Merge branch 'akpm'
[linux-2.6/next.git] / arch / parisc / mm / init.c
blob82f364e209fc5a059f1be77fd5563e7c4a70c122
1 /*
2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
34 extern int data_start;
36 #ifdef CONFIG_DISCONTIGMEM
37 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
38 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
39 #endif
41 static struct resource data_resource = {
42 .name = "Kernel data",
43 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
46 static struct resource code_resource = {
47 .name = "Kernel code",
48 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
51 static struct resource pdcdata_resource = {
52 .name = "PDC data (Page Zero)",
53 .start = 0,
54 .end = 0x9ff,
55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
58 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
60 /* The following array is initialized from the firmware specific
61 * information retrieved in kernel/inventory.c.
64 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
65 int npmem_ranges __read_mostly;
67 #ifdef CONFIG_64BIT
68 #define MAX_MEM (~0UL)
69 #else /* !CONFIG_64BIT */
70 #define MAX_MEM (3584U*1024U*1024U)
71 #endif /* !CONFIG_64BIT */
73 static unsigned long mem_limit __read_mostly = MAX_MEM;
75 static void __init mem_limit_func(void)
77 char *cp, *end;
78 unsigned long limit;
80 /* We need this before __setup() functions are called */
82 limit = MAX_MEM;
83 for (cp = boot_command_line; *cp; ) {
84 if (memcmp(cp, "mem=", 4) == 0) {
85 cp += 4;
86 limit = memparse(cp, &end);
87 if (end != cp)
88 break;
89 cp = end;
90 } else {
91 while (*cp != ' ' && *cp)
92 ++cp;
93 while (*cp == ' ')
94 ++cp;
98 if (limit < mem_limit)
99 mem_limit = limit;
102 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
104 static void __init setup_bootmem(void)
106 unsigned long bootmap_size;
107 unsigned long mem_max;
108 unsigned long bootmap_pages;
109 unsigned long bootmap_start_pfn;
110 unsigned long bootmap_pfn;
111 #ifndef CONFIG_DISCONTIGMEM
112 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
113 int npmem_holes;
114 #endif
115 int i, sysram_resource_count;
117 disable_sr_hashing(); /* Turn off space register hashing */
120 * Sort the ranges. Since the number of ranges is typically
121 * small, and performance is not an issue here, just do
122 * a simple insertion sort.
125 for (i = 1; i < npmem_ranges; i++) {
126 int j;
128 for (j = i; j > 0; j--) {
129 unsigned long tmp;
131 if (pmem_ranges[j-1].start_pfn <
132 pmem_ranges[j].start_pfn) {
134 break;
136 tmp = pmem_ranges[j-1].start_pfn;
137 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
138 pmem_ranges[j].start_pfn = tmp;
139 tmp = pmem_ranges[j-1].pages;
140 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
141 pmem_ranges[j].pages = tmp;
145 #ifndef CONFIG_DISCONTIGMEM
147 * Throw out ranges that are too far apart (controlled by
148 * MAX_GAP).
151 for (i = 1; i < npmem_ranges; i++) {
152 if (pmem_ranges[i].start_pfn -
153 (pmem_ranges[i-1].start_pfn +
154 pmem_ranges[i-1].pages) > MAX_GAP) {
155 npmem_ranges = i;
156 printk("Large gap in memory detected (%ld pages). "
157 "Consider turning on CONFIG_DISCONTIGMEM\n",
158 pmem_ranges[i].start_pfn -
159 (pmem_ranges[i-1].start_pfn +
160 pmem_ranges[i-1].pages));
161 break;
164 #endif
166 if (npmem_ranges > 1) {
168 /* Print the memory ranges */
170 printk(KERN_INFO "Memory Ranges:\n");
172 for (i = 0; i < npmem_ranges; i++) {
173 unsigned long start;
174 unsigned long size;
176 size = (pmem_ranges[i].pages << PAGE_SHIFT);
177 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
178 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
179 i,start, start + (size - 1), size >> 20);
183 sysram_resource_count = npmem_ranges;
184 for (i = 0; i < sysram_resource_count; i++) {
185 struct resource *res = &sysram_resources[i];
186 res->name = "System RAM";
187 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
188 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
189 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
190 request_resource(&iomem_resource, res);
194 * For 32 bit kernels we limit the amount of memory we can
195 * support, in order to preserve enough kernel address space
196 * for other purposes. For 64 bit kernels we don't normally
197 * limit the memory, but this mechanism can be used to
198 * artificially limit the amount of memory (and it is written
199 * to work with multiple memory ranges).
