Merge branch 'akpm'
[linux-2.6/next.git] / drivers / md / dm-thin-metadata.c
blobb7feadaad043e2a90037f7e5a6c97c7ac833d735
1 /*
2 * Copyright (C) 2011 Red Hat, Inc. All rights reserved.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
23 * - A space map managing the metadata blocks.
25 * - A space map managing the data blocks.
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
42 * Space maps have 2 btrees:
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
75 #define DM_MSG_PREFIX "thin metadata"
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_BLOCK_SIZE 4096
81 #define THIN_METADATA_CACHE_SIZE 64
82 #define SECTOR_TO_BLOCK_SHIFT 3
84 /* This should be plenty */
85 #define SPACE_MAP_ROOT_SIZE 128
88 * Little endian on-disk superblock and device details.
90 struct thin_disk_superblock {
91 __le32 csum; /* Checksum of superblock except for this field. */
92 __le32 flags;
93 __le64 blocknr; /* This block number, dm_block_t. */
95 __u8 uuid[16];
96 __le64 magic;
97 __le32 version;
98 __le32 time;
100 __le64 trans_id;
103 * Root held by userspace transactions.
105 __le64 held_root;
107 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
108 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
111 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
113 __le64 data_mapping_root;
116 * Device detail root mapping dev_id -> device_details
118 __le64 device_details_root;
120 __le32 data_block_size; /* In 512-byte sectors. */
122 __le32 metadata_block_size; /* In 512-byte sectors. */
123 __le64 metadata_nr_blocks;
125 __le32 compat_flags;
126 __le32 compat_ro_flags;
127 __le32 incompat_flags;
128 } __packed;
130 struct disk_device_details {
131 __le64 mapped_blocks;
132 __le64 transaction_id; /* When created. */
133 __le32 creation_time;
134 __le32 snapshotted_time;
135 } __packed;
137 struct dm_pool_metadata {
138 struct hlist_node hash;
140 struct block_device *bdev;
141 struct dm_block_manager *bm;
142 struct dm_space_map *metadata_sm;
143 struct dm_space_map *data_sm;
144 struct dm_transaction_manager *tm;
145 struct dm_transaction_manager *nb_tm;
148 * Two-level btree.
149 * First level holds thin_dev_t.
150 * Second level holds mappings.
152 struct dm_btree_info info;
155 * Non-blocking version of the above.
157 struct dm_btree_info nb_info;
160 * Just the top level for deleting whole devices.
162 struct dm_btree_info tl_info;
165 * Just the bottom level for creating new devices.
167 struct dm_btree_info bl_info;
170 * Describes the device details btree.
172 struct dm_btree_info details_info;
174 struct rw_semaphore root_lock;
175 uint32_t time;
176 int need_commit;
177 struct dm_block *sblock;
178 dm_block_t root;
179 dm_block_t details_root;
180 struct list_head thin_devices;
181 uint64_t trans_id;
182 unsigned long flags;
183 sector_t data_block_size;
186 struct dm_thin_device {
187 struct list_head list;
188 struct dm_pool_metadata *pmd;
189 dm_thin_id id;
191 int open_count;
192 int changed;
193 uint64_t mapped_blocks;
194 uint64_t transaction_id;
195 uint32_t creation_time;
196 uint32_t snapshotted_time;
199 /*----------------------------------------------------------------
200 * superblock validator
201 *--------------------------------------------------------------*/
203 static void sb_prepare_for_write(struct dm_block_validator *v,
204 struct dm_block *b,
205 size_t block_size)
207 struct thin_disk_superblock *disk_super = dm_block_data(b);
209 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
