Merge branch 'akpm'
[linux-2.6/next.git] / drivers / md / dm-table.c
blob1594562d59167ebd7a4943522da53b152e8d7194
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
22 #define DM_MSG_PREFIX "table"
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
57 unsigned integrity_supported:1;
58 unsigned singleton:1;
61 * Indicates the rw permissions for the new logical
62 * device. This should be a combination of FMODE_READ
63 * and FMODE_WRITE.
65 fmode_t mode;
67 /* a list of devices used by this table */
68 struct list_head devices;
70 /* events get handed up using this callback */
71 void (*event_fn)(void *);
72 void *event_context;
74 struct dm_md_mempools *mempools;
76 struct list_head target_callbacks;
80 * Similar to ceiling(log_size(n))
82 static unsigned int int_log(unsigned int n, unsigned int base)
84 int result = 0;
86 while (n > 1) {
87 n = dm_div_up(n, base);
88 result++;
91 return result;
95 * Calculate the index of the child node of the n'th node k'th key.
97 static inline unsigned int get_child(unsigned int n, unsigned int k)
99 return (n * CHILDREN_PER_NODE) + k;
103 * Return the n'th node of level l from table t.
105 static inline sector_t *get_node(struct dm_table *t,
106 unsigned int l, unsigned int n)
108 return t->index[l] + (n * KEYS_PER_NODE);
112 * Return the highest key that you could lookup from the n'th
113 * node on level l of the btree.
115 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
117 for (; l < t->depth - 1; l++)
118 n = get_child(n, CHILDREN_PER_NODE - 1);
120 if (n >= t->counts[l])
121 return (sector_t) - 1;
123 return get_node(t, l, n)[KEYS_PER_NODE - 1];
127 * Fills in a level of the btree based on the highs of the level
128 * below it.
130 static int setup_btree_index(unsigned int l, struct dm_table *t)
132 unsigned int n, k;
133 sector_t *node;
135 for (n = 0U; n < t->counts[l]; n++) {
136 node = get_node(t, l, n);
138 for (k = 0U; k < KEYS_PER_NODE; k++)
139 node[k] = high(t, l + 1, get_child(n, k));
142 return 0;
145 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
147 unsigned long size;
148 void *addr;
151 * Check that we're not going to overflow.
153 if (nmemb > (ULONG_MAX / elem_size))
154 return NULL;
156 size = nmemb * elem_size;
157 addr = vzalloc(size);
159 return addr;
161 EXPORT_SYMBOL(dm_vcalloc);
164 * highs, and targets are managed as dynamic arrays during a
165 * table load.
167 static int alloc_targets(struct dm_table *t, unsigned int num)
169 sector_t *n_highs;
170 struct dm_target *n_targets;
171 int n = t->num_targets;
174 * Allocate both the target array and offset array at once.
175 * Append an empty entry to catch sectors beyond the end of
176 * the device.
178 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
179 sizeof(sector_t));
180 if (!n_highs)
181 return -ENOMEM;
183 n_targets = (struct dm_target *) (n_highs + num);
185 if (n) {
186 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
187 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
190 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
191 vfree(t->highs);
193 t->num_allocated = num;
194 t->highs = n_highs;
195 t->targets = n_targets;
197 return 0;
200 int dm_table_create(struct dm_table **result, fmode_t mode,
201 unsigned num_targets, struct mapped_device *md)
203 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205 if (!t)
206 return -ENOMEM;
208 INIT_LIST_HEAD(&t->devices);
209 INIT_LIST_HEAD(&t->target_callbacks);
210 atomic_set(&t->holders, 0);
212 if (!num_targets)
213 num_targets = KEYS_PER_NODE;
215 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217 if (alloc_targets(t, num_targets)) {
218 kfree(t);
219 t = NULL;
220 return -ENOMEM;
223 t->mode = mode;
224 t->md = md;
225 *result = t;
226 return 0;
229 static void free_devices(struct list_head *devices)
231 struct list_head *tmp, *next;
233 list_for_each_safe(tmp, next, devices) {
234 struct dm_dev_internal *dd =
235 list_entry(tmp, struct dm_dev_internal, list);
236 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
237 dd->dm_dev.name);
238 kfree(dd);
242 void dm_table_destroy(struct dm_table *t)
244 unsigned int i;
246 if (!t)
247 return;
249 while (atomic_read(&t->holders))
250 msleep(1);
251 smp_mb();
253 /* free the indexes */
254 if (t->depth >= 2)
255 vfree(t->index[t->depth - 2]);
257 /* free the targets */
258 for (i = 0; i < t->num_targets; i++) {
259 struct dm_target *tgt = t->targets + i;
261 if (tgt->type->dtr)
262 tgt->type->dtr(tgt);
264 dm_put_target_type(tgt->type);
267 vfree(t->highs);
269 /* free the device list */
270 if (t->devices.next != &t->devices)
271 free_devices(&t->devices);
273 dm_free_md_mempools(t->mempools);
275 kfree(t);
278 void dm_table_get(struct dm_table *t)
280 atomic_inc(&t->holders);
282 EXPORT_SYMBOL(dm_table_get);
284 void dm_table_put(struct dm_table *t)
286 if (!t)
287 return;
289 smp_mb__before_atomic_dec();
290 atomic_dec(&t->holders);
292 EXPORT_SYMBOL(dm_table_put);
295 * Checks to see if we need to extend highs or targets.