202 mem_limit_func(); /* check for "mem=" argument */
204 mem_max = 0;
205 num_physpages = 0;
206 for (i = 0; i < npmem_ranges; i++) {
207 unsigned long rsize;
209 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
210 if ((mem_max + rsize) > mem_limit) {
211 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
212 if (mem_max == mem_limit)
213 npmem_ranges = i;
214 else {
215 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
216 - (mem_max >> PAGE_SHIFT);
217 npmem_ranges = i + 1;
218 mem_max = mem_limit;
220 num_physpages += pmem_ranges[i].pages;
221 break;
223 num_physpages += pmem_ranges[i].pages;
224 mem_max += rsize;
227 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
229 #ifndef CONFIG_DISCONTIGMEM
230 /* Merge the ranges, keeping track of the holes */
233 unsigned long end_pfn;
234 unsigned long hole_pages;
236 npmem_holes = 0;
237 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
238 for (i = 1; i < npmem_ranges; i++) {
240 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
241 if (hole_pages) {
242 pmem_holes[npmem_holes].start_pfn = end_pfn;
243 pmem_holes[npmem_holes++].pages = hole_pages;
244 end_pfn += hole_pages;
246 end_pfn += pmem_ranges[i].pages;
249 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
250 npmem_ranges = 1;
252 #endif
254 bootmap_pages = 0;
255 for (i = 0; i < npmem_ranges; i++)
256 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
258 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
260 #ifdef CONFIG_DISCONTIGMEM
261 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
262 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
263 NODE_DATA(i)->bdata = &bootmem_node_data[i];
265 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
267 for (i = 0; i < npmem_ranges; i++) {
268 node_set_state(i, N_NORMAL_MEMORY);
269 node_set_online(i);
271 #endif
274 * Initialize and free the full range of memory in each range.
275 * Note that the only writing these routines do are to the bootmap,
276 * and we've made sure to locate the bootmap properly so that they
277 * won't be writing over anything important.
280 bootmap_pfn = bootmap_start_pfn;
281 max_pfn = 0;
282 for (i = 0; i < npmem_ranges; i++) {
283 unsigned long start_pfn;
284 unsigned long npages;
286 start_pfn = pmem_ranges[i].start_pfn;
287 npages = pmem_ranges[i].pages;
289 bootmap_size = init_bootmem_node(NODE_DATA(i),
290 bootmap_pfn,
291 start_pfn,
292 (start_pfn + npages) );
293 free_bootmem_node(NODE_DATA(i),
294 (start_pfn << PAGE_SHIFT),
295 (npages << PAGE_SHIFT) );
296 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297 if ((start_pfn + npages) > max_pfn)
298 max_pfn = start_pfn + npages;
301 /* IOMMU is always used to access "high mem" on those boxes
302 * that can support enough mem that a PCI device couldn't
303 * directly DMA to any physical addresses.
304 * ISA DMA support will need to revisit this.
