2 * RTC related functions
4 #include <linux/platform_device.h>
5 #include <linux/mc146818rtc.h>
6 #include <linux/acpi.h>
8 #include <linux/export.h>
12 #include <asm/vsyscall.h>
13 #include <asm/x86_init.h>
18 * This is a special lock that is owned by the CPU and holds the index
19 * register we are working with. It is required for NMI access to the
20 * CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
22 volatile unsigned long cmos_lock
;
23 EXPORT_SYMBOL(cmos_lock
);
24 #endif /* CONFIG_X86_32 */
26 /* For two digit years assume time is always after that */
27 #define CMOS_YEARS_OFFS 2000
29 DEFINE_SPINLOCK(rtc_lock
);
30 EXPORT_SYMBOL(rtc_lock
);
33 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
34 * called 500 ms after the second nowtime has started, because when
35 * nowtime is written into the registers of the CMOS clock, it will
36 * jump to the next second precisely 500 ms later. Check the Motorola
37 * MC146818A or Dallas DS12887 data sheet for details.
39 * BUG: This routine does not handle hour overflow properly; it just
40 * sets the minutes. Usually you'll only notice that after reboot!
42 int mach_set_rtc_mmss(unsigned long nowtime
)
44 int real_seconds
, real_minutes
, cmos_minutes
;
45 unsigned char save_control
, save_freq_select
;
48 /* tell the clock it's being set */
49 save_control
= CMOS_READ(RTC_CONTROL
);
50 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
52 /* stop and reset prescaler */
53 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
54 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
56 cmos_minutes
= CMOS_READ(RTC_MINUTES
);
57 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
58 cmos_minutes
= bcd2bin(cmos_minutes
);
61 * since we're only adjusting minutes and seconds,
62 * don't interfere with hour overflow. This avoids
63 * messing with unknown time zones but requires your
64 * RTC not to be off by more than 15 minutes
66 real_seconds
= nowtime
% 60;
67 real_minutes
= nowtime
/ 60;
68 /* correct for half hour time zone */
69 if (((abs(real_minutes
- cmos_minutes
) + 15)/30) & 1)
73 if (abs(real_minutes
- cmos_minutes
) < 30) {
74 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
75 real_seconds
= bin2bcd(real_seconds
);
76 real_minutes
= bin2bcd(real_minutes
);
78 CMOS_WRITE(real_seconds
, RTC_SECONDS
);
79 CMOS_WRITE(real_minutes
, RTC_MINUTES
);
81 printk_once(KERN_NOTICE
82 "set_rtc_mmss: can't update from %d to %d\n",
83 cmos_minutes
, real_minutes
);
87 /* The following flags have to be released exactly in this order,
88 * otherwise the DS12887 (popular MC146818A clone with integrated
89 * battery and quartz) will not reset the oscillator and will not
90 * update precisely 500 ms later. You won't find this mentioned in
91 * the Dallas Semiconductor data sheets, but who believes data
92 * sheets anyway ... -- Markus Kuhn
94 CMOS_WRITE(save_control
, RTC_CONTROL
);
95 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
100 unsigned long mach_get_cmos_time(void)
102 unsigned int status
, year
, mon
, day
, hour
, min
, sec
, century
= 0;
105 * If UIP is clear, then we have >= 244 microseconds before
106 * RTC registers will be updated. Spec sheet says that this
107 * is the reliable way to read RTC - registers. If UIP is set
108 * then the register access might be invalid.
110 while ((CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
))
113 sec
= CMOS_READ(RTC_SECONDS
);
114 min
= CMOS_READ(RTC_MINUTES
);
115 hour
= CMOS_READ(RTC_HOURS
);
116 day
= CMOS_READ(RTC_DAY_OF_MONTH
);
117 mon
= CMOS_READ(RTC_MONTH
);
118 year
= CMOS_READ(RTC_YEAR
);
121 if (acpi_gbl_FADT
.header
.revision
>= FADT2_REVISION_ID
&&
122 acpi_gbl_FADT
.century
)
123 century
= CMOS_READ(acpi_gbl_FADT
.century
);
126 status
= CMOS_READ(RTC_CONTROL
);
127 WARN_ON_ONCE(RTC_ALWAYS_BCD
&& (status
& RTC_DM_BINARY
));
129 if (RTC_ALWAYS_BCD
|| !(status
& RTC_DM_BINARY
)) {
132 hour
= bcd2bin(hour
);
135 year
= bcd2bin(year
);
139 century
= bcd2bin(century
);
140 year
+= century
* 100;
141 printk(KERN_INFO
"Extended CMOS year: %d\n", century
* 100);
143 year
+= CMOS_YEARS_OFFS
;
145 return mktime(year
, mon
, day
, hour
, min
, sec
);
148 /* Routines for accessing the CMOS RAM/RTC. */
149 unsigned char rtc_cmos_read(unsigned char addr
)
153 lock_cmos_prefix(addr
);
154 outb(addr
, RTC_PORT(0));
155 val
= inb(RTC_PORT(1));
156 lock_cmos_suffix(addr
);
160 EXPORT_SYMBOL(rtc_cmos_read
);
162 void rtc_cmos_write(unsigned char val
, unsigned char addr
)
164 lock_cmos_prefix(addr
);
165 outb(addr
, RTC_PORT(0));
166 outb(val
, RTC_PORT(1));
167 lock_cmos_suffix(addr
);
169 EXPORT_SYMBOL(rtc_cmos_write
);
171 int update_persistent_clock(struct timespec now
)
176 spin_lock_irqsave(&rtc_lock
, flags
);
177 retval
= x86_platform
.set_wallclock(now
.tv_sec
);
178 spin_unlock_irqrestore(&rtc_lock
, flags
);
183 /* not static: needed by APM */
184 void read_persistent_clock(struct timespec
*ts
)
186 unsigned long retval
, flags
;
188 spin_lock_irqsave(&rtc_lock
, flags
);
189 retval
= x86_platform
.get_wallclock();
190 spin_unlock_irqrestore(&rtc_lock
, flags
);
196 unsigned long long native_read_tsc(void)
198 return __native_read_tsc();
200 EXPORT_SYMBOL(native_read_tsc
);
203 static struct resource rtc_resources
[] = {
205 .start
= RTC_PORT(0),
207 .flags
= IORESOURCE_IO
,
212 .flags
= IORESOURCE_IRQ
,
216 static struct platform_device rtc_device
= {
219 .resource
= rtc_resources
,
220 .num_resources
= ARRAY_SIZE(rtc_resources
),
223 static __init
int add_rtc_cmos(void)
226 static const char *ids
[] __initconst
=
227 { "PNP0b00", "PNP0b01", "PNP0b02", };
232 pnp_for_each_dev(dev
) {
233 for (id
= dev
->id
; id
; id
= id
->next
) {
234 for (i
= 0; i
< ARRAY_SIZE(ids
); i
++) {
235 if (compare_pnp_id(id
, ids
[i
]) != 0)
241 if (of_have_populated_dt())
244 platform_device_register(&rtc_device
);
245 dev_info(&rtc_device
.dev
,
246 "registered platform RTC device (no PNP device found)\n");
250 device_initcall(add_rtc_cmos
);