Merge branch 'akpm'
[linux-2.6/next.git] / arch / x86 / platform / efi / efi.c
blob37718f0f053d53346566c80958885f159b61dcde
1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
23 * Implemented EFI runtime services and virtual mode calls. --davidm
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/export.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/spinlock.h>
36 #include <linux/uaccess.h>
37 #include <linux/time.h>
38 #include <linux/io.h>
39 #include <linux/reboot.h>
40 #include <linux/bcd.h>
42 #include <asm/setup.h>
43 #include <asm/efi.h>
44 #include <asm/time.h>
45 #include <asm/cacheflush.h>
46 #include <asm/tlbflush.h>
47 #include <asm/x86_init.h>
49 #define EFI_DEBUG 1
50 #define PFX "EFI: "
52 int efi_enabled;
53 EXPORT_SYMBOL(efi_enabled);
55 struct efi __read_mostly efi = {
56 .mps = EFI_INVALID_TABLE_ADDR,
57 .acpi = EFI_INVALID_TABLE_ADDR,
58 .acpi20 = EFI_INVALID_TABLE_ADDR,
59 .smbios = EFI_INVALID_TABLE_ADDR,
60 .sal_systab = EFI_INVALID_TABLE_ADDR,
61 .boot_info = EFI_INVALID_TABLE_ADDR,
62 .hcdp = EFI_INVALID_TABLE_ADDR,
63 .uga = EFI_INVALID_TABLE_ADDR,
64 .uv_systab = EFI_INVALID_TABLE_ADDR,
66 EXPORT_SYMBOL(efi);
68 struct efi_memory_map memmap;
70 static struct efi efi_phys __initdata;
71 static efi_system_table_t efi_systab __initdata;
73 static int __init setup_noefi(char *arg)
75 efi_enabled = 0;
76 return 0;
78 early_param("noefi", setup_noefi);
80 int add_efi_memmap;
81 EXPORT_SYMBOL(add_efi_memmap);
83 static int __init setup_add_efi_memmap(char *arg)
85 add_efi_memmap = 1;
86 return 0;
88 early_param("add_efi_memmap", setup_add_efi_memmap);
91 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
93 unsigned long flags;
94 efi_status_t status;
96 spin_lock_irqsave(&rtc_lock, flags);
97 status = efi_call_virt2(get_time, tm, tc);
98 spin_unlock_irqrestore(&rtc_lock, flags);
99 return status;
102 static efi_status_t virt_efi_set_time(efi_time_t *tm)
104 unsigned long flags;
105 efi_status_t status;
107 spin_lock_irqsave(&rtc_lock, flags);
108 status = efi_call_virt1(set_time, tm);
109 spin_unlock_irqrestore(&rtc_lock, flags);
110 return status;
113 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
114 efi_bool_t *pending,
115 efi_time_t *tm)
117 unsigned long flags;
118 efi_status_t status;
120 spin_lock_irqsave(&rtc_lock, flags);
121 status = efi_call_virt3(get_wakeup_time,
122 enabled, pending, tm);
123 spin_unlock_irqrestore(&rtc_lock, flags);
124 return status;
127 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
129 unsigned long flags;
130 efi_status_t status;
132 spin_lock_irqsave(&rtc_lock, flags);
133 status = efi_call_virt2(set_wakeup_time,
134 enabled, tm);
135 spin_unlock_irqrestore(&rtc_lock, flags);
136 return status;
139 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
140 efi_guid_t *vendor,
141 u32 *attr,
142 unsigned long *data_size,
143 void *data)
145 return efi_call_virt5(get_variable,
146 name, vendor, attr,
147 data_size, data);
150 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
151 efi_char16_t *name,
152 efi_guid_t *vendor)
154 return efi_call_virt3(get_next_variable,
155 name_size, name, vendor);
158 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
159 efi_guid_t *vendor,
160 u32 attr,
161 unsigned long data_size,
162 void *data)
164 return efi_call_virt5(set_variable,
165 name, vendor, attr,
166 data_size, data);
169 static efi_status_t virt_efi_query_variable_info(u32 attr,
170 u64 *storage_space,
171 u64 *remaining_space,
172 u64 *max_variable_size)
174 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
175 return EFI_UNSUPPORTED;
177 return efi_call_virt4(query_variable_info, attr, storage_space,
178 remaining_space, max_variable_size);
181 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
183 return efi_call_virt1(get_next_high_mono_count, count);
186 static void virt_efi_reset_system(int reset_type,
187 efi_status_t status,
188 unsigned long data_size,
189 efi_char16_t *data)
191 efi_call_virt4(reset_system, reset_type, status,
192 data_size, data);
195 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
196 unsigned long count,
197 unsigned long sg_list)
199 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
200 return EFI_UNSUPPORTED;
202 return efi_call_virt3(update_capsule, capsules, count, sg_list);
205 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
206 unsigned long count,
207 u64 *max_size,
208 int *reset_type)
210 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
211 return EFI_UNSUPPORTED;
213 return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
214 reset_type);
217 static efi_status_t __init phys_efi_set_virtual_address_map(
