Merge branch 'akpm'
[linux-2.6/next.git] / arch / x86 / mm / fault.c
blobf2d4c9da97b4e54bb2bc79f454002ac7283819d5
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
17 #include <asm/traps.h> /* dotraplinkage, ... */
18 #include <asm/pgalloc.h> /* pgd_*(), ... */
19 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 #include <asm/fixmap.h> /* VSYSCALL_START */
23 * Page fault error code bits:
25 * bit 0 == 0: no page found 1: protection fault
26 * bit 1 == 0: read access 1: write access
27 * bit 2 == 0: kernel-mode access 1: user-mode access
28 * bit 3 == 1: use of reserved bit detected
29 * bit 4 == 1: fault was an instruction fetch
31 enum x86_pf_error_code {
33 PF_PROT = 1 << 0,
34 PF_WRITE = 1 << 1,
35 PF_USER = 1 << 2,
36 PF_RSVD = 1 << 3,
37 PF_INSTR = 1 << 4,
41 * Returns 0 if mmiotrace is disabled, or if the fault is not
42 * handled by mmiotrace:
44 static inline int __kprobes
45 kmmio_fault(struct pt_regs *regs, unsigned long addr)
47 if (unlikely(is_kmmio_active()))
48 if (kmmio_handler(regs, addr) == 1)
49 return -1;
50 return 0;
53 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
55 int ret = 0;
57 /* kprobe_running() needs smp_processor_id() */
58 if (kprobes_built_in() && !user_mode_vm(regs)) {
59 preempt_disable();
60 if (kprobe_running() && kprobe_fault_handler(regs, 14))
61 ret = 1;
62 preempt_enable();
65 return ret;
69 * Prefetch quirks:
71 * 32-bit mode:
73 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
74 * Check that here and ignore it.
76 * 64-bit mode:
78 * Sometimes the CPU reports invalid exceptions on prefetch.
79 * Check that here and ignore it.
81 * Opcode checker based on code by Richard Brunner.
83 static inline int
84 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
85 unsigned char opcode, int *prefetch)
87 unsigned char instr_hi = opcode & 0xf0;
88 unsigned char instr_lo = opcode & 0x0f;
90 switch (instr_hi) {
91 case 0x20:
92 case 0x30:
94 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
95 * In X86_64 long mode, the CPU will signal invalid
96 * opcode if some of these prefixes are present so
97 * X86_64 will never get here anyway
99 return ((instr_lo & 7) == 0x6);
100 #ifdef CONFIG_X86_64
101 case 0x40:
103 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
104 * Need to figure out under what instruction mode the
105 * instruction was issued. Could check the LDT for lm,
106 * but for now it's good enough to assume that long
107 * mode only uses well known segments or kernel.
109 return (!user_mode(regs) || user_64bit_mode(regs));
110 #endif
111 case 0x60:
112 /* 0x64 thru 0x67 are valid prefixes in all modes. */
113 return (instr_lo & 0xC) == 0x4;
114 case 0xF0:
115 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
116 return !instr_lo || (instr_lo>>1) == 1;
117 case 0x00:
118 /* Prefetch instruction is 0x0F0D or 0x0F18 */
119 if (probe_kernel_address(instr, opcode))
120 return 0;
122 *prefetch = (instr_lo == 0xF) &&
123 (opcode == 0x0D || opcode == 0x18);
124 return 0;
125 default:
126 return 0;
130 static int
131 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
133 unsigned char *max_instr;
134 unsigned char *instr;
135 int prefetch = 0;
138 * If it was a exec (instruction fetch) fault on NX page, then
139 * do not ignore the fault:
141 if (error_code & PF_INSTR)
142 return 0;
144 instr = (void *)convert_ip_to_linear(current, regs);
145 max_instr = instr + 15;
147 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
148 return 0;
150 while (instr < max_instr) {
151 unsigned char opcode;
153 if (probe_kernel_address(instr, opcode))
154 break;
156 instr++;
158 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
159 break;
161 return prefetch;
164 static void
165 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
166 struct task_struct *tsk, int fault)
168 unsigned lsb = 0;
169 siginfo_t info;
171 info.si_signo = si_signo;
172 info.si_errno = 0;
173 info.si_code = si_code;
174 info.si_addr = (void __user *)address;
175 if (fault & VM_FAULT_HWPOISON_LARGE)
176 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
177 if (fault & VM_FAULT_HWPOISON)
178 lsb = PAGE_SHIFT;
179 info.si_addr_lsb = lsb;
181 force_sig_info(si_signo, &info, tsk);
184 DEFINE_SPINLOCK(pgd_lock);
185 LIST_HEAD(pgd_list);
187 #ifdef CONFIG_X86_32
188 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
190 unsigned index = pgd_index(address);
191 pgd_t *pgd_k;
192 pud_t *pud, *pud_k;
193 pmd_t *pmd, *pmd_k;
195 pgd += index;
196 pgd_k = init_mm.pgd + index;
198 if (!pgd_present(*pgd_k))
199 return NULL;
202 * set_pgd(pgd, *pgd_k); here would be useless on PAE
203 * and redundant with the set_pmd() on non-PAE. As would
204 * set_pud.