306 max_low_pfn = max_pfn;
308 /* bootmap sizing messed up? */
309 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
311 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
313 #define PDC_CONSOLE_IO_IODC_SIZE 32768
315 reserve_bootmem_node(NODE_DATA(0), 0UL,
316 (unsigned long)(PAGE0->mem_free +
317 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
318 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
319 (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
320 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
321 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
322 BOOTMEM_DEFAULT);
324 #ifndef CONFIG_DISCONTIGMEM
326 /* reserve the holes */
328 for (i = 0; i < npmem_holes; i++) {
329 reserve_bootmem_node(NODE_DATA(0),
330 (pmem_holes[i].start_pfn << PAGE_SHIFT),
331 (pmem_holes[i].pages << PAGE_SHIFT),
332 BOOTMEM_DEFAULT);
334 #endif
336 #ifdef CONFIG_BLK_DEV_INITRD
337 if (initrd_start) {
338 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
339 if (__pa(initrd_start) < mem_max) {
340 unsigned long initrd_reserve;
342 if (__pa(initrd_end) > mem_max) {
343 initrd_reserve = mem_max - __pa(initrd_start);
344 } else {
345 initrd_reserve = initrd_end - initrd_start;
347 initrd_below_start_ok = 1;
348 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
350 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
351 initrd_reserve, BOOTMEM_DEFAULT);
354 #endif
356 data_resource.start = virt_to_phys(&data_start);
357 data_resource.end = virt_to_phys(_end) - 1;
358 code_resource.start = virt_to_phys(_text);
359 code_resource.end = virt_to_phys(&data_start)-1;
361 /* We don't know which region the kernel will be in, so try
362 * all of them.
364 for (i = 0; i < sysram_resource_count; i++) {
365 struct resource *res = &sysram_resources[i];
366 request_resource(res, &code_resource);
367 request_resource(res, &data_resource);
369 request_resource(&sysram_resources[0], &pdcdata_resource);
372 static void __init map_pages(unsigned long start_vaddr,
373 unsigned long start_paddr, unsigned long size,
374 pgprot_t pgprot, int force)
376 pgd_t *pg_dir;
377 pmd_t *pmd;
378 pte_t *pg_table;
379 unsigned long end_paddr;
380 unsigned long start_pmd;
381 unsigned long start_pte;
382 unsigned long tmp1;
383 unsigned long tmp2;
384 unsigned long address;
385 unsigned long vaddr;
386 unsigned long ro_start;
387 unsigned long ro_end;
388 unsigned long fv_addr;
389 unsigned long gw_addr;
390 extern const unsigned long fault_vector_20;
391 extern void * const linux_gateway_page;
393 ro_start = __pa((unsigned long)_text);
394 ro_end = __pa((unsigned long)&data_start);
395 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
396 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
398 end_paddr = start_paddr + size;
400 pg_dir = pgd_offset_k(start_vaddr);
402 #if PTRS_PER_PMD == 1
403 start_pmd = 0;
404 #else
405 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
406 #endif
407 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
409 address = start_paddr;
410 vaddr = start_vaddr;
411 while (address < end_paddr) {
412 #if PTRS_PER_PMD == 1
413 pmd = (pmd_t *)__pa(pg_dir);
414 #else
415 pmd = (pmd_t *)pgd_address(*pg_dir);
418 * pmd is physical at this point
421 if (!pmd) {
422 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
423 pmd = (pmd_t *) __pa(pmd);
426 pgd_populate(NULL, pg_dir, __va(pmd));
427 #endif
428 pg_dir++;
430 /* now change pmd to kernel virtual addresses */
432 pmd = (pmd_t *)__va(pmd) + start_pmd;
433 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
436 * pg_table is physical at this point
439 pg_table = (pte_t *)pmd_address(*pmd);
440 if (!pg_table) {
441 pg_table = (pte_t *)
442 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
443 pg_table = (pte_t *) __pa(pg_table);
446 pmd_populate_kernel(NULL, pmd, __va(pg_table));
448 /* now change pg_table to kernel virtual addresses */
450 pg_table = (pte_t *) __va(pg_table) + start_pte;
451 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
452 pte_t pte;
455 * Map the fault vector writable so we can
456 * write the HPMC checksum.