297 static inline int check_space(struct dm_table *t)
299 if (t->num_targets >= t->num_allocated)
300 return alloc_targets(t, t->num_allocated * 2);
302 return 0;
306 * See if we've already got a device in the list.
308 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
310 struct dm_dev_internal *dd;
312 list_for_each_entry (dd, l, list)
313 if (dd->dm_dev.bdev->bd_dev == dev)
314 return dd;
316 return NULL;
320 * Open a device so we can use it as a map destination.
322 static int open_dev(struct dm_dev_internal *d, dev_t dev,
323 struct mapped_device *md)
325 static char *_claim_ptr = "I belong to device-mapper";
326 struct block_device *bdev;
328 int r;
330 BUG_ON(d->dm_dev.bdev);
332 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
333 if (IS_ERR(bdev))
334 return PTR_ERR(bdev);
336 r = bd_link_disk_holder(bdev, dm_disk(md));
337 if (r) {
338 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
339 return r;
342 d->dm_dev.bdev = bdev;
343 return 0;
347 * Close a device that we've been using.
349 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
351 if (!d->dm_dev.bdev)
352 return;
354 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
355 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
356 d->dm_dev.bdev = NULL;
360 * If possible, this checks an area of a destination device is invalid.
362 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
363 sector_t start, sector_t len, void *data)
365 struct request_queue *q;
366 struct queue_limits *limits = data;
367 struct block_device *bdev = dev->bdev;
368 sector_t dev_size =
369 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
370 unsigned short logical_block_size_sectors =
371 limits->logical_block_size >> SECTOR_SHIFT;
372 char b[BDEVNAME_SIZE];
375 * Some devices exist without request functions,
376 * such as loop devices not yet bound to backing files.
377 * Forbid the use of such devices.
379 q = bdev_get_queue(bdev);
380 if (!q || !q->make_request_fn) {
381 DMWARN("%s: %s is not yet initialised: "
382 "start=%llu, len=%llu, dev_size=%llu",
383 dm_device_name(ti->table->md), bdevname(bdev, b),
384 (unsigned long long)start,
385 (unsigned long long)len,
386 (unsigned long long)dev_size);
387 return 1;
390 if (!dev_size)
391 return 0;
393 if ((start >= dev_size) || (start + len > dev_size)) {
394 DMWARN("%s: %s too small for target: "
395 "start=%llu, len=%llu, dev_size=%llu",
396 dm_device_name(ti->table->md), bdevname(bdev, b),
397 (unsigned long long)start,
398 (unsigned long long)len,
399 (unsigned long long)dev_size);
400 return 1;
403 if (logical_block_size_sectors <= 1)
404 return 0;
406 if (start & (logical_block_size_sectors - 1)) {
407 DMWARN("%s: start=%llu not aligned to h/w "
408 "logical block size %u of %s",
409 dm_device_name(ti->table->md),
410 (unsigned long long)start,
411 limits->logical_block_size, bdevname(bdev, b));
412 return 1;
415 if (len & (logical_block_size_sectors - 1)) {
416 DMWARN("%s: len=%llu not aligned to h/w "
417 "logical block size %u of %s",
418 dm_device_name(ti->table->md),
419 (unsigned long long)len,
420 limits->logical_block_size, bdevname(bdev, b));
421 return 1;
424 return 0;
428 * This upgrades the mode on an already open dm_dev, being
429 * careful to leave things as they were if we fail to reopen the
430 * device and not to touch the existing bdev field in case
431 * it is accessed concurrently inside dm_table_any_congested().
433 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
434 struct mapped_device *md)
436 int r;
437 struct dm_dev_internal dd_new, dd_old;
439 dd_new = dd_old = *dd;
441 dd_new.dm_dev.mode |= new_mode;
442 dd_new.dm_dev.bdev = NULL;
444 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
445 if (r)
446 return r;
448 dd->dm_dev.mode |= new_mode;
449 close_dev(&dd_old, md);
451 return 0;
455 * Add a device to the list, or just increment the usage count if
456 * it's already present.
