Merge branch 'akpm'
[linux-2.6/next.git] / arch / x86 / kernel / ftrace.c
blobc9a281f272fd994423e830131dbdfffd6ee6510a
1 /*
2 * Code for replacing ftrace calls with jumps.
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6 * Thanks goes to Ingo Molnar, for suggesting the idea.
7 * Mathieu Desnoyers, for suggesting postponing the modifications.
8 * Arjan van de Ven, for keeping me straight, and explaining to me
9 * the dangers of modifying code on the run.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/spinlock.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <linux/ftrace.h>
18 #include <linux/percpu.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
24 #include <trace/syscall.h>
26 #include <asm/cacheflush.h>
27 #include <asm/ftrace.h>
28 #include <asm/nops.h>
29 #include <asm/nmi.h>
32 #ifdef CONFIG_DYNAMIC_FTRACE
35 * modifying_code is set to notify NMIs that they need to use
36 * memory barriers when entering or exiting. But we don't want
37 * to burden NMIs with unnecessary memory barriers when code
38 * modification is not being done (which is most of the time).
40 * A mutex is already held when ftrace_arch_code_modify_prepare
41 * and post_process are called. No locks need to be taken here.
43 * Stop machine will make sure currently running NMIs are done
44 * and new NMIs will see the updated variable before we need
45 * to worry about NMIs doing memory barriers.
47 static int modifying_code __read_mostly;
48 static DEFINE_PER_CPU(int, save_modifying_code);
50 int ftrace_arch_code_modify_prepare(void)
52 set_kernel_text_rw();
53 set_all_modules_text_rw();
54 modifying_code = 1;
55 return 0;
58 int ftrace_arch_code_modify_post_process(void)
60 modifying_code = 0;
61 set_all_modules_text_ro();
62 set_kernel_text_ro();
63 return 0;
66 union ftrace_code_union {
67 char code[MCOUNT_INSN_SIZE];
68 struct {
69 char e8;
70 int offset;
71 } __attribute__((packed));
74 static int ftrace_calc_offset(long ip, long addr)
76 return (int)(addr - ip);
79 static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
81 static union ftrace_code_union calc;
83 calc.e8 = 0xe8;
84 calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
87 * No locking needed, this must be called via kstop_machine
88 * which in essence is like running on a uniprocessor machine.
90 return calc.code;
94 * Modifying code must take extra care. On an SMP machine, if
95 * the code being modified is also being executed on another CPU
96 * that CPU will have undefined results and possibly take a GPF.
97 * We use kstop_machine to stop other CPUS from exectuing code.
98 * But this does not stop NMIs from happening. We still need
99 * to protect against that. We separate out the modification of
100 * the code to take care of this.
102 * Two buffers are added: An IP buffer and a "code" buffer.
104 * 1) Put the instruction pointer into the IP buffer
105 * and the new code into the "code" buffer.
106 * 2) Wait for any running NMIs to finish and set a flag that says
107 * we are modifying code, it is done in an atomic operation.
108 * 3) Write the code
109 * 4) clear the flag.
110 * 5) Wait for any running NMIs to finish.
112 * If an NMI is executed, the first thing it does is to call
113 * "ftrace_nmi_enter". This will check if the flag is set to write
114 * and if it is, it will write what is in the IP and "code" buffers.
116 * The trick is, it does not matter if everyone is writing the same
117 * content to the code location. Also, if a CPU is executing code
118 * it is OK to write to that code location if the contents being written
119 * are the same as what exists.
122 #define MOD_CODE_WRITE_FLAG (1 << 31) /* set when NMI should do the write */
123 static atomic_t nmi_running = ATOMIC_INIT(0);
124 static int mod_code_status; /* holds return value of text write */
125 static void *mod_code_ip; /* holds the IP to write to */
126 static const void *mod_code_newcode; /* holds the text to write to the IP */
128 static unsigned nmi_wait_count;
129 static atomic_t nmi_update_count = ATOMIC_INIT(0);
131 int ftrace_arch_read_dyn_info(char *buf, int size)
133 int r;
135 r = snprintf(buf, size, "%u %u",
136 nmi_wait_count,
137 atomic_read(&nmi_update_count));
138 return r;
141 static void clear_mod_flag(void)
143 int old = atomic_read(&nmi_running);
145 for (;;) {
146 int new = old & ~MOD_CODE_WRITE_FLAG;
148 if (old == new)
149 break;
151 old = atomic_cmpxchg(&nmi_running, old, new);
155 static void ftrace_mod_code(void)
158 * Yes, more than one CPU process can be writing to mod_code_status.