206 pud = pud_offset(pgd, address);
207 pud_k = pud_offset(pgd_k, address);
208 if (!pud_present(*pud_k))
209 return NULL;
211 pmd = pmd_offset(pud, address);
212 pmd_k = pmd_offset(pud_k, address);
213 if (!pmd_present(*pmd_k))
214 return NULL;
216 if (!pmd_present(*pmd))
217 set_pmd(pmd, *pmd_k);
218 else
219 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
221 return pmd_k;
224 void vmalloc_sync_all(void)
226 unsigned long address;
228 if (SHARED_KERNEL_PMD)
229 return;
231 for (address = VMALLOC_START & PMD_MASK;
232 address >= TASK_SIZE && address < FIXADDR_TOP;
233 address += PMD_SIZE) {
234 struct page *page;
236 spin_lock(&pgd_lock);
237 list_for_each_entry(page, &pgd_list, lru) {
238 spinlock_t *pgt_lock;
239 pmd_t *ret;
241 /* the pgt_lock only for Xen */
242 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
244 spin_lock(pgt_lock);
245 ret = vmalloc_sync_one(page_address(page), address);
246 spin_unlock(pgt_lock);
248 if (!ret)
249 break;
251 spin_unlock(&pgd_lock);
256 * 32-bit:
258 * Handle a fault on the vmalloc or module mapping area
260 static noinline __kprobes int vmalloc_fault(unsigned long address)
262 unsigned long pgd_paddr;
263 pmd_t *pmd_k;
264 pte_t *pte_k;
266 /* Make sure we are in vmalloc area: */
267 if (!(address >= VMALLOC_START && address < VMALLOC_END))
268 return -1;
270 WARN_ON_ONCE(in_nmi());
273 * Synchronize this task's top level page-table
274 * with the 'reference' page table.
276 * Do _not_ use "current" here. We might be inside
277 * an interrupt in the middle of a task switch..
279 pgd_paddr = read_cr3();
280 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
281 if (!pmd_k)
282 return -1;
284 pte_k = pte_offset_kernel(pmd_k, address);
285 if (!pte_present(*pte_k))
286 return -1;
288 return 0;
292 * Did it hit the DOS screen memory VA from vm86 mode?
294 static inline void
295 check_v8086_mode(struct pt_regs *regs, unsigned long address,
296 struct task_struct *tsk)
298 unsigned long bit;
300 if (!v8086_mode(regs))
301 return;
303 bit = (address - 0xA0000) >> PAGE_SHIFT;
304 if (bit < 32)
305 tsk->thread.screen_bitmap |= 1 << bit;
308 static bool low_pfn(unsigned long pfn)
310 return pfn < max_low_pfn;
313 static void dump_pagetable(unsigned long address)
315 pgd_t *base = __va(read_cr3());
316 pgd_t *pgd = &base[pgd_index(address)];
317 pmd_t *pmd;
318 pte_t *pte;
320 #ifdef CONFIG_X86_PAE
321 printk("*pdpt = %016Lx ", pgd_val(*pgd));
322 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
323 goto out;
324 #endif
325 pmd = pmd_offset(pud_offset(pgd, address), address);
326 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
329 * We must not directly access the pte in the highpte
330 * case if the page table is located in highmem.
331 * And let's rather not kmap-atomic the pte, just in case
332 * it's allocated already:
334 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
335 goto out;
337 pte = pte_offset_kernel(pmd, address);
338 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
339 out:
340 printk("\n");
343 #else /* CONFIG_X86_64: */
345 void vmalloc_sync_all(void)
347 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
351 * 64-bit:
353 * Handle a fault on the vmalloc area
355 * This assumes no large pages in there.