458 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
459 struct dm_dev **result)
461 int r;
462 dev_t uninitialized_var(dev);
463 struct dm_dev_internal *dd;
464 unsigned int major, minor;
465 struct dm_table *t = ti->table;
467 BUG_ON(!t);
469 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
470 /* Extract the major/minor numbers */
471 dev = MKDEV(major, minor);
472 if (MAJOR(dev) != major || MINOR(dev) != minor)
473 return -EOVERFLOW;
474 } else {
475 /* convert the path to a device */
476 struct block_device *bdev = lookup_bdev(path);
478 if (IS_ERR(bdev))
479 return PTR_ERR(bdev);
480 dev = bdev->bd_dev;
481 bdput(bdev);
484 dd = find_device(&t->devices, dev);
485 if (!dd) {
486 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
487 if (!dd)
488 return -ENOMEM;
490 dd->dm_dev.mode = mode;
491 dd->dm_dev.bdev = NULL;
493 if ((r = open_dev(dd, dev, t->md))) {
494 kfree(dd);
495 return r;
498 format_dev_t(dd->dm_dev.name, dev);
500 atomic_set(&dd->count, 0);
501 list_add(&dd->list, &t->devices);
503 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
504 r = upgrade_mode(dd, mode, t->md);
505 if (r)
506 return r;
508 atomic_inc(&dd->count);
510 *result = &dd->dm_dev;
511 return 0;
513 EXPORT_SYMBOL(dm_get_device);
515 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
516 sector_t start, sector_t len, void *data)
518 struct queue_limits *limits = data;
519 struct block_device *bdev = dev->bdev;
520 struct request_queue *q = bdev_get_queue(bdev);
521 char b[BDEVNAME_SIZE];
523 if (unlikely(!q)) {
524 DMWARN("%s: Cannot set limits for nonexistent device %s",
525 dm_device_name(ti->table->md), bdevname(bdev, b));
526 return 0;
529 if (bdev_stack_limits(limits, bdev, start) < 0)
530 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
531 "physical_block_size=%u, logical_block_size=%u, "
532 "alignment_offset=%u, start=%llu",
533 dm_device_name(ti->table->md), bdevname(bdev, b),
534 q->limits.physical_block_size,
535 q->limits.logical_block_size,
536 q->limits.alignment_offset,
537 (unsigned long long) start << SECTOR_SHIFT);
540 * Check if merge fn is supported.
541 * If not we'll force DM to use PAGE_SIZE or
542 * smaller I/O, just to be safe.
544 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
545 blk_limits_max_hw_sectors(limits,
546 (unsigned int) (PAGE_SIZE >> 9));
547 return 0;
549 EXPORT_SYMBOL_GPL(dm_set_device_limits);
552 * Decrement a device's use count and remove it if necessary.
554 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
556 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
557 dm_dev);
559 if (atomic_dec_and_test(&dd->count)) {
560 close_dev(dd, ti->table->md);
561 list_del(&dd->list);
562 kfree(dd);
565 EXPORT_SYMBOL(dm_put_device);
568 * Checks to see if the target joins onto the end of the table.
570 static int adjoin(struct dm_table *table, struct dm_target *ti)
572 struct dm_target *prev;
574 if (!table->num_targets)
575 return !ti->begin;
577 prev = &table->targets[table->num_targets - 1];
578 return (ti->begin == (prev->begin + prev->len));
582 * Used to dynamically allocate the arg array.
584 static char **realloc_argv(unsigned *array_size, char **old_argv)
586 char **argv;
587 unsigned new_size;
589 new_size = *array_size ? *array_size * 2 : 64;
590 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
591 if (argv) {
592 memcpy(argv, old_argv, *array_size * sizeof(*argv));
593 *array_size = new_size;
596 kfree(old_argv);
597 return argv;
601 * Destructively splits up the argument list to pass to ctr.
