2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
10 * Handle hardware traps and faults.
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/uaccess.h>
17 #include <linux/kdebug.h>
18 #include <linux/kgdb.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/ptrace.h>
22 #include <linux/string.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/kexec.h>
26 #include <linux/sched.h>
27 #include <linux/timer.h>
28 #include <linux/init.h>
29 #include <linux/bug.h>
30 #include <linux/nmi.h>
32 #include <linux/smp.h>
34 #include <trace/events/irq_vectors.h>
37 #include <linux/ioport.h>
38 #include <linux/eisa.h>
42 #include <linux/mca.h>
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/system.h>
55 #include <asm/traps.h>
60 #include <asm/mach_traps.h>
63 #include <asm/x86_init.h>
64 #include <asm/pgalloc.h>
65 #include <asm/proto.h>
67 #include <asm/processor-flags.h>
68 #include <asm/setup.h>
70 asmlinkage
int system_call(void);
72 /* Do we ignore FPU interrupts ? */
76 * The IDT has to be page-aligned to simplify the Pentium
77 * F0 0F bug workaround.
79 gate_desc idt_table
[NR_VECTORS
] __page_aligned_data
= { { { { 0, 0 } } }, };
82 DECLARE_BITMAP(used_vectors
, NR_VECTORS
);
83 EXPORT_SYMBOL_GPL(used_vectors
);
85 static int ignore_nmis
;
87 int unknown_nmi_panic
;
89 * Prevent NMI reason port (0x61) being accessed simultaneously, can
90 * only be used in NMI handler.
92 static DEFINE_RAW_SPINLOCK(nmi_reason_lock
);
94 static inline void conditional_sti(struct pt_regs
*regs
)
96 if (regs
->flags
& X86_EFLAGS_IF
)
100 static inline void preempt_conditional_sti(struct pt_regs
*regs
)
103 if (regs
->flags
& X86_EFLAGS_IF
)
107 static inline void conditional_cli(struct pt_regs
*regs
)
109 if (regs
->flags
& X86_EFLAGS_IF
)
113 static inline void preempt_conditional_cli(struct pt_regs
*regs
)
115 if (regs
->flags
& X86_EFLAGS_IF
)
120 static void __kprobes
121 do_trap(int trapnr
, int signr
, char *str
, struct pt_regs
*regs
,
122 long error_code
, siginfo_t
*info
)
124 struct task_struct
*tsk
= current
;
127 if (regs
->flags
& X86_VM_MASK
) {
129 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
130 * On nmi (interrupt 2), do_trap should not be called.
138 if (!user_mode(regs
))
145 * We want error_code and trap_no set for userspace faults and
146 * kernelspace faults which result in die(), but not
147 * kernelspace faults which are fixed up. die() gives the
148 * process no chance to handle the signal and notice the
149 * kernel fault information, so that won't result in polluting
150 * the information about previously queued, but not yet
151 * delivered, faults. See also do_general_protection below.