210 disk_super->csum = cpu_to_le32(dm_block_csum_data(&disk_super->flags, sizeof(*disk_super) - sizeof(__le32)));
213 static int sb_check(struct dm_block_validator *v,
214 struct dm_block *b,
215 size_t block_size)
217 struct thin_disk_superblock *disk_super = dm_block_data(b);
218 __le32 csum_le;
220 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
221 DMERR("sb_check failed: blocknr %llu: "
222 "wanted %llu", le64_to_cpu(disk_super->blocknr),
223 (unsigned long long)dm_block_location(b));
224 return -ENOTBLK;
227 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
228 DMERR("sb_check failed: magic %llu: "
229 "wanted %llu", le64_to_cpu(disk_super->magic),
230 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
231 return -EILSEQ;
234 csum_le = cpu_to_le32(dm_block_csum_data(&disk_super->flags, sizeof(*disk_super) - sizeof(__le32)));
235 if (csum_le != disk_super->csum) {
236 DMERR("sb_check failed: csum %u: wanted %u",
237 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
238 return -EILSEQ;
241 return 0;
244 static struct dm_block_validator sb_validator = {
245 .name = "superblock",
246 .prepare_for_write = sb_prepare_for_write,
247 .check = sb_check
250 /*----------------------------------------------------------------
251 * Methods for the btree value types
252 *--------------------------------------------------------------*/
254 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
256 return (b << 24) | t;
259 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
261 *b = v >> 24;
262 *t = v & ((1 << 24) - 1);
265 static void data_block_inc(void *context, void *value_le)
267 struct dm_space_map *sm = context;
268 __le64 v_le;
269 uint64_t b;
270 uint32_t t;
272 memcpy(&v_le, value_le, sizeof(v_le));
273 unpack_block_time(le64_to_cpu(v_le), &b, &t);
274 dm_sm_inc_block(sm, b);
277 static void data_block_dec(void *context, void *value_le)
279 struct dm_space_map *sm = context;
280 __le64 v_le;
281 uint64_t b;
282 uint32_t t;
284 memcpy(&v_le, value_le, sizeof(v_le));
285 unpack_block_time(le64_to_cpu(v_le), &b, &t);
286 dm_sm_dec_block(sm, b);
289 static int data_block_equal(void *context, void *value1_le, void *value2_le)
291 __le64 v1_le, v2_le;
292 uint64_t b1, b2;
293 uint32_t t;
295 memcpy(&v1_le, value1_le, sizeof(v1_le));
296 memcpy(&v2_le, value2_le, sizeof(v2_le));
297 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
298 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
300 return b1 == b2;
303 static void subtree_inc(void *context, void *value)
305 struct dm_btree_info *info = context;
306 __le64 root_le;
307 uint64_t root;
309 memcpy(&root_le, value, sizeof(root_le));
310 root = le64_to_cpu(root_le);
311 dm_tm_inc(info->tm, root);
314 static void subtree_dec(void *context, void *value)
316 struct dm_btree_info *info = context;
317 __le64 root_le;
318 uint64_t root;
320 memcpy(&root_le, value, sizeof(root_le));
321 root = le64_to_cpu(root_le);
322 if (dm_btree_destroy(info, root))
323 DMERR("btree delete failed\n");
326 static int subtree_equal(void *context, void *value1_le, void *value2_le)
328 __le64 v1_le, v2_le;
329 memcpy(&v1_le, value1_le, sizeof(v1_le));
330 memcpy(&v2_le, value2_le, sizeof(v2_le));
332 return v1_le == v2_le;
335 /*----------------------------------------------------------------*/
337 static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
339 int r;
340 unsigned i;
341 struct dm_block *b;
342 __le64 *data_le, zero = cpu_to_le64(0);
343 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
346 * We can't use a validator here - it may be all zeroes.