603 int dm_split_args(int *argc, char ***argvp, char *input)
605 char *start, *end = input, *out, **argv = NULL;
606 unsigned array_size = 0;
608 *argc = 0;
610 if (!input) {
611 *argvp = NULL;
612 return 0;
615 argv = realloc_argv(&array_size, argv);
616 if (!argv)
617 return -ENOMEM;
619 while (1) {
620 /* Skip whitespace */
621 start = skip_spaces(end);
623 if (!*start)
624 break; /* success, we hit the end */
626 /* 'out' is used to remove any back-quotes */
627 end = out = start;
628 while (*end) {
629 /* Everything apart from '\0' can be quoted */
630 if (*end == '\\' && *(end + 1)) {
631 *out++ = *(end + 1);
632 end += 2;
633 continue;
636 if (isspace(*end))
637 break; /* end of token */
639 *out++ = *end++;
642 /* have we already filled the array ? */
643 if ((*argc + 1) > array_size) {
644 argv = realloc_argv(&array_size, argv);
645 if (!argv)
646 return -ENOMEM;
649 /* we know this is whitespace */
650 if (*end)
651 end++;
653 /* terminate the string and put it in the array */
654 *out = '\0';
655 argv[*argc] = start;
656 (*argc)++;
659 *argvp = argv;
660 return 0;
664 * Impose necessary and sufficient conditions on a devices's table such
665 * that any incoming bio which respects its logical_block_size can be
666 * processed successfully. If it falls across the boundary between
667 * two or more targets, the size of each piece it gets split into must
668 * be compatible with the logical_block_size of the target processing it.
670 static int validate_hardware_logical_block_alignment(struct dm_table *table,
671 struct queue_limits *limits)
674 * This function uses arithmetic modulo the logical_block_size
675 * (in units of 512-byte sectors).
677 unsigned short device_logical_block_size_sects =
678 limits->logical_block_size >> SECTOR_SHIFT;
681 * Offset of the start of the next table entry, mod logical_block_size.
683 unsigned short next_target_start = 0;
686 * Given an aligned bio that extends beyond the end of a
687 * target, how many sectors must the next target handle?
689 unsigned short remaining = 0;
691 struct dm_target *uninitialized_var(ti);
692 struct queue_limits ti_limits;
693 unsigned i = 0;
696 * Check each entry in the table in turn.
698 while (i < dm_table_get_num_targets(table)) {
699 ti = dm_table_get_target(table, i++);
701 blk_set_default_limits(&ti_limits);
703 /* combine all target devices' limits */
704 if (ti->type->iterate_devices)
705 ti->type->iterate_devices(ti, dm_set_device_limits,
706 &ti_limits);
709 * If the remaining sectors fall entirely within this
710 * table entry are they compatible with its logical_block_size?
712 if (remaining < ti->len &&
713 remaining & ((ti_limits.logical_block_size >>
714 SECTOR_SHIFT) - 1))
715 break; /* Error */
717 next_target_start =
718 (unsigned short) ((next_target_start + ti->len) &
719 (device_logical_block_size_sects - 1));
720 remaining = next_target_start ?
721 device_logical_block_size_sects - next_target_start : 0;
724 if (remaining) {
725 DMWARN("%s: table line %u (start sect %llu len %llu) "
726 "not aligned to h/w logical block size %u",
727 dm_device_name(table->md), i,
728 (unsigned long long) ti->begin,
729 (unsigned long long) ti->len,
730 limits->logical_block_size);
731 return -EINVAL;
734 return 0;
737 int dm_table_add_target(struct dm_table *t, const char *type,
738 sector_t start, sector_t len, char *params)
740 int r = -EINVAL, argc;
741 char **argv;
742 struct dm_target *tgt;
744 if (t->singleton) {
745 DMERR("%s: target type %s must appear alone in table",
746 dm_device_name(t->md), t->targets->type->name);
747 return -EINVAL;
750 if ((r = check_space(t)))
751 return r;
753 tgt = t->targets + t->num_targets;
754 memset(tgt, 0, sizeof(*tgt));
756 if (!len) {
757 DMERR("%s: zero-length target", dm_device_name(t->md));
758 return -EINVAL;
761 tgt->type = dm_get_target_type(type);
762 if (!tgt->type) {
763 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
764 type);
765 return -EINVAL;
768 if (dm_target_needs_singleton(tgt->type)) {
769 if (t->num_targets) {
770 DMERR("%s: target type %s must appear alone in table",
771 dm_device_name(t->md), type);
772 return -EINVAL;
774 t->singleton = 1;
777 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
778 DMERR("%s: target type %s may not be included in read-only tables",
779 dm_device_name(t->md), type);
780 return -EINVAL;
783 tgt->table = t;
784 tgt->begin = start;
785 tgt->len = len;
786 tgt->error = "Unknown error";
789 * Does this target adjoin the previous one ?
791 if (!adjoin(t, tgt)) {
792 tgt->error = "Gap in table";
793 r = -EINVAL;
794 goto bad;
797 r = dm_split_args(&argc, &argv, params);
798 if (r) {
799 tgt->error = "couldn't split parameters (insufficient memory)";
800 goto bad;
803 r = tgt->type->ctr(tgt, argc, argv);
804 kfree(argv);
805 if (r)
806 goto bad;
808 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
810 if (!tgt->num_discard_requests && tgt->discards_supported)
811 DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
812 dm_device_name(t->md), type);
814 return 0;
816 bad:
817 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
818 dm_put_target_type(tgt->type);
819 return r;
823 * Target argument parsing helpers.