153 tsk
->thread
.error_code
= error_code
;
154 tsk
->thread
.trap_no
= trapnr
;
157 if (show_unhandled_signals
&& unhandled_signal(tsk
, signr
) &&
158 printk_ratelimit()) {
160 "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
161 tsk
->comm
, tsk
->pid
, str
,
162 regs
->ip
, regs
->sp
, error_code
);
163 print_vma_addr(" in ", regs
->ip
);
169 force_sig_info(signr
, info
, tsk
);
171 force_sig(signr
, tsk
);
175 if (!fixup_exception(regs
)) {
176 tsk
->thread
.error_code
= error_code
;
177 tsk
->thread
.trap_no
= trapnr
;
178 die(str
, regs
, error_code
);
184 if (handle_vm86_trap((struct kernel_vm86_regs
*) regs
,
191 #define DO_ERROR(trapnr, signr, str, name) \
192 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
194 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
197 conditional_sti(regs); \
198 do_trap(trapnr, signr, str, regs, error_code, NULL); \
201 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
202 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
205 info.si_signo = signr; \
207 info.si_code = sicode; \
208 info.si_addr = (void __user *)siaddr; \
209 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
212 conditional_sti(regs); \
213 do_trap(trapnr, signr, str, regs, error_code, &info); \
216 DO_ERROR_INFO(0, SIGFPE
, "divide error", divide_error
, FPE_INTDIV
, regs
->ip
)
217 DO_ERROR(4, SIGSEGV
, "overflow", overflow
)
218 DO_ERROR(5, SIGSEGV
, "bounds", bounds
)
219 DO_ERROR_INFO(6, SIGILL
, "invalid opcode", invalid_op
, ILL_ILLOPN
, regs
->ip
)
220 DO_ERROR(9, SIGFPE
, "coprocessor segment overrun", coprocessor_segment_overrun
)
221 DO_ERROR(10, SIGSEGV
, "invalid TSS", invalid_TSS
)
222 DO_ERROR(11, SIGBUS
, "segment not present", segment_not_present
)
224 DO_ERROR(12, SIGBUS
, "stack segment", stack_segment
)
226 DO_ERROR_INFO(17, SIGBUS
, "alignment check", alignment_check
, BUS_ADRALN
, 0)
229 /* Runs on IST stack */
230 dotraplinkage
void do_stack_segment(struct pt_regs
*regs
, long error_code
)
232 if (notify_die(DIE_TRAP
, "stack segment", regs
, error_code
,
233 12, SIGBUS
) == NOTIFY_STOP
)
235 preempt_conditional_sti(regs
);
236 do_trap(12, SIGBUS
, "stack segment", regs
, error_code
, NULL
);
237 preempt_conditional_cli(regs
);
240 dotraplinkage
void do_double_fault(struct pt_regs
*regs
, long error_code
)
242 static const char str
[] = "double fault";
243 struct task_struct
*tsk
= current
;
245 /* Return not checked because double check cannot be ignored */
246 notify_die(DIE_TRAP
, str
, regs
, error_code
, 8, SIGSEGV
);
248 tsk
->thread
.error_code
= error_code
;
249 tsk
->thread
.trap_no
= 8;
252 * This is always a kernel trap and never fixable (and thus must
256 die(str
, regs
, error_code
);
260 dotraplinkage
void __kprobes
261 do_general_protection(struct pt_regs
*regs
, long error_code
)
263 struct task_struct
*tsk
;
265 conditional_sti(regs
);
268 if (regs
->flags
& X86_VM_MASK
)
273 if (!user_mode(regs
))
276 tsk
->thread
.error_code
= error_code
;
277 tsk
->thread
.trap_no
= 13;
279 if (show_unhandled_signals
&& unhandled_signal(tsk
, SIGSEGV
) &&
280 printk_ratelimit()) {
282 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
283 tsk
->comm
, task_pid_nr(tsk
),
284 regs
->ip
, regs
->sp
, error_code
);
285 print_vma_addr(" in ", regs
->ip
);
289 force_sig(SIGSEGV
, tsk
);
295 handle_vm86_fault((struct kernel_vm86_regs
*) regs
, error_code
);
300 if (fixup_exception(regs
))
303 tsk
->thread
.error_code
= error_code
;
304 tsk
->thread
.trap_no
= 13;
305 if (notify_die(DIE_GPF
, "general protection fault", regs
,
306 error_code
, 13, SIGSEGV
) == NOTIFY_STOP
)
308 die("general protection fault", regs
, error_code
);
311 static int __init
setup_unknown_nmi_panic(char *str
)
313 unknown_nmi_panic
= 1;
316 __setup("unknown_nmi_panic", setup_unknown_nmi_panic
);
318 static notrace __kprobes
void
319 pci_serr_error(unsigned char reason
, struct pt_regs
*regs
)
321 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
322 reason
, smp_processor_id());
325 * On some machines, PCI SERR line is used to report memory
326 * errors. EDAC makes use of it.