458 if (force)
459 pte = __mk_pte(address, pgprot);
460 else if (core_kernel_text(vaddr) &&
461 address != fv_addr)
462 pte = __mk_pte(address, PAGE_KERNEL_EXEC);
463 else
464 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
465 if (address >= ro_start && address < ro_end
466 && address != fv_addr
467 && address != gw_addr)
468 pte = __mk_pte(address, PAGE_KERNEL_RO);
469 else
470 #endif
471 pte = __mk_pte(address, pgprot);
473 if (address >= end_paddr) {
474 if (force)
475 break;
476 else
477 pte_val(pte) = 0;
480 set_pte(pg_table, pte);
482 address += PAGE_SIZE;
483 vaddr += PAGE_SIZE;
485 start_pte = 0;
487 if (address >= end_paddr)
488 break;
490 start_pmd = 0;
494 void free_initmem(void)
496 unsigned long addr;
497 unsigned long init_begin = (unsigned long)__init_begin;
498 unsigned long init_end = (unsigned long)__init_end;
500 /* The init text pages are marked R-X. We have to
501 * flush the icache and mark them RW-
503 * This is tricky, because map_pages is in the init section.
504 * Do a dummy remap of the data section first (the data
505 * section is already PAGE_KERNEL) to pull in the TLB entries
506 * for map_kernel */
507 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
508 PAGE_KERNEL_RWX, 1);
509 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
510 * map_pages */
511 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
512 PAGE_KERNEL, 1);
514 /* force the kernel to see the new TLB entries */
515 __flush_tlb_range(0, init_begin, init_end);
516 /* Attempt to catch anyone trying to execute code here
517 * by filling the page with BRK insns.
519 memset((void *)init_begin, 0x00, init_end - init_begin);
520 /* finally dump all the instructions which were cached, since the
521 * pages are no-longer executable */
522 flush_icache_range(init_begin, init_end);
524 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
525 ClearPageReserved(virt_to_page(addr));
526 init_page_count(virt_to_page(addr));
527 free_page(addr);
528 num_physpages++;
529 totalram_pages++;
532 /* set up a new led state on systems shipped LED State panel */
533 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
535 printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
536 (init_end - init_begin) >> 10);
540 #ifdef CONFIG_DEBUG_RODATA
541 void mark_rodata_ro(void)
543 /* rodata memory was already mapped with KERNEL_RO access rights by
544 pagetable_init() and map_pages(). No need to do additional stuff here */
545 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
546 (unsigned long)(__end_rodata - __start_rodata) >> 10);
548 #endif
552 * Just an arbitrary offset to serve as a "hole" between mapping areas
553 * (between top of physical memory and a potential pcxl dma mapping
554 * area, and below the vmalloc mapping area).
556 * The current 32K value just means that there will be a 32K "hole"
557 * between mapping areas. That means that any out-of-bounds memory
558 * accesses will hopefully be caught. The vmalloc() routines leaves
559 * a hole of 4kB between each vmalloced area for the same reason.
562 /* Leave room for gateway page expansion */
563 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
564 #error KERNEL_MAP_START is in gateway reserved region
565 #endif
566 #define MAP_START (KERNEL_MAP_START)
568 #define VM_MAP_OFFSET (32*1024)
569 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
570 & ~(VM_MAP_OFFSET-1)))
572 void *parisc_vmalloc_start __read_mostly;
573 EXPORT_SYMBOL(parisc_vmalloc_start);
575 #ifdef CONFIG_PA11
576 unsigned long pcxl_dma_start __read_mostly;
577 #endif
579 void __init mem_init(void)
581 int codesize, reservedpages, datasize, initsize;
583 /* Do sanity checks on page table constants */
584 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
585 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
586 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
587 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
588 > BITS_PER_LONG);
590 high_memory = __va((max_pfn << PAGE_SHIFT));
592 #ifndef CONFIG_DISCONTIGMEM