357 static noinline __kprobes int vmalloc_fault(unsigned long address)
359 pgd_t *pgd, *pgd_ref;
360 pud_t *pud, *pud_ref;
361 pmd_t *pmd, *pmd_ref;
362 pte_t *pte, *pte_ref;
364 /* Make sure we are in vmalloc area: */
365 if (!(address >= VMALLOC_START && address < VMALLOC_END))
366 return -1;
368 WARN_ON_ONCE(in_nmi());
371 * Copy kernel mappings over when needed. This can also
372 * happen within a race in page table update. In the later
373 * case just flush:
375 pgd = pgd_offset(current->active_mm, address);
376 pgd_ref = pgd_offset_k(address);
377 if (pgd_none(*pgd_ref))
378 return -1;
380 if (pgd_none(*pgd))
381 set_pgd(pgd, *pgd_ref);
382 else
383 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
386 * Below here mismatches are bugs because these lower tables
387 * are shared:
390 pud = pud_offset(pgd, address);
391 pud_ref = pud_offset(pgd_ref, address);
392 if (pud_none(*pud_ref))
393 return -1;
395 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
396 BUG();
398 pmd = pmd_offset(pud, address);
399 pmd_ref = pmd_offset(pud_ref, address);
400 if (pmd_none(*pmd_ref))
401 return -1;
403 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
404 BUG();
406 pte_ref = pte_offset_kernel(pmd_ref, address);
407 if (!pte_present(*pte_ref))
408 return -1;
410 pte = pte_offset_kernel(pmd, address);
413 * Don't use pte_page here, because the mappings can point
414 * outside mem_map, and the NUMA hash lookup cannot handle
415 * that:
417 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
418 BUG();
420 return 0;
423 static const char errata93_warning[] =
424 KERN_ERR
425 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
426 "******* Working around it, but it may cause SEGVs or burn power.\n"
427 "******* Please consider a BIOS update.\n"
428 "******* Disabling USB legacy in the BIOS may also help.\n";
431 * No vm86 mode in 64-bit mode:
433 static inline void
434 check_v8086_mode(struct pt_regs *regs, unsigned long address,
435 struct task_struct *tsk)
439 static int bad_address(void *p)
441 unsigned long dummy;
443 return probe_kernel_address((unsigned long *)p, dummy);
446 static void dump_pagetable(unsigned long address)
448 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
449 pgd_t *pgd = base + pgd_index(address);
450 pud_t *pud;
451 pmd_t *pmd;
452 pte_t *pte;
454 if (bad_address(pgd))
455 goto bad;
457 printk("PGD %lx ", pgd_val(*pgd));
459 if (!pgd_present(*pgd))
460 goto out;
462 pud = pud_offset(pgd, address);
463 if (bad_address(pud))
464 goto bad;
466 printk("PUD %lx ", pud_val(*pud));
467 if (!pud_present(*pud) || pud_large(*pud))
468 goto out;
470 pmd = pmd_offset(pud, address);
471 if (bad_address(pmd))
472 goto bad;
474 printk("PMD %lx ", pmd_val(*pmd));
475 if (!pmd_present(*pmd) || pmd_large(*pmd))
476 goto out;
478 pte = pte_offset_kernel(pmd, address);
479 if (bad_address(pte))
480 goto bad;
482 printk("PTE %lx", pte_val(*pte));
483 out:
484 printk("\n");
485 return;
486 bad:
487 printk("BAD\n");
490 #endif /* CONFIG_X86_64 */
493 * Workaround for K8 erratum #93 & buggy BIOS.
495 * BIOS SMM functions are required to use a specific workaround
496 * to avoid corruption of the 64bit RIP register on C stepping K8.
498 * A lot of BIOS that didn't get tested properly miss this.
500 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
501 * Try to work around it here.
503 * Note we only handle faults in kernel here.
504 * Does nothing on 32-bit.
