2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
29 #include <asm/stacktrace.h>
31 #include <asm/compat.h>
33 #include <asm/alternative.h>
37 #define wrmsrl(msr, val) \
39 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
40 (unsigned long)(val)); \
41 native_write_msr((msr), (u32)((u64)(val)), \
42 (u32)((u64)(val) >> 32)); \
48 * register -------------------------------
49 * | HT | no HT | HT | no HT |
50 *-----------------------------------------
51 * offcore | core | core | cpu | core |
52 * lbr_sel | core | core | cpu | core |
53 * ld_lat | cpu | core | cpu | core |
54 *-----------------------------------------
56 * Given that there is a small number of shared regs,
57 * we can pre-allocate their slot in the per-cpu
58 * per-core reg tables.
61 EXTRA_REG_NONE
= -1, /* not used */
63 EXTRA_REG_RSP_0
= 0, /* offcore_response_0 */
64 EXTRA_REG_RSP_1
= 1, /* offcore_response_1 */
66 EXTRA_REG_MAX
/* number of entries needed */
69 struct event_constraint
{
71 unsigned long idxmsk
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
80 int nb_id
; /* NorthBridge id */
81 int refcnt
; /* reference count */
82 struct perf_event
*owners
[X86_PMC_IDX_MAX
];
83 struct event_constraint event_constraints
[X86_PMC_IDX_MAX
];
88 #define MAX_LBR_ENTRIES 16
90 struct cpu_hw_events
{
92 * Generic x86 PMC bits
94 struct perf_event
*events
[X86_PMC_IDX_MAX
]; /* in counter order */
95 unsigned long active_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
96 unsigned long running
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
102 int assign
[X86_PMC_IDX_MAX
]; /* event to counter assignment */
103 u64 tags
[X86_PMC_IDX_MAX
];
104 struct perf_event
*event_list
[X86_PMC_IDX_MAX
]; /* in enabled order */
106 unsigned int group_flag
;
109 * Intel DebugStore bits
111 struct debug_store
*ds
;
119 struct perf_branch_stack lbr_stack
;
120 struct perf_branch_entry lbr_entries
[MAX_LBR_ENTRIES
];
123 * manage shared (per-core, per-cpu) registers
124 * used on Intel NHM/WSM/SNB
126 struct intel_shared_regs
*shared_regs
;
131 struct amd_nb
*amd_nb
;
134 #define __EVENT_CONSTRAINT(c, n, m, w) {\
135 { .idxmsk64 = (n) }, \
141 #define EVENT_CONSTRAINT(c, n, m) \
142 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
145 * Constraint on the Event code.
147 #define INTEL_EVENT_CONSTRAINT(c, n) \
148 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
151 * Constraint on the Event code + UMask + fixed-mask
153 * filter mask to validate fixed counter events.
154 * the following filters disqualify for fixed counters:
158 * The other filters are supported by fixed counters.
159 * The any-thread option is supported starting with v3.
161 #define FIXED_EVENT_CONSTRAINT(c, n) \
162 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
165 * Constraint on the Event code + UMask
167 #define INTEL_UEVENT_CONSTRAINT(c, n) \
168 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
170 #define EVENT_CONSTRAINT_END \
171 EVENT_CONSTRAINT(0, 0, 0)
173 #define for_each_event_constraint(e, c) \
174 for ((e) = (c); (e)->weight; (e)++)
177 * Per register state.
180 raw_spinlock_t lock
; /* per-core: protect structure */
181 u64 config
; /* extra MSR config */
182 u64 reg
; /* extra MSR number */
183 atomic_t ref
; /* reference count */
187 * Extra registers for specific events.
189 * Some events need large masks and require external MSRs.
190 * Those extra MSRs end up being shared for all events on
191 * a PMU and sometimes between PMU of sibling HT threads.
192 * In either case, the kernel needs to handle conflicting
193 * accesses to those extra, shared, regs. The data structure
194 * to manage those registers is stored in cpu_hw_event.