825 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
826 unsigned *value, char **error, unsigned grouped)
828 const char *arg_str = dm_shift_arg(arg_set);
830 if (!arg_str ||
831 (sscanf(arg_str, "%u", value) != 1) ||
832 (*value < arg->min) ||
833 (*value > arg->max) ||
834 (grouped && arg_set->argc < *value)) {
835 *error = arg->error;
836 return -EINVAL;
839 return 0;
842 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
843 unsigned *value, char **error)
845 return validate_next_arg(arg, arg_set, value, error, 0);
847 EXPORT_SYMBOL(dm_read_arg);
849 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
850 unsigned *value, char **error)
852 return validate_next_arg(arg, arg_set, value, error, 1);
854 EXPORT_SYMBOL(dm_read_arg_group);
856 const char *dm_shift_arg(struct dm_arg_set *as)
858 char *r;
860 if (as->argc) {
861 as->argc--;
862 r = *as->argv;
863 as->argv++;
864 return r;
867 return NULL;
869 EXPORT_SYMBOL(dm_shift_arg);
871 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
873 BUG_ON(as->argc < num_args);
874 as->argc -= num_args;
875 as->argv += num_args;
877 EXPORT_SYMBOL(dm_consume_args);
879 static int dm_table_set_type(struct dm_table *t)
881 unsigned i;
882 unsigned bio_based = 0, request_based = 0;
883 struct dm_target *tgt;
884 struct dm_dev_internal *dd;
885 struct list_head *devices;
887 for (i = 0; i < t->num_targets; i++) {
888 tgt = t->targets + i;
889 if (dm_target_request_based(tgt))
890 request_based = 1;
891 else
892 bio_based = 1;
894 if (bio_based && request_based) {
895 DMWARN("Inconsistent table: different target types"
896 " can't be mixed up");
897 return -EINVAL;
901 if (bio_based) {
902 /* We must use this table as bio-based */
903 t->type = DM_TYPE_BIO_BASED;
904 return 0;
907 BUG_ON(!request_based); /* No targets in this table */
909 /* Non-request-stackable devices can't be used for request-based dm */
910 devices = dm_table_get_devices(t);
911 list_for_each_entry(dd, devices, list) {
912 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
913 DMWARN("table load rejected: including"
914 " non-request-stackable devices");
915 return -EINVAL;
920 * Request-based dm supports only tables that have a single target now.
921 * To support multiple targets, request splitting support is needed,
922 * and that needs lots of changes in the block-layer.
923 * (e.g. request completion process for partial completion.)
925 if (t->num_targets > 1) {
926 DMWARN("Request-based dm doesn't support multiple targets yet");
927 return -EINVAL;
930 t->type = DM_TYPE_REQUEST_BASED;
932 return 0;
935 unsigned dm_table_get_type(struct dm_table *t)
937 return t->type;
940 bool dm_table_request_based(struct dm_table *t)
942 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
945 int dm_table_alloc_md_mempools(struct dm_table *t)
947 unsigned type = dm_table_get_type(t);
949 if (unlikely(type == DM_TYPE_NONE)) {
950 DMWARN("no table type is set, can't allocate mempools");
951 return -EINVAL;
954 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
955 if (!t->mempools)
956 return -ENOMEM;
958 return 0;
961 void dm_table_free_md_mempools(struct dm_table *t)
963 dm_free_md_mempools(t->mempools);
964 t->mempools = NULL;
967 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
969 return t->mempools;
972 static int setup_indexes(struct dm_table *t)
974 int i;
975 unsigned int total = 0;
976 sector_t *indexes;
978 /* allocate the space for *all* the indexes */
979 for (i = t->depth - 2; i >= 0; i--) {
980 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
981 total += t->counts[i];
984 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
985 if (!indexes)
986 return -ENOMEM;
988 /* set up internal nodes, bottom-up */
989 for (i = t->depth - 2; i >= 0; i--) {
990 t->index[i] = indexes;
991 indexes += (KEYS_PER_NODE * t->counts[i]);
992 setup_btree_index(i, t);
995 return 0;
999 * Builds the btree to index the map.
1001 static int dm_table_build_index(struct dm_table *t)
1003 int r = 0;
1004 unsigned int leaf_nodes;
1006 /* how many indexes will the btree have ? */
1007 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1008 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1010 /* leaf layer has already been set up */
1011 t->counts[t->depth - 1] = leaf_nodes;
1012 t->index[t->depth - 1] = t->highs;
1014 if (t->depth >= 2)
1015 r = setup_indexes(t);
1017 return r;
1021 * Get a disk whose integrity profile reflects the table's profile.