506 static int is_errata93(struct pt_regs *regs, unsigned long address)
508 #ifdef CONFIG_X86_64
509 if (address != regs->ip)
510 return 0;
512 if ((address >> 32) != 0)
513 return 0;
515 address |= 0xffffffffUL << 32;
516 if ((address >= (u64)_stext && address <= (u64)_etext) ||
517 (address >= MODULES_VADDR && address <= MODULES_END)) {
518 printk_once(errata93_warning);
519 regs->ip = address;
520 return 1;
522 #endif
523 return 0;
527 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
528 * to illegal addresses >4GB.
530 * We catch this in the page fault handler because these addresses
531 * are not reachable. Just detect this case and return. Any code
532 * segment in LDT is compatibility mode.
534 static int is_errata100(struct pt_regs *regs, unsigned long address)
536 #ifdef CONFIG_X86_64
537 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
538 return 1;
539 #endif
540 return 0;
543 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
545 #ifdef CONFIG_X86_F00F_BUG
546 unsigned long nr;
549 * Pentium F0 0F C7 C8 bug workaround:
551 if (boot_cpu_data.f00f_bug) {
552 nr = (address - idt_descr.address) >> 3;
554 if (nr == 6) {
555 do_invalid_op(regs, 0);
556 return 1;
559 #endif
560 return 0;
563 static const char nx_warning[] = KERN_CRIT
564 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
566 static void
567 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
568 unsigned long address)
570 if (!oops_may_print())
571 return;
573 if (error_code & PF_INSTR) {
574 unsigned int level;
576 pte_t *pte = lookup_address(address, &level);
578 if (pte && pte_present(*pte) && !pte_exec(*pte))
579 printk(nx_warning, current_uid());
582 printk(KERN_ALERT "BUG: unable to handle kernel ");
583 if (address < PAGE_SIZE)
584 printk(KERN_CONT "NULL pointer dereference");
585 else
586 printk(KERN_CONT "paging request");
588 printk(KERN_CONT " at %p\n", (void *) address);
589 printk(KERN_ALERT "IP:");
590 printk_address(regs->ip, 1);
592 dump_pagetable(address);
595 static noinline void
596 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
597 unsigned long address)
599 struct task_struct *tsk;
600 unsigned long flags;
601 int sig;
603 flags = oops_begin();
604 tsk = current;
605 sig = SIGKILL;
607 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
608 tsk->comm, address);
609 dump_pagetable(address);
611 tsk->thread.cr2 = address;
612 tsk->thread.trap_no = 14;
613 tsk->thread.error_code = error_code;
615 if (__die("Bad pagetable", regs, error_code))
616 sig = 0;
618 oops_end(flags, regs, sig);
621 static noinline void
622 no_context(struct pt_regs *regs, unsigned long error_code,
623 unsigned long address)
625 struct task_struct *tsk = current;
626 unsigned long *stackend;
627 unsigned long flags;
628 int sig;
630 /* Are we prepared to handle this kernel fault? */
631 if (fixup_exception(regs))
632 return;
635 * 32-bit:
637 * Valid to do another page fault here, because if this fault
638 * had been triggered by is_prefetch fixup_exception would have
639 * handled it.
641 * 64-bit:
643 * Hall of shame of CPU/BIOS bugs.
645 if (is_prefetch(regs, error_code, address))
646 return;
648 if (is_errata93(regs, address))
649 return;
652 * Oops. The kernel tried to access some bad page. We'll have to
653 * terminate things with extreme prejudice:
655 flags = oops_begin();
657 show_fault_oops(regs, error_code, address);
659 stackend = end_of_stack(tsk);
660 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
661 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
663 tsk->thread.cr2 = address;
664 tsk->thread.trap_no = 14;
665 tsk->thread.error_code = error_code;
667 sig = SIGKILL;
668 if (__die("Oops", regs, error_code))
669 sig = 0;
671 /* Executive summary in case the body of the oops scrolled away */
672 printk(KERN_EMERG "CR2: %016lx\n", address);
674 oops_end(flags, regs, sig);
678 * Print out info about fatal segfaults, if the show_unhandled_signals
679 * sysctl is set:
681 static inline void
682 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
683 unsigned long address, struct task_struct *tsk)
685 if (!unhandled_signal(tsk, SIGSEGV))
686 return;
688 if (!printk_ratelimit())
689 return;
691 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
692 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
693 tsk->comm, task_pid_nr(tsk), address,
694 (void *)regs->ip, (void *)regs->sp, error_code);
696 print_vma_addr(KERN_CONT " in ", regs->ip);
698 printk(KERN_CONT "\n");
701 static void
702 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
703 unsigned long address, int si_code)
705 struct task_struct *tsk = current;
707 /* User mode accesses just cause a SIGSEGV */
708 if (error_code & PF_USER) {
710 * It's possible to have interrupts off here:
712 local_irq_enable();
715 * Valid to do another page fault here because this one came
716 * from user space:
718 if (is_prefetch(regs, error_code, address))
719 return;
721 if (is_errata100(regs, address))
722 return;
724 #ifdef CONFIG_X86_64
726 * Instruction fetch faults in the vsyscall page might need
727 * emulation.
