwq with @max_active >= 3,
304  TIME IN MSECS  EVENT
305  0              w0 starts and burns CPU
306  5              w0 sleeps
307  5              w1 starts and burns CPU
308  10             w1 sleeps
309  10             w2 starts and burns CPU
310  15             w2 sleeps
311  15             w0 wakes up and burns CPU
312  20             w0 finishes
313  20             w1 wakes up and finishes
314  25             w2 wakes up and finishes
316 If @max_active == 2,
318  TIME IN MSECS  EVENT
319  0              w0 starts and burns CPU
320  5              w0 sleeps
321  5              w1 starts and burns CPU
322  10             w1 sleeps
323  15             w0 wakes up and burns CPU
324  20             w0 finishes
325  20             w1 wakes up and finishes
326  20             w2 starts and burns CPU
327  25             w2 sleeps
328  35             w2 wakes up and finishes
330 Now, let's assume w1 and w2 are queued to a different wq q1 which has
331 WQ_HIGHPRI set,
333  TIME IN MSECS  EVENT
334  0              w1 and w2 start and burn CPU
335  5              w1 sleeps
336  10             w2 sleeps
337  10             w0 starts and burns CPU
338  15             w0 sleeps
339  15             w1 wakes up and finishes
340  20             w2 wakes up and finishes
341  25             w0 wakes up and burns CPU
342  30             w0 finishes
344 If q1 has WQ_CPU_INTENSIVE set,
346  TIME IN MSECS  EVENT
347  0              w0 starts and burns CPU
348  5              w0 sleeps
349  5              w1 and w2 start and burn CPU
350  10             w1 sleeps
351  15             w2 sleeps
352  15             w0 wakes up and burns CPU
353  20             w0 finishes
354  20             w1 wakes up and finishes
355  25             w2 wakes up and finishes
358 6. Guidelines
360 * Do not forget to use WQ_MEM_RECLAIM if a wq may process work items
361   which are used during memory reclaim.  Each wq with WQ_MEM_RECLAIM
362   set has an execution context reserved for it.  If there is
363   dependency among multiple work items used during memory reclaim,
364   they should be queued to separate wq each with WQ_MEM_RECLAIM.
366 * Unless strict ordering is required, there is no need to use ST wq.
368 * Unless there is a specific need, using 0 for @max_active is
369   recommended.  In most use cases, concurrency level usually stays
370   well under the default limit.
372 * A wq serves as a domain for forward progress guarantee
373   (WQ_MEM_RECLAIM, flush and work item attributes.  Work items which
374   are not involved in memory reclaim and don't need to be flushed as a
375   part of a group of work items, and don't require any special
376   attribute, can use one of the system wq.  There is no difference in
377   execution characteristics between using a dedicated wq and a system
378   wq.
380 * Unless work items are expected to consume a huge amount of CPU
381   cycles, using a bound wq is usually beneficial due to the increased
382   level of locality in wq operations and work item execution.
385 7. Debugging
387 Because the work functions are executed by generic worker threads
388 there are a few tricks needed to shed some light on misbehaving
389 workqueue users.
391 Worker threads show up in the process list as:
393 root      5671  0.0  0.0      0     0 ?        S    12:07   0:00 [kworker/0:1]
394 root      5672  0.0  0.0      0     0 ?        S    12:07   0:00 [kworker/1:2]
395 root      5673  0.0  0.0      0     0 ?        S    12:12   0:00 [kworker/0:0]
396 root      5674  0.0  0.0      0     0 ?        S    12:13   0:00 [kworker/1:0]
398 If kworkers are going crazy (using too much cpu), there are two types
399 of possible problems:
401         1. Something beeing scheduled in rapid succession
402         2. A single work item that consumes lots of cpu cycles
404 The first one can be tracked using tracing:
406         $ echo workqueue:workqueue_queue_work > /sys/kernel/debug/tracing/set_event
407         $ cat /sys/kernel/debug/tracing/trace_pipe > out.txt
408         (wait a few secs)
409         ^C
411 If something is busy looping on work queueing, it would be dominating
412 the output and the offender can be determined with the work item
413 function.
415 For the second type of problems it should be possible to just check
416 the stack trace of the offending worker thread.
418         $ cat /proc/THE_OFFENDING_KWORKER/stack
420 The work item's function should be trivially visible in the stack
421 trace.