201 int idx
; /* per_xxx->regs[] reg index */
204 #define EVENT_EXTRA_REG(e, ms, m, vm, i) { \
207 .config_mask = (m), \
208 .valid_mask = (vm), \
209 .idx = EXTRA_REG_##i \
212 #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx) \
213 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx)
215 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0)
217 union perf_capabilities
{
221 u64 pebs_arch_reg
: 1;
229 * struct x86_pmu - generic x86 pmu
233 * Generic x86 PMC bits
237 int (*handle_irq
)(struct pt_regs
*);
238 void (*disable_all
)(void);
239 void (*enable_all
)(int added
);
240 void (*enable
)(struct perf_event
*);
241 void (*disable
)(struct perf_event
*);
242 int (*hw_config
)(struct perf_event
*event
);
243 int (*schedule_events
)(struct cpu_hw_events
*cpuc
, int n
, int *assign
);
246 u64 (*event_map
)(int);
249 int num_counters_fixed
;
254 struct event_constraint
*
255 (*get_event_constraints
)(struct cpu_hw_events
*cpuc
,
256 struct perf_event
*event
);
258 void (*put_event_constraints
)(struct cpu_hw_events
*cpuc
,
259 struct perf_event
*event
);
260 struct event_constraint
*event_constraints
;
261 void (*quirks
)(void);
262 int perfctr_second_write
;
264 int (*cpu_prepare
)(int cpu
);
265 void (*cpu_starting
)(int cpu
);
266 void (*cpu_dying
)(int cpu
);
267 void (*cpu_dead
)(int cpu
);
270 * Intel Arch Perfmon v2+
273 union perf_capabilities intel_cap
;
276 * Intel DebugStore bits
279 int bts_active
, pebs_active
;
280 int pebs_record_size
;
281 void (*drain_pebs
)(struct pt_regs
*regs
);
282 struct event_constraint
*pebs_constraints
;
287 unsigned long lbr_tos
, lbr_from
, lbr_to
; /* MSR base regs */
288 int lbr_nr
; /* hardware stack size */
291 * Extra registers for events
293 struct extra_reg
*extra_regs
;
294 unsigned int er_flags
;
297 #define ERF_NO_HT_SHARING 1
298 #define ERF_HAS_RSP_1 2
300 static struct x86_pmu x86_pmu __read_mostly
;
302 static DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
306 static int x86_perf_event_set_period(struct perf_event
*event
);
309 * Generalized hw caching related hw_event table, filled
310 * in on a per model basis. A value of 0 means
311 * 'not supported', -1 means 'hw_event makes no sense on
312 * this CPU', any other value means the raw hw_event
316 #define C(x) PERF_COUNT_HW_CACHE_##x
318 static u64 __read_mostly hw_cache_event_ids
319 [PERF_COUNT_HW_CACHE_MAX
]
320 [PERF_COUNT_HW_CACHE_OP_MAX
]
321 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
322 static u64 __read_mostly hw_cache_extra_regs
323 [PERF_COUNT_HW_CACHE_MAX
]
324 [PERF_COUNT_HW_CACHE_OP_MAX
]
325 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
328 * Propagate event elapsed time into the generic event.
329 * Can only be executed on the CPU where the event is active.
330 * Returns the delta events processed.
333 x86_perf_event_update(struct perf_event
*event
)
335 struct hw_perf_event
*hwc
= &event
->hw
;
336 int shift
= 64 - x86_pmu
.cntval_bits
;
337 u64 prev_raw_count
, new_raw_count
;
341 if (idx
== X86_PMC_IDX_FIXED_BTS
)
345 * Careful: an NMI might modify the previous event value.
347 * Our tactic to handle this is to first atomically read and
348 * exchange a new raw count - then add that new-prev delta
349 * count to the generic event atomically:
352 prev_raw_count
= local64_read(&hwc
->prev_count
);
353 rdmsrl(hwc
->event_base
, new_raw_count
);
355 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
356 new_raw_count
) != prev_raw_count
)
360 * Now we have the new raw value and have updated the prev
361 * timestamp already. We can now calculate the elapsed delta
362 * (event-)time and add that to the generic event.
364 * Careful, not all hw sign-extends above the physical width
367 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
370 local64_add(delta
, &event
->count
);
371 local64_sub(delta
, &hwc
->period_left
);
373 return new_raw_count
;
376 static inline int x86_pmu_addr_offset(int index
)
380 /* offset = X86_FEATURE_PERFCTR_CORE ? index << 1 : index */
381 alternative_io(ASM_NOP2
,
383 X86_FEATURE_PERFCTR_CORE
,
390 static inline unsigned int x86_pmu_config_addr(int index
)
392 return x86_pmu
.eventsel
+ x86_pmu_addr_offset(index
);
395 static inline unsigned int x86_pmu_event_addr(int index
)
397 return x86_pmu
.perfctr
+ x86_pmu_addr_offset(index
);
401 * Find and validate any extra registers to set up.
403 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
405 struct hw_perf_event_extra
*reg
;
406 struct extra_reg
*er
;
408 reg
= &event
->hw
.extra_reg
;
410 if (!x86_pmu
.extra_regs
)
413 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
414 if (er
->event
!= (config
& er
->config_mask
))
416 if (event
->attr
.config1
& ~er
->valid_mask
)
420 reg
->config
= event
->attr
.config1
;
427 static atomic_t active_events
;
428 static DEFINE_MUTEX(pmc_reserve_mutex
);
430 #ifdef CONFIG_X86_LOCAL_APIC
432 static bool reserve_pmc_hardware(void)
436 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
437 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
441 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
442 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
449 for (i
--; i
>= 0; i
--)
450 release_evntsel_nmi(x86_pmu_config_addr(i
));
452 i
= x86_pmu
.num_counters
;
455 for (i
--; i
>= 0; i
--)
456 release_perfctr_nmi(x86_pmu_event_addr(i
));
461 static void release_pmc_hardware(void)
465 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
466 release_perfctr_nmi(x86_pmu_event_addr(i
));
467 release_evntsel_nmi(x86_pmu_config_addr(i
));
473 static bool reserve_pmc_hardware(void) { return true; }
474 static void release_pmc_hardware(void) {}
478 static bool check_hw_exists(void)
480 u64 val
, val_new
= 0;
484 * Check to see if the BIOS enabled any of the counters, if so
487 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
488 reg
= x86_pmu_config_addr(i
);
489 ret
= rdmsrl_safe(reg
, &val
);
492 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
)
496 if (x86_pmu
.num_counters_fixed
) {
497 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
498 ret
= rdmsrl_safe(reg
, &val
);
501 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
502 if (val
& (0x03 << i
*4))
508 * Now write a value and read it back to see if it matches,
509 * this is needed to detect certain hardware emulators (qemu/kvm)
510 * that don't trap on the MSR access and always return 0s.