729 if (unlikely((error_code & PF_INSTR) &&
730 ((address & ~0xfff) == VSYSCALL_START))) {
731 if (emulate_vsyscall(regs, address))
732 return;
734 #endif
736 if (unlikely(show_unhandled_signals))
737 show_signal_msg(regs, error_code, address, tsk);
739 /* Kernel addresses are always protection faults: */
740 tsk->thread.cr2 = address;
741 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
742 tsk->thread.trap_no = 14;
744 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
746 return;
749 if (is_f00f_bug(regs, address))
750 return;
752 no_context(regs, error_code, address);
755 static noinline void
756 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
757 unsigned long address)
759 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
762 static void
763 __bad_area(struct pt_regs *regs, unsigned long error_code,
764 unsigned long address, int si_code)
766 struct mm_struct *mm = current->mm;
769 * Something tried to access memory that isn't in our memory map..
770 * Fix it, but check if it's kernel or user first..
772 up_read(&mm->mmap_sem);
774 __bad_area_nosemaphore(regs, error_code, address, si_code);
777 static noinline void
778 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
780 __bad_area(regs, error_code, address, SEGV_MAPERR);
783 static noinline void
784 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
785 unsigned long address)
787 __bad_area(regs, error_code, address, SEGV_ACCERR);
790 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
791 static void
792 out_of_memory(struct pt_regs *regs, unsigned long error_code,
793 unsigned long address)
796 * We ran out of memory, call the OOM killer, and return the userspace
797 * (which will retry the fault, or kill us if we got oom-killed):
799 up_read(&current->mm->mmap_sem);
801 pagefault_out_of_memory();
804 static void
805 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
806 unsigned int fault)
808 struct task_struct *tsk = current;
809 struct mm_struct *mm = tsk->mm;
810 int code = BUS_ADRERR;
812 up_read(&mm->mmap_sem);
814 /* Kernel mode? Handle exceptions or die: */
815 if (!(error_code & PF_USER)) {
816 no_context(regs, error_code, address);
817 return;
820 /* User-space => ok to do another page fault: */
821 if (is_prefetch(regs, error_code, address))
822 return;
824 tsk->thread.cr2 = address;
825 tsk->thread.error_code = error_code;
826 tsk->thread.trap_no = 14;
828 #ifdef CONFIG_MEMORY_FAILURE
829 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
830 printk(KERN_ERR
831 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
832 tsk->comm, tsk->pid, address);
833 code = BUS_MCEERR_AR;
835 #endif
836 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
839 static noinline int
840 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
841 unsigned long address, unsigned int fault)
844 * Pagefault was interrupted by SIGKILL. We have no reason to
845 * continue pagefault.
847 if (fatal_signal_pending(current)) {
848 if (!(fault & VM_FAULT_RETRY))
849 up_read(&current->mm->mmap_sem);
850 if (!(error_code & PF_USER))
851 no_context(regs, error_code, address);
852 return 1;
854 if (!(fault & VM_FAULT_ERROR))
855 return 0;
857 if (fault & VM_FAULT_OOM) {
858 /* Kernel mode? Handle exceptions or die: */
859 if (!(error_code & PF_USER)) {
860 up_read(&current->mm->mmap_sem);
861 no_context(regs, error_code, address);
862 return 1;
865 out_of_memory(regs, error_code, address);
866 } else {
867 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
868 VM_FAULT_HWPOISON_LARGE))
869 do_sigbus(regs, error_code, address, fault);
870 else
871 BUG();
873 return 1;
876 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
878 if ((error_code & PF_WRITE) && !pte_write(*pte))
879 return 0;
881 if ((error_code & PF_INSTR) && !pte_exec(*pte))
882 return 0;
884 return 1;
888 * Handle a spurious fault caused by a stale TLB entry.