218 unsigned long memory_map_size,
219 unsigned long descriptor_size,
220 u32 descriptor_version,
221 efi_memory_desc_t *virtual_map)
223 efi_status_t status;
225 efi_call_phys_prelog();
226 status = efi_call_phys4(efi_phys.set_virtual_address_map,
227 memory_map_size, descriptor_size,
228 descriptor_version, virtual_map);
229 efi_call_phys_epilog();
230 return status;
233 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
234 efi_time_cap_t *tc)
236 unsigned long flags;
237 efi_status_t status;
239 spin_lock_irqsave(&rtc_lock, flags);
240 efi_call_phys_prelog();
241 status = efi_call_phys2(efi_phys.get_time, tm, tc);
242 efi_call_phys_epilog();
243 spin_unlock_irqrestore(&rtc_lock, flags);
244 return status;
247 int efi_set_rtc_mmss(unsigned long nowtime)
249 int real_seconds, real_minutes;
250 efi_status_t status;
251 efi_time_t eft;
252 efi_time_cap_t cap;
254 status = efi.get_time(&eft, &cap);
255 if (status != EFI_SUCCESS) {
256 printk(KERN_ERR "Oops: efitime: can't read time!\n");
257 return -1;
260 real_seconds = nowtime % 60;
261 real_minutes = nowtime / 60;
262 if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
263 real_minutes += 30;
264 real_minutes %= 60;
265 eft.minute = real_minutes;
266 eft.second = real_seconds;
268 status = efi.set_time(&eft);
269 if (status != EFI_SUCCESS) {
270 printk(KERN_ERR "Oops: efitime: can't write time!\n");
271 return -1;
273 return 0;
276 unsigned long efi_get_time(void)
278 efi_status_t status;
279 efi_time_t eft;
280 efi_time_cap_t cap;
282 status = efi.get_time(&eft, &cap);
283 if (status != EFI_SUCCESS)
284 printk(KERN_ERR "Oops: efitime: can't read time!\n");
286 return mktime(eft.year, eft.month, eft.day, eft.hour,
287 eft.minute, eft.second);
291 * Tell the kernel about the EFI memory map. This might include
292 * more than the max 128 entries that can fit in the e820 legacy
293 * (zeropage) memory map.
296 static void __init do_add_efi_memmap(void)
298 void *p;
300 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
301 efi_memory_desc_t *md = p;
302 unsigned long long start = md->phys_addr;
303 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
304 int e820_type;
306 switch (md->type) {
307 case EFI_LOADER_CODE:
308 case EFI_LOADER_DATA:
309 case EFI_BOOT_SERVICES_CODE:
310 case EFI_BOOT_SERVICES_DATA:
311 case EFI_CONVENTIONAL_MEMORY:
312 if (md->attribute & EFI_MEMORY_WB)
313 e820_type = E820_RAM;
314 else
315 e820_type = E820_RESERVED;
316 break;
317 case EFI_ACPI_RECLAIM_MEMORY:
318 e820_type = E820_ACPI;
319 break;
320 case EFI_ACPI_MEMORY_NVS:
321 e820_type = E820_NVS;
322 break;
323 case EFI_UNUSABLE_MEMORY:
324 e820_type = E820_UNUSABLE;
325 break;
326 default:
328 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
329 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
330 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
332 e820_type = E820_RESERVED;
333 break;
335 e820_add_region(start, size, e820_type);
337 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
340 void __init efi_memblock_x86_reserve_range(void)
342 unsigned long pmap;
344 #ifdef CONFIG_X86_32
345 pmap = boot_params.efi_info.efi_memmap;
346 #else
347 pmap = (boot_params.efi_info.efi_memmap |
348 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
349 #endif
350 memmap.phys_map = (void *)pmap;
351 memmap.nr_map = boot_params.efi_info.efi_memmap_size /
352 boot_params.efi_info.efi_memdesc_size;
353 memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
354 memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
355 memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
356 "EFI memmap");
359 #if EFI_DEBUG
360 static void __init print_efi_memmap(void)
362 efi_memory_desc_t *md;
363 void *p;
364 int i;
366 for (p = memmap.map, i = 0;
367 p < memmap.map_end;
368 p += memmap.desc_size, i++) {
369 md = p;
370 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
371 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
372 i, md->type, md->attribute, md->phys_addr,
373 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
374 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
377 #endif /* EFI_DEBUG */
379 void __init efi_reserve_boot_services(void)
381 void *p;
383 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
384 efi_memory_desc_t *md = p;
385 u64 start = md->phys_addr;
386 u64 size = md->num_pages << EFI_PAGE_SHIFT;
388 if (md->type != EFI_BOOT_SERVICES_CODE &&
389 md->type != EFI_BOOT_SERVICES_DATA)
390 continue;
391 /* Only reserve where possible:
392 * - Not within any already allocated areas
393 * - Not over any memory area (really needed, if above?)