513 ret
= checking_wrmsrl(x86_pmu_event_addr(0), val
);
514 ret
|= rdmsrl_safe(x86_pmu_event_addr(0), &val_new
);
515 if (ret
|| val
!= val_new
)
522 * We still allow the PMU driver to operate:
524 printk(KERN_CONT
"Broken BIOS detected, complain to your hardware vendor.\n");
525 printk(KERN_ERR FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg
, val
);
530 printk(KERN_CONT
"Broken PMU hardware detected, using software events only.\n");
535 static void reserve_ds_buffers(void);
536 static void release_ds_buffers(void);
538 static void hw_perf_event_destroy(struct perf_event
*event
)
540 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_reserve_mutex
)) {
541 release_pmc_hardware();
542 release_ds_buffers();
543 mutex_unlock(&pmc_reserve_mutex
);
547 static inline int x86_pmu_initialized(void)
549 return x86_pmu
.handle_irq
!= NULL
;
553 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
555 struct perf_event_attr
*attr
= &event
->attr
;
556 unsigned int cache_type
, cache_op
, cache_result
;
559 config
= attr
->config
;
561 cache_type
= (config
>> 0) & 0xff;
562 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
565 cache_op
= (config
>> 8) & 0xff;
566 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
569 cache_result
= (config
>> 16) & 0xff;
570 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
573 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
582 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
583 return x86_pmu_extra_regs(val
, event
);
586 static int x86_setup_perfctr(struct perf_event
*event
)
588 struct perf_event_attr
*attr
= &event
->attr
;
589 struct hw_perf_event
*hwc
= &event
->hw
;
592 if (!is_sampling_event(event
)) {
593 hwc
->sample_period
= x86_pmu
.max_period
;
594 hwc
->last_period
= hwc
->sample_period
;
595 local64_set(&hwc
->period_left
, hwc
->sample_period
);
598 * If we have a PMU initialized but no APIC
599 * interrupts, we cannot sample hardware
600 * events (user-space has to fall back and
601 * sample via a hrtimer based software event):
608 * Do not allow config1 (extended registers) to propagate,
609 * there's no sane user-space generalization yet:
611 if (attr
->type
== PERF_TYPE_RAW
)
614 if (attr
->type
== PERF_TYPE_HW_CACHE
)
615 return set_ext_hw_attr(hwc
, event
);
617 if (attr
->config
>= x86_pmu
.max_events
)
623 config
= x86_pmu
.event_map(attr
->config
);
634 if (attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
&&
635 !attr
->freq
&& hwc
->sample_period
== 1) {
636 /* BTS is not supported by this architecture. */
637 if (!x86_pmu
.bts_active
)
640 /* BTS is currently only allowed for user-mode. */
641 if (!attr
->exclude_kernel
)
645 hwc
->config
|= config
;
650 static int x86_pmu_hw_config(struct perf_event
*event
)
652 if (event
->attr
.precise_ip
) {
655 /* Support for constant skid */
656 if (x86_pmu
.pebs_active
) {
659 /* Support for IP fixup */
664 if (event
->attr
.precise_ip
> precise
)
670 * (keep 'enabled' bit clear for now)
672 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
675 * Count user and OS events unless requested not to
677 if (!event
->attr
.exclude_user
)
678 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
679 if (!event
->attr
.exclude_kernel
)
680 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
682 if (event
->attr
.type
== PERF_TYPE_RAW
)
683 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
685 return x86_setup_perfctr(event
);
689 * Setup the hardware configuration for a given attr_type
691 static int __x86_pmu_event_init(struct perf_event
*event
)
695 if (!x86_pmu_initialized())
699 if (!atomic_inc_not_zero(&active_events
)) {
700 mutex_lock(&pmc_reserve_mutex
);
701 if (atomic_read(&active_events
) == 0) {
702 if (!reserve_pmc_hardware())
705 reserve_ds_buffers();
708 atomic_inc(&active_events
);
709 mutex_unlock(&pmc_reserve_mutex
);
714 event
->destroy
= hw_perf_event_destroy
;
717 event
->hw
.last_cpu
= -1;
718 event
->hw
.last_tag
= ~0ULL;
721 event
->hw
.extra_reg
.idx
= EXTRA_REG_NONE
;
723 return x86_pmu
.hw_config(event
);
726 static void x86_pmu_disable_all(void)
728 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
731 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
734 if (!test_bit(idx
, cpuc
->active_mask
))
736 rdmsrl(x86_pmu_config_addr(idx
), val
);
737 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
739 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
740 wrmsrl(x86_pmu_config_addr(idx
), val
);
744 static void x86_pmu_disable(struct pmu
*pmu
)
746 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
748 if (!x86_pmu_initialized())
758 x86_pmu
.disable_all();
761 static inline void __x86_pmu_enable_event(struct hw_perf_event
*hwc
,
764 if (hwc
->extra_reg
.reg
)
765 wrmsrl(hwc
->extra_reg
.reg
, hwc
->extra_reg
.config
);
766 wrmsrl(hwc
->config_base
, hwc
->config
| enable_mask
);
769 static void x86_pmu_enable_all(int added
)
771 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
774 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
775 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
777 if (!test_bit(idx
, cpuc
->active_mask
))
780 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
784 static struct pmu pmu
;
786 static inline int is_x86_event(struct perf_event
*event
)
788 return event
->pmu
== &pmu
;
791 static int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
793 struct event_constraint
*c
, *constraints
[X86_PMC_IDX_MAX
];
794 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
795 int i
, j
, w
, wmax
, num
= 0;
796 struct hw_perf_event
*hwc
;
798 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
800 for (i
= 0; i
< n
; i
++) {
801 c
= x86_pmu
.get_event_constraints(cpuc
, cpuc
->event_list
[i
]);
806 * fastpath, try to reuse previous register
808 for (i
= 0; i
< n
; i
++) {
809 hwc
= &cpuc
->event_list
[i
]->hw
;
816 /* constraint still honored */
817 if (!test_bit(hwc
->idx
, c
->idxmsk
))
820 /* not already used */
821 if (test_bit(hwc
->idx
, used_mask
))
824 __set_bit(hwc
->idx
, used_mask
);
826 assign
[i
] = hwc
->idx
;
835 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
838 * weight = number of possible counters
840 * 1 = most constrained, only works on one counter
841 * wmax = least constrained, works on any counter
843 * assign events to counters starting with most
844 * constrained events.