328 #if defined(CONFIG_EDAC)
329 if (edac_handler_set()) {
330 edac_atomic_assert_error();
335 if (panic_on_unrecovered_nmi
)
336 panic("NMI: Not continuing");
338 pr_emerg("Dazed and confused, but trying to continue\n");
340 /* Clear and disable the PCI SERR error line. */
341 reason
= (reason
& NMI_REASON_CLEAR_MASK
) | NMI_REASON_CLEAR_SERR
;
342 outb(reason
, NMI_REASON_PORT
);
345 static notrace __kprobes
void
346 io_check_error(unsigned char reason
, struct pt_regs
*regs
)
351 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
352 reason
, smp_processor_id());
353 show_registers(regs
);
356 panic("NMI IOCK error: Not continuing");
358 /* Re-enable the IOCK line, wait for a few seconds */
359 reason
= (reason
& NMI_REASON_CLEAR_MASK
) | NMI_REASON_CLEAR_IOCHK
;
360 outb(reason
, NMI_REASON_PORT
);
364 touch_nmi_watchdog();
368 reason
&= ~NMI_REASON_CLEAR_IOCHK
;
369 outb(reason
, NMI_REASON_PORT
);
372 static notrace __kprobes
void
373 unknown_nmi_error(unsigned char reason
, struct pt_regs
*regs
)
375 if (notify_die(DIE_NMIUNKNOWN
, "nmi", regs
, reason
, 2, SIGINT
) ==
380 * Might actually be able to figure out what the guilty party
388 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
389 reason
, smp_processor_id());
391 pr_emerg("Do you have a strange power saving mode enabled?\n");
392 if (unknown_nmi_panic
|| panic_on_unrecovered_nmi
)
393 panic("NMI: Not continuing");
395 pr_emerg("Dazed and confused, but trying to continue\n");
398 static notrace __kprobes
void default_do_nmi(struct pt_regs
*regs
)
400 unsigned char reason
= 0;
403 * CPU-specific NMI must be processed before non-CPU-specific
404 * NMI, otherwise we may lose it, because the CPU-specific
405 * NMI can not be detected/processed on other CPUs.
407 if (notify_die(DIE_NMI
, "nmi", regs
, 0, 2, SIGINT
) == NOTIFY_STOP
)
410 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
411 raw_spin_lock(&nmi_reason_lock
);
412 reason
= get_nmi_reason();
414 if (reason
& NMI_REASON_MASK
) {
415 if (reason
& NMI_REASON_SERR
)
416 pci_serr_error(reason
, regs
);
417 else if (reason
& NMI_REASON_IOCHK
)
418 io_check_error(reason
, regs
);
421 * Reassert NMI in case it became active
422 * meanwhile as it's edge-triggered:
426 raw_spin_unlock(&nmi_reason_lock
);
429 raw_spin_unlock(&nmi_reason_lock
);
431 unknown_nmi_error(reason
, regs
);
434 dotraplinkage notrace __kprobes
void
435 do_nmi(struct pt_regs
*regs
, long error_code
)
438 trace_irq_vector_entry(NMI_VECTOR
);
440 inc_irq_stat(__nmi_count
);
443 default_do_nmi(regs
);
445 trace_irq_vector_exit(NMI_VECTOR
);
454 void restart_nmi(void)
459 /* May run on IST stack. */
460 dotraplinkage
void __kprobes
do_int3(struct pt_regs
*regs
, long error_code
)
462 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
463 if (kgdb_ll_trap(DIE_INT3
, "int3", regs
, error_code
, 3, SIGTRAP
)
466 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
467 #ifdef CONFIG_KPROBES
468 if (notify_die(DIE_INT3
, "int3", regs
, error_code
, 3, SIGTRAP
)
472 if (notify_die(DIE_TRAP
, "int3", regs
, error_code
, 3, SIGTRAP
)
477 preempt_conditional_sti(regs
);
478 do_trap(3, SIGTRAP
, "int3", regs
, error_code
, NULL
);
479 preempt_conditional_cli(regs
);
484 * Help handler running on IST stack to switch back to user stack
485 * for scheduling or signal handling. The actual stack switch is done in
488 asmlinkage __kprobes
struct pt_regs
*sync_regs(struct pt_regs
*eregs
)
490 struct pt_regs
*regs
= eregs
;
491 /* Did already sync */
492 if (eregs
== (struct pt_regs
*)eregs
->sp
)
494 /* Exception from user space */
495 else if (user_mode(eregs
))
496 regs
= task_pt_regs(current
);
498 * Exception from kernel and interrupts are enabled. Move to
499 * kernel process stack.