593 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
594 totalram_pages += free_all_bootmem();
595 #else
597 int i;
599 for (i = 0; i < npmem_ranges; i++)
600 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
602 #endif
604 codesize = (unsigned long)_etext - (unsigned long)_text;
605 datasize = (unsigned long)_edata - (unsigned long)_etext;
606 initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
608 reservedpages = 0;
610 unsigned long pfn;
611 #ifdef CONFIG_DISCONTIGMEM
612 int i;
614 for (i = 0; i < npmem_ranges; i++) {
615 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
616 if (PageReserved(pfn_to_page(pfn)))
617 reservedpages++;
620 #else /* !CONFIG_DISCONTIGMEM */
621 for (pfn = 0; pfn < max_pfn; pfn++) {
623 * Only count reserved RAM pages
625 if (PageReserved(pfn_to_page(pfn)))
626 reservedpages++;
628 #endif
631 #ifdef CONFIG_PA11
632 if (hppa_dma_ops == &pcxl_dma_ops) {
633 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
634 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
635 + PCXL_DMA_MAP_SIZE);
636 } else {
637 pcxl_dma_start = 0;
638 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
640 #else
641 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
642 #endif
644 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
645 nr_free_pages() << (PAGE_SHIFT-10),
646 num_physpages << (PAGE_SHIFT-10),
647 codesize >> 10,
648 reservedpages << (PAGE_SHIFT-10),
649 datasize >> 10,
650 initsize >> 10
653 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
654 printk("virtual kernel memory layout:\n"
655 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
656 " memory : 0x%p - 0x%p (%4ld MB)\n"
657 " .init : 0x%p - 0x%p (%4ld kB)\n"
658 " .data : 0x%p - 0x%p (%4ld kB)\n"
659 " .text : 0x%p - 0x%p (%4ld kB)\n",
661 (void*)VMALLOC_START, (void*)VMALLOC_END,
662 (VMALLOC_END - VMALLOC_START) >> 20,
664 __va(0), high_memory,
665 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
667 __init_begin, __init_end,
668 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
670 _etext, _edata,
671 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
673 _text, _etext,
674 ((unsigned long)_etext - (unsigned long)_text) >> 10);
675 #endif
678 unsigned long *empty_zero_page __read_mostly;
679 EXPORT_SYMBOL(empty_zero_page);
681 void show_mem(unsigned int filter)
683 int i,free = 0,total = 0,reserved = 0;
684 int shared = 0, cached = 0;
686 printk(KERN_INFO "Mem-info:\n");
687 show_free_areas(filter);
688 #ifndef CONFIG_DISCONTIGMEM
689 i = max_mapnr;
690 while (i-- > 0) {
691 total++;
692 if (PageReserved(mem_map+i))
693 reserved++;
694 else if (PageSwapCache(mem_map+i))
695 cached++;
696 else if (!page_count(&mem_map[i]))
697 free++;
698 else
699 shared += page_count(&mem_map[i]) - 1;
701 #else
702 for (i = 0; i < npmem_ranges; i++) {
703 int j;
705 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
706 struct page *p;
707 unsigned long flags;
709 pgdat_resize_lock(NODE_DATA(i), &flags);
710 p = nid_page_nr(i, j) - node_start_pfn(i);
712 total++;
713 if (PageReserved(p))
714 reserved++;
715 else if (PageSwapCache(p))
716 cached++;
717 else if (!page_count(p))
718 free++;
719 else
720 shared += page_count(p) - 1;
721 pgdat_resize_unlock(NODE_DATA(i), &flags);
724 #endif
725 printk(KERN_INFO "%d pages of RAM\n", total);
726 printk(KERN_INFO "%d reserved pages\n", reserved);
727 printk(KERN_INFO "%d pages shared\n", shared);
728 printk(KERN_INFO "%d pages swap cached\n", cached);
731 #ifdef CONFIG_DISCONTIGMEM
733 struct zonelist *zl;
734 int i, j;
736 for (i = 0; i < npmem_ranges; i++) {
737 zl = node_zonelist(i, 0);
738 for (j = 0; j < MAX_NR_ZONES; j++) {
739 struct zoneref *z;
740 struct zone *zone;
742 printk("Zone list for zone %d on node %d: ", j, i);
743 for_each_zone_zonelist(zone, z, zl, j)
744 printk("[%d/%s] ", zone_to_nid(zone),
745 zone->name);
746 printk("\n");
750 #endif
754 * pagetable_init() sets up the page tables
756 * Note that gateway_init() places the Linux gateway page at page 0.