1022 * If %match_all is true, all devices' profiles must match.
1023 * If %match_all is false, all devices must at least have an
1024 * allocated integrity profile; but uninitialized is ok.
1025 * Returns NULL if integrity support was inconsistent or unavailable.
1027 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1028 bool match_all)
1030 struct list_head *devices = dm_table_get_devices(t);
1031 struct dm_dev_internal *dd = NULL;
1032 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1034 list_for_each_entry(dd, devices, list) {
1035 template_disk = dd->dm_dev.bdev->bd_disk;
1036 if (!blk_get_integrity(template_disk))
1037 goto no_integrity;
1038 if (!match_all && !blk_integrity_is_initialized(template_disk))
1039 continue; /* skip uninitialized profiles */
1040 else if (prev_disk &&
1041 blk_integrity_compare(prev_disk, template_disk) < 0)
1042 goto no_integrity;
1043 prev_disk = template_disk;
1046 return template_disk;
1048 no_integrity:
1049 if (prev_disk)
1050 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1051 dm_device_name(t->md),
1052 prev_disk->disk_name,
1053 template_disk->disk_name);
1054 return NULL;
1058 * Register the mapped device for blk_integrity support if
1059 * the underlying devices have an integrity profile. But all devices
1060 * may not have matching profiles (checking all devices isn't reliable
1061 * during table load because this table may use other DM device(s) which
1062 * must be resumed before they will have an initialized integity profile).
1063 * Stacked DM devices force a 2 stage integrity profile validation:
1064 * 1 - during load, validate all initialized integrity profiles match
1065 * 2 - during resume, validate all integrity profiles match
1067 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1069 struct gendisk *template_disk = NULL;
1071 template_disk = dm_table_get_integrity_disk(t, false);
1072 if (!template_disk)
1073 return 0;
1075 if (!blk_integrity_is_initialized(dm_disk(md))) {
1076 t->integrity_supported = 1;
1077 return blk_integrity_register(dm_disk(md), NULL);
1081 * If DM device already has an initalized integrity
1082 * profile the new profile should not conflict.
1084 if (blk_integrity_is_initialized(template_disk) &&
1085 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1086 DMWARN("%s: conflict with existing integrity profile: "
1087 "%s profile mismatch",
1088 dm_device_name(t->md),
1089 template_disk->disk_name);
1090 return 1;
1093 /* Preserve existing initialized integrity profile */
1094 t->integrity_supported = 1;
1095 return 0;
1099 * Prepares the table for use by building the indices,
1100 * setting the type, and allocating mempools.
1102 int dm_table_complete(struct dm_table *t)
1104 int r;
1106 r = dm_table_set_type(t);
1107 if (r) {
1108 DMERR("unable to set table type");
1109 return r;
1112 r = dm_table_build_index(t);
1113 if (r) {
1114 DMERR("unable to build btrees");
1115 return r;
1118 r = dm_table_prealloc_integrity(t, t->md);
1119 if (r) {
1120 DMERR("could not register integrity profile.");
1121 return r;
1124 r = dm_table_alloc_md_mempools(t);
1125 if (r)
1126 DMERR("unable to allocate mempools");
1128 return r;
1131 static DEFINE_MUTEX(_event_lock);
1132 void dm_table_event_callback(struct dm_table *t,
1133 void (*fn)(void *), void *context)
1135 mutex_lock(&_event_lock);
1136 t->event_fn = fn;
1137 t->event_context = context;
1138 mutex_unlock(&_event_lock);
1141 void dm_table_event(struct dm_table *t)
1144 * You can no longer call dm_table_event() from interrupt
1145 * context, use a bottom half instead.
1147 BUG_ON(in_interrupt());
1149 mutex_lock(&_event_lock);
1150 if (t->event_fn)
1151 t->event_fn(t->event_context);
1152 mutex_unlock(&_event_lock);
1154 EXPORT_SYMBOL(dm_table_event);
1156 sector_t dm_table_get_size(struct dm_table *t)
1158 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1160 EXPORT_SYMBOL(dm_table_get_size);
1162 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1164 if (index >= t->num_targets)
1165 return NULL;
1167 return t->targets + index;
1171 * Search the btree for the correct target.
1173 * Caller should check returned pointer with dm_target_is_valid()
1174 * to trap I/O beyond end of device.