348 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
349 if (r)
350 return r;
352 data_le = dm_block_data(b);
353 *result = 1;
354 for (i = 0; i < block_size; i++) {
355 if (data_le[i] != zero) {
356 *result = 0;
357 break;
361 return dm_bm_unlock(b);
364 static struct dm_pool_metadata *alloc_pmd(struct dm_block_manager *bm,
365 dm_block_t nr_blocks, int create)
367 int r;
368 struct dm_space_map *sm, *data_sm;
369 struct dm_transaction_manager *tm;
370 struct dm_pool_metadata *pmd = NULL;
371 struct dm_block *sblock;
373 if (create) {
374 r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
375 &sb_validator, &tm, &sm, &sblock);
376 if (r < 0) {
377 DMERR("tm_create_with_sm failed");
378 return ERR_PTR(r);
381 data_sm = dm_sm_disk_create(tm, nr_blocks);
382 if (IS_ERR(data_sm)) {
383 DMERR("sm_disk_create failed");
384 r = PTR_ERR(data_sm);
385 goto bad;
388 r = dm_tm_pre_commit(tm);
389 if (r < 0) {
390 DMERR("couldn't pre commit");
391 goto bad_data_sm;
394 r = dm_tm_commit(tm, sblock);
395 if (r < 0) {
396 DMERR("couldn't commit");
397 goto bad_data_sm;
399 } else {
400 struct thin_disk_superblock *disk_super = NULL;
401 size_t space_map_root_offset =
402 offsetof(struct thin_disk_superblock, metadata_space_map_root);
404 r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
405 &sb_validator, space_map_root_offset,
406 SPACE_MAP_ROOT_SIZE, &tm, &sm, &sblock);
407 if (r < 0) {
408 DMERR("tm_open_with_sm failed");
409 return ERR_PTR(r);
412 disk_super = dm_block_data(sblock);
413 data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
414 sizeof(disk_super->data_space_map_root));
415 if (IS_ERR(data_sm)) {
416 DMERR("sm_disk_open failed");
417 r = PTR_ERR(data_sm);
418 goto bad;
421 dm_tm_unlock(tm, sblock);
424 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
425 if (!pmd) {
426 DMERR("could not allocate metadata struct");
427 r = -ENOMEM;
428 goto bad_data_sm;
431 pmd->bm = bm;
432 pmd->metadata_sm = sm;
433 pmd->data_sm = data_sm;
434 pmd->tm = tm;
435 pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
436 if (!pmd->nb_tm) {
437 DMERR("could not create clone tm");
438 r = -ENOMEM;
439 goto bad_pmd;
442 pmd->sblock = NULL;
444 pmd->info.tm = tm;
445 pmd->info.levels = 2;
446 pmd->info.value_type.context = pmd->data_sm;
447 pmd->info.value_type.size = sizeof(__le64);
448 pmd->info.value_type.inc = data_block_inc;
449 pmd->info.value_type.dec = data_block_dec;
450 pmd->info.value_type.equal = data_block_equal;
452 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
453 pmd->nb_info.tm = pmd->nb_tm;
455 pmd->tl_info.tm = tm;
456 pmd->tl_info.levels = 1;
457 pmd->tl_info.value_type.context = &pmd->info;
458 pmd->tl_info.value_type.size = sizeof(__le64);
459 pmd->tl_info.value_type.inc = subtree_inc;
460 pmd->tl_info.value_type.dec = subtree_dec;
461 pmd->tl_info.value_type.equal = subtree_equal;
463 pmd->bl_info.tm = tm;
464 pmd->bl_info.levels = 1;
465 pmd->bl_info.value_type.context = pmd->data_sm;
466 pmd->bl_info.value_type.size = sizeof(__le64);
467 pmd->bl_info.value_type.inc = data_block_inc;
468 pmd->bl_info.value_type.dec = data_block_dec;
469 pmd->bl_info.value_type.equal = data_block_equal;
471 pmd->details_info.tm = tm;
472 pmd->details_info.levels = 1;
473 pmd->details_info.value_type.context = NULL;
474 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
475 pmd->details_info.value_type.inc = NULL;
476 pmd->details_info.value_type.dec = NULL;
477 pmd->details_info.value_type.equal = NULL;
479 pmd->root = 0;
481 init_rwsem(&pmd->root_lock);
482 pmd->time = 0;
483 pmd->need_commit = 0;
484 pmd->details_root = 0;
485 INIT_LIST_HEAD(&pmd->thin_devices);
487 return pmd;
489 bad_pmd:
490 kfree(pmd);
491 bad_data_sm:
492 dm_sm_destroy(data_sm);
493 bad:
494 dm_tm_destroy(tm);
495 dm_sm_destroy(sm);
497 return ERR_PTR(r);
500 static int __begin_transaction(struct dm_pool_metadata *pmd)
502 int r;
503 u32 features;
504 struct thin_disk_superblock *disk_super;
507 * __maybe_commit_transaction() resets these
509 WARN_ON(pmd->sblock);
510 WARN_ON(pmd->need_commit);
513 * superblock is unlocked via dm_tm_commit()
515 r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
516 &sb_validator, &pmd->sblock);
517 if (r)
518 return r;
520 disk_super = dm_block_data(pmd->sblock);
521 pmd->time = le32_to_cpu(disk_super->time);
522 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
523 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
524 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
525 pmd->flags = le32_to_cpu(disk_super->flags);
526 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
528 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
529 if (features) {
530 DMERR("could not access metadata due to "
531 "unsupported optional features (%lx).",
532 (unsigned long)features);
533 return -EINVAL;
537 * Check for read-only metadata to skip the following RDWR checks.