890 * This allows us to lazily refresh the TLB when increasing the
891 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
892 * eagerly is very expensive since that implies doing a full
893 * cross-processor TLB flush, even if no stale TLB entries exist
894 * on other processors.
896 * There are no security implications to leaving a stale TLB when
897 * increasing the permissions on a page.
899 static noinline __kprobes int
900 spurious_fault(unsigned long error_code, unsigned long address)
902 pgd_t *pgd;
903 pud_t *pud;
904 pmd_t *pmd;
905 pte_t *pte;
906 int ret;
908 /* Reserved-bit violation or user access to kernel space? */
909 if (error_code & (PF_USER | PF_RSVD))
910 return 0;
912 pgd = init_mm.pgd + pgd_index(address);
913 if (!pgd_present(*pgd))
914 return 0;
916 pud = pud_offset(pgd, address);
917 if (!pud_present(*pud))
918 return 0;
920 if (pud_large(*pud))
921 return spurious_fault_check(error_code, (pte_t *) pud);
923 pmd = pmd_offset(pud, address);
924 if (!pmd_present(*pmd))
925 return 0;
927 if (pmd_large(*pmd))
928 return spurious_fault_check(error_code, (pte_t *) pmd);
931 * Note: don't use pte_present() here, since it returns true
932 * if the _PAGE_PROTNONE bit is set. However, this aliases the
933 * _PAGE_GLOBAL bit, which for kernel pages give false positives
934 * when CONFIG_DEBUG_PAGEALLOC is used.
936 pte = pte_offset_kernel(pmd, address);
937 if (!(pte_flags(*pte) & _PAGE_PRESENT))
938 return 0;
940 ret = spurious_fault_check(error_code, pte);
941 if (!ret)
942 return 0;
945 * Make sure we have permissions in PMD.
946 * If not, then there's a bug in the page tables:
948 ret = spurious_fault_check(error_code, (pte_t *) pmd);
949 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
951 return ret;
954 int show_unhandled_signals = 1;
956 static inline int
957 access_error(unsigned long error_code, struct vm_area_struct *vma)
959 if (error_code & PF_WRITE) {
960 /* write, present and write, not present: */
961 if (unlikely(!(vma->vm_flags & VM_WRITE)))
962 return 1;
963 return 0;
966 /* read, present: */
967 if (unlikely(error_code & PF_PROT))
968 return 1;
970 /* read, not present: */
971 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
972 return 1;
974 return 0;
977 static int fault_in_kernel_space(unsigned long address)
979 return address >= TASK_SIZE_MAX;
983 * This routine handles page faults. It determines the address,
984 * and the problem, and then passes it off to one of the appropriate
985 * routines.
987 dotraplinkage void __kprobes
988 do_page_fault(struct pt_regs *regs, unsigned long error_code)
990 struct vm_area_struct *vma;
991 struct task_struct *tsk;
992 unsigned long address;
993 struct mm_struct *mm;
994 int fault;
995 int write = error_code & PF_WRITE;
996 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
997 (write ? FAULT_FLAG_WRITE : 0);
999 tsk = current;
1000 mm = tsk->mm;
1002 /* Get the faulting address: */
1003 address = read_cr2();
1006 * Detect and handle instructions that would cause a page fault for
1007 * both a tracked kernel page and a userspace page.
1009 if (kmemcheck_active(regs))
1010 kmemcheck_hide(regs);
1011 prefetchw(&mm->mmap_sem);
1013 if (unlikely(kmmio_fault(regs, address)))
1014 return;
1017 * We fault-in kernel-space virtual memory on-demand. The
1018 * 'reference' page table is init_mm.pgd.
1020 * NOTE! We MUST NOT take any locks for this case. We may
1021 * be in an interrupt or a critical region, and should
1022 * only copy the information from the master page table,
1023 * nothing more.
1025 * This verifies that the fault happens in kernel space
1026 * (error_code & 4) == 0, and that the fault was not a
1027 * protection error (error_code & 9) == 0.
