Merge branch 'akpm'
[linux-2.6/next.git] / arch / powerpc / sysdev / cpm1.c
blob5d7d59a43c4c821e98cb3ac68dcbf447be37445a
1 /*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/slab.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/8xx_immap.h>
38 #include <asm/cpm1.h>
39 #include <asm/io.h>
40 #include <asm/tlbflush.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
45 #include <asm/fs_pd.h>
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
51 #define CPM_MAP_SIZE (0x4000)
53 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
57 static struct irq_host *cpm_pic_host;
59 static void cpm_mask_irq(struct irq_data *d)
61 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
63 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
66 static void cpm_unmask_irq(struct irq_data *d)
68 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
70 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
73 static void cpm_end_irq(struct irq_data *d)
75 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
77 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
80 static struct irq_chip cpm_pic = {
81 .name = "CPM PIC",
82 .irq_mask = cpm_mask_irq,
83 .irq_unmask = cpm_unmask_irq,
84 .irq_eoi = cpm_end_irq,
87 int cpm_get_irq(void)
89 int cpm_vec;
91 /* Get the vector by setting the ACK bit and then reading
92 * the register.
94 out_be16(&cpic_reg->cpic_civr, 1);
95 cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 cpm_vec >>= 11;
98 return irq_linear_revmap(cpm_pic_host, cpm_vec);
101 static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
102 irq_hw_number_t hw)
104 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
106 irq_set_status_flags(virq, IRQ_LEVEL);
107 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 return 0;
111 /* The CPM can generate the error interrupt when there is a race condition
112 * between generating and masking interrupts. All we have to do is ACK it
113 * and return. This is a no-op function so we don't need any special
114 * tests in the interrupt handler.
116 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
118 return IRQ_HANDLED;
121 static struct irqaction cpm_error_irqaction = {
122 .handler = cpm_error_interrupt,
123 .name = "error",
126 static struct irq_host_ops cpm_pic_host_ops = {
127 .map = cpm_pic_host_map,
130 unsigned int cpm_pic_init(void)
132 struct device_node *np = NULL;
133 struct resource res;
134 unsigned int sirq = NO_IRQ, hwirq, eirq;
135 int ret;
137 pr_debug("cpm_pic_init\n");
139 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
140 if (np == NULL)
141 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
142 if (np == NULL) {
143 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
144 return sirq;
147 ret = of_address_to_resource(np, 0, &res);
148 if (ret)
149 goto end;
151 cpic_reg = ioremap(res.start, resource_size(&res));
152 if (cpic_reg == NULL)
153 goto end;
155 sirq = irq_of_parse_and_map(np, 0);
156 if (sirq == NO_IRQ)
157 goto end;
159 /* Initialize the CPM interrupt controller. */
160 hwirq = (unsigned int)virq_to_hw(sirq);
161 out_be32(&cpic_reg->cpic_cicr,
162 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
163 ((hwirq/2) << 13) | CICR_HP_MASK);
165 out_be32(&cpic_reg->cpic_cimr, 0);
167 cpm_pic_host = irq_alloc_host(np, IRQ_HOST_MAP_LINEAR,
168 64, &cpm_pic_host_ops, 64);
169 if (cpm_pic_host == NULL) {
170 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
171 sirq = NO_IRQ;
172 goto end;
175 /* Install our own error handler. */
176 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
177 if (np == NULL)
178 np = of_find_node_by_type(NULL, "cpm");
179 if (np == NULL) {
180 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
181 goto end;
184 eirq = irq_of_parse_and_map(np, 0);
185 if (eirq == NO_IRQ)
186 goto end;
188 if (setup_irq(eirq, &cpm_error_irqaction))
189 printk(KERN_ERR "Could not allocate CPM error IRQ!");
191 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
193 end:
194 of_node_put(np);
195 return sirq;
198 void __init cpm_reset(void)
200 sysconf8xx_t __iomem *siu_conf;
202 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
203 if (!mpc8xx_immr) {
204 printk(KERN_CRIT "Could not map IMMR\n");
205 return;
208 cpmp = &mpc8xx_immr->im_cpm;
210 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
211 /* Perform a reset.