394 * - Not within any part of the kernel
395 * - Not the bios reserved area
397 if ((start+size >= virt_to_phys(_text)
398 && start <= virt_to_phys(_end)) ||
399 !e820_all_mapped(start, start+size, E820_RAM) ||
400 memblock_x86_check_reserved_size(&start, &size,
401 1<<EFI_PAGE_SHIFT)) {
402 /* Could not reserve, skip it */
403 md->num_pages = 0;
404 memblock_dbg(PFX "Could not reserve boot range "
405 "[0x%010llx-0x%010llx]\n",
406 start, start+size-1);
407 } else
408 memblock_x86_reserve_range(start, start+size,
409 "EFI Boot");
413 static void __init efi_free_boot_services(void)
415 void *p;
417 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
418 efi_memory_desc_t *md = p;
419 unsigned long long start = md->phys_addr;
420 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
422 if (md->type != EFI_BOOT_SERVICES_CODE &&
423 md->type != EFI_BOOT_SERVICES_DATA)
424 continue;
426 /* Could not reserve boot area */
427 if (!size)
428 continue;
430 free_bootmem_late(start, size);
434 void __init efi_init(void)
436 efi_config_table_t *config_tables;
437 efi_runtime_services_t *runtime;
438 efi_char16_t *c16;
439 char vendor[100] = "unknown";
440 int i = 0;
441 void *tmp;
443 #ifdef CONFIG_X86_32
444 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
445 #else
446 efi_phys.systab = (efi_system_table_t *)
447 (boot_params.efi_info.efi_systab |
448 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
449 #endif
451 efi.systab = early_ioremap((unsigned long)efi_phys.systab,
452 sizeof(efi_system_table_t));
453 if (efi.systab == NULL)
454 printk(KERN_ERR "Couldn't map the EFI system table!\n");
455 memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
456 early_iounmap(efi.systab, sizeof(efi_system_table_t));
457 efi.systab = &efi_systab;
460 * Verify the EFI Table
462 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
463 printk(KERN_ERR "EFI system table signature incorrect!\n");
464 if ((efi.systab->hdr.revision >> 16) == 0)
465 printk(KERN_ERR "Warning: EFI system table version "
466 "%d.%02d, expected 1.00 or greater!\n",
467 efi.systab->hdr.revision >> 16,
468 efi.systab->hdr.revision & 0xffff);
471 * Show what we know for posterity
473 c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
474 if (c16) {
475 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
476 vendor[i] = *c16++;
477 vendor[i] = '\0';
478 } else
479 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
480 early_iounmap(tmp, 2);
482 printk(KERN_INFO "EFI v%u.%.02u by %s\n",
483 efi.systab->hdr.revision >> 16,
484 efi.systab->hdr.revision & 0xffff, vendor);
487 * Let's see what config tables the firmware passed to us.