846 wmax
= x86_pmu
.num_counters
;
849 * when fixed event counters are present,
850 * wmax is incremented by 1 to account
851 * for one more choice
853 if (x86_pmu
.num_counters_fixed
)
856 for (w
= 1, num
= n
; num
&& w
<= wmax
; w
++) {
858 for (i
= 0; num
&& i
< n
; i
++) {
860 hwc
= &cpuc
->event_list
[i
]->hw
;
865 for_each_set_bit(j
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
866 if (!test_bit(j
, used_mask
))
870 if (j
== X86_PMC_IDX_MAX
)
873 __set_bit(j
, used_mask
);
882 * scheduling failed or is just a simulation,
883 * free resources if necessary
885 if (!assign
|| num
) {
886 for (i
= 0; i
< n
; i
++) {
887 if (x86_pmu
.put_event_constraints
)
888 x86_pmu
.put_event_constraints(cpuc
, cpuc
->event_list
[i
]);
891 return num
? -ENOSPC
: 0;
895 * dogrp: true if must collect siblings events (group)
896 * returns total number of events and error code
898 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
900 struct perf_event
*event
;
903 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
905 /* current number of events already accepted */
908 if (is_x86_event(leader
)) {
911 cpuc
->event_list
[n
] = leader
;
917 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
) {
918 if (!is_x86_event(event
) ||
919 event
->state
<= PERF_EVENT_STATE_OFF
)
925 cpuc
->event_list
[n
] = event
;
931 static inline void x86_assign_hw_event(struct perf_event
*event
,
932 struct cpu_hw_events
*cpuc
, int i
)
934 struct hw_perf_event
*hwc
= &event
->hw
;
936 hwc
->idx
= cpuc
->assign
[i
];
937 hwc
->last_cpu
= smp_processor_id();
938 hwc
->last_tag
= ++cpuc
->tags
[i
];
940 if (hwc
->idx
== X86_PMC_IDX_FIXED_BTS
) {
941 hwc
->config_base
= 0;
943 } else if (hwc
->idx
>= X86_PMC_IDX_FIXED
) {
944 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
945 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
+ (hwc
->idx
- X86_PMC_IDX_FIXED
);
947 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
948 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
952 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
953 struct cpu_hw_events
*cpuc
,
956 return hwc
->idx
== cpuc
->assign
[i
] &&
957 hwc
->last_cpu
== smp_processor_id() &&
958 hwc
->last_tag
== cpuc
->tags
[i
];
961 static void x86_pmu_start(struct perf_event
*event
, int flags
);
962 static void x86_pmu_stop(struct perf_event
*event
, int flags
);
964 static void x86_pmu_enable(struct pmu
*pmu
)
966 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
967 struct perf_event
*event
;
968 struct hw_perf_event
*hwc
;
969 int i
, added
= cpuc
->n_added
;
971 if (!x86_pmu_initialized())
978 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
980 * apply assignment obtained either from
981 * hw_perf_group_sched_in() or x86_pmu_enable()
983 * step1: save events moving to new counters
984 * step2: reprogram moved events into new counters
986 for (i
= 0; i
< n_running
; i
++) {
987 event
= cpuc
->event_list
[i
];
991 * we can avoid reprogramming counter if:
992 * - assigned same counter as last time
993 * - running on same CPU as last time
994 * - no other event has used the counter since
996 if (hwc
->idx
== -1 ||
997 match_prev_assignment(hwc
, cpuc
, i
))
1001 * Ensure we don't accidentally enable a stopped
1002 * counter simply because we rescheduled.