213 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
215 /* Wait for it.
217 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218 #endif
220 #ifdef CONFIG_UCODE_PATCH
221 cpm_load_patch(cpmp);
222 #endif
224 /* Set SDMA Bus Request priority 5.
225 * On 860T, this also enables FEC priority 6. I am not sure
226 * this is what we really want for some applications, but the
227 * manual recommends it.
228 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
230 siu_conf = immr_map(im_siu_conf);
231 out_be32(&siu_conf->sc_sdcr, 1);
232 immr_unmap(siu_conf);
234 cpm_muram_init();
237 static DEFINE_SPINLOCK(cmd_lock);
239 #define MAX_CR_CMD_LOOPS 10000
241 int cpm_command(u32 command, u8 opcode)
243 int i, ret;
244 unsigned long flags;
246 if (command & 0xffffff0f)
247 return -EINVAL;
249 spin_lock_irqsave(&cmd_lock, flags);
251 ret = 0;
252 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
253 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
254 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
255 goto out;
257 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
258 ret = -EIO;
259 out:
260 spin_unlock_irqrestore(&cmd_lock, flags);
261 return ret;
263 EXPORT_SYMBOL(cpm_command);
265 /* Set a baud rate generator. This needs lots of work. There are
266 * four BRGs, any of which can be wired to any channel.
267 * The internal baud rate clock is the system clock divided by 16.
268 * This assumes the baudrate is 16x oversampled by the uart.
270 #define BRG_INT_CLK (get_brgfreq())
271 #define BRG_UART_CLK (BRG_INT_CLK/16)
272 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
274 void
275 cpm_setbrg(uint brg, uint rate)
277 u32 __iomem *bp;
279 /* This is good enough to get SMCs running.....
281 bp = &cpmp->cp_brgc1;
282 bp += brg;
283 /* The BRG has a 12-bit counter. For really slow baud rates (or
284 * really fast processors), we may have to further divide by 16.
286 if (((BRG_UART_CLK / rate) - 1) < 4096)
287 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
288 else
289 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
290 CPM_BRG_EN | CPM_BRG_DIV16);
293 struct cpm_ioport16 {
294 __be16 dir, par, odr_sor, dat, intr;
295 __be16 res[3];
298 struct cpm_ioport32b {
299 __be32 dir, par, odr, dat;
302 struct cpm_ioport32e {
303 __be32 dir, par, sor, odr, dat;
306 static void cpm1_set_pin32(int port, int pin, int flags)
308 struct cpm_ioport32e __iomem *iop;
309 pin = 1 << (31 - pin);
311 if (port == CPM_PORTB)
312 iop = (struct cpm_ioport32e __iomem *)
313 &mpc8xx_immr->im_cpm.cp_pbdir;
314 else
315 iop = (struct cpm_ioport32e __iomem *)
316 &mpc8xx_immr->im_cpm.cp_pedir;
318 if (flags & CPM_PIN_OUTPUT)
319 setbits32(&iop->dir, pin);
320 else
321 clrbits32(&iop->dir, pin);
323 if (!(flags & CPM_PIN_GPIO))
324 setbits32(&iop->par, pin);
325 else
326 clrbits32(&iop->par, pin);
328 if (port == CPM_PORTB) {
329 if (flags & CPM_PIN_OPENDRAIN)
330 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
331 else
332 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
335 if (port == CPM_PORTE) {
336 if (flags & CPM_PIN_SECONDARY)
337 setbits32(&iop->sor, pin);
338 else
339 clrbits32(&iop->sor, pin);
341 if (flags & CPM_PIN_OPENDRAIN)
342 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
343 else
344 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
348 static void cpm1_set_pin16(int port, int pin, int flags)
350 struct cpm_ioport16 __iomem *iop =
351 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