539 if (get_disk_ro(pmd->bdev->bd_disk))
540 return 0;
542 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
543 if (features) {
544 DMERR("could not access metadata RDWR due to "
545 "unsupported optional features (%lx).",
546 (unsigned long)features);
547 return -EINVAL;
550 return 0;
553 static int __write_changed_details(struct dm_pool_metadata *pmd)
555 int r;
556 struct dm_thin_device *td, *tmp;
557 struct disk_device_details details;
558 uint64_t key;
560 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
561 if (!td->changed)
562 continue;
564 key = td->id;
566 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
567 details.transaction_id = cpu_to_le64(td->transaction_id);
568 details.creation_time = cpu_to_le32(td->creation_time);
569 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
570 __dm_bless_for_disk(&details);
572 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
573 &key, &details, &pmd->details_root);
574 if (r)
575 return r;
577 if (td->open_count)
578 td->changed = 0;
579 else {
580 list_del(&td->list);
581 kfree(td);
584 pmd->need_commit = 1;
587 return 0;
591 * If there is data waiting to be committed, commit it.
592 * Returns 1 if commit took place, 0 if not, or < 0 on error.
594 static int __maybe_commit_transaction(struct dm_pool_metadata *pmd)
597 * FIXME: Associated pool should be made read-only on failure.
599 int r;
600 size_t len;
601 struct thin_disk_superblock *disk_super;
604 * thin_disk_superblock is assumed not to exceed a 512-byte sector.
606 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
608 r = __write_changed_details(pmd);
609 if (r < 0)
610 goto out;
612 if (!pmd->need_commit)
613 goto out;
615 r = dm_tm_pre_commit(pmd->tm);
616 if (r < 0)
617 goto out;
619 r = dm_sm_root_size(pmd->metadata_sm, &len);
620 if (r < 0)
621 goto out;
623 disk_super = dm_block_data(pmd->sblock);
624 disk_super->time = cpu_to_le32(pmd->time);
625 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
626 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
627 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
628 disk_super->flags = cpu_to_le32(pmd->flags);
630 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root, len);
631 if (r < 0)
632 goto out;
634 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root, len);
635 if (r < 0)
636 goto out;
638 r = dm_tm_commit(pmd->tm, pmd->sblock);
639 if (!r) {
640 r = 1;
641 pmd->sblock = NULL;
642 pmd->need_commit = 0;
645 out:
646 return r;
649 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
651 int r;
653 down_write(&pmd->root_lock);
655 r = __maybe_commit_transaction(pmd);
656 if (r <= 0)
657 goto out;
660 * Open the next transaction.