1004 if (hwc
->state
& PERF_HES_STOPPED
)
1005 hwc
->state
|= PERF_HES_ARCH
;
1007 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1010 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1011 event
= cpuc
->event_list
[i
];
1014 if (!match_prev_assignment(hwc
, cpuc
, i
))
1015 x86_assign_hw_event(event
, cpuc
, i
);
1016 else if (i
< n_running
)
1019 if (hwc
->state
& PERF_HES_ARCH
)
1022 x86_pmu_start(event
, PERF_EF_RELOAD
);
1025 perf_events_lapic_init();
1031 x86_pmu
.enable_all(added
);
1034 static inline void x86_pmu_disable_event(struct perf_event
*event
)
1036 struct hw_perf_event
*hwc
= &event
->hw
;
1038 wrmsrl(hwc
->config_base
, hwc
->config
);
1041 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
1044 * Set the next IRQ period, based on the hwc->period_left value.
1045 * To be called with the event disabled in hw:
1048 x86_perf_event_set_period(struct perf_event
*event
)
1050 struct hw_perf_event
*hwc
= &event
->hw
;
1051 s64 left
= local64_read(&hwc
->period_left
);
1052 s64 period
= hwc
->sample_period
;
1053 int ret
= 0, idx
= hwc
->idx
;
1055 if (idx
== X86_PMC_IDX_FIXED_BTS
)
1059 * If we are way outside a reasonable range then just skip forward:
1061 if (unlikely(left
<= -period
)) {
1063 local64_set(&hwc
->period_left
, left
);
1064 hwc
->last_period
= period
;
1068 if (unlikely(left
<= 0)) {
1070 local64_set(&hwc
->period_left
, left
);
1071 hwc
->last_period
= period
;
1075 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1077 if (unlikely(left
< 2))
1080 if (left
> x86_pmu
.max_period
)
1081 left
= x86_pmu
.max_period
;
1083 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
1086 * The hw event starts counting from this event offset,
1087 * mark it to be able to extra future deltas:
1089 local64_set(&hwc
->prev_count
, (u64
)-left
);
1091 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
1094 * Due to erratum on certan cpu we need
1095 * a second write to be sure the register
1096 * is updated properly
1098 if (x86_pmu
.perfctr_second_write
) {
1099 wrmsrl(hwc
->event_base
,
1100 (u64
)(-left
) & x86_pmu
.cntval_mask
);
1103 perf_event_update_userpage(event
);
1108 static void x86_pmu_enable_event(struct perf_event
*event
)
1110 if (__this_cpu_read(cpu_hw_events
.enabled
))
1111 __x86_pmu_enable_event(&event
->hw
,
1112 ARCH_PERFMON_EVENTSEL_ENABLE
);
1116 * Add a single event to the PMU.
1118 * The event is added to the group of enabled events
1119 * but only if it can be scehduled with existing events.
1121 static int x86_pmu_add(struct perf_event
*event
, int flags
)
1123 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1124 struct hw_perf_event
*hwc
;
1125 int assign
[X86_PMC_IDX_MAX
];
1130 perf_pmu_disable(event
->pmu
);
1131 n0
= cpuc
->n_events
;
1132 ret
= n
= collect_events(cpuc
, event
, false);
1136 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1137 if (!(flags
& PERF_EF_START
))
1138 hwc
->state
|= PERF_HES_ARCH
;
1141 * If group events scheduling transaction was started,
1142 * skip the schedulability test here, it will be performed
1143 * at commit time (->commit_txn) as a whole
1145 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1148 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1152 * copy new assignment, now we know it is possible
1153 * will be used by hw_perf_enable()
1155 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1159 cpuc
->n_added
+= n
- n0
;
1160 cpuc
->n_txn
+= n
- n0
;
1164 perf_pmu_enable(event
->pmu
);
1168 static void x86_pmu_start(struct perf_event
*event
, int flags
)
1170 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1171 int idx
= event
->hw
.idx
;
1173 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1176 if (WARN_ON_ONCE(idx
== -1))
1179 if (flags
& PERF_EF_RELOAD
) {
1180 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1181 x86_perf_event_set_period(event
);
1184 event
->hw
.state
= 0;
1186 cpuc
->events
[idx
] = event
;
1187 __set_bit(idx
, cpuc
->active_mask
);
1188 __set_bit(idx
, cpuc
->running
);
1189 x86_pmu
.enable(event
);
1190 perf_event_update_userpage(event
);
1193 void perf_event_print_debug(void)
1195 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1197 struct cpu_hw_events
*cpuc
;
1198 unsigned long flags
;
1201 if (!x86_pmu
.num_counters
)
1204 local_irq_save(flags
);
1206 cpu
= smp_processor_id();
1207 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1209 if (x86_pmu
.version
>= 2) {
1210 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1211 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1212 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1213 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1214 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
1217 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1218 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1219 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1220 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1221 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
1223 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
1225 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1226 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
1227 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
1229 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1231 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1232 cpu
, idx
, pmc_ctrl
);
1233 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1234 cpu
, idx
, pmc_count
);
1235 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1236 cpu
, idx
, prev_left
);
1238 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
1239 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1241 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1242 cpu
, idx
, pmc_count
);
1244 local_irq_restore(flags
);
1247 static void x86_pmu_stop(struct perf_event
*event
, int flags
)
1249 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1250 struct hw_perf_event
*hwc
= &event
->hw
;
1252 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
1253 x86_pmu
.disable(event
);
1254 cpuc
->events
[hwc
->idx
] = NULL
;
1255 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
1256 hwc
->state
|= PERF_HES_STOPPED
;
1259 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
1261 * Drain the remaining delta count out of a event
1262 * that we are disabling:
1264 x86_perf_event_update(event
);
1265 hwc
->state
|= PERF_HES_UPTODATE
;
1269 static void x86_pmu_del(struct perf_event
*event
, int flags
)
1271 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1275 * If we're called during a txn, we don't need to do anything.