353 pin = 1 << (15 - pin);
355 if (port != 0)
356 iop += port - 1;
358 if (flags & CPM_PIN_OUTPUT)
359 setbits16(&iop->dir, pin);
360 else
361 clrbits16(&iop->dir, pin);
363 if (!(flags & CPM_PIN_GPIO))
364 setbits16(&iop->par, pin);
365 else
366 clrbits16(&iop->par, pin);
368 if (port == CPM_PORTA) {
369 if (flags & CPM_PIN_OPENDRAIN)
370 setbits16(&iop->odr_sor, pin);
371 else
372 clrbits16(&iop->odr_sor, pin);
374 if (port == CPM_PORTC) {
375 if (flags & CPM_PIN_SECONDARY)
376 setbits16(&iop->odr_sor, pin);
377 else
378 clrbits16(&iop->odr_sor, pin);
382 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
384 if (port == CPM_PORTB || port == CPM_PORTE)
385 cpm1_set_pin32(port, pin, flags);
386 else
387 cpm1_set_pin16(port, pin, flags);
390 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
392 int shift;
393 int i, bits = 0;
394 u32 __iomem *reg;
395 u32 mask = 7;
397 u8 clk_map[][3] = {
398 {CPM_CLK_SCC1, CPM_BRG1, 0},
399 {CPM_CLK_SCC1, CPM_BRG2, 1},
400 {CPM_CLK_SCC1, CPM_BRG3, 2},
401 {CPM_CLK_SCC1, CPM_BRG4, 3},
402 {CPM_CLK_SCC1, CPM_CLK1, 4},
403 {CPM_CLK_SCC1, CPM_CLK2, 5},
404 {CPM_CLK_SCC1, CPM_CLK3, 6},
405 {CPM_CLK_SCC1, CPM_CLK4, 7},
407 {CPM_CLK_SCC2, CPM_BRG1, 0},
408 {CPM_CLK_SCC2, CPM_BRG2, 1},
409 {CPM_CLK_SCC2, CPM_BRG3, 2},
410 {CPM_CLK_SCC2, CPM_BRG4, 3},
411 {CPM_CLK_SCC2, CPM_CLK1, 4},
412 {CPM_CLK_SCC2, CPM_CLK2, 5},
413 {CPM_CLK_SCC2, CPM_CLK3, 6},
414 {CPM_CLK_SCC2, CPM_CLK4, 7},
416 {CPM_CLK_SCC3, CPM_BRG1, 0},
417 {CPM_CLK_SCC3, CPM_BRG2, 1},
418 {CPM_CLK_SCC3, CPM_BRG3, 2},
419 {CPM_CLK_SCC3, CPM_BRG4, 3},
420 {CPM_CLK_SCC3, CPM_CLK5, 4},
421 {CPM_CLK_SCC3, CPM_CLK6, 5},
422 {CPM_CLK_SCC3, CPM_CLK7, 6},
423 {CPM_CLK_SCC3, CPM_CLK8, 7},
425 {CPM_CLK_SCC4, CPM_BRG1, 0},
426 {CPM_CLK_SCC4, CPM_BRG2, 1},
427 {CPM_CLK_SCC4, CPM_BRG3, 2},
428 {CPM_CLK_SCC4, CPM_BRG4, 3},
429 {CPM_CLK_SCC4, CPM_CLK5, 4},
430 {CPM_CLK_SCC4, CPM_CLK6, 5},
431 {CPM_CLK_SCC4, CPM_CLK7, 6},
432 {CPM_CLK_SCC4, CPM_CLK8, 7},
434 {CPM_CLK_SMC1, CPM_BRG1, 0},
435 {CPM_CLK_SMC1, CPM_BRG2, 1},
436 {CPM_CLK_SMC1, CPM_BRG3, 2},
437 {CPM_CLK_SMC1, CPM_BRG4, 3},
438 {CPM_CLK_SMC1, CPM_CLK1, 4},
439 {CPM_CLK_SMC1, CPM_CLK2, 5},
440 {CPM_CLK_SMC1, CPM_CLK3, 6},
441 {CPM_CLK_SMC1, CPM_CLK4, 7},
443 {CPM_CLK_SMC2, CPM_BRG1, 0},
444 {CPM_CLK_SMC2, CPM_BRG2, 1},
445 {CPM_CLK_SMC2, CPM_BRG3, 2},
446 {CPM_CLK_SMC2, CPM_BRG4, 3},
447 {CPM_CLK_SMC2, CPM_CLK5, 4},
448 {CPM_CLK_SMC2, CPM_CLK6, 5},
449 {CPM_CLK_SMC2, CPM_CLK7, 6},
450 {CPM_CLK_SMC2, CPM_CLK8, 7},
453 switch (target) {
454 case CPM_CLK_SCC1:
455 reg = &mpc8xx_immr->im_cpm.cp_sicr;
456 shift = 0;
457 break;
459 case CPM_CLK_SCC2:
460 reg = &mpc8xx_immr->im_cpm.cp_sicr;
461 shift = 8;
462 break;
464 case CPM_CLK_SCC3:
465 reg = &mpc8xx_immr->im_cpm.cp_sicr;
466 shift = 16;
467 break;
469 case CPM_CLK_SCC4:
470 reg = &mpc8xx_immr->im_cpm.cp_sicr;
471 shift = 24;
472 break;
474 case CPM_CLK_SMC1:
475 reg = &mpc8xx_immr->im_cpm.cp_simode;
476 shift = 12;
477 break;
479 case CPM_CLK_SMC2:
480 reg = &mpc8xx_immr->im_cpm.cp_simode;
481 shift = 28;
482 break;
484 default:
485 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
486 return -EINVAL;
489 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
490 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
491 bits = clk_map[i][2];
492 break;
496 if (i == ARRAY_SIZE(clk_map)) {
497 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
498 return -EINVAL;
501 bits <<= shift;
502 mask <<= shift;
504 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