757 * Since gateway pages cannot be dereferenced this has the desirable
758 * side effect of trapping those pesky NULL-reference errors in the
759 * kernel.
761 static void __init pagetable_init(void)
763 int range;
765 /* Map each physical memory range to its kernel vaddr */
767 for (range = 0; range < npmem_ranges; range++) {
768 unsigned long start_paddr;
769 unsigned long end_paddr;
770 unsigned long size;
772 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
773 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
774 size = pmem_ranges[range].pages << PAGE_SHIFT;
776 map_pages((unsigned long)__va(start_paddr), start_paddr,
777 size, PAGE_KERNEL, 0);
780 #ifdef CONFIG_BLK_DEV_INITRD
781 if (initrd_end && initrd_end > mem_limit) {
782 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
783 map_pages(initrd_start, __pa(initrd_start),
784 initrd_end - initrd_start, PAGE_KERNEL, 0);
786 #endif
788 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
789 memset(empty_zero_page, 0, PAGE_SIZE);
792 static void __init gateway_init(void)
794 unsigned long linux_gateway_page_addr;
795 /* FIXME: This is 'const' in order to trick the compiler
796 into not treating it as DP-relative data. */
797 extern void * const linux_gateway_page;
799 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
802 * Setup Linux Gateway page.
804 * The Linux gateway page will reside in kernel space (on virtual
805 * page 0), so it doesn't need to be aliased into user space.
808 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
809 PAGE_SIZE, PAGE_GATEWAY, 1);
812 #ifdef CONFIG_HPUX
813 void
814 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
816 pgd_t *pg_dir;
817 pmd_t *pmd;
818 pte_t *pg_table;
819 unsigned long start_pmd;
820 unsigned long start_pte;
821 unsigned long address;
822 unsigned long hpux_gw_page_addr;
823 /* FIXME: This is 'const' in order to trick the compiler
824 into not treating it as DP-relative data. */
825 extern void * const hpux_gateway_page;
827 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
830 * Setup HP-UX Gateway page.
832 * The HP-UX gateway page resides in the user address space,
833 * so it needs to be aliased into each process.
836 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
838 #if PTRS_PER_PMD == 1
839 start_pmd = 0;
840 #else
841 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
842 #endif
843 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
845 address = __pa(&hpux_gateway_page);
846 #if PTRS_PER_PMD == 1
847 pmd = (pmd_t *)__pa(pg_dir);
848 #else
849 pmd = (pmd_t *) pgd_address(*pg_dir);
852 * pmd is physical at this point
855 if (!pmd) {
856 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
857 pmd = (pmd_t *) __pa(pmd);
860 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
861 #endif
862 /* now change pmd to kernel virtual addresses */
864 pmd = (pmd_t *)__va(pmd) + start_pmd;
867 * pg_table is physical at this point
870 pg_table = (pte_t *) pmd_address(*pmd);
871 if (!pg_table)
872 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
874 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
876 /* now change pg_table to kernel virtual addresses */
878 pg_table = (pte_t *) __va(pg_table) + start_pte;
879 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
881 EXPORT_SYMBOL(map_hpux_gateway_page);
882 #endif
884 void __init paging_init(void)
886 int i;
888 setup_bootmem();
889 pagetable_init();
890 gateway_init();
891 flush_cache_all_local(); /* start with known state */
892 flush_tlb_all_local(NULL);
894 for (i = 0; i < npmem_ranges; i++) {
895 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
897 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
899 #ifdef CONFIG_DISCONTIGMEM
900 /* Need to initialize the pfnnid_map before we can initialize
901 the zone */
903 int j;
904 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
905 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
906 j++) {
907 pfnnid_map[j] = i;
910 #endif
912 free_area_init_node(i, zones_size,
913 pmem_ranges[i].start_pfn, NULL);
917 #ifdef CONFIG_PA20
920 * Currently, all PA20 chips have 18 bit protection IDs, which is the
921 * limiting factor (space ids are 32 bits).
924 #define NR_SPACE_IDS 262144
926 #else
929 * Currently we have a one-to-one relationship between space IDs and
930 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
931 * support 15 bit protection IDs, so that is the limiting factor.
