Merge branch 'akpm'
[linux-2.6/next.git] / drivers / firewire / core-iso.c
blob0f90e007187515d92df0db3f1bca6550b9c09293
1 /*
2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 #include <linux/export.h>
34 #include <asm/byteorder.h>
36 #include "core.h"
39 * Isochronous DMA context management
42 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
43 int page_count, enum dma_data_direction direction)
45 int i, j;
46 dma_addr_t address;
48 buffer->page_count = page_count;
49 buffer->direction = direction;
51 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
52 GFP_KERNEL);
53 if (buffer->pages == NULL)
54 goto out;
56 for (i = 0; i < buffer->page_count; i++) {
57 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
58 if (buffer->pages[i] == NULL)
59 goto out_pages;
61 address = dma_map_page(card->device, buffer->pages[i],
62 0, PAGE_SIZE, direction);
63 if (dma_mapping_error(card->device, address)) {
64 __free_page(buffer->pages[i]);
65 goto out_pages;
67 set_page_private(buffer->pages[i], address);
70 return 0;
72 out_pages:
73 for (j = 0; j < i; j++) {
74 address = page_private(buffer->pages[j]);
75 dma_unmap_page(card->device, address,
76 PAGE_SIZE, direction);
77 __free_page(buffer->pages[j]);
79 kfree(buffer->pages);
80 out:
81 buffer->pages = NULL;
83 return -ENOMEM;
85 EXPORT_SYMBOL(fw_iso_buffer_init);
87 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
89 unsigned long uaddr;
90 int i, err;
92 uaddr = vma->vm_start;
93 for (i = 0; i < buffer->page_count; i++) {
94 err = vm_insert_page(vma, uaddr, buffer->pages[i]);
95 if (err)
96 return err;
98 uaddr += PAGE_SIZE;
101 return 0;
104 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
105 struct fw_card *card)
107 int i;
108 dma_addr_t address;
110 for (i = 0; i < buffer->page_count; i++) {
111 address = page_private(buffer->pages[i]);
112 dma_unmap_page(card->device, address,
113 PAGE_SIZE, buffer->direction);
114 __free_page(buffer->pages[i]);
117 kfree(buffer->pages);
118 buffer->pages = NULL;
120 EXPORT_SYMBOL(fw_iso_buffer_destroy);
122 /* Convert DMA address to offset into virtually contiguous buffer. */
123 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
125 int i;
126 dma_addr_t address;
127 ssize_t offset;
129 for (i = 0; i < buffer->page_count; i++) {
130 address = page_private(buffer->pages[i]);
131 offset = (ssize_t)completed - (ssize_t)address;
132 if (offset > 0 && offset <= PAGE_SIZE)
133 return (i << PAGE_SHIFT) + offset;
136 return 0;
139 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
140 int type, int channel, int speed, size_t header_size,
141 fw_iso_callback_t callback, void *callback_data)
143 struct fw_iso_context *ctx;
145 ctx = card->driver->allocate_iso_context(card,
146 type, channel, header_size);
147 if (IS_ERR(ctx))
148 return ctx;
150 ctx->card = card;
151 ctx->type = type;
152 ctx->channel = channel;
153 ctx->speed = speed;
154 ctx->header_size = header_size;
155 ctx->callback.sc = callback;
156 ctx->callback_data = callback_data;
158 return ctx;
160 EXPORT_SYMBOL(fw_iso_context_create);
162 void fw_iso_context_destroy(struct fw_iso_context *ctx)
164 ctx->card->driver->free_iso_context(ctx);
166 EXPORT_SYMBOL(fw_iso_context_destroy);
168 int fw_iso_context_start(struct fw_iso_context *ctx,
169 int cycle, int sync, int tags)
171 return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
173 EXPORT_SYMBOL(fw_iso_context_start);
175 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
177 return ctx->card->driver->set_iso_channels(ctx, channels);
180 int fw_iso_context_queue(struct fw_iso_context *ctx,
181 struct fw_iso_packet *packet,
182 struct fw_iso_buffer *buffer,
183 unsigned long payload)
185 return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
187 EXPORT_SYMBOL(fw_iso_context_queue);
189 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
191 ctx->card->driver->flush_queue_iso(ctx);
193 EXPORT_SYMBOL(fw_iso_context_queue_flush);
195 int fw_iso_context_stop(struct fw_iso_context *ctx)
197 return ctx->card->driver->stop_iso(ctx);
199 EXPORT_SYMBOL(fw_iso_context_stop);
202 * Isochronous bus resource management (channels, bandwidth), client side
205 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
206 int bandwidth, bool allocate)
208 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
209 __be32 data[2];
212 * On a 1394a IRM with low contention, try < 1 is enough.