159 * (and the code itself)
160 * But if one were to fail, then they all should, and if one were
161 * to succeed, then they all should.
163 mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
164 MCOUNT_INSN_SIZE);
166 /* if we fail, then kill any new writers */
167 if (mod_code_status)
168 clear_mod_flag();
171 void ftrace_nmi_enter(void)
173 __this_cpu_write(save_modifying_code, modifying_code);
175 if (!__this_cpu_read(save_modifying_code))
176 return;
178 if (atomic_inc_return(&nmi_running) & MOD_CODE_WRITE_FLAG) {
179 smp_rmb();
180 ftrace_mod_code();
181 atomic_inc(&nmi_update_count);
183 /* Must have previous changes seen before executions */
184 smp_mb();
187 void ftrace_nmi_exit(void)
189 if (!__this_cpu_read(save_modifying_code))
190 return;
192 /* Finish all executions before clearing nmi_running */
193 smp_mb();
194 atomic_dec(&nmi_running);
197 static void wait_for_nmi_and_set_mod_flag(void)
199 if (!atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG))
200 return;
202 do {
203 cpu_relax();
204 } while (atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG));
206 nmi_wait_count++;
209 static void wait_for_nmi(void)
211 if (!atomic_read(&nmi_running))
212 return;
214 do {
215 cpu_relax();
216 } while (atomic_read(&nmi_running));
218 nmi_wait_count++;
221 static inline int
222 within(unsigned long addr, unsigned long start, unsigned long end)
224 return addr >= start && addr < end;
227 static int
228 do_ftrace_mod_code(unsigned long ip, const void *new_code)
231 * On x86_64, kernel text mappings are mapped read-only with
232 * CONFIG_DEBUG_RODATA. So we use the kernel identity mapping instead
233 * of the kernel text mapping to modify the kernel text.
235 * For 32bit kernels, these mappings are same and we can use
236 * kernel identity mapping to modify code.
238 if (within(ip, (unsigned long)_text, (unsigned long)_etext))
239 ip = (unsigned long)__va(__pa(ip));
241 mod_code_ip = (void *)ip;
242 mod_code_newcode = new_code;
244 /* The buffers need to be visible before we let NMIs write them */
245 smp_mb();
247 wait_for_nmi_and_set_mod_flag();
249 /* Make sure all running NMIs have finished before we write the code */
250 smp_mb();
252 ftrace_mod_code();
254 /* Make sure the write happens before clearing the bit */
255 smp_mb();
257 clear_mod_flag();
258 wait_for_nmi();
260 return mod_code_status;
263 static const unsigned char *ftrace_nop_replace(void)
265 return ideal_nops[NOP_ATOMIC5];
268 static int
269 ftrace_modify_code(unsigned long ip, unsigned const char *old_code,
270 unsigned const char *new_code)
272 unsigned char replaced[MCOUNT_INSN_SIZE];
275 * Note: Due to modules and __init, code can
276 * disappear and change, we need to protect against faulting
277 * as well as code changing. We do this by using the
278 * probe_kernel_* functions.
280 * No real locking needed, this code is run through
281 * kstop_machine, or before SMP starts.
