Merge branch 'akpm'
[linux-2.6/next.git] / arch / x86 / kernel / traps.c
blob1286877967e9409a91ecb04a719a86cee2b9badb
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * Handle hardware traps and faults.
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/uaccess.h>
17 #include <linux/kdebug.h>
18 #include <linux/kgdb.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/ptrace.h>
22 #include <linux/string.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/kexec.h>
26 #include <linux/sched.h>
27 #include <linux/timer.h>
28 #include <linux/init.h>
29 #include <linux/bug.h>
30 #include <linux/nmi.h>
31 #include <linux/mm.h>
32 #include <linux/smp.h>
33 #include <linux/io.h>
34 #include <trace/events/irq_vectors.h>
36 #ifdef CONFIG_EISA
37 #include <linux/ioport.h>
38 #include <linux/eisa.h>
39 #endif
41 #ifdef CONFIG_MCA
42 #include <linux/mca.h>
43 #endif
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/system.h>
55 #include <asm/traps.h>
56 #include <asm/desc.h>
57 #include <asm/i387.h>
58 #include <asm/mce.h>
60 #include <asm/mach_traps.h>
62 #ifdef CONFIG_X86_64
63 #include <asm/x86_init.h>
64 #include <asm/pgalloc.h>
65 #include <asm/proto.h>
66 #else
67 #include <asm/processor-flags.h>
68 #include <asm/setup.h>
70 asmlinkage int system_call(void);
72 /* Do we ignore FPU interrupts ? */
73 char ignore_fpu_irq;
76 * The IDT has to be page-aligned to simplify the Pentium
77 * F0 0F bug workaround.
79 gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
80 #endif
82 DECLARE_BITMAP(used_vectors, NR_VECTORS);
83 EXPORT_SYMBOL_GPL(used_vectors);
85 static int ignore_nmis;
87 int unknown_nmi_panic;
89 * Prevent NMI reason port (0x61) being accessed simultaneously, can
90 * only be used in NMI handler.
92 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
94 static inline void conditional_sti(struct pt_regs *regs)
96 if (regs->flags & X86_EFLAGS_IF)
97 local_irq_enable();
100 static inline void preempt_conditional_sti(struct pt_regs *regs)
102 inc_preempt_count();
103 if (regs->flags & X86_EFLAGS_IF)
104 local_irq_enable();
107 static inline void conditional_cli(struct pt_regs *regs)
109 if (regs->flags & X86_EFLAGS_IF)
110 local_irq_disable();
113 static inline void preempt_conditional_cli(struct pt_regs *regs)
115 if (regs->flags & X86_EFLAGS_IF)
116 local_irq_disable();
117 dec_preempt_count();
120 static void __kprobes
121 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
122 long error_code, siginfo_t *info)
124 struct task_struct *tsk = current;
126 #ifdef CONFIG_X86_32
127 if (regs->flags & X86_VM_MASK) {
129 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
130 * On nmi (interrupt 2), do_trap should not be called.
132 if (trapnr < 6)
133 goto vm86_trap;
134 goto trap_signal;
136 #endif
138 if (!user_mode(regs))
139 goto kernel_trap;
141 #ifdef CONFIG_X86_32
142 trap_signal:
143 #endif
145 * We want error_code and trap_no set for userspace faults and
146 * kernelspace faults which result in die(), but not
147 * kernelspace faults which are fixed up. die() gives the
148 * process no chance to handle the signal and notice the
149 * kernel fault information, so that won't result in polluting
150 * the information about previously queued, but not yet
151 * delivered, faults. See also do_general_protection below.
153 tsk->thread.error_code = error_code;
154 tsk->thread.trap_no = trapnr;
156 #ifdef CONFIG_X86_64
157 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
158 printk_ratelimit()) {
159 printk(KERN_INFO
160 "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
161 tsk->comm, tsk->pid, str,
162 regs->ip, regs->sp, error_code);
163 print_vma_addr(" in ", regs->ip);
164 printk("\n");
166 #endif
168 if (info)
169 force_sig_info(signr, info, tsk);
170 else
171 force_sig(signr, tsk);
172 return;
174 kernel_trap:
175 if (!fixup_exception(regs)) {
176 tsk->thread.error_code = error_code;
177 tsk->thread.trap_no = trapnr;
178 die(str, regs, error_code);
180 return;
182 #ifdef CONFIG_X86_32
183 vm86_trap:
184 if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
185 error_code, trapnr))
186 goto trap_signal;
187 return;
188 #endif
191 #define DO_ERROR(trapnr, signr, str, name) \
192 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
194 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
195 == NOTIFY_STOP) \
196 return; \
197 conditional_sti(regs); \
198 do_trap(trapnr, signr, str, regs, error_code, NULL); \
201 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
202 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
204 siginfo_t info; \
205 info.si_signo = signr; \
206 info.si_errno = 0; \
207 info.si_code = sicode; \
208 info.si_addr = (void __user *)siaddr; \
209 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
210 == NOTIFY_STOP) \
211 return; \
212 conditional_sti(regs); \
213 do_trap(trapnr, signr, str, regs, error_code, &info); \
216 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
217 DO_ERROR(4, SIGSEGV, "overflow", overflow)
218 DO_ERROR(5, SIGSEGV, "bounds", bounds)
219 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
220 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
221 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
222 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
223 #ifdef CONFIG_X86_32
224 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
225 #endif
226 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
228 #ifdef CONFIG_X86_64
229 /* Runs on IST stack */
230 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
232 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
233 12, SIGBUS) == NOTIFY_STOP)
234 return;
235 preempt_conditional_sti(regs);
236 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
237 preempt_conditional_cli(regs);
240 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
242 static const char str[] = "double fault";
243 struct task_struct *tsk = current;
245 /* Return not checked because double check cannot be ignored */
246 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
248 tsk->thread.error_code = error_code;
249 tsk->thread.trap_no = 8;
252 * This is always a kernel trap and never fixable (and thus must
253 * never return).
255 for (;;)
256 die(str, regs, error_code);
258 #endif
260 dotraplinkage void __kprobes
261 do_general_protection(struct pt_regs *regs, long error_code)
263 struct task_struct *tsk;
265 conditional_sti(regs);
267 #ifdef CONFIG_X86_32
268 if (regs->flags & X86_VM_MASK)
269 goto gp_in_vm86;
270 #endif
272 tsk = current;
273 if (!user_mode(regs))
274 goto gp_in_kernel;
276 tsk->thread.error_code = error_code;
277 tsk->thread.trap_no = 13;
279 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
280 printk_ratelimit()) {
281 printk(KERN_INFO
282 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
283 tsk->comm, task_pid_nr(tsk),
284 regs->ip, regs->sp, error_code);
285 print_vma_addr(" in ", regs->ip);
286 printk("\n");
289 force_sig(SIGSEGV, tsk);
290 return;
292 #ifdef CONFIG_X86_32
293 gp_in_vm86:
294 local_irq_enable();
295 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
296 return;
297 #endif
299 gp_in_kernel:
300 if (fixup_exception(regs))
301 return;
303 tsk->thread.error_code = error_code;
304 tsk->thread.trap_no = 13;
305 if (notify_die(DIE_GPF, "general protection fault", regs,
306 error_code, 13, SIGSEGV) == NOTIFY_STOP)
307 return;
308 die("general protection fault", regs, error_code);
311 static int __init setup_unknown_nmi_panic(char *str)
313 unknown_nmi_panic = 1;
314 return 1;
316 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
318 static notrace __kprobes void
319 pci_serr_error(unsigned char reason, struct pt_regs *regs)
321 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
322 reason, smp_processor_id());
325 * On some machines, PCI SERR line is used to report memory
326 * errors. EDAC makes use of it.
328 #if defined(CONFIG_EDAC)
329 if (edac_handler_set()) {
330 edac_atomic_assert_error();
331 return;
333 #endif
335 if (panic_on_unrecovered_nmi)
336 panic("NMI: Not continuing");
338 pr_emerg("Dazed and confused, but trying to continue\n");
340 /* Clear and disable the PCI SERR error line. */
341 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
342 outb(reason, NMI_REASON_PORT);
345 static notrace __kprobes void
346 io_check_error(unsigned char reason, struct pt_regs *regs)
348 unsigned long i;
350 pr_emerg(
351 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
352 reason, smp_processor_id());
353 show_registers(regs);
355 if (panic_on_io_nmi)
356 panic("NMI IOCK error: Not continuing");
358 /* Re-enable the IOCK line, wait for a few seconds */
359 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
360 outb(reason, NMI_REASON_PORT);
362 i = 20000;
363 while (--i) {
364 touch_nmi_watchdog();
365 udelay(100);
368 reason &= ~NMI_REASON_CLEAR_IOCHK;
369 outb(reason, NMI_REASON_PORT);
372 static notrace __kprobes void
373 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
375 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) ==
376 NOTIFY_STOP)
377 return;
378 #ifdef CONFIG_MCA
380 * Might actually be able to figure out what the guilty party
381 * is:
383 if (MCA_bus) {
384 mca_handle_nmi();
385 return;
387 #endif
388 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
389 reason, smp_processor_id());
391 pr_emerg("Do you have a strange power saving mode enabled?\n");
392 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
393 panic("NMI: Not continuing");
395 pr_emerg("Dazed and confused, but trying to continue\n");
398 static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
400 unsigned char reason = 0;
403 * CPU-specific NMI must be processed before non-CPU-specific
404 * NMI, otherwise we may lose it, because the CPU-specific
405 * NMI can not be detected/processed on other CPUs.
407 if (notify_die(DIE_NMI, "nmi", regs, 0, 2, SIGINT) == NOTIFY_STOP)
408 return;
410 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
411 raw_spin_lock(&nmi_reason_lock);
412 reason = get_nmi_reason();
414 if (reason & NMI_REASON_MASK) {
415 if (reason & NMI_REASON_SERR)
416 pci_serr_error(reason, regs);
417 else if (reason & NMI_REASON_IOCHK)
418 io_check_error(reason, regs);
419 #ifdef CONFIG_X86_32
421 * Reassert NMI in case it became active
422 * meanwhile as it's edge-triggered:
424 reassert_nmi();
425 #endif
426 raw_spin_unlock(&nmi_reason_lock);
427 return;
429 raw_spin_unlock(&nmi_reason_lock);
431 unknown_nmi_error(reason, regs);
434 dotraplinkage notrace __kprobes void
435 do_nmi(struct pt_regs *regs, long error_code)
437 nmi_enter();
438 trace_irq_vector_entry(NMI_VECTOR);
440 inc_irq_stat(__nmi_count);
442 if (!ignore_nmis)
443 default_do_nmi(regs);
445 trace_irq_vector_exit(NMI_VECTOR);
446 nmi_exit();
449 void stop_nmi(void)
451 ignore_nmis++;
454 void restart_nmi(void)
456 ignore_nmis--;
459 /* May run on IST stack. */
460 dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
462 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
463 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
464 == NOTIFY_STOP)
465 return;
466 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
467 #ifdef CONFIG_KPROBES
468 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
469 == NOTIFY_STOP)
470 return;
471 #else
472 if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP)
473 == NOTIFY_STOP)
474 return;
475 #endif
477 preempt_conditional_sti(regs);
478 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
479 preempt_conditional_cli(regs);
482 #ifdef CONFIG_X86_64
484 * Help handler running on IST stack to switch back to user stack
485 * for scheduling or signal handling. The actual stack switch is done in
486 * entry.S
488 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
490 struct pt_regs *regs = eregs;
491 /* Did already sync */
492 if (eregs == (struct pt_regs *)eregs->sp)
494 /* Exception from user space */
495 else if (user_mode(eregs))
496 regs = task_pt_regs(current);
498 * Exception from kernel and interrupts are enabled. Move to
499 * kernel process stack.
501 else if (eregs->flags & X86_EFLAGS_IF)
502 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
503 if (eregs != regs)
504 *regs = *eregs;
505 return regs;
507 #endif
510 * Our handling of the processor debug registers is non-trivial.
511 * We do not clear them on entry and exit from the kernel. Therefore
512 * it is possible to get a watchpoint trap here from inside the kernel.
513 * However, the code in ./ptrace.c has ensured that the user can
514 * only set watchpoints on userspace addresses. Therefore the in-kernel
515 * watchpoint trap can only occur in code which is reading/writing
516 * from user space. Such code must not hold kernel locks (since it
517 * can equally take a page fault), therefore it is safe to call
518 * force_sig_info even though that claims and releases locks.
520 * Code in ./signal.c ensures that the debug control register
521 * is restored before we deliver any signal, and therefore that
522 * user code runs with the correct debug control register even though
523 * we clear it here.
525 * Being careful here means that we don't have to be as careful in a
526 * lot of more complicated places (task switching can be a bit lazy
527 * about restoring all the debug state, and ptrace doesn't have to
528 * find every occurrence of the TF bit that could be saved away even
529 * by user code)
531 * May run on IST stack.
533 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
535 struct task_struct *tsk = current;
536 int user_icebp = 0;
537 unsigned long dr6;
538 int si_code;
540 get_debugreg(dr6, 6);
542 /* Filter out all the reserved bits which are preset to 1 */
543 dr6 &= ~DR6_RESERVED;
546 * If dr6 has no reason to give us about the origin of this trap,
547 * then it's very likely the result of an icebp/int01 trap.
548 * User wants a sigtrap for that.
550 if (!dr6 && user_mode(regs))
551 user_icebp = 1;
553 /* Catch kmemcheck conditions first of all! */
554 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
555 return;
557 /* DR6 may or may not be cleared by the CPU */
558 set_debugreg(0, 6);
561 * The processor cleared BTF, so don't mark that we need it set.
563 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
565 /* Store the virtualized DR6 value */
566 tsk->thread.debugreg6 = dr6;
568 if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
569 SIGTRAP) == NOTIFY_STOP)
570 return;
572 /* It's safe to allow irq's after DR6 has been saved */
573 preempt_conditional_sti(regs);
575 if (regs->flags & X86_VM_MASK) {
576 handle_vm86_trap((struct kernel_vm86_regs *) regs,
577 error_code, 1);
578 preempt_conditional_cli(regs);
579 return;
583 * Single-stepping through system calls: ignore any exceptions in
584 * kernel space, but re-enable TF when returning to user mode.
586 * We already checked v86 mode above, so we can check for kernel mode
587 * by just checking the CPL of CS.
589 if ((dr6 & DR_STEP) && !user_mode(regs)) {
590 tsk->thread.debugreg6 &= ~DR_STEP;
591 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
592 regs->flags &= ~X86_EFLAGS_TF;
594 si_code = get_si_code(tsk->thread.debugreg6);
595 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
596 send_sigtrap(tsk, regs, error_code, si_code);
597 preempt_conditional_cli(regs);
599 return;
603 * Note that we play around with the 'TS' bit in an attempt to get
604 * the correct behaviour even in the presence of the asynchronous
605 * IRQ13 behaviour
607 void math_error(struct pt_regs *regs, int error_code, int trapnr)
609 struct task_struct *task = current;
610 siginfo_t info;
611 unsigned short err;
612 char *str = (trapnr == 16) ? "fpu exception" : "simd exception";
614 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
615 return;
616 conditional_sti(regs);
618 if (!user_mode_vm(regs))
620 if (!fixup_exception(regs)) {
621 task->thread.error_code = error_code;
622 task->thread.trap_no = trapnr;
623 die(str, regs, error_code);
625 return;
629 * Save the info for the exception handler and clear the error.
631 save_init_fpu(task);
632 task->thread.trap_no = trapnr;
633 task->thread.error_code = error_code;
634 info.si_signo = SIGFPE;
635 info.si_errno = 0;
636 info.si_addr = (void __user *)regs->ip;
637 if (trapnr == 16) {
638 unsigned short cwd, swd;
640 * (~cwd & swd) will mask out exceptions that are not set to unmasked
641 * status. 0x3f is the exception bits in these regs, 0x200 is the
642 * C1 reg you need in case of a stack fault, 0x040 is the stack
643 * fault bit. We should only be taking one exception at a time,
644 * so if this combination doesn't produce any single exception,
645 * then we have a bad program that isn't synchronizing its FPU usage
646 * and it will suffer the consequences since we won't be able to
647 * fully reproduce the context of the exception
649 cwd = get_fpu_cwd(task);
650 swd = get_fpu_swd(task);
652 err = swd & ~cwd;
653 } else {
655 * The SIMD FPU exceptions are handled a little differently, as there
656 * is only a single status/control register. Thus, to determine which
657 * unmasked exception was caught we must mask the exception mask bits
658 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
660 unsigned short mxcsr = get_fpu_mxcsr(task);
661 err = ~(mxcsr >> 7) & mxcsr;
664 if (err & 0x001) { /* Invalid op */
666 * swd & 0x240 == 0x040: Stack Underflow
667 * swd & 0x240 == 0x240: Stack Overflow
668 * User must clear the SF bit (0x40) if set
670 info.si_code = FPE_FLTINV;
671 } else if (err & 0x004) { /* Divide by Zero */
672 info.si_code = FPE_FLTDIV;
673 } else if (err & 0x008) { /* Overflow */
674 info.si_code = FPE_FLTOVF;
675 } else if (err & 0x012) { /* Denormal, Underflow */
676 info.si_code = FPE_FLTUND;
677 } else if (err & 0x020) { /* Precision */
678 info.si_code = FPE_FLTRES;
679 } else {
681 * If we're using IRQ 13, or supposedly even some trap 16
682 * implementations, it's possible we get a spurious trap...
684 return; /* Spurious trap, no error */
686 force_sig_info(SIGFPE, &info, task);
689 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
691 #ifdef CONFIG_X86_32
692 ignore_fpu_irq = 1;
693 #endif
695 math_error(regs, error_code, 16);
698 dotraplinkage void
699 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
701 math_error(regs, error_code, 19);
704 dotraplinkage void
705 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
707 conditional_sti(regs);
708 #if 0
709 /* No need to warn about this any longer. */
710 printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
711 #endif
714 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
718 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
723 * __math_state_restore assumes that cr0.TS is already clear and the
724 * fpu state is all ready for use. Used during context switch.
726 void __math_state_restore(void)
728 struct thread_info *thread = current_thread_info();
729 struct task_struct *tsk = thread->task;
732 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
734 if (unlikely(restore_fpu_checking(tsk))) {
735 stts();
736 force_sig(SIGSEGV, tsk);
737 return;
740 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
741 tsk->fpu_counter++;
745 * 'math_state_restore()' saves the current math information in the
746 * old math state array, and gets the new ones from the current task
748 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
749 * Don't touch unless you *really* know how it works.
751 * Must be called with kernel preemption disabled (in this case,
752 * local interrupts are disabled at the call-site in entry.S).
754 asmlinkage void math_state_restore(void)
756 struct thread_info *thread = current_thread_info();
757 struct task_struct *tsk = thread->task;
759 if (!tsk_used_math(tsk)) {
760 local_irq_enable();
762 * does a slab alloc which can sleep
764 if (init_fpu(tsk)) {
766 * ran out of memory!
768 do_group_exit(SIGKILL);
769 return;
771 local_irq_disable();
774 clts(); /* Allow maths ops (or we recurse) */
776 __math_state_restore();
778 EXPORT_SYMBOL_GPL(math_state_restore);
780 dotraplinkage void __kprobes
781 do_device_not_available(struct pt_regs *regs, long error_code)
783 #ifdef CONFIG_MATH_EMULATION
784 if (read_cr0() & X86_CR0_EM) {
785 struct math_emu_info info = { };
787 conditional_sti(regs);
789 info.regs = regs;
790 math_emulate(&info);
791 return;
793 #endif
794 math_state_restore(); /* interrupts still off */
795 #ifdef CONFIG_X86_32
796 conditional_sti(regs);
797 #endif
800 #ifdef CONFIG_X86_32
801 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
803 siginfo_t info;
804 local_irq_enable();
806 info.si_signo = SIGILL;
807 info.si_errno = 0;
808 info.si_code = ILL_BADSTK;
809 info.si_addr = NULL;
810 if (notify_die(DIE_TRAP, "iret exception",
811 regs, error_code, 32, SIGILL) == NOTIFY_STOP)
812 return;
813 do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
815 #endif
817 /* Set of traps needed for early debugging. */
818 void __init early_trap_init(void)
820 set_intr_gate_ist(1, &debug, DEBUG_STACK);
821 /* int3 can be called from all */
822 set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
823 set_intr_gate(14, &page_fault);
824 load_idt(&idt_descr);
827 void __init trap_init(void)
829 int i;
831 #ifdef CONFIG_EISA
832 void __iomem *p = early_ioremap(0x0FFFD9, 4);
834 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
835 EISA_bus = 1;
836 early_iounmap(p, 4);
837 #endif
839 set_intr_gate(0, &divide_error);
840 set_intr_gate_ist(2, &nmi, NMI_STACK);
841 /* int4 can be called from all */
842 set_system_intr_gate(4, &overflow);
843 set_intr_gate(5, &bounds);
844 set_intr_gate(6, &invalid_op);
845 set_intr_gate(7, &device_not_available);
846 #ifdef CONFIG_X86_32
847 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
848 #else
849 set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
850 #endif
851 set_intr_gate(9, &coprocessor_segment_overrun);
852 set_intr_gate(10, &invalid_TSS);
853 set_intr_gate(11, &segment_not_present);
854 set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
855 set_intr_gate(13, &general_protection);
856 set_intr_gate(15, &spurious_interrupt_bug);
857 set_intr_gate(16, &coprocessor_error);
858 set_intr_gate(17, &alignment_check);
859 #ifdef CONFIG_X86_MCE
860 set_intr_gate_ist(18, &machine_check, MCE_STACK);
861 #endif
862 set_intr_gate(19, &simd_coprocessor_error);
864 /* Reserve all the builtin and the syscall vector: */
865 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
866 set_bit(i, used_vectors);
868 #ifdef CONFIG_IA32_EMULATION
869 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
870 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
871 #endif
873 #ifdef CONFIG_X86_32
874 set_system_trap_gate(SYSCALL_VECTOR, &system_call);
875 set_bit(SYSCALL_VECTOR, used_vectors);
876 #endif
879 * Should be a barrier for any external CPU state:
881 cpu_init();
883 x86_init.irqs.trap_init();