489 config_tables = early_ioremap(
490 efi.systab->tables,
491 efi.systab->nr_tables * sizeof(efi_config_table_t));
492 if (config_tables == NULL)
493 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
495 printk(KERN_INFO);
496 for (i = 0; i < efi.systab->nr_tables; i++) {
497 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
498 efi.mps = config_tables[i].table;
499 printk(" MPS=0x%lx ", config_tables[i].table);
500 } else if (!efi_guidcmp(config_tables[i].guid,
501 ACPI_20_TABLE_GUID)) {
502 efi.acpi20 = config_tables[i].table;
503 printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
504 } else if (!efi_guidcmp(config_tables[i].guid,
505 ACPI_TABLE_GUID)) {
506 efi.acpi = config_tables[i].table;
507 printk(" ACPI=0x%lx ", config_tables[i].table);
508 } else if (!efi_guidcmp(config_tables[i].guid,
509 SMBIOS_TABLE_GUID)) {
510 efi.smbios = config_tables[i].table;
511 printk(" SMBIOS=0x%lx ", config_tables[i].table);
512 #ifdef CONFIG_X86_UV
513 } else if (!efi_guidcmp(config_tables[i].guid,
514 UV_SYSTEM_TABLE_GUID)) {
515 efi.uv_systab = config_tables[i].table;
516 printk(" UVsystab=0x%lx ", config_tables[i].table);
517 #endif
518 } else if (!efi_guidcmp(config_tables[i].guid,
519 HCDP_TABLE_GUID)) {
520 efi.hcdp = config_tables[i].table;
521 printk(" HCDP=0x%lx ", config_tables[i].table);
522 } else if (!efi_guidcmp(config_tables[i].guid,
523 UGA_IO_PROTOCOL_GUID)) {
524 efi.uga = config_tables[i].table;
525 printk(" UGA=0x%lx ", config_tables[i].table);
528 printk("\n");
529 early_iounmap(config_tables,
530 efi.systab->nr_tables * sizeof(efi_config_table_t));
533 * Check out the runtime services table. We need to map
534 * the runtime services table so that we can grab the physical
535 * address of several of the EFI runtime functions, needed to
536 * set the firmware into virtual mode.
538 runtime = early_ioremap((unsigned long)efi.systab->runtime,
539 sizeof(efi_runtime_services_t));
540 if (runtime != NULL) {
542 * We will only need *early* access to the following
543 * two EFI runtime services before set_virtual_address_map
544 * is invoked.
546 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
547 efi_phys.set_virtual_address_map =
548 (efi_set_virtual_address_map_t *)
549 runtime->set_virtual_address_map;
551 * Make efi_get_time can be called before entering
552 * virtual mode.
554 efi.get_time = phys_efi_get_time;
555 } else
556 printk(KERN_ERR "Could not map the EFI runtime service "
557 "table!\n");
558 early_iounmap(runtime, sizeof(efi_runtime_services_t));
560 /* Map the EFI memory map */
561 memmap.map = early_ioremap((unsigned long)memmap.phys_map,
562 memmap.nr_map * memmap.desc_size);
563 if (memmap.map == NULL)
564 printk(KERN_ERR "Could not map the EFI memory map!\n");
565 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
567 if (memmap.desc_size != sizeof(efi_memory_desc_t))
568 printk(KERN_WARNING
569 "Kernel-defined memdesc doesn't match the one from EFI!\n");
571 if (add_efi_memmap)
572 do_add_efi_memmap();
574 #ifdef CONFIG_X86_32
575 x86_platform.get_wallclock = efi_get_time;
576 x86_platform.set_wallclock = efi_set_rtc_mmss;
577 #endif
579 #if EFI_DEBUG
580 print_efi_memmap();
581 #endif
584 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
586 u64 addr, npages;
588 addr = md->virt_addr;
589 npages = md->num_pages;
591 memrange_efi_to_native(&addr, &npages);
593 if (executable)
594 set_memory_x(addr, npages);
595 else
596 set_memory_nx(addr, npages);
599 static void __init runtime_code_page_mkexec(void)
601 efi_memory_desc_t *md;
602 void *p;
604 /* Make EFI runtime service code area executable */
605 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
606 md = p;
608 if (md->type != EFI_RUNTIME_SERVICES_CODE)
609 continue;
611 efi_set_executable(md, true);
616 * This function will switch the EFI runtime services to virtual mode.
617 * Essentially, look through the EFI memmap and map every region that
618 * has the runtime attribute bit set in its memory descriptor and update
619 * that memory descriptor with the virtual address obtained from ioremap().
620 * This enables the runtime services to be called without having to
621 * thunk back into physical mode for every invocation.
623 void __init efi_enter_virtual_mode(void)
625 efi_memory_desc_t *md, *prev_md = NULL;
626 efi_status_t status;
627 unsigned long size;
628 u64 end, systab, addr, npages, end_pfn;
629 void *p, *va, *new_memmap = NULL;
630 int count = 0;
632 efi.systab = NULL;
634 /* Merge contiguous regions of the same type and attribute */
635 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
636 u64 prev_size;
637 md = p;
639 if (!prev_md) {
640 prev_md = md;
641 continue;
644 if (prev_md->type != md->type ||
645 prev_md->attribute != md->attribute) {
646 prev_md = md;
647 continue;
650 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
652 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
653 prev_md->num_pages += md->num_pages;
654 md->type = EFI_RESERVED_TYPE;
655 md->attribute = 0;
656 continue;
658 prev_md = md;
661 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
662 md = p;
663 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
664 md->type != EFI_BOOT_SERVICES_CODE &&
665 md->type != EFI_BOOT_SERVICES_DATA)
666 continue;
668 size = md->num_pages << EFI_PAGE_SHIFT;
669 end = md->phys_addr + size;
671 end_pfn = PFN_UP(end);
672 if (end_pfn <= max_low_pfn_mapped
673 || (end_pfn > (1UL << (32 - PAGE_SHIFT))
674 && end_pfn <= max_pfn_mapped))
675 va = __va(md->phys_addr);
676 else
677 va = efi_ioremap(md->phys_addr, size, md->type);
679 md->virt_addr = (u64) (unsigned long) va;
681 if (!va) {
682 printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
683 (unsigned long long)md->phys_addr);
684 continue;
687 if (!(md->attribute & EFI_MEMORY_WB)) {
688 addr = md->virt_addr;
689 npages = md->num_pages;
690 memrange_efi_to_native(&addr, &npages);
691 set_memory_uc(addr, npages);
694 systab = (u64) (unsigned long) efi_phys.systab;
695 if (md->phys_addr <= systab && systab < end) {
696 systab += md->virt_addr - md->phys_addr;
697 efi.systab = (efi_system_table_t *) (unsigned long) systab;
699 new_memmap = krealloc(new_memmap,
700 (count + 1) * memmap.desc_size,
701 GFP_KERNEL);
702 memcpy(new_memmap + (count * memmap.desc_size), md,
703 memmap.desc_size);
704 count++;
707 BUG_ON(!efi.systab);
709 status = phys_efi_set_virtual_address_map(
710 memmap.desc_size * count,
711 memmap.desc_size,
712 memmap.desc_version,
713 (efi_memory_desc_t *)__pa(new_memmap));
715 if (status != EFI_SUCCESS) {
716 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
717 "(status=%lx)!\n", status);
718 panic("EFI call to SetVirtualAddressMap() failed!");
722 * Thankfully, it does seem that no runtime services other than
723 * SetVirtualAddressMap() will touch boot services code, so we can
724 * get rid of it all at this point
726 efi_free_boot_services();
729 * Now that EFI is in virtual mode, update the function
730 * pointers in the runtime service table to the new virtual addresses.
732 * Call EFI services through wrapper functions.
734 efi.get_time = virt_efi_get_time;
735 efi.set_time = virt_efi_set_time;
736 efi.get_wakeup_time = virt_efi_get_wakeup_time;
737 efi.set_wakeup_time = virt_efi_set_wakeup_time;
738 efi.get_variable = virt_efi_get_variable;
739 efi.get_next_variable = virt_efi_get_next_variable;
740 efi.set_variable = virt_efi_set_variable;
741 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
742 efi.reset_system = virt_efi_reset_system;
743 efi.set_virtual_address_map = NULL;
744 efi.query_variable_info = virt_efi_query_variable_info;
745 efi.update_capsule = virt_efi_update_capsule;
746 efi.query_capsule_caps = virt_efi_query_capsule_caps;
747 if (__supported_pte_mask & _PAGE_NX)
748 runtime_code_page_mkexec();
749 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
750 memmap.map = NULL;
751 kfree(new_memmap);
755 * Convenience functions to obtain memory types and attributes
757 u32 efi_mem_type(unsigned long phys_addr)
759 efi_memory_desc_t *md;
760 void *p;
762 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
763 md = p;
764 if ((md->phys_addr <= phys_addr) &&
765 (phys_addr < (md->phys_addr +
766 (md->num_pages << EFI_PAGE_SHIFT))))
767 return md->type;
769 return 0;
772 u64 efi_mem_attributes(unsigned long phys_addr)
774 efi_memory_desc_t *md;
775 void *p;
777 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
778 md = p;
779 if ((md->phys_addr <= phys_addr) &&
780 (phys_addr < (md->phys_addr +
781 (md->num_pages << EFI_PAGE_SHIFT))))
782 return md->attribute;
784 return 0;