501 else if (eregs
->flags
& X86_EFLAGS_IF
)
502 regs
= (struct pt_regs
*)(eregs
->sp
-= sizeof(struct pt_regs
));
510 * Our handling of the processor debug registers is non-trivial.
511 * We do not clear them on entry and exit from the kernel. Therefore
512 * it is possible to get a watchpoint trap here from inside the kernel.
513 * However, the code in ./ptrace.c has ensured that the user can
514 * only set watchpoints on userspace addresses. Therefore the in-kernel
515 * watchpoint trap can only occur in code which is reading/writing
516 * from user space. Such code must not hold kernel locks (since it
517 * can equally take a page fault), therefore it is safe to call
518 * force_sig_info even though that claims and releases locks.
520 * Code in ./signal.c ensures that the debug control register
521 * is restored before we deliver any signal, and therefore that
522 * user code runs with the correct debug control register even though
525 * Being careful here means that we don't have to be as careful in a
526 * lot of more complicated places (task switching can be a bit lazy
527 * about restoring all the debug state, and ptrace doesn't have to
528 * find every occurrence of the TF bit that could be saved away even
531 * May run on IST stack.
533 dotraplinkage
void __kprobes
do_debug(struct pt_regs
*regs
, long error_code
)
535 struct task_struct
*tsk
= current
;
540 get_debugreg(dr6
, 6);
542 /* Filter out all the reserved bits which are preset to 1 */
543 dr6
&= ~DR6_RESERVED
;
546 * If dr6 has no reason to give us about the origin of this trap,
547 * then it's very likely the result of an icebp/int01 trap.
548 * User wants a sigtrap for that.
550 if (!dr6
&& user_mode(regs
))
553 /* Catch kmemcheck conditions first of all! */
554 if ((dr6
& DR_STEP
) && kmemcheck_trap(regs
))
557 /* DR6 may or may not be cleared by the CPU */
561 * The processor cleared BTF, so don't mark that we need it set.
563 clear_tsk_thread_flag(tsk
, TIF_BLOCKSTEP
);
565 /* Store the virtualized DR6 value */
566 tsk
->thread
.debugreg6
= dr6
;
568 if (notify_die(DIE_DEBUG
, "debug", regs
, PTR_ERR(&dr6
), error_code
,
569 SIGTRAP
) == NOTIFY_STOP
)
572 /* It's safe to allow irq's after DR6 has been saved */
573 preempt_conditional_sti(regs
);
575 if (regs
->flags
& X86_VM_MASK
) {
576 handle_vm86_trap((struct kernel_vm86_regs
*) regs
,
578 preempt_conditional_cli(regs
);
583 * Single-stepping through system calls: ignore any exceptions in
584 * kernel space, but re-enable TF when returning to user mode.
586 * We already checked v86 mode above, so we can check for kernel mode
587 * by just checking the CPL of CS.
589 if ((dr6
& DR_STEP
) && !user_mode(regs
)) {
590 tsk
->thread
.debugreg6
&= ~DR_STEP
;
591 set_tsk_thread_flag(tsk
, TIF_SINGLESTEP
);
592 regs
->flags
&= ~X86_EFLAGS_TF
;
594 si_code
= get_si_code(tsk
->thread
.debugreg6
);
595 if (tsk
->thread
.debugreg6
& (DR_STEP
| DR_TRAP_BITS
) || user_icebp
)
596 send_sigtrap(tsk
, regs
, error_code
, si_code
);
597 preempt_conditional_cli(regs
);
603 * Note that we play around with the 'TS' bit in an attempt to get
604 * the correct behaviour even in the presence of the asynchronous
607 void math_error(struct pt_regs
*regs
, int error_code
, int trapnr
)
609 struct task_struct
*task
= current
;
612 char *str
= (trapnr
== 16) ? "fpu exception" : "simd exception";
614 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, trapnr
, SIGFPE
) == NOTIFY_STOP
)
616 conditional_sti(regs
);
618 if (!user_mode_vm(regs
))
620 if (!fixup_exception(regs
)) {
621 task
->thread
.error_code
= error_code
;
622 task
->thread
.trap_no
= trapnr
;
623 die(str
, regs
, error_code
);
629 * Save the info for the exception handler and clear the error.