505 if (mode == CPM_CLK_RTX) {
506 bits |= bits << 3;
507 mask |= mask << 3;
508 } else if (mode == CPM_CLK_RX) {
509 bits <<= 3;
510 mask <<= 3;
514 out_be32(reg, (in_be32(reg) & ~mask) | bits);
516 return 0;
520 * GPIO LIB API implementation
522 #ifdef CONFIG_8xx_GPIO
524 struct cpm1_gpio16_chip {
525 struct of_mm_gpio_chip mm_gc;
526 spinlock_t lock;
528 /* shadowed data register to clear/set bits safely */
529 u16 cpdata;
532 static inline struct cpm1_gpio16_chip *
533 to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
535 return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
538 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
540 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
541 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
543 cpm1_gc->cpdata = in_be16(&iop->dat);
546 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
548 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
549 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
550 u16 pin_mask;
552 pin_mask = 1 << (15 - gpio);
554 return !!(in_be16(&iop->dat) & pin_mask);
557 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
558 int value)
560 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
561 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
563 if (value)
564 cpm1_gc->cpdata |= pin_mask;
565 else
566 cpm1_gc->cpdata &= ~pin_mask;
568 out_be16(&iop->dat, cpm1_gc->cpdata);
571 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
573 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
574 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
575 unsigned long flags;
576 u16 pin_mask = 1 << (15 - gpio);
578 spin_lock_irqsave(&cpm1_gc->lock, flags);
580 __cpm1_gpio16_set(mm_gc, pin_mask, value);
582 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
585 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
587 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
588 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
589 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
590 unsigned long flags;
591 u16 pin_mask = 1 << (15 - gpio);
593 spin_lock_irqsave(&cpm1_gc->lock, flags);
595 setbits16(&iop->dir, pin_mask);
596 __cpm1_gpio16_set(mm_gc, pin_mask, val);
598 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
600 return 0;
603 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
605 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
606 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
607 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
608 unsigned long flags;
609 u16 pin_mask = 1 << (15 - gpio);
611 spin_lock_irqsave(&cpm1_gc->lock, flags);
613 clrbits16(&iop->dir, pin_mask);
615 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
617 return 0;
620 int cpm1_gpiochip_add16(struct device_node *np)
622 struct cpm1_gpio16_chip *cpm1_gc;
623 struct of_mm_gpio_chip *mm_gc;
624 struct gpio_chip *gc;
626 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
627 if (!cpm1_gc)
628 return -ENOMEM;
630 spin_lock_init(&cpm1_gc->lock);
632 mm_gc = &cpm1_gc->mm_gc;
633 gc = &mm_gc->gc;
635 mm_gc->save_regs = cpm1_gpio16_save_regs;
636 gc->ngpio = 16;
637 gc->direction_input = cpm1_gpio16_dir_in;
638 gc->direction_output = cpm1_gpio16_dir_out;
639 gc->get = cpm1_gpio16_get;
640 gc->set = cpm1_gpio16_set;
642 return of_mm_gpiochip_add(np, mm_gc);
645 struct cpm1_gpio32_chip {
646 struct of_mm_gpio_chip mm_gc;
647 spinlock_t lock;
649 /* shadowed data register to clear/set bits safely */
650 u32 cpdata;