1276 * The events never got scheduled and ->cancel_txn will truncate
1279 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1282 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1284 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1285 if (event
== cpuc
->event_list
[i
]) {
1287 if (x86_pmu
.put_event_constraints
)
1288 x86_pmu
.put_event_constraints(cpuc
, event
);
1290 while (++i
< cpuc
->n_events
)
1291 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
1297 perf_event_update_userpage(event
);
1300 static int x86_pmu_handle_irq(struct pt_regs
*regs
)
1302 struct perf_sample_data data
;
1303 struct cpu_hw_events
*cpuc
;
1304 struct perf_event
*event
;
1305 int idx
, handled
= 0;
1308 perf_sample_data_init(&data
, 0);
1310 cpuc
= &__get_cpu_var(cpu_hw_events
);
1313 * Some chipsets need to unmask the LVTPC in a particular spot
1314 * inside the nmi handler. As a result, the unmasking was pushed
1315 * into all the nmi handlers.
1317 * This generic handler doesn't seem to have any issues where the
1318 * unmasking occurs so it was left at the top.
1320 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1322 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1323 if (!test_bit(idx
, cpuc
->active_mask
)) {
1325 * Though we deactivated the counter some cpus
1326 * might still deliver spurious interrupts still
1327 * in flight. Catch them:
1329 if (__test_and_clear_bit(idx
, cpuc
->running
))
1334 event
= cpuc
->events
[idx
];
1336 val
= x86_perf_event_update(event
);
1337 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1344 data
.period
= event
->hw
.last_period
;
1346 if (!x86_perf_event_set_period(event
))
1349 if (perf_event_overflow(event
, &data
, regs
))
1350 x86_pmu_stop(event
, 0);
1354 inc_irq_stat(apic_perf_irqs
);
1359 void perf_events_lapic_init(void)
1361 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1365 * Always use NMI for PMU
1367 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1370 struct pmu_nmi_state
{
1371 unsigned int marked
;
1375 static DEFINE_PER_CPU(struct pmu_nmi_state
, pmu_nmi
);
1377 static int __kprobes
1378 perf_event_nmi_handler(struct notifier_block
*self
,
1379 unsigned long cmd
, void *__args
)
1381 struct die_args
*args
= __args
;
1382 unsigned int this_nmi
;
1385 if (!atomic_read(&active_events
))
1391 case DIE_NMIUNKNOWN
:
1392 this_nmi
= percpu_read(irq_stat
.__nmi_count
);
1393 if (this_nmi
!= __this_cpu_read(pmu_nmi
.marked
))
1394 /* let the kernel handle the unknown nmi */
1397 * This one is a PMU back-to-back nmi. Two events
1398 * trigger 'simultaneously' raising two back-to-back
1399 * NMIs. If the first NMI handles both, the latter
1400 * will be empty and daze the CPU. So, we drop it to
1401 * avoid false-positive 'unknown nmi' messages.
1408 handled
= x86_pmu
.handle_irq(args
->regs
);
1412 this_nmi
= percpu_read(irq_stat
.__nmi_count
);
1413 if ((handled
> 1) ||
1414 /* the next nmi could be a back-to-back nmi */
1415 ((__this_cpu_read(pmu_nmi
.marked
) == this_nmi
) &&
1416 (__this_cpu_read(pmu_nmi
.handled
) > 1))) {
1418 * We could have two subsequent back-to-back nmis: The
1419 * first handles more than one counter, the 2nd
1420 * handles only one counter and the 3rd handles no
1423 * This is the 2nd nmi because the previous was
1424 * handling more than one counter. We will mark the
1425 * next (3rd) and then drop it if unhandled.