632 task
->thread
.trap_no
= trapnr
;
633 task
->thread
.error_code
= error_code
;
634 info
.si_signo
= SIGFPE
;
636 info
.si_addr
= (void __user
*)regs
->ip
;
638 unsigned short cwd
, swd
;
640 * (~cwd & swd) will mask out exceptions that are not set to unmasked
641 * status. 0x3f is the exception bits in these regs, 0x200 is the
642 * C1 reg you need in case of a stack fault, 0x040 is the stack
643 * fault bit. We should only be taking one exception at a time,
644 * so if this combination doesn't produce any single exception,
645 * then we have a bad program that isn't synchronizing its FPU usage
646 * and it will suffer the consequences since we won't be able to
647 * fully reproduce the context of the exception
649 cwd
= get_fpu_cwd(task
);
650 swd
= get_fpu_swd(task
);
655 * The SIMD FPU exceptions are handled a little differently, as there
656 * is only a single status/control register. Thus, to determine which
657 * unmasked exception was caught we must mask the exception mask bits
658 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
660 unsigned short mxcsr
= get_fpu_mxcsr(task
);
661 err
= ~(mxcsr
>> 7) & mxcsr
;
664 if (err
& 0x001) { /* Invalid op */
666 * swd & 0x240 == 0x040: Stack Underflow
667 * swd & 0x240 == 0x240: Stack Overflow
668 * User must clear the SF bit (0x40) if set
670 info
.si_code
= FPE_FLTINV
;
671 } else if (err
& 0x004) { /* Divide by Zero */
672 info
.si_code
= FPE_FLTDIV
;
673 } else if (err
& 0x008) { /* Overflow */
674 info
.si_code
= FPE_FLTOVF
;
675 } else if (err
& 0x012) { /* Denormal, Underflow */
676 info
.si_code
= FPE_FLTUND
;
677 } else if (err
& 0x020) { /* Precision */
678 info
.si_code
= FPE_FLTRES
;
681 * If we're using IRQ 13, or supposedly even some trap 16
682 * implementations, it's possible we get a spurious trap...
684 return; /* Spurious trap, no error */
686 force_sig_info(SIGFPE
, &info
, task
);
689 dotraplinkage
void do_coprocessor_error(struct pt_regs
*regs
, long error_code
)
695 math_error(regs
, error_code
, 16);
699 do_simd_coprocessor_error(struct pt_regs
*regs
, long error_code
)
701 math_error(regs
, error_code
, 19);
705 do_spurious_interrupt_bug(struct pt_regs
*regs
, long error_code
)
707 conditional_sti(regs
);
709 /* No need to warn about this any longer. */
710 printk(KERN_INFO
"Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
714 asmlinkage
void __attribute__((weak
)) smp_thermal_interrupt(void)
718 asmlinkage
void __attribute__((weak
)) smp_threshold_interrupt(void)
723 * __math_state_restore assumes that cr0.TS is already clear and the
724 * fpu state is all ready for use. Used during context switch.
726 void __math_state_restore(void)
728 struct thread_info
*thread
= current_thread_info();
729 struct task_struct
*tsk
= thread
->task
;
732 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
734 if (unlikely(restore_fpu_checking(tsk
))) {
736 force_sig(SIGSEGV
, tsk
);
740 thread
->status
|= TS_USEDFPU
; /* So we fnsave on switch_to() */
745 * 'math_state_restore()' saves the current math information in the
746 * old math state array, and gets the new ones from the current task
748 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
749 * Don't touch unless you *really* know how it works.
751 * Must be called with kernel preemption disabled (in this case,
752 * local interrupts are disabled at the call-site in entry.S).
754 asmlinkage
void math_state_restore(void)
756 struct thread_info
*thread
= current_thread_info();
757 struct task_struct
*tsk
= thread
->task
;
759 if (!tsk_used_math(tsk
)) {
762 * does a slab alloc which can sleep
768 do_group_exit(SIGKILL
);
774 clts(); /* Allow maths ops (or we recurse) */
776 __math_state_restore();
778 EXPORT_SYMBOL_GPL(math_state_restore
);
780 dotraplinkage
void __kprobes
781 do_device_not_available(struct pt_regs
*regs
, long error_code
)
783 #ifdef CONFIG_MATH_EMULATION
784 if (read_cr0() & X86_CR0_EM
) {
785 struct math_emu_info info
= { };
787 conditional_sti(regs
);
794 math_state_restore(); /* interrupts still off */
796 conditional_sti(regs
);
801 dotraplinkage
void do_iret_error(struct pt_regs
*regs
, long error_code
)
806 info
.si_signo
= SIGILL
;
808 info
.si_code
= ILL_BADSTK
;
810 if (notify_die(DIE_TRAP
, "iret exception",
811 regs
, error_code
, 32, SIGILL
) == NOTIFY_STOP
)
813 do_trap(32, SIGILL
, "iret exception", regs
, error_code
, &info
);
817 /* Set of traps needed for early debugging. */
818 void __init
early_trap_init(void)
820 set_intr_gate_ist(1, &debug
, DEBUG_STACK
);
821 /* int3 can be called from all */
822 set_system_intr_gate_ist(3, &int3
, DEBUG_STACK
);
823 set_intr_gate(14, &page_fault
);
824 load_idt(&idt_descr
);
827 void __init
trap_init(void)
832 void __iomem
*p
= early_ioremap(0x0FFFD9, 4);
834 if (readl(p
) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
839 set_intr_gate(0, ÷_error
);
840 set_intr_gate_ist(2, &nmi
, NMI_STACK
);
841 /* int4 can be called from all */
842 set_system_intr_gate(4, &overflow
);
843 set_intr_gate(5, &bounds
);
844 set_intr_gate(6, &invalid_op
);
845 set_intr_gate(7, &device_not_available
);
847 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS
);
849 set_intr_gate_ist(8, &double_fault
, DOUBLEFAULT_STACK
);
851 set_intr_gate(9, &coprocessor_segment_overrun
);
852 set_intr_gate(10, &invalid_TSS
);
853 set_intr_gate(11, &segment_not_present
);
854 set_intr_gate_ist(12, &stack_segment
, STACKFAULT_STACK
);
855 set_intr_gate(13, &general_protection
);
856 set_intr_gate(15, &spurious_interrupt_bug
);
857 set_intr_gate(16, &coprocessor_error
);
858 set_intr_gate(17, &alignment_check
);
859 #ifdef CONFIG_X86_MCE
860 set_intr_gate_ist(18, &machine_check
, MCE_STACK
);
862 set_intr_gate(19, &simd_coprocessor_error
);
864 /* Reserve all the builtin and the syscall vector: */
865 for (i
= 0; i
< FIRST_EXTERNAL_VECTOR
; i
++)
866 set_bit(i
, used_vectors
);
868 #ifdef CONFIG_IA32_EMULATION
869 set_system_intr_gate(IA32_SYSCALL_VECTOR
, ia32_syscall
);
870 set_bit(IA32_SYSCALL_VECTOR
, used_vectors
);
874 set_system_trap_gate(SYSCALL_VECTOR
, &system_call
);
875 set_bit(SYSCALL_VECTOR
, used_vectors
);
879 * Should be a barrier for any external CPU state:
883 x86_init
.irqs
.trap_init();