662 r = __begin_transaction(pmd);
664 out:
665 up_write(&pmd->root_lock);
666 return r;
669 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
670 sector_t data_block_size)
672 int r;
673 struct thin_disk_superblock *disk_super;
674 struct dm_pool_metadata *pmd;
675 sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
676 struct dm_block_manager *bm;
677 int create;
679 bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
680 THIN_METADATA_CACHE_SIZE, 6);
681 if (!bm) {
682 DMERR("could not create block manager");
683 return ERR_PTR(-ENOMEM);
686 r = superblock_all_zeroes(bm, &create);
687 if (r) {
688 dm_block_manager_destroy(bm);
689 return ERR_PTR(r);
692 pmd = alloc_pmd(bm, 0, create);
693 if (IS_ERR(pmd)) {
694 dm_block_manager_destroy(bm);
695 return pmd;
697 pmd->bdev = bdev;
699 if (!create) {
700 r = __begin_transaction(pmd);
701 if (r < 0)
702 goto bad;
703 return pmd;
707 * Create.
709 if (!pmd->sblock) {
710 r = __begin_transaction(pmd);
711 if (r < 0)
712 goto bad;
715 disk_super = dm_block_data(pmd->sblock);
716 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
717 disk_super->version = cpu_to_le32(THIN_VERSION);
718 disk_super->time = 0;
719 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
720 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
721 disk_super->data_block_size = cpu_to_le32(data_block_size);
723 r = dm_btree_create(&pmd->info, &pmd->root);
724 if (r < 0)
725 goto bad;
727 r = dm_btree_create(&pmd->details_info, &pmd->details_root);
728 if (r < 0) {
729 DMERR("couldn't create devices root");
730 goto bad;
733 pmd->flags = 0;
734 pmd->need_commit = 1;
735 r = dm_pool_commit_metadata(pmd);
736 if (r < 0) {
737 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
738 __func__, r);
739 goto bad;
742 return pmd;
744 bad:
745 if (dm_pool_metadata_close(pmd) < 0)
746 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
747 return ERR_PTR(r);
750 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
752 int r;
753 unsigned open_devices = 0;
754 struct dm_thin_device *td, *tmp;
756 down_read(&pmd->root_lock);
757 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
758 if (td->open_count)
759 open_devices++;
760 else {
761 list_del(&td->list);
762 kfree(td);
765 up_read(&pmd->root_lock);
767 if (open_devices) {
768 DMERR("attempt to close pmd when %u device(s) are still open",
769 open_devices);
770 return -EBUSY;
773 if (pmd->sblock) {
774 r = __maybe_commit_transaction(pmd);
775 if (r < 0)
776 DMWARN("%s: __maybe_commit_transaction() failed, error = %d",
777 __func__, r);
778 if (pmd->sblock)
779 dm_tm_unlock(pmd->tm, pmd->sblock);
782 dm_tm_destroy(pmd->tm);
783 dm_tm_destroy(pmd->nb_tm);
784 dm_block_manager_destroy(pmd->bm);
785 dm_sm_destroy(pmd->metadata_sm);
786 dm_sm_destroy(pmd->data_sm);
787 kfree(pmd);
789 return 0;
792 int dm_pool_rebind_metadata_device(struct dm_pool_metadata *pmd,
793 struct block_device *bdev)
795 return dm_bm_rebind_block_device(pmd->bm, bdev);
798 static int __open_device(struct dm_pool_metadata *pmd,
799 dm_thin_id dev, int create,
800 struct dm_thin_device **td)
802 int r, changed = 0;
803 struct dm_thin_device *td2;
804 uint64_t key = dev;
805 struct disk_device_details details_le;
808 * If the device is already open, just increment its open_count.
810 list_for_each_entry(td2, &pmd->thin_devices, list)
811 if (td2->id == dev) {
812 td2->open_count++;
813 *td = td2;
814 return 0;
818 * Check the device exists.
820 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
821 &key, &details_le);
822 if (r) {
823 if (r != -ENODATA || !create)
824 return r;
827 * New device.