213 * On a 1394-1995 IRM, we need at least try < 2.
214 * Let's just do try < 5.
216 for (try = 0; try < 5; try++) {
217 new = allocate ? old - bandwidth : old + bandwidth;
218 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
219 return -EBUSY;
221 data[0] = cpu_to_be32(old);
222 data[1] = cpu_to_be32(new);
223 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
224 irm_id, generation, SCODE_100,
225 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
226 data, 8)) {
227 case RCODE_GENERATION:
228 /* A generation change frees all bandwidth. */
229 return allocate ? -EAGAIN : bandwidth;
231 case RCODE_COMPLETE:
232 if (be32_to_cpup(data) == old)
233 return bandwidth;
235 old = be32_to_cpup(data);
236 /* Fall through. */
240 return -EIO;
243 static int manage_channel(struct fw_card *card, int irm_id, int generation,
244 u32 channels_mask, u64 offset, bool allocate)
246 __be32 bit, all, old;
247 __be32 data[2];
248 int channel, ret = -EIO, retry = 5;
250 old = all = allocate ? cpu_to_be32(~0) : 0;
252 for (channel = 0; channel < 32; channel++) {
253 if (!(channels_mask & 1 << channel))
254 continue;
256 ret = -EBUSY;
258 bit = cpu_to_be32(1 << (31 - channel));
259 if ((old & bit) != (all & bit))
260 continue;
262 data[0] = old;
263 data[1] = old ^ bit;
264 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
265 irm_id, generation, SCODE_100,
266 offset, data, 8)) {
267 case RCODE_GENERATION:
268 /* A generation change frees all channels. */
269 return allocate ? -EAGAIN : channel;
271 case RCODE_COMPLETE:
272 if (data[0] == old)
273 return channel;
275 old = data[0];
277 /* Is the IRM 1394a-2000 compliant? */
278 if ((data[0] & bit) == (data[1] & bit))
279 continue;
281 /* 1394-1995 IRM, fall through to retry. */
282 default:
283 if (retry) {
284 retry--;
285 channel--;
286 } else {
287 ret = -EIO;
292 return ret;
295 static void deallocate_channel(struct fw_card *card, int irm_id,
296 int generation, int channel)
298 u32 mask;
299 u64 offset;
301 mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
302 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
303 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
305 manage_channel(card, irm_id, generation, mask, offset, false);
309 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
311 * In parameters: card, generation, channels_mask, bandwidth, allocate
312 * Out parameters: channel, bandwidth
313 * This function blocks (sleeps) during communication with the IRM.
315 * Allocates or deallocates at most one channel out of channels_mask.
316 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
317 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
318 * channel 0 and LSB for channel 63.)
319 * Allocates or deallocates as many bandwidth allocation units as specified.
321 * Returns channel < 0 if no channel was allocated or deallocated.
322 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
324 * If generation is stale, deallocations succeed but allocations fail with
325 * channel = -EAGAIN.
327 * If channel allocation fails, no bandwidth will be allocated either.
328 * If bandwidth allocation fails, no channel will be allocated either.
329 * But deallocations of channel and bandwidth are tried independently
330 * of each other's success.
332 void fw_iso_resource_manage(struct fw_card *card, int generation,
333 u64 channels_mask, int *channel, int *bandwidth,
334 bool allocate)
336 u32 channels_hi = channels_mask; /* channels 31...0 */
337 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
338 int irm_id, ret, c = -EINVAL;
340 spin_lock_irq(&card->lock);
341 irm_id = card->irm_node->node_id;
342 spin_unlock_irq(&card->lock);
344 if (channels_hi)
345 c = manage_channel(card, irm_id, generation, channels_hi,
346 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
347 allocate);
348 if (channels_lo && c < 0) {
349 c = manage_channel(card, irm_id, generation, channels_lo,
350 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
351 allocate);
352 if (c >= 0)
353 c += 32;
355 *channel = c;
357 if (allocate && channels_mask != 0 && c < 0)
358 *bandwidth = 0;
360 if (*bandwidth == 0)
361 return;
363 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
364 if (ret < 0)
365 *bandwidth = 0;
367 if (allocate && ret < 0) {
368 if (c >= 0)
369 deallocate_channel(card, irm_id, generation, c);
370 *channel = ret;
373 EXPORT_SYMBOL(fw_iso_resource_manage);