1176 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1178 unsigned int l, n = 0, k = 0;
1179 sector_t *node;
1181 for (l = 0; l < t->depth; l++) {
1182 n = get_child(n, k);
1183 node = get_node(t, l, n);
1185 for (k = 0; k < KEYS_PER_NODE; k++)
1186 if (node[k] >= sector)
1187 break;
1190 return &t->targets[(KEYS_PER_NODE * n) + k];
1194 * Establish the new table's queue_limits and validate them.
1196 int dm_calculate_queue_limits(struct dm_table *table,
1197 struct queue_limits *limits)
1199 struct dm_target *uninitialized_var(ti);
1200 struct queue_limits ti_limits;
1201 unsigned i = 0;
1203 blk_set_default_limits(limits);
1205 while (i < dm_table_get_num_targets(table)) {
1206 blk_set_default_limits(&ti_limits);
1208 ti = dm_table_get_target(table, i++);
1210 if (!ti->type->iterate_devices)
1211 goto combine_limits;
1214 * Combine queue limits of all the devices this target uses.
1216 ti->type->iterate_devices(ti, dm_set_device_limits,
1217 &ti_limits);
1219 /* Set I/O hints portion of queue limits */
1220 if (ti->type->io_hints)
1221 ti->type->io_hints(ti, &ti_limits);
1224 * Check each device area is consistent with the target's
1225 * overall queue limits.
1227 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1228 &ti_limits))
1229 return -EINVAL;
1231 combine_limits:
1233 * Merge this target's queue limits into the overall limits
1234 * for the table.
1236 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1237 DMWARN("%s: adding target device "
1238 "(start sect %llu len %llu) "
1239 "caused an alignment inconsistency",
1240 dm_device_name(table->md),
1241 (unsigned long long) ti->begin,
1242 (unsigned long long) ti->len);
1245 return validate_hardware_logical_block_alignment(table, limits);
1249 * Set the integrity profile for this device if all devices used have
1250 * matching profiles. We're quite deep in the resume path but still
1251 * don't know if all devices (particularly DM devices this device
1252 * may be stacked on) have matching profiles. Even if the profiles
1253 * don't match we have no way to fail (to resume) at this point.
1255 static void dm_table_set_integrity(struct dm_table *t)
1257 struct gendisk *template_disk = NULL;
1259 if (!blk_get_integrity(dm_disk(t->md)))
1260 return;
1262 template_disk = dm_table_get_integrity_disk(t, true);
1263 if (template_disk)
1264 blk_integrity_register(dm_disk(t->md),
1265 blk_get_integrity(template_disk));
1266 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1267 DMWARN("%s: device no longer has a valid integrity profile",
1268 dm_device_name(t->md));
1269 else
1270 DMWARN("%s: unable to establish an integrity profile",
1271 dm_device_name(t->md));
1274 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1275 sector_t start, sector_t len, void *data)
1277 unsigned flush = (*(unsigned *)data);
1278 struct request_queue *q = bdev_get_queue(dev->bdev);
1280 return q && (q->flush_flags & flush);
1283 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1285 struct dm_target *ti;
1286 unsigned i = 0;
1289 * Require at least one underlying device to support flushes.
1290 * t->devices includes internal dm devices such as mirror logs
1291 * so we need to use iterate_devices here, which targets
1292 * supporting flushes must provide.
1294 while (i < dm_table_get_num_targets(t)) {
1295 ti = dm_table_get_target(t, i++);
1297 if (!ti->num_flush_requests)
1298 continue;
1300 if (ti->type->iterate_devices &&
1301 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1302 return 1;
1305 return 0;
1308 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1309 sector_t start, sector_t len, void *data)
1311 struct request_queue *q = bdev_get_queue(dev->bdev);
1313 return q && blk_queue_nonrot(q);
1316 static bool dm_table_is_nonrot(struct dm_table *t)
1318 struct dm_target *ti;
1319 unsigned i = 0;
1321 /* Ensure that all underlying device are non-rotational. */
1322 while (i < dm_table_get_num_targets(t)) {
1323 ti = dm_table_get_target(t, i++);
1325 if (!ti->type->iterate_devices ||
1326 !ti->type->iterate_devices(ti, device_is_nonrot, NULL))
1327 return 0;
1330 return 1;
1333 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1335 struct dm_target *ti;
1336 unsigned i = 0;
1338 /* Ensure that all targets supports discard_zeroes_data. */
1339 while (i < dm_table_get_num_targets(t)) {
1340 ti = dm_table_get_target(t, i++);
1342 if (ti->discard_zeroes_data_unsupported)
1343 return 0;
1346 return 1;
1349 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1350 struct queue_limits *limits)
1352 unsigned flush = 0;
1355 * Copy table's limits to the DM device's request_queue
1357 q->limits = *limits;
1359 if (!dm_table_supports_discards(t))
1360 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1361 else
1362 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1364 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1365 flush |= REQ_FLUSH;
1366 if (dm_table_supports_flush(t, REQ_FUA))
1367 flush |= REQ_FUA;
1369 blk_queue_flush(q, flush);
1371 if (dm_table_is_nonrot(t))
1372 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1373 else
1374 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1376 if (!dm_table_discard_zeroes_data(t))
1377 q->limits.discard_zeroes_data = 0;
1379 dm_table_set_integrity(t);
1382 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1383 * visible to other CPUs because, once the flag is set, incoming bios
1384 * are processed by request-based dm, which refers to the queue
1385 * settings.