1427 __this_cpu_write(pmu_nmi
.marked
, this_nmi
+ 1);
1428 __this_cpu_write(pmu_nmi
.handled
, handled
);
1434 static __read_mostly
struct notifier_block perf_event_nmi_notifier
= {
1435 .notifier_call
= perf_event_nmi_handler
,
1437 .priority
= NMI_LOCAL_LOW_PRIOR
,
1440 static struct event_constraint unconstrained
;
1441 static struct event_constraint emptyconstraint
;
1443 static struct event_constraint
*
1444 x86_get_event_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
)
1446 struct event_constraint
*c
;
1448 if (x86_pmu
.event_constraints
) {
1449 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
1450 if ((event
->hw
.config
& c
->cmask
) == c
->code
)
1455 return &unconstrained
;
1458 #include "perf_event_amd.c"
1459 #include "perf_event_p6.c"
1460 #include "perf_event_p4.c"
1461 #include "perf_event_intel_lbr.c"
1462 #include "perf_event_intel_ds.c"
1463 #include "perf_event_intel.c"
1465 static int __cpuinit
1466 x86_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
1468 unsigned int cpu
= (long)hcpu
;
1469 int ret
= NOTIFY_OK
;
1471 switch (action
& ~CPU_TASKS_FROZEN
) {
1472 case CPU_UP_PREPARE
:
1473 if (x86_pmu
.cpu_prepare
)
1474 ret
= x86_pmu
.cpu_prepare(cpu
);
1478 if (x86_pmu
.cpu_starting
)
1479 x86_pmu
.cpu_starting(cpu
);
1483 if (x86_pmu
.cpu_dying
)
1484 x86_pmu
.cpu_dying(cpu
);
1487 case CPU_UP_CANCELED
:
1489 if (x86_pmu
.cpu_dead
)
1490 x86_pmu
.cpu_dead(cpu
);
1500 static void __init
pmu_check_apic(void)
1506 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1507 pr_info("no hardware sampling interrupt available.\n");
1510 static int __init
init_hw_perf_events(void)
1512 struct event_constraint
*c
;
1515 pr_info("Performance Events: ");
1517 switch (boot_cpu_data
.x86_vendor
) {
1518 case X86_VENDOR_INTEL
:
1519 err
= intel_pmu_init();
1521 case X86_VENDOR_AMD
:
1522 err
= amd_pmu_init();
1528 pr_cont("no PMU driver, software events only.\n");
1534 /* sanity check that the hardware exists or is emulated */
1535 if (!check_hw_exists())
1538 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1543 if (x86_pmu
.num_counters
> X86_PMC_MAX_GENERIC
) {
1544 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
1545 x86_pmu
.num_counters
, X86_PMC_MAX_GENERIC
);
1546 x86_pmu
.num_counters
= X86_PMC_MAX_GENERIC
;
1548 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1550 if (x86_pmu
.num_counters_fixed
> X86_PMC_MAX_FIXED
) {
1551 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
1552 x86_pmu
.num_counters_fixed
, X86_PMC_MAX_FIXED
);
1553 x86_pmu
.num_counters_fixed
= X86_PMC_MAX_FIXED
;
1556 x86_pmu
.intel_ctrl
|=
1557 ((1LL << x86_pmu
.num_counters_fixed
)-1) << X86_PMC_IDX_FIXED
;
1559 perf_events_lapic_init();
1560 register_die_notifier(&perf_event_nmi_notifier
);
1562 unconstrained
= (struct event_constraint
)
1563 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1564 0, x86_pmu
.num_counters
);
1566 if (x86_pmu
.event_constraints
) {
1567 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
1568 if (c
->cmask
!= X86_RAW_EVENT_MASK
)
1571 c
->idxmsk64
|= (1ULL << x86_pmu
.num_counters
) - 1;
1572 c
->weight
+= x86_pmu
.num_counters
;
1576 pr_info("... version: %d\n", x86_pmu
.version
);
1577 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1578 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1579 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1580 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1581 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1582 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1584 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1585 perf_cpu_notifier(x86_pmu_notifier
);
1589 early_initcall(init_hw_perf_events
);
1591 static inline void x86_pmu_read(struct perf_event
*event
)
1593 x86_perf_event_update(event
);
1597 * Start group events scheduling transaction
1598 * Set the flag to make pmu::enable() not perform the
1599 * schedulability test, it will be performed at commit time
1601 static void x86_pmu_start_txn(struct pmu
*pmu
)
1603 perf_pmu_disable(pmu
);
1604 __this_cpu_or(cpu_hw_events
.group_flag
, PERF_EVENT_TXN
);
1605 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1609 * Stop group events scheduling transaction
1610 * Clear the flag and pmu::enable() will perform the
1611 * schedulability test.
1613 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1615 __this_cpu_and(cpu_hw_events
.group_flag
, ~PERF_EVENT_TXN
);
1617 * Truncate the collected events.
1619 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1620 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1621 perf_pmu_enable(pmu
);
1625 * Commit group events scheduling transaction
1626 * Perform the group schedulability test as a whole
1627 * Return 0 if success
1629 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1631 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1632 int assign
[X86_PMC_IDX_MAX
];
1637 if (!x86_pmu_initialized())
1640 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1645 * copy new assignment, now we know it is possible
1646 * will be used by hw_perf_enable()
1648 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1650 cpuc
->group_flag
&= ~PERF_EVENT_TXN
;
1651 perf_pmu_enable(pmu
);
1655 * a fake_cpuc is used to validate event groups. Due to
1656 * the extra reg logic, we need to also allocate a fake
1657 * per_core and per_cpu structure. Otherwise, group events
1658 * using extra reg may conflict without the kernel being
1659 * able to catch this when the last event gets added to
1662 static void free_fake_cpuc(struct cpu_hw_events
*cpuc
)
1664 kfree(cpuc
->shared_regs
);
1668 static struct cpu_hw_events
*allocate_fake_cpuc(void)
1670 struct cpu_hw_events
*cpuc
;
1671 int cpu
= raw_smp_processor_id();
1673 cpuc
= kzalloc(sizeof(*cpuc
), GFP_KERNEL
);
1675 return ERR_PTR(-ENOMEM
);
1677 /* only needed, if we have extra_regs */
1678 if (x86_pmu
.extra_regs
) {
1679 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
1680 if (!cpuc
->shared_regs
)
1685 free_fake_cpuc(cpuc
);
1686 return ERR_PTR(-ENOMEM
);
1690 * validate that we can schedule this event
1692 static int validate_event(struct perf_event
*event
)
1694 struct cpu_hw_events
*fake_cpuc
;
1695 struct event_constraint
*c
;
1698 fake_cpuc
= allocate_fake_cpuc();
1699 if (IS_ERR(fake_cpuc
))
1700 return PTR_ERR(fake_cpuc
);
1702 c
= x86_pmu
.get_event_constraints(fake_cpuc
, event
);
1704 if (!c
|| !c
->weight
)
1707 if (x86_pmu
.put_event_constraints
)
1708 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
1710 free_fake_cpuc(fake_cpuc
);
1716 * validate a single event group
1718 * validation include:
1719 * - check events are compatible which each other
1720 * - events do not compete for the same counter
1721 * - number of events <= number of counters
1723 * validation ensures the group can be loaded onto the
1724 * PMU if it was the only group available.
1726 static int validate_group(struct perf_event
*event
)
1728 struct perf_event
*leader
= event
->group_leader
;
1729 struct cpu_hw_events
*fake_cpuc
;
1730 int ret
= -ENOSPC
, n
;
1732 fake_cpuc
= allocate_fake_cpuc();
1733 if (IS_ERR(fake_cpuc
))
1734 return PTR_ERR(fake_cpuc
);
1736 * the event is not yet connected with its
1737 * siblings therefore we must first collect
1738 * existing siblings, then add the new event
1739 * before we can simulate the scheduling
1741 n
= collect_events(fake_cpuc
, leader
, true);
1745 fake_cpuc
->n_events
= n
;
1746 n
= collect_events(fake_cpuc
, event
, false);
1750 fake_cpuc
->n_events
= n
;
1752 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
1755 free_fake_cpuc(fake_cpuc
);
1759 static int x86_pmu_event_init(struct perf_event
*event
)
1764 switch (event
->attr
.type
) {
1766 case PERF_TYPE_HARDWARE
:
1767 case PERF_TYPE_HW_CACHE
:
1774 err
= __x86_pmu_event_init(event
);
1777 * we temporarily connect event to its pmu
1778 * such that validate_group() can classify
1779 * it as an x86 event using is_x86_event()
1784 if (event
->group_leader
!= event
)
1785 err
= validate_group(event
);
1787 err
= validate_event(event
);
1793 event
->destroy(event
);
1799 static struct pmu pmu
= {
1800 .pmu_enable
= x86_pmu_enable
,
1801 .pmu_disable
= x86_pmu_disable
,
1803 .event_init
= x86_pmu_event_init
,
1807 .start
= x86_pmu_start
,
1808 .stop
= x86_pmu_stop
,
1809 .read
= x86_pmu_read
,
1811 .start_txn
= x86_pmu_start_txn
,
1812 .cancel_txn
= x86_pmu_cancel_txn
,
1813 .commit_txn
= x86_pmu_commit_txn
,
1820 static int backtrace_stack(void *data
, char *name
)
1825 static void backtrace_address(void *data
, unsigned long addr
, int reliable
)
1827 struct perf_callchain_entry
*entry
= data
;
1829 perf_callchain_store(entry
, addr
);
1832 static const struct stacktrace_ops backtrace_ops
= {
1833 .stack
= backtrace_stack
,
1834 .address
= backtrace_address
,
1835 .walk_stack
= print_context_stack_bp
,
1839 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1841 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1842 /* TODO: We don't support guest os callchain now */
1846 perf_callchain_store(entry
, regs
->ip
);
1848 dump_trace(NULL
, regs
, NULL
, 0, &backtrace_ops
, entry
);
1851 #ifdef CONFIG_COMPAT
1853 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1855 /* 32-bit process in 64-bit kernel. */
1856 struct stack_frame_ia32 frame
;
1857 const void __user
*fp
;
1859 if (!test_thread_flag(TIF_IA32
))
1862 fp
= compat_ptr(regs
->bp
);
1863 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1864 unsigned long bytes
;
1865 frame
.next_frame
= 0;
1866 frame
.return_address
= 0;
1868 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1869 if (bytes
!= sizeof(frame
))
1872 if (fp
< compat_ptr(regs
->sp
))
1875 perf_callchain_store(entry
, frame
.return_address
);
1876 fp
= compat_ptr(frame
.next_frame
);
1882 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1889 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1891 struct stack_frame frame
;
1892 const void __user
*fp
;
1894 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1895 /* TODO: We don't support guest os callchain now */
1899 fp
= (void __user
*)regs
->bp
;
1901 perf_callchain_store(entry
, regs
->ip
);
1903 if (perf_callchain_user32(regs
, entry
))
1906 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1907 unsigned long bytes
;
1908 frame
.next_frame
= NULL
;
1909 frame
.return_address
= 0;
1911 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1912 if (bytes
!= sizeof(frame
))
1915 if ((unsigned long)fp
< regs
->sp
)
1918 perf_callchain_store(entry
, frame
.return_address
);
1919 fp
= frame
.next_frame
;
1923 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1927 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
1928 ip
= perf_guest_cbs
->get_guest_ip();
1930 ip
= instruction_pointer(regs
);
1935 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1939 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1940 if (perf_guest_cbs
->is_user_mode())
1941 misc
|= PERF_RECORD_MISC_GUEST_USER
;
1943 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
1945 if (user_mode(regs
))
1946 misc
|= PERF_RECORD_MISC_USER
;
1948 misc
|= PERF_RECORD_MISC_KERNEL
;
1951 if (regs
->flags
& PERF_EFLAGS_EXACT
)
1952 misc
|= PERF_RECORD_MISC_EXACT_IP
;