1029 if (unlikely(fault_in_kernel_space(address))) {
1030 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1031 if (vmalloc_fault(address) >= 0)
1032 return;
1034 if (kmemcheck_fault(regs, address, error_code))
1035 return;
1038 /* Can handle a stale RO->RW TLB: */
1039 if (spurious_fault(error_code, address))
1040 return;
1042 /* kprobes don't want to hook the spurious faults: */
1043 if (notify_page_fault(regs))
1044 return;
1046 * Don't take the mm semaphore here. If we fixup a prefetch
1047 * fault we could otherwise deadlock:
1049 bad_area_nosemaphore(regs, error_code, address);
1051 return;
1054 /* kprobes don't want to hook the spurious faults: */
1055 if (unlikely(notify_page_fault(regs)))
1056 return;
1058 * It's safe to allow irq's after cr2 has been saved and the
1059 * vmalloc fault has been handled.
1061 * User-mode registers count as a user access even for any
1062 * potential system fault or CPU buglet:
1064 if (user_mode_vm(regs)) {
1065 local_irq_enable();
1066 error_code |= PF_USER;
1067 } else {
1068 if (regs->flags & X86_EFLAGS_IF)
1069 local_irq_enable();
1072 if (unlikely(error_code & PF_RSVD))
1073 pgtable_bad(regs, error_code, address);
1075 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1078 * If we're in an interrupt, have no user context or are running
1079 * in an atomic region then we must not take the fault:
1081 if (unlikely(in_atomic() || !mm)) {
1082 bad_area_nosemaphore(regs, error_code, address);
1083 return;
1087 * When running in the kernel we expect faults to occur only to
1088 * addresses in user space. All other faults represent errors in
1089 * the kernel and should generate an OOPS. Unfortunately, in the
1090 * case of an erroneous fault occurring in a code path which already
1091 * holds mmap_sem we will deadlock attempting to validate the fault
1092 * against the address space. Luckily the kernel only validly
1093 * references user space from well defined areas of code, which are
1094 * listed in the exceptions table.
1096 * As the vast majority of faults will be valid we will only perform
1097 * the source reference check when there is a possibility of a
1098 * deadlock. Attempt to lock the address space, if we cannot we then
1099 * validate the source. If this is invalid we can skip the address
1100 * space check, thus avoiding the deadlock:
1102 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1103 if ((error_code & PF_USER) == 0 &&
1104 !search_exception_tables(regs->ip)) {
1105 bad_area_nosemaphore(regs, error_code, address);
1106 return;
1108 retry:
1109 down_read(&mm->mmap_sem);
1110 } else {
1112 * The above down_read_trylock() might have succeeded in
1113 * which case we'll have missed the might_sleep() from
1114 * down_read():
1116 might_sleep();
1119 vma = find_vma(mm, address);
1120 if (unlikely(!vma)) {
1121 bad_area(regs, error_code, address);
1122 return;
1124 if (likely(vma->vm_start <= address))
1125 goto good_area;
1126 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1127 bad_area(regs, error_code, address);
1128 return;
1130 if (error_code & PF_USER) {
1132 * Accessing the stack below %sp is always a bug.
1133 * The large cushion allows instructions like enter
1134 * and pusha to work. ("enter $65535, $31" pushes
1135 * 32 pointers and then decrements %sp by 65535.)
1137 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1138 bad_area(regs, error_code, address);
1139 return;
1142 if (unlikely(expand_stack(vma, address))) {
1143 bad_area(regs, error_code, address);
1144 return;
1148 * Ok, we have a good vm_area for this memory access, so
1149 * we can handle it..
1151 good_area:
1152 if (unlikely(access_error(error_code, vma))) {
1153 bad_area_access_error(regs, error_code, address);
1154 return;
1158 * If for any reason at all we couldn't handle the fault,
1159 * make sure we exit gracefully rather than endlessly redo
1160 * the fault:
1162 fault = handle_mm_fault(mm, vma, address, flags);
1164 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1165 if (mm_fault_error(regs, error_code, address, fault))
1166 return;
1170 * Major/minor page fault accounting is only done on the
1171 * initial attempt. If we go through a retry, it is extremely
1172 * likely that the page will be found in page cache at that point.
1174 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1175 if (fault & VM_FAULT_MAJOR) {
1176 tsk->maj_flt++;
1177 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1178 regs, address);
1179 } else {
1180 tsk->min_flt++;
1181 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1182 regs, address);
1184 if (fault & VM_FAULT_RETRY) {
1185 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1186 * of starvation. */
1187 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1188 goto retry;
1192 check_v8086_mode(regs, address, tsk);
1194 up_read(&mm->mmap_sem);