1386 * Until the flag set, bios are passed to bio-based dm and queued to
1387 * md->deferred where queue settings are not needed yet.
1388 * Those bios are passed to request-based dm at the resume time.
1390 smp_mb();
1391 if (dm_table_request_based(t))
1392 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1395 unsigned int dm_table_get_num_targets(struct dm_table *t)
1397 return t->num_targets;
1400 struct list_head *dm_table_get_devices(struct dm_table *t)
1402 return &t->devices;
1405 fmode_t dm_table_get_mode(struct dm_table *t)
1407 return t->mode;
1409 EXPORT_SYMBOL(dm_table_get_mode);
1411 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1413 int i = t->num_targets;
1414 struct dm_target *ti = t->targets;
1416 while (i--) {
1417 if (postsuspend) {
1418 if (ti->type->postsuspend)
1419 ti->type->postsuspend(ti);
1420 } else if (ti->type->presuspend)
1421 ti->type->presuspend(ti);
1423 ti++;
1427 void dm_table_presuspend_targets(struct dm_table *t)
1429 if (!t)
1430 return;
1432 suspend_targets(t, 0);
1435 void dm_table_postsuspend_targets(struct dm_table *t)
1437 if (!t)
1438 return;
1440 suspend_targets(t, 1);
1443 int dm_table_resume_targets(struct dm_table *t)
1445 int i, r = 0;
1447 for (i = 0; i < t->num_targets; i++) {
1448 struct dm_target *ti = t->targets + i;
1450 if (!ti->type->preresume)
1451 continue;
1453 r = ti->type->preresume(ti);
1454 if (r)
1455 return r;
1458 for (i = 0; i < t->num_targets; i++) {
1459 struct dm_target *ti = t->targets + i;
1461 if (ti->type->resume)
1462 ti->type->resume(ti);
1465 return 0;
1468 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1470 list_add(&cb->list, &t->target_callbacks);
1472 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1474 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1476 struct dm_dev_internal *dd;
1477 struct list_head *devices = dm_table_get_devices(t);
1478 struct dm_target_callbacks *cb;
1479 int r = 0;
1481 list_for_each_entry(dd, devices, list) {
1482 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1483 char b[BDEVNAME_SIZE];
1485 if (likely(q))
1486 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1487 else
1488 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1489 dm_device_name(t->md),
1490 bdevname(dd->dm_dev.bdev, b));
1493 list_for_each_entry(cb, &t->target_callbacks, list)
1494 if (cb->congested_fn)
1495 r |= cb->congested_fn(cb, bdi_bits);
1497 return r;
1500 int dm_table_any_busy_target(struct dm_table *t)
1502 unsigned i;
1503 struct dm_target *ti;
1505 for (i = 0; i < t->num_targets; i++) {
1506 ti = t->targets + i;
1507 if (ti->type->busy && ti->type->busy(ti))
1508 return 1;
1511 return 0;
1514 struct mapped_device *dm_table_get_md(struct dm_table *t)
1516 return t->md;
1518 EXPORT_SYMBOL(dm_table_get_md);
1520 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1521 sector_t start, sector_t len, void *data)
1523 struct request_queue *q = bdev_get_queue(dev->bdev);
1525 return q && blk_queue_discard(q);
1528 bool dm_table_supports_discards(struct dm_table *t)
1530 struct dm_target *ti;
1531 unsigned i = 0;
1534 * Unless any target used by the table set discards_supported,
1535 * require at least one underlying device to support discards.
1536 * t->devices includes internal dm devices such as mirror logs
1537 * so we need to use iterate_devices here, which targets
1538 * supporting discard selectively must provide.
1540 while (i < dm_table_get_num_targets(t)) {
1541 ti = dm_table_get_target(t, i++);
1543 if (!ti->num_discard_requests)
1544 continue;
1546 if (ti->discards_supported)
1547 return 1;
1549 if (ti->type->iterate_devices &&
1550 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1551 return 1;
1554 return 0;