829 changed = 1;
830 details_le.mapped_blocks = 0;
831 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
832 details_le.creation_time = cpu_to_le32(pmd->time);
833 details_le.snapshotted_time = cpu_to_le32(pmd->time);
836 *td = kmalloc(sizeof(**td), GFP_NOIO);
837 if (!*td)
838 return -ENOMEM;
840 (*td)->pmd = pmd;
841 (*td)->id = dev;
842 (*td)->open_count = 1;
843 (*td)->changed = changed;
844 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
845 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
846 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
847 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
849 list_add(&(*td)->list, &pmd->thin_devices);
851 return 0;
854 static void __close_device(struct dm_thin_device *td)
856 --td->open_count;
859 static int __create_thin(struct dm_pool_metadata *pmd,
860 dm_thin_id dev)
862 int r;
863 dm_block_t dev_root;
864 uint64_t key = dev;
865 struct disk_device_details details_le;
866 struct dm_thin_device *td;
867 __le64 value;
869 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
870 &key, &details_le);
871 if (!r)
872 return -EEXIST;
875 * Create an empty btree for the mappings.
877 r = dm_btree_create(&pmd->bl_info, &dev_root);
878 if (r)
879 return r;
882 * Insert it into the main mapping tree.
884 value = cpu_to_le64(dev_root);
885 __dm_bless_for_disk(&value);
886 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
887 if (r) {
888 dm_btree_destroy(&pmd->bl_info, dev_root);
889 return r;
892 r = __open_device(pmd, dev, 1, &td);
893 if (r) {
894 __close_device(td);
895 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
896 dm_btree_destroy(&pmd->bl_info, dev_root);
897 return r;
899 td->changed = 1;
900 __close_device(td);
902 return r;
905 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
907 int r;
909 down_write(&pmd->root_lock);
910 r = __create_thin(pmd, dev);
911 up_write(&pmd->root_lock);
913 return r;
916 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
917 struct dm_thin_device *snap,
918 dm_thin_id origin, uint32_t time)
920 int r;
921 struct dm_thin_device *td;
923 r = __open_device(pmd, origin, 0, &td);
924 if (r)
925 return r;
927 td->changed = 1;
928 td->snapshotted_time = time;
930 snap->mapped_blocks = td->mapped_blocks;
931 snap->snapshotted_time = time;
932 __close_device(td);
934 return 0;
937 static int __create_snap(struct dm_pool_metadata *pmd,
938 dm_thin_id dev, dm_thin_id origin)
940 int r;
941 dm_block_t origin_root, snap_root;
942 uint64_t key = origin, dev_key = dev;
943 struct dm_thin_device *td;
944 struct disk_device_details details_le;
945 __le64 value;
947 /* check this device is unused */
948 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
949 &dev_key, &details_le);
950 if (!r)
951 return -EEXIST;
953 /* find the mapping tree for the origin */
954 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
955 if (r)
956 return r;
957 origin_root = le64_to_cpu(value);
959 /* clone the origin */
960 r = dm_btree_clone(&pmd->bl_info, origin_root, &snap_root);
961 if (r)
962 return r;
964 /* insert into the main mapping tree */
965 value = cpu_to_le64(snap_root);
966 __dm_bless_for_disk(&value);
967 key = dev;
968 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
969 if (r) {
970 dm_btree_destroy(&pmd->bl_info, snap_root);
971 return r;
974 pmd->time++;
976 r = __open_device(pmd, dev, 1, &td);
977 if (r)
978 goto bad;
980 r = __set_snapshot_details(pmd, td, origin, pmd->time);
981 if (r)
982 goto bad;
984 __close_device(td);
985 return 0;
987 bad:
988 __close_device(td);
989 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
990 dm_btree_remove(&pmd->details_info, pmd->details_root,
991 &key, &pmd->details_root);
992 return r;
995 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
996 dm_thin_id dev,
997 dm_thin_id origin)
999 int r;
1001 down_write(&pmd->root_lock);
1002 r = __create_snap(pmd, dev, origin);
1003 up_write(&pmd->root_lock);
1005 return r;
1008 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1010 int r;
1011 uint64_t key = dev;
1012 struct dm_thin_device *td;
1014 /* TODO: failure should mark the transaction invalid */
1015 r = __open_device(pmd, dev, 0, &td);
1016 if (r)
1017 return r;
1019 if (td->open_count > 1) {
1020 __close_device(td);
1021 return -EBUSY;
1024 list_del(&td->list);
1025 kfree(td);
1026 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1027 &key, &pmd->details_root);
1028 if (r)
1029 return r;
1031 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1032 if (r)
1033 return r;
1035 pmd->need_commit = 1;
1037 return 0;
1040 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1041 dm_thin_id dev)
1043 int r;
1045 down_write(&pmd->root_lock);
1046 r = __delete_device(pmd, dev);
1047 up_write(&pmd->root_lock);
1049 return r;
1052 static int __trim_thin_dev(struct dm_thin_device *td, sector_t new_size)
1054 struct dm_pool_metadata *pmd = td->pmd;
1055 /* FIXME: convert new size to blocks */
1056 uint64_t key[2] = { td->id, new_size - 1 };
1058 td->changed = 1;
1061 * We need to truncate all the extraneous mappings.