932 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
933 * probably not worth the effort for a special case here.
936 #define NR_SPACE_IDS 32768
938 #endif /* !CONFIG_PA20 */
940 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
941 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
943 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
944 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
945 static unsigned long space_id_index;
946 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
947 static unsigned long dirty_space_ids = 0;
949 static DEFINE_SPINLOCK(sid_lock);
951 unsigned long alloc_sid(void)
953 unsigned long index;
955 spin_lock(&sid_lock);
957 if (free_space_ids == 0) {
958 if (dirty_space_ids != 0) {
959 spin_unlock(&sid_lock);
960 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
961 spin_lock(&sid_lock);
963 BUG_ON(free_space_ids == 0);
966 free_space_ids--;
968 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
969 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
970 space_id_index = index;
972 spin_unlock(&sid_lock);
974 return index << SPACEID_SHIFT;
977 void free_sid(unsigned long spaceid)
979 unsigned long index = spaceid >> SPACEID_SHIFT;
980 unsigned long *dirty_space_offset;
982 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
983 index &= (BITS_PER_LONG - 1);
985 spin_lock(&sid_lock);
987 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
989 *dirty_space_offset |= (1L << index);
990 dirty_space_ids++;
992 spin_unlock(&sid_lock);
996 #ifdef CONFIG_SMP
997 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
999 int i;
1001 /* NOTE: sid_lock must be held upon entry */
1003 *ndirtyptr = dirty_space_ids;
1004 if (dirty_space_ids != 0) {
1005 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1006 dirty_array[i] = dirty_space_id[i];
1007 dirty_space_id[i] = 0;
1009 dirty_space_ids = 0;
1012 return;
1015 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1017 int i;
1019 /* NOTE: sid_lock must be held upon entry */
1021 if (ndirty != 0) {
1022 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1023 space_id[i] ^= dirty_array[i];
1026 free_space_ids += ndirty;
1027 space_id_index = 0;
1031 #else /* CONFIG_SMP */
1033 static void recycle_sids(void)
1035 int i;
1037 /* NOTE: sid_lock must be held upon entry */
1039 if (dirty_space_ids != 0) {
1040 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1041 space_id[i] ^= dirty_space_id[i];
1042 dirty_space_id[i] = 0;
1045 free_space_ids += dirty_space_ids;
1046 dirty_space_ids = 0;
1047 space_id_index = 0;
1050 #endif
1053 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1054 * purged, we can safely reuse the space ids that were released but
1055 * not flushed from the tlb.
1058 #ifdef CONFIG_SMP
1060 static unsigned long recycle_ndirty;
1061 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1062 static unsigned int recycle_inuse;
1064 void flush_tlb_all(void)
1066 int do_recycle;
1068 do_recycle = 0;
1069 spin_lock(&sid_lock);
1070 if (dirty_space_ids > RECYCLE_THRESHOLD) {
1071 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1072 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1073 recycle_inuse++;
1074 do_recycle++;
1076 spin_unlock(&sid_lock);
1077 on_each_cpu(flush_tlb_all_local, NULL, 1);
1078 if (do_recycle) {
1079 spin_lock(&sid_lock);
1080 recycle_sids(recycle_ndirty,recycle_dirty_array);
1081 recycle_inuse = 0;
1082 spin_unlock(&sid_lock);
1085 #else
1086 void flush_tlb_all(void)
1088 spin_lock(&sid_lock);
1089 flush_tlb_all_local(NULL);
1090 recycle_sids();
1091 spin_unlock(&sid_lock);
1093 #endif
1095 #ifdef CONFIG_BLK_DEV_INITRD
1096 void free_initrd_mem(unsigned long start, unsigned long end)
1098 if (start >= end)
1099 return;
1100 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1101 for (; start < end; start += PAGE_SIZE) {
1102 ClearPageReserved(virt_to_page(start));
1103 init_page_count(virt_to_page(start));
1104 free_page(start);
1105 num_physpages++;
1106 totalram_pages++;
1109 #endif