653 static inline struct cpm1_gpio32_chip *
654 to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
656 return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
659 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
661 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
662 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
664 cpm1_gc->cpdata = in_be32(&iop->dat);
667 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
669 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
670 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
671 u32 pin_mask;
673 pin_mask = 1 << (31 - gpio);
675 return !!(in_be32(&iop->dat) & pin_mask);
678 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
679 int value)
681 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
682 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
684 if (value)
685 cpm1_gc->cpdata |= pin_mask;
686 else
687 cpm1_gc->cpdata &= ~pin_mask;
689 out_be32(&iop->dat, cpm1_gc->cpdata);
692 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
694 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
695 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
696 unsigned long flags;
697 u32 pin_mask = 1 << (31 - gpio);
699 spin_lock_irqsave(&cpm1_gc->lock, flags);
701 __cpm1_gpio32_set(mm_gc, pin_mask, value);
703 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
706 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
708 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
709 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
710 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
711 unsigned long flags;
712 u32 pin_mask = 1 << (31 - gpio);
714 spin_lock_irqsave(&cpm1_gc->lock, flags);
716 setbits32(&iop->dir, pin_mask);
717 __cpm1_gpio32_set(mm_gc, pin_mask, val);
719 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
721 return 0;
724 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
726 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
727 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
728 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
729 unsigned long flags;
730 u32 pin_mask = 1 << (31 - gpio);
732 spin_lock_irqsave(&cpm1_gc->lock, flags);
734 clrbits32(&iop->dir, pin_mask);
736 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
738 return 0;
741 int cpm1_gpiochip_add32(struct device_node *np)
743 struct cpm1_gpio32_chip *cpm1_gc;
744 struct of_mm_gpio_chip *mm_gc;
745 struct gpio_chip *gc;
747 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
748 if (!cpm1_gc)
749 return -ENOMEM;
751 spin_lock_init(&cpm1_gc->lock);
753 mm_gc = &cpm1_gc->mm_gc;
754 gc = &mm_gc->gc;
756 mm_gc->save_regs = cpm1_gpio32_save_regs;
757 gc->ngpio = 32;
758 gc->direction_input = cpm1_gpio32_dir_in;
759 gc->direction_output = cpm1_gpio32_dir_out;
760 gc->get = cpm1_gpio32_get;
761 gc->set = cpm1_gpio32_set;
763 return of_mm_gpiochip_add(np, mm_gc);
766 static int cpm_init_par_io(void)
768 struct device_node *np;
770 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
771 cpm1_gpiochip_add16(np);
773 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
774 cpm1_gpiochip_add32(np);
776 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
777 cpm1_gpiochip_add16(np);
779 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
780 cpm1_gpiochip_add16(np);
782 /* Port E uses CPM2 layout */
783 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
784 cpm2_gpiochip_add32(np);
785 return 0;
787 arch_initcall(cpm_init_par_io);
789 #endif /* CONFIG_8xx_GPIO */