1063 * FIXME: We have to be careful to do this atomically.
1064 * Perhaps clone the bottom layer first so we can revert?
1066 return dm_btree_delete_gt(&pmd->info, pmd->root, key, &pmd->root);
1069 // FIXME Incomplete implementation. Finish or remove it before final submission.
1070 int dm_pool_trim_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1071 sector_t new_size)
1073 int r;
1074 struct dm_thin_device *td;
1076 down_write(&pmd->root_lock);
1077 r = __open_device(pmd, dev, 1, &td);
1078 if (r)
1079 DMERR("couldn't open virtual device");
1080 else {
1081 r = __trim_thin_dev(td, new_size);
1082 __close_device(td);
1085 /* FIXME: update mapped_blocks */
1087 up_write(&pmd->root_lock);
1089 return r;
1092 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1093 uint64_t current_id,
1094 uint64_t new_id)
1096 down_write(&pmd->root_lock);
1097 if (pmd->trans_id != current_id) {
1098 up_write(&pmd->root_lock);
1099 DMERR("mismatched transaction id");
1100 return -EINVAL;
1103 pmd->trans_id = new_id;
1104 pmd->need_commit = 1;
1105 up_write(&pmd->root_lock);
1107 return 0;
1110 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1111 uint64_t *result)
1113 down_read(&pmd->root_lock);
1114 *result = pmd->trans_id;
1115 up_read(&pmd->root_lock);
1117 return 0;
1120 int dm_pool_get_held_metadata_root(struct dm_pool_metadata *pmd,
1121 dm_block_t *result)
1123 struct thin_disk_superblock *disk_super;
1125 down_read(&pmd->root_lock);
1126 disk_super = dm_block_data(pmd->sblock);
1127 *result = le64_to_cpu(disk_super->held_root);
1128 up_read(&pmd->root_lock);
1130 return 0;
1133 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1134 struct dm_thin_device **td)
1136 int r;
1138 down_write(&pmd->root_lock);
1139 r = __open_device(pmd, dev, 0, td);
1140 up_write(&pmd->root_lock);
1142 return r;
1145 int dm_pool_close_thin_device(struct dm_thin_device *td)
1147 down_write(&td->pmd->root_lock);
1148 __close_device(td);
1149 up_write(&td->pmd->root_lock);
1151 return 0;
1154 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1156 return td->id;
1159 static int __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1161 return td->snapshotted_time > time;
1164 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1165 int can_block, struct dm_thin_lookup_result *result)
1167 int r;
1168 uint64_t block_time = 0;
1169 __le64 value;
1170 struct dm_pool_metadata *pmd = td->pmd;
1171 dm_block_t keys[2] = { td->id, block };
1173 if (can_block) {
1174 down_read(&pmd->root_lock);
1175 r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1176 if (!r)
1177 block_time = le64_to_cpu(value);
1178 up_read(&pmd->root_lock);
1180 } else if (down_read_trylock(&pmd->root_lock)) {
1181 r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1182 if (!r)
1183 block_time = le64_to_cpu(value);
1184 up_read(&pmd->root_lock);
1186 } else
1187 return -EWOULDBLOCK;
1189 if (!r) {
1190 dm_block_t exception_block;
1191 uint32_t exception_time;
1192 unpack_block_time(block_time, &exception_block,
1193 &exception_time);
1194 result->block = exception_block;
1195 result->shared = __snapshotted_since(td, exception_time);
1198 return r;
1201 static int __insert(struct dm_thin_device *td, dm_block_t block,
1202 dm_block_t data_block)
1204 int r, inserted;
1205 __le64 value;
1206 struct dm_pool_metadata *pmd = td->pmd;
1207 dm_block_t keys[2] = { td->id, block };
1209 pmd->need_commit = 1;
1210 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1211 __dm_bless_for_disk(&value);
1213 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1214 &pmd->root, &inserted);
1215 if (r)
1216 return r;
1218 if (inserted) {
1219 td->mapped_blocks++;
1220 td->changed = 1;
1223 return 0;
1226 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1227 dm_block_t data_block)
1229 int r;
1231 down_write(&td->pmd->root_lock);
1232 r = __insert(td, block, data_block);
1233 up_write(&td->pmd->root_lock);
1235 return r;
1238 static int __remove(struct dm_thin_device *td, dm_block_t block)
1240 int r;
1241 struct dm_pool_metadata *pmd = td->pmd;
1242 dm_block_t keys[2] = { td->id, block };
1244 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1245 if (r)
1246 return r;
1248 pmd->need_commit = 1;
1250 return 0;
1253 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1255 int r;
1257 down_write(&td->pmd->root_lock);
1258 r = __remove(td, block);
1259 up_write(&td->pmd->root_lock);
1261 return r;
1264 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1266 int r;
1268 down_write(&pmd->root_lock);
1270 r = dm_sm_new_block(pmd->data_sm, result);
1271 pmd->need_commit = 1;
1273 up_write(&pmd->root_lock);
1275 return r;
1278 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1280 int r;
1282 down_read(&pmd->root_lock);
1283 r = dm_sm_get_nr_free(pmd->data_sm, result);
1284 up_read(&pmd->root_lock);
1286 return r;
1289 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1290 dm_block_t *result)
1292 int r;
1294 down_read(&pmd->root_lock);
1295 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1296 up_read(&pmd->root_lock);
1298 return r;
1301 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1302 dm_block_t *result)
1304 int r;
1306 down_read(&pmd->root_lock);
1307 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1308 up_read(&pmd->root_lock);
1310 return r;
1313 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1315 down_read(&pmd->root_lock);
1316 *result = pmd->data_block_size;
1317 up_read(&pmd->root_lock);
1319 return 0;
1322 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1324 int r;
1326 down_read(&pmd->root_lock);
1327 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1328 up_read(&pmd->root_lock);
1330 return r;
1333 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1335 struct dm_pool_metadata *pmd = td->pmd;
1337 down_read(&pmd->root_lock);
1338 *result = td->mapped_blocks;
1339 up_read(&pmd->root_lock);
1341 return 0;
1344 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1346 int r;
1347 __le64 value_le;
1348 dm_block_t thin_root;
1349 struct dm_pool_metadata *pmd = td->pmd;
1351 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1352 if (r)
1353 return r;
1355 thin_root = le64_to_cpu(value_le);
1357 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1360 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1361 dm_block_t *result)
1363 int r;
1364 struct dm_pool_metadata *pmd = td->pmd;
1366 down_read(&pmd->root_lock);
1367 r = __highest_block(td, result);
1368 up_read(&pmd->root_lock);
1370 return r;
1373 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1375 int r;
1376 dm_block_t old_count;
1378 r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1379 if (r)
1380 return r;
1382 if (new_count == old_count)
1383 return 0;
1385 if (new_count < old_count) {
1386 DMERR("cannot reduce size of data device");
1387 return -EINVAL;
1390 r = dm_sm_extend(pmd->data_sm, new_count - old_count);
1391 if (!r)
1392 pmd->need_commit = 1;
1394 return r;
1397 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1399 int r;
1401 down_write(&pmd->root_lock);
1402 r = __resize_data_dev(pmd, new_count);
1403 up_write(&pmd->root_lock);
1405 return r;