284 /* read the text we want to modify */
285 if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
286 return -EFAULT;
288 /* Make sure it is what we expect it to be */
289 if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
290 return -EINVAL;
292 /* replace the text with the new text */
293 if (do_ftrace_mod_code(ip, new_code))
294 return -EPERM;
296 sync_core();
298 return 0;
301 int ftrace_make_nop(struct module *mod,
302 struct dyn_ftrace *rec, unsigned long addr)
304 unsigned const char *new, *old;
305 unsigned long ip = rec->ip;
307 old = ftrace_call_replace(ip, addr);
308 new = ftrace_nop_replace();
310 return ftrace_modify_code(rec->ip, old, new);
313 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
315 unsigned const char *new, *old;
316 unsigned long ip = rec->ip;
318 old = ftrace_nop_replace();
319 new = ftrace_call_replace(ip, addr);
321 return ftrace_modify_code(rec->ip, old, new);
324 int ftrace_update_ftrace_func(ftrace_func_t func)
326 unsigned long ip = (unsigned long)(&ftrace_call);
327 unsigned char old[MCOUNT_INSN_SIZE], *new;
328 int ret;
330 memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
331 new = ftrace_call_replace(ip, (unsigned long)func);
332 ret = ftrace_modify_code(ip, old, new);
334 return ret;
337 int __init ftrace_dyn_arch_init(void *data)
339 /* The return code is retured via data */
340 *(unsigned long *)data = 0;
342 return 0;
344 #endif
346 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
348 #ifdef CONFIG_DYNAMIC_FTRACE
349 extern void ftrace_graph_call(void);
351 static int ftrace_mod_jmp(unsigned long ip,
352 int old_offset, int new_offset)
354 unsigned char code[MCOUNT_INSN_SIZE];
356 if (probe_kernel_read(code, (void *)ip, MCOUNT_INSN_SIZE))
357 return -EFAULT;
359 if (code[0] != 0xe9 || old_offset != *(int *)(&code[1]))
360 return -EINVAL;
362 *(int *)(&code[1]) = new_offset;
364 if (do_ftrace_mod_code(ip, &code))
365 return -EPERM;
367 return 0;
370 int ftrace_enable_ftrace_graph_caller(void)
372 unsigned long ip = (unsigned long)(&ftrace_graph_call);
373 int old_offset, new_offset;
375 old_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
376 new_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
378 return ftrace_mod_jmp(ip, old_offset, new_offset);
381 int ftrace_disable_ftrace_graph_caller(void)
383 unsigned long ip = (unsigned long)(&ftrace_graph_call);
384 int old_offset, new_offset;
386 old_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
387 new_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
389 return ftrace_mod_jmp(ip, old_offset, new_offset);
392 #endif /* !CONFIG_DYNAMIC_FTRACE */
395 * Hook the return address and push it in the stack of return addrs
396 * in current thread info.
398 void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr,
399 unsigned long frame_pointer)
401 unsigned long old;
402 int faulted;
403 struct ftrace_graph_ent trace;
404 unsigned long return_hooker = (unsigned long)
405 &return_to_handler;
407 if (unlikely(atomic_read(&current->tracing_graph_pause)))
408 return;
411 * Protect against fault, even if it shouldn't
412 * happen. This tool is too much intrusive to
413 * ignore such a protection.
415 asm volatile(
416 "1: " _ASM_MOV " (%[parent]), %[old]\n"
417 "2: " _ASM_MOV " %[return_hooker], (%[parent])\n"
418 " movl $0, %[faulted]\n"
419 "3:\n"
421 ".section .fixup, \"ax\"\n"
422 "4: movl $1, %[faulted]\n"
423 " jmp 3b\n"
424 ".previous\n"
426 _ASM_EXTABLE(1b, 4b)
427 _ASM_EXTABLE(2b, 4b)
429 : [old] "=&r" (old), [faulted] "=r" (faulted)
430 : [parent] "r" (parent), [return_hooker] "r" (return_hooker)
431 : "memory"
434 if (unlikely(faulted)) {
435 ftrace_graph_stop();
436 WARN_ON(1);
437 return;
440 trace.func = self_addr;
441 trace.depth = current->curr_ret_stack + 1;
443 /* Only trace if the calling function expects to */
444 if (!ftrace_graph_entry(&trace)) {
445 *parent = old;
446 return;
449 if (ftrace_push_return_trace(old, self_addr, &trace.depth,
450 frame_pointer) == -EBUSY) {
451 *parent = old;
452 return;
455 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */