Merge branch 'akpm'
[linux-2.6/next.git] / drivers / md / dm-thin.c
blob96d92468893ef4345e6e226ff9a403502f37746d
1 /*
2 * Copyright (C) 2011 Red Hat UK. All rights reserved.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
17 #define DM_MSG_PREFIX "thin"
20 * Tunable constants
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
28 * The block size of the device holding pool data must be
29 * between 64KB and 1GB.
31 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
32 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34 #define METADATA_DEV_MAX_SECTORS (255 * (1 << 14) * 8)
37 * Device id is restricted to 24 bits.
39 #define MAX_DEV_ID ((1 << 24) - 1)
42 * How do we handle breaking sharing of data blocks?
43 * =================================================
45 * We use a standard copy-on-write btree to store the mappings for the
46 * devices (note I'm talking about copy-on-write of the metadata here, not
47 * the data). When you take an internal snapshot you clone the root node
48 * of the origin btree. After this there is no concept of an origin or a
49 * snapshot. They are just two device trees that happen to point to the
50 * same data blocks.
52 * When we get a write in we decide if it's to a shared data block using
53 * some timestamp magic. If it is, we have to break sharing.
55 * Let's say we write to a shared block in what was the origin. The
56 * steps are:
58 * i) plug io further to this physical block. (see bio_prison code).
60 * ii) quiesce any read io to that shared data block. Obviously
61 * including all devices that share this block. (see deferred_set code)
63 * iii) copy the data block to a newly allocate block. This step can be
64 * missed out if the io covers the block. (schedule_copy).
66 * iv) insert the new mapping into the origin's btree
67 * (process_prepared_mappings). This act of inserting breaks some
68 * sharing of btree nodes between the two devices. Breaking sharing only
69 * effects the btree of that specific device. Btrees for the other
70 * devices that share the block never change. The btree for the origin
71 * device as it was after the last commit is untouched, ie. we're using
72 * persistent data structures in the functional programming sense.
74 * v) unplug io to this physical block, including the io that triggered
75 * the breaking of sharing.
77 * Steps (ii) and (iii) occur in parallel.
79 * The metadata _doesn't_ need to be committed before the io continues. We
80 * get away with this because the io is always written to a _new_ block.
81 * If there's a crash, then:
83 * - The origin mapping will point to the old origin block (the shared
84 * one). This will contain the data as it was before the io that triggered
85 * the breaking of sharing came in.
87 * - The snap mapping still points to the old block. As it would after
88 * the commit.
90 * The downside of this scheme is the timestamp magic isn't perfect, and
91 * will continue to think that data block in the snapshot device is shared
92 * even after the write to the origin has broken sharing. I suspect data
93 * blocks will typically be shared by many different devices, so we're
94 * breaking sharing n + 1 times, rather than n, where n is the number of
95 * devices that reference this data block. At the moment I think the
96 * benefits far, far outweigh the disadvantages.
99 /*----------------------------------------------------------------*/
102 * Sometimes we can't deal with a bio straight away. We put them in prison
103 * where they can't cause any mischief. Bios are put in a cell identified
104 * by a key, multiple bios can be in the same cell. When the cell is
105 * subsequently unlocked the bios become available.
107 struct bio_prison;
109 struct cell_key {
110 int virtual;
111 dm_thin_id dev;
112 dm_block_t block;
115 struct cell {
116 struct hlist_node list;
117 struct bio_prison *prison;
118 struct cell_key key;
119 unsigned count;
120 struct bio_list bios;
123 struct bio_prison {
124 spinlock_t lock;
125 mempool_t *cell_pool;
127 unsigned nr_buckets;
128 unsigned hash_mask;
129 struct hlist_head *cells;
132 static uint32_t calc_nr_buckets(unsigned nr_cells)
134 uint32_t n = 128;
136 nr_cells /= 4;
137 nr_cells = min(nr_cells, 8192u);
139 while (n < nr_cells)
140 n <<= 1;
142 return n;
146 * @nr_cells should be the number of cells you want in use _concurrently_.
147 * Don't confuse it with the number of distinct keys.
149 static struct bio_prison *prison_create(unsigned nr_cells)
151 unsigned i;
152 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
153 size_t len = sizeof(struct bio_prison) +
154 (sizeof(struct hlist_head) * nr_buckets);
155 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157 if (!prison)
158 return NULL;
160 spin_lock_init(&prison->lock);
161 prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
162 sizeof(struct cell));
163 if (!prison->cell_pool) {
164 kfree(prison);
165 return NULL;
168 prison->nr_buckets = nr_buckets;
169 prison->hash_mask = nr_buckets - 1;
170 prison->cells = (struct hlist_head *) (prison + 1);
171 for (i = 0; i < nr_buckets; i++)
172 INIT_HLIST_HEAD(prison->cells + i);
174 return prison;
177 static void prison_destroy(struct bio_prison *prison)
179 mempool_destroy(prison->cell_pool);
180 kfree(prison);
183 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
185 const unsigned long BIG_PRIME = 4294967291UL;
186 uint64_t hash = key->block * BIG_PRIME;
188 return (uint32_t) (hash & prison->hash_mask);
191 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
193 return (lhs->virtual == rhs->virtual) &&
194 (lhs->dev == rhs->dev) &&
195 (lhs->block == rhs->block);
198 static struct cell *__search_bucket(struct hlist_head *bucket,
199 struct cell_key *key)
201 struct cell *cell;
202 struct hlist_node *tmp;
204 hlist_for_each_entry(cell, tmp, bucket, list)
205 if (keys_equal(&cell->key, key))
206 return cell;
208 return NULL;
212 * This may block if a new cell needs allocating. You must ensure that
213 * cells will be unlocked even if the calling thread is blocked.
215 * Returns the number of entries in the cell prior to the new addition
216 * or < 0 on failure.
218 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
219 struct bio *inmate, struct cell **ref)
221 int r;
222 unsigned long flags;
223 uint32_t hash = hash_key(prison, key);
224 struct cell *uninitialized_var(cell), *cell2 = NULL;
226 BUG_ON(hash > prison->nr_buckets);
228 spin_lock_irqsave(&prison->lock, flags);
229 cell = __search_bucket(prison->cells + hash, key);
231 if (!cell) {
233 * Allocate a new cell
235 spin_unlock_irqrestore(&prison->lock, flags);
236 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
237 spin_lock_irqsave(&prison->lock, flags);
240 * We've been unlocked, so we have to double check that
241 * nobody else has inserted this cell in the meantime.
243 cell = __search_bucket(prison->cells + hash, key);
245 if (!cell) {
246 cell = cell2;
247 cell2 = NULL;
249 cell->prison = prison;
250 memcpy(&cell->key, key, sizeof(cell->key));
251 cell->count = 0;
252 bio_list_init(&cell->bios);
253 hlist_add_head(&cell->list, prison->cells + hash);
257 r = cell->count++;
258 bio_list_add(&cell->bios, inmate);
259 spin_unlock_irqrestore(&prison->lock, flags);
261 if (cell2)
262 mempool_free(cell2, prison->cell_pool);
264 *ref = cell;
266 return r;
270 * @inmates must have been initialised prior to this call
272 static void __cell_release(struct cell *cell, struct bio_list *inmates)
274 struct bio_prison *prison = cell->prison;
276 hlist_del(&cell->list);
278 if (inmates)
279 bio_list_merge(inmates, &cell->bios);
281 mempool_free(cell, prison->cell_pool);
284 static void cell_release(struct cell *cell, struct bio_list *bios)
286 unsigned long flags;
287 struct bio_prison *prison = cell->prison;
289 spin_lock_irqsave(&prison->lock, flags);
290 __cell_release(cell, bios);
291 spin_unlock_irqrestore(&prison->lock, flags);
295 * There are a couple of places where we put a bio into a cell briefly
296 * before taking it out again. In these situations we know that no other
297 * bio may be in the cell. This function releases the cell, and also does
298 * a sanity check.
300 static void cell_release_singleton(struct cell *cell, struct bio *bio)
302 struct bio_prison *prison = cell->prison;
303 struct bio_list bios;
304 struct bio *b;
305 unsigned long flags;
307 bio_list_init(&bios);
309 spin_lock_irqsave(&prison->lock, flags);
310 __cell_release(cell, &bios);
311 spin_unlock_irqrestore(&prison->lock, flags);
313 b = bio_list_pop(&bios);
314 BUG_ON(b != bio);
315 BUG_ON(!bio_list_empty(&bios));
318 static void cell_error(struct cell *cell)
320 struct bio_prison *prison = cell->prison;
321 struct bio_list bios;
322 struct bio *bio;
323 unsigned long flags;
325 bio_list_init(&bios);
327 spin_lock_irqsave(&prison->lock, flags);
328 __cell_release(cell, &bios);
329 spin_unlock_irqrestore(&prison->lock, flags);
331 while ((bio = bio_list_pop(&bios)))
332 bio_io_error(bio);
335 /*----------------------------------------------------------------*/
338 * We use the deferred set to keep track of pending reads to shared blocks.
339 * We do this to ensure the new mapping caused by a write isn't performed
340 * until these prior reads have completed. Otherwise the insertion of the
341 * new mapping could free the old block that the read bios are mapped to.
344 struct deferred_set;
345 struct deferred_entry {
346 struct deferred_set *ds;
347 unsigned count;
348 struct list_head work_items;
351 struct deferred_set {
352 spinlock_t lock;
353 unsigned current_entry;
354 unsigned sweeper;
355 struct deferred_entry entries[DEFERRED_SET_SIZE];
358 static void ds_init(struct deferred_set *ds)
360 int i;
362 spin_lock_init(&ds->lock);
363 ds->current_entry = 0;
364 ds->sweeper = 0;
365 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
366 ds->entries[i].ds = ds;
367 ds->entries[i].count = 0;
368 INIT_LIST_HEAD(&ds->entries[i].work_items);
372 static struct deferred_entry *ds_inc(struct deferred_set *ds)
374 unsigned long flags;
375 struct deferred_entry *entry;
377 spin_lock_irqsave(&ds->lock, flags);
378 entry = ds->entries + ds->current_entry;
379 entry->count++;
380 spin_unlock_irqrestore(&ds->lock, flags);
382 return entry;
385 static unsigned ds_next(unsigned index)
387 return (index + 1) % DEFERRED_SET_SIZE;
390 static void __sweep(struct deferred_set *ds, struct list_head *head)
392 while ((ds->sweeper != ds->current_entry) &&
393 !ds->entries[ds->sweeper].count) {
394 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
395 ds->sweeper = ds_next(ds->sweeper);
398 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
399 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
402 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
404 unsigned long flags;
406 spin_lock_irqsave(&entry->ds->lock, flags);
407 BUG_ON(!entry->count);
408 --entry->count;
409 __sweep(entry->ds, head);
410 spin_unlock_irqrestore(&entry->ds->lock, flags);
414 * Returns 1 if deferred or 0 if no pending items to delay job.
416 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
418 int r = 1;
419 unsigned long flags;
420 unsigned next_entry;
422 spin_lock_irqsave(&ds->lock, flags);
423 if ((ds->sweeper == ds->current_entry) &&
424 !ds->entries[ds->current_entry].count)
425 r = 0;
426 else {
427 list_add(work, &ds->entries[ds->current_entry].work_items);
428 next_entry = ds_next(ds->current_entry);
429 if (!ds->entries[next_entry].count)
430 ds->current_entry = next_entry;
432 spin_unlock_irqrestore(&ds->lock, flags);
434 return r;
437 /*----------------------------------------------------------------*/
440 * Key building.
442 static void build_data_key(struct dm_thin_device *td,
443 dm_block_t b, struct cell_key *key)
445 key->virtual = 0;
446 key->dev = dm_thin_dev_id(td);
447 key->block = b;
450 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
451 struct cell_key *key)
453 key->virtual = 1;
454 key->dev = dm_thin_dev_id(td);
455 key->block = b;
458 /*----------------------------------------------------------------*/
460 struct new_mapping;
463 * A pool device ties together a metadata device and a data device. It
464 * also provides the interface for creating and destroying internal
465 * devices.
467 struct pool {
468 struct list_head list;
469 struct dm_target *ti; /* Only set if a pool target is bound */
471 struct mapped_device *pool_md;
472 struct dm_pool_metadata *pmd;
474 uint32_t sectors_per_block;
475 unsigned block_shift;
476 dm_block_t offset_mask;
477 dm_block_t low_water_mark;
478 unsigned zero_new_blocks:1;
480 struct bio_prison *prison;
481 struct dm_kcopyd_client *copier;
483 struct workqueue_struct *wq;
484 struct work_struct worker;
486 spinlock_t lock;
487 struct bio_list deferred_bios;
488 struct list_head prepared_mappings;
490 int low_water_triggered; /* A dm event has been sent */
491 struct bio_list retry_on_resume_list;
493 struct deferred_set ds; /* FIXME: move to thin_c */
495 struct new_mapping *next_mapping;
497 mempool_t *mapping_pool;
498 mempool_t *endio_hook_pool;
500 atomic_t ref_count;
504 * Target context for a pool.
506 struct pool_c {
507 struct dm_target *ti;
508 struct pool *pool;
509 struct dm_dev *data_dev;
510 struct dm_dev *metadata_dev;
511 struct dm_target_callbacks callbacks;
513 sector_t low_water_mark;
514 unsigned zero_new_blocks:1;
518 * Target context for a thin.
520 struct thin_c {
521 struct dm_dev *pool_dev;
522 dm_thin_id dev_id;
524 struct pool *pool;
525 struct dm_thin_device *td;
528 /*----------------------------------------------------------------*/
531 * A global list that uses a struct mapped_device as a key.
533 static struct dm_thin_pool_table {
534 spinlock_t lock;
535 struct list_head pools;
536 } dm_thin_pool_table;
538 static void pool_table_init(void)
540 spin_lock_init(&dm_thin_pool_table.lock);
542 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
545 static void pool_table_insert(struct pool *pool)
547 spin_lock(&dm_thin_pool_table.lock);
548 list_add(&pool->list, &dm_thin_pool_table.pools);
549 spin_unlock(&dm_thin_pool_table.lock);
552 static void pool_table_remove(struct pool *pool)
554 spin_lock(&dm_thin_pool_table.lock);
555 list_del(&pool->list);
556 spin_unlock(&dm_thin_pool_table.lock);
559 static struct pool *pool_table_lookup(struct mapped_device *md)
561 struct pool *pool = NULL, *tmp;
563 spin_lock(&dm_thin_pool_table.lock);
564 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list)
565 if (tmp->pool_md == md) {
566 pool = tmp;
567 break;
569 spin_unlock(&dm_thin_pool_table.lock);
571 return pool;
574 /*----------------------------------------------------------------*/
577 * This section of code contains the logic for processing a thin device's IO.
578 * Much of the code depends on pool object resources (lists, workqueues, etc)
579 * but most is exclusively called from the thin target rather than the thin-pool
580 * target.
583 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
585 return bio->bi_sector >> tc->pool->block_shift;
588 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
590 struct pool *pool = tc->pool;
592 bio->bi_bdev = tc->pool_dev->bdev;
593 bio->bi_sector = (block << pool->block_shift) +
594 (bio->bi_sector & pool->offset_mask);
597 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
598 dm_block_t block)
600 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
601 int r = dm_pool_commit_metadata(tc->pool->pmd);
602 if (r) {
603 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
604 __func__, r);
605 bio_io_error(bio);
606 return;
610 remap(tc, bio, block);
611 generic_make_request(bio);
615 * wake_worker() is used by thin_defer_bio and pool_preresume to continue
616 * deferred IO processing after pool resume.
618 static void wake_worker(struct pool *pool)
620 queue_work(pool->wq, &pool->worker);
623 /*----------------------------------------------------------------*/
626 * Bio endio functions.
629 struct endio_hook {
630 struct thin_c *tc;
631 bio_end_io_t *saved_bi_end_io;
632 struct deferred_entry *entry;
635 struct new_mapping {
636 struct list_head list;
638 int prepared;
640 struct thin_c *tc;
641 dm_block_t virt_block;
642 dm_block_t data_block;
643 struct cell *cell;
644 int err;
647 * If the bio covers the whole area of a block then we can avoid
648 * zeroing or copying. Instead this bio is hooked. The bio will
649 * still be in the cell, so care has to be taken to avoid issuing
650 * the bio twice.
652 struct bio *bio;
653 bio_end_io_t *saved_bi_end_io;
656 static void __maybe_add_mapping(struct new_mapping *m)
658 struct pool *pool = m->tc->pool;
660 if (list_empty(&m->list) && m->prepared) {
661 list_add(&m->list, &pool->prepared_mappings);
662 wake_worker(pool);
666 static void copy_complete(int read_err, unsigned long write_err, void *context)
668 unsigned long flags;
669 struct new_mapping *m = context;
670 struct pool *pool = m->tc->pool;
672 m->err = read_err || write_err ? -EIO : 0;
674 spin_lock_irqsave(&pool->lock, flags);
675 m->prepared = 1;
676 __maybe_add_mapping(m);
677 spin_unlock_irqrestore(&pool->lock, flags);
680 static void overwrite_endio(struct bio *bio, int err)
682 unsigned long flags;
683 struct new_mapping *m = dm_get_mapinfo(bio)->ptr;
684 struct pool *pool = m->tc->pool;
686 m->err = err;
688 spin_lock_irqsave(&pool->lock, flags);
689 m->prepared = 1;
690 __maybe_add_mapping(m);
691 spin_unlock_irqrestore(&pool->lock, flags);
694 static void shared_read_endio(struct bio *bio, int err)
696 struct list_head mappings;
697 struct new_mapping *m, *tmp;
698 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
699 unsigned long flags;
700 struct pool *pool = h->tc->pool;
702 bio->bi_end_io = h->saved_bi_end_io;
703 bio_endio(bio, err);
705 INIT_LIST_HEAD(&mappings);
706 ds_dec(h->entry, &mappings);
708 spin_lock_irqsave(&pool->lock, flags);
709 list_for_each_entry_safe(m, tmp, &mappings, list) {
710 list_del(&m->list);
711 INIT_LIST_HEAD(&m->list);
712 __maybe_add_mapping(m);
714 spin_unlock_irqrestore(&pool->lock, flags);
716 mempool_free(h, pool->endio_hook_pool);
719 /*----------------------------------------------------------------*/
722 * Workqueue.
726 * Prepared mapping jobs.
730 * This sends the bios in the cell back to the deferred_bios list.
732 static void cell_defer(struct thin_c *tc, struct cell *cell,
733 dm_block_t data_block)
735 struct pool *pool = tc->pool;
736 unsigned long flags;
738 spin_lock_irqsave(&pool->lock, flags);
739 cell_release(cell, &pool->deferred_bios);
740 spin_unlock_irqrestore(&pool->lock, flags);
742 wake_worker(pool);
746 * As above, but ignoring @exception (a write bio that covers
747 * the block) because it has already been processed.
749 static void cell_defer_except(struct thin_c *tc, struct cell *cell,
750 struct bio *exception)
752 struct bio_list bios;
753 struct bio *bio;
754 struct pool *pool = tc->pool;
755 unsigned long flags;
757 bio_list_init(&bios);
758 cell_release(cell, &bios);
760 spin_lock_irqsave(&pool->lock, flags);
761 while ((bio = bio_list_pop(&bios)))
762 if (bio != exception)
763 bio_list_add(&pool->deferred_bios, bio);
764 spin_unlock_irqrestore(&pool->lock, flags);
766 wake_worker(pool);
769 static void process_prepared_mapping(struct new_mapping *m)
771 struct thin_c *tc = m->tc;
772 struct bio *bio;
773 int r;
775 bio = m->bio;
776 if (bio)
777 bio->bi_end_io = m->saved_bi_end_io;
779 if (m->err) {
780 cell_error(m->cell);
781 return;
785 * Commit the prepared block into the mapping btree.
786 * Any I/O for this block arriving after this point will get
787 * remapped to it directly.
789 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
790 if (r) {
791 DMERR("dm_thin_insert_block() failed");
792 cell_error(m->cell);
793 return;
797 * Release any bios held while the block was being provisioned.
798 * If we are processing a write bio that completely covers the block,
799 * we already processed it so can ignore it now when processing
800 * the bios in the cell.
802 if (bio) {
803 cell_defer_except(tc, m->cell, bio);
804 bio_endio(bio, 0);
805 } else
806 cell_defer(tc, m->cell, m->data_block);
808 mempool_free(m, tc->pool->mapping_pool);
811 static void process_prepared_mappings(struct pool *pool)
813 unsigned long flags;
814 struct list_head maps;
815 struct new_mapping *m;
817 INIT_LIST_HEAD(&maps);
818 spin_lock_irqsave(&pool->lock, flags);
819 list_splice_init(&pool->prepared_mappings, &maps);
820 spin_unlock_irqrestore(&pool->lock, flags);
822 list_for_each_entry(m, &maps, list)
823 process_prepared_mapping(m);
827 * Deferred bio jobs.
829 static int io_overwrites_block(struct pool *pool, struct bio *bio)
831 return ((bio_data_dir(bio) == WRITE) &&
832 (bio->bi_sector & pool->offset_mask) == 0) &&
833 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
836 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
837 bio_end_io_t *fn)
839 *save = bio->bi_end_io;
840 bio->bi_end_io = fn;
843 static int ensure_next_mapping(struct pool *pool)
845 if (pool->next_mapping)
846 return 0;
848 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
850 return pool->next_mapping ? 0 : -ENOMEM;
853 static struct new_mapping *get_next_mapping(struct pool *pool)
855 struct new_mapping *r = pool->next_mapping;
857 BUG_ON(!pool->next_mapping);
859 pool->next_mapping = NULL;
861 return r;
864 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
865 dm_block_t data_origin, dm_block_t data_dest,
866 struct cell *cell, struct bio *bio)
868 int r;
869 struct pool *pool = tc->pool;
870 struct new_mapping *m = get_next_mapping(pool);
872 INIT_LIST_HEAD(&m->list);
873 m->prepared = 0;
874 m->tc = tc;
875 m->virt_block = virt_block;
876 m->data_block = data_dest;
877 m->cell = cell;
878 m->err = 0;
879 m->bio = NULL;
881 ds_add_work(&pool->ds, &m->list);
884 * IO to pool_dev remaps to the pool target's data_dev.
886 * If the whole block of data is being overwritten, we can issue the
887 * bio immediately. Otherwise we use kcopyd to clone the data first.
889 if (io_overwrites_block(pool, bio)) {
890 m->bio = bio;
891 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
892 dm_get_mapinfo(bio)->ptr = m;
893 remap_and_issue(tc, bio, data_dest);
894 } else {
895 struct dm_io_region from, to;
897 from.bdev = tc->pool_dev->bdev;
898 from.sector = data_origin * pool->sectors_per_block;
899 from.count = pool->sectors_per_block;
901 to.bdev = tc->pool_dev->bdev;
902 to.sector = data_dest * pool->sectors_per_block;
903 to.count = pool->sectors_per_block;
905 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
906 0, copy_complete, m);
907 if (r < 0) {
908 mempool_free(m, pool->mapping_pool);
909 DMERR("dm_kcopyd_copy() failed");
910 cell_error(cell);
915 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
916 dm_block_t data_block, struct cell *cell,
917 struct bio *bio)
919 struct pool *pool = tc->pool;
920 struct new_mapping *m = get_next_mapping(pool);
922 INIT_LIST_HEAD(&m->list);
923 m->prepared = 0;
924 m->tc = tc;
925 m->virt_block = virt_block;
926 m->data_block = data_block;
927 m->cell = cell;
928 m->err = 0;
929 m->bio = NULL;
932 * If the whole block of data is being overwritten or we are not
933 * zeroing pre-existing data, we can issue the bio immediately.
934 * Otherwise we use kcopyd to zero the data first.
936 if (!pool->zero_new_blocks)
937 process_prepared_mapping(m);
938 else if (io_overwrites_block(pool, bio)) {
939 m->bio = bio;
940 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
941 dm_get_mapinfo(bio)->ptr = m;
942 remap_and_issue(tc, bio, data_block);
943 } else {
944 int r;
945 struct dm_io_region to;
947 to.bdev = tc->pool_dev->bdev;
948 to.sector = data_block * pool->sectors_per_block;
949 to.count = pool->sectors_per_block;
951 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
952 if (r < 0) {
953 mempool_free(m, pool->mapping_pool);
954 DMERR("dm_kcopyd_zero() failed");
955 cell_error(cell);
961 * If we have run out of space, queue bios until the device is
962 * resumed, presumably after having been reloaded with more space.
964 static void retry_when_resumed(struct bio *bio)
966 struct thin_c *tc = dm_get_mapinfo(bio)->ptr;
967 struct pool *pool = tc->pool;
968 unsigned long flags;
970 spin_lock_irqsave(&pool->lock, flags);
971 bio_list_add(&pool->retry_on_resume_list, bio);
972 spin_unlock_irqrestore(&pool->lock, flags);
975 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
977 int r;
978 dm_block_t free_blocks;
979 unsigned long flags;
980 struct pool *pool = tc->pool;
982 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
983 if (r)
984 return r;
986 if (free_blocks <= pool->low_water_mark && !pool->low_water_triggered) {
987 spin_lock_irqsave(&pool->lock, flags);
988 pool->low_water_triggered = 1;
989 spin_unlock_irqrestore(&pool->lock, flags);
990 dm_table_event(pool->ti->table);
993 r = dm_pool_alloc_data_block(pool->pmd, result);
994 if (r)
995 return r;
997 return 0;
1000 static void no_space(struct cell *cell)
1002 struct bio *bio;
1003 struct bio_list bios;
1005 bio_list_init(&bios);
1006 cell_release(cell, &bios);
1008 while ((bio = bio_list_pop(&bios)))
1009 retry_when_resumed(bio);
1012 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1013 struct cell_key *key,
1014 struct dm_thin_lookup_result *lookup_result,
1015 struct cell *cell)
1017 int r;
1018 dm_block_t data_block;
1020 r = alloc_data_block(tc, &data_block);
1021 switch (r) {
1022 case 0:
1023 schedule_copy(tc, block, lookup_result->block,
1024 data_block, cell, bio);
1025 break;
1027 case -ENOSPC:
1028 no_space(cell);
1029 break;
1031 default:
1032 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1033 cell_error(cell);
1034 break;
1038 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1039 dm_block_t block,
1040 struct dm_thin_lookup_result *lookup_result)
1042 struct cell *cell;
1043 struct cell_key key;
1044 struct pool *pool = tc->pool;
1047 * If cell is already occupied, then sharing is already in the process
1048 * of being broken so we have nothing further to do here.
1050 build_data_key(tc->td, lookup_result->block, &key);
1051 if (bio_detain(pool->prison, &key, bio, &cell))
1052 return;
1054 if (bio_data_dir(bio) == WRITE)
1055 break_sharing(tc, bio, block, &key, lookup_result, cell);
1056 else {
1057 struct endio_hook *h;
1058 h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1060 h->tc = tc;
1061 h->entry = ds_inc(&pool->ds);
1062 save_and_set_endio(bio, &h->saved_bi_end_io, shared_read_endio);
1063 dm_get_mapinfo(bio)->ptr = h;
1065 cell_release_singleton(cell, bio);
1066 remap_and_issue(tc, bio, lookup_result->block);
1070 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1071 struct cell *cell)
1073 int r;
1074 dm_block_t data_block;
1077 * Remap empty bios (flushes) immediately, without provisioning.
1079 if (!bio->bi_size) {
1080 cell_release_singleton(cell, bio);
1081 remap_and_issue(tc, bio, 0);
1082 return;
1086 * Fill read bios with zeroes and complete them immediately.
1088 if (bio_data_dir(bio) == READ) {
1089 zero_fill_bio(bio);
1090 cell_release_singleton(cell, bio);
1091 bio_endio(bio, 0);
1092 return;
1095 r = alloc_data_block(tc, &data_block);
1096 switch (r) {
1097 case 0:
1098 schedule_zero(tc, block, data_block, cell, bio);
1099 break;
1101 case -ENOSPC:
1102 no_space(cell);
1103 break;
1105 default:
1106 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1107 cell_error(cell);
1108 break;
1112 static void process_bio(struct thin_c *tc, struct bio *bio)
1114 int r;
1115 dm_block_t block = get_bio_block(tc, bio);
1116 struct cell *cell;
1117 struct cell_key key;
1118 struct dm_thin_lookup_result lookup_result;
1121 * If cell is already occupied, then the block is already
1122 * being provisioned so we have nothing further to do here.
1124 build_virtual_key(tc->td, block, &key);
1125 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1126 return;
1128 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1129 switch (r) {
1130 case 0:
1132 * We can release this cell now. This thread is the only
1133 * one that puts bios into a cell, and we know there were
1134 * no preceding bios.
1136 cell_release_singleton(cell, bio);
1138 if (lookup_result.shared)
1139 process_shared_bio(tc, bio, block, &lookup_result);
1140 else
1141 remap_and_issue(tc, bio, lookup_result.block);
1142 break;
1144 case -ENODATA:
1145 provision_block(tc, bio, block, cell);
1146 break;
1148 default:
1149 DMERR("dm_thin_find_block() failed, error = %d", r);
1150 bio_io_error(bio);
1151 break;
1155 static void process_deferred_bios(struct pool *pool)
1157 unsigned long flags;
1158 struct bio *bio;
1159 struct bio_list bios;
1161 bio_list_init(&bios);
1163 spin_lock_irqsave(&pool->lock, flags);
1164 bio_list_merge(&bios, &pool->deferred_bios);
1165 bio_list_init(&pool->deferred_bios);
1166 spin_unlock_irqrestore(&pool->lock, flags);
1168 while ((bio = bio_list_pop(&bios))) {
1169 struct thin_c *tc = dm_get_mapinfo(bio)->ptr;
1172 * If we've got no free new_mapping structs, and processing this bio
1173 * might require one, we pause until there are some prepared mappings to
1174 * process.
1176 if (ensure_next_mapping(pool)) {
1177 spin_lock_irqsave(&pool->lock, flags);
1178 bio_list_merge(&pool->deferred_bios, &bios);
1179 spin_unlock_irqrestore(&pool->lock, flags);
1181 return;
1184 process_bio(tc, bio);
1188 static void do_worker(struct work_struct *ws)
1190 struct pool *pool = container_of(ws, struct pool, worker);
1192 process_prepared_mappings(pool);
1193 process_deferred_bios(pool);
1196 /*----------------------------------------------------------------*/
1199 * Mapping functions.
1203 * Called only while mapping a thin bio to hand it over to the workqueue.
1205 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1207 unsigned long flags;
1208 struct pool *pool = tc->pool;
1210 spin_lock_irqsave(&pool->lock, flags);
1211 bio_list_add(&pool->deferred_bios, bio);
1212 spin_unlock_irqrestore(&pool->lock, flags);
1214 wake_worker(pool);
1218 * Non-blocking function designed to be called from the target's map
1219 * function.
1221 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1222 union map_info *map_context)
1224 int r;
1225 struct thin_c *tc = ti->private;
1226 dm_block_t block = get_bio_block(tc, bio);
1227 struct dm_thin_device *td = tc->td;
1228 struct dm_thin_lookup_result result;
1231 * Save the thin context for easy access from the deferred bio later.
1233 map_context->ptr = tc;
1235 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1236 thin_defer_bio(tc, bio);
1237 return DM_MAPIO_SUBMITTED;
1240 r = dm_thin_find_block(td, block, 0, &result);
1243 * Note that we defer readahead too.
1245 switch (r) {
1246 case 0:
1247 if (unlikely(result.shared)) {
1249 * We have a race condition here between the
1250 * result.shared value returned by the lookup and
1251 * snapshot creation, which may cause new
1252 * sharing.
1254 * To avoid this always quiesce the origin before
1255 * taking the snap. You want to do this anyway to
1256 * ensure a consistent application view
1257 * (i.e. lockfs).
1259 * More distant ancestors are irrelevant: the
1260 * shared flag will be set in their case.
1262 thin_defer_bio(tc, bio);
1263 r = DM_MAPIO_SUBMITTED;
1264 } else {
1265 remap(tc, bio, result.block);
1266 r = DM_MAPIO_REMAPPED;
1268 break;
1270 case -ENODATA:
1272 * In future, the failed dm_thin_find_block above could
1273 * provide the hint to load the metadata into cache.
1275 case -EWOULDBLOCK:
1276 thin_defer_bio(tc, bio);
1277 r = DM_MAPIO_SUBMITTED;
1278 break;
1281 return r;
1284 static int pool_map(struct dm_target *ti, struct bio *bio,
1285 union map_info *map_context)
1287 int r;
1288 struct pool_c *pt = ti->private;
1289 struct pool *pool = pt->pool;
1290 unsigned long flags;
1293 * As this is a singleton target, ti->begin is always zero.
1295 spin_lock_irqsave(&pool->lock, flags);
1296 bio->bi_bdev = pt->data_dev->bdev;
1297 r = DM_MAPIO_REMAPPED;
1298 spin_unlock_irqrestore(&pool->lock, flags);
1300 return r;
1303 /*----------------------------------------------------------------
1304 * Binding of control targets to a pool object
1305 *--------------------------------------------------------------*/
1306 /* FIXME: add locking */
1307 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1309 struct pool_c *pt = ti->private;
1311 pool->ti = ti;
1312 pool->low_water_mark = dm_sector_div_up(pt->low_water_mark,
1313 pool->sectors_per_block);
1314 pool->zero_new_blocks = pt->zero_new_blocks;
1315 dm_pool_rebind_metadata_device(pool->pmd, pt->metadata_dev->bdev);
1317 return 0;
1320 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1322 if (pool->ti == ti)
1323 pool->ti = NULL;
1326 /*----------------------------------------------------------------
1327 * Pool creation
1328 *--------------------------------------------------------------*/
1329 static void pool_destroy(struct pool *pool)
1331 if (dm_pool_metadata_close(pool->pmd) < 0)
1332 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1334 prison_destroy(pool->prison);
1335 dm_kcopyd_client_destroy(pool->copier);
1337 if (pool->wq)
1338 destroy_workqueue(pool->wq);
1340 if (pool->next_mapping)
1341 mempool_free(pool->next_mapping, pool->mapping_pool);
1343 mempool_destroy(pool->mapping_pool);
1344 mempool_destroy(pool->endio_hook_pool);
1345 kfree(pool);
1348 static struct pool *pool_create(struct block_device *metadata_dev,
1349 unsigned long block_size, char **error)
1351 int r;
1352 void *err_p;
1353 struct pool *pool;
1354 struct dm_pool_metadata *pmd;
1356 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1357 if (IS_ERR(pmd)) {
1358 *error = "Error creating metadata object";
1359 return (struct pool *)pmd;
1362 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1363 if (!pool) {
1364 *error = "Error allocating memory for pool";
1365 err_p = ERR_PTR(-ENOMEM);
1366 goto bad_pool;
1369 pool->pmd = pmd;
1370 pool->sectors_per_block = block_size;
1371 pool->block_shift = ffs(block_size) - 1;
1372 pool->offset_mask = block_size - 1;
1373 pool->low_water_mark = 0;
1374 pool->zero_new_blocks = 1;
1375 pool->prison = prison_create(PRISON_CELLS);
1376 if (!pool->prison) {
1377 *error = "Error creating pool's bio prison";
1378 err_p = ERR_PTR(-ENOMEM);
1379 goto bad_prison;
1382 pool->copier = dm_kcopyd_client_create();
1383 if (IS_ERR(pool->copier)) {
1384 r = PTR_ERR(pool->copier);
1385 *error = "Error creating pool's kcopyd client";
1386 err_p = ERR_PTR(r);
1387 goto bad_kcopyd_client;
1391 * Create singlethreaded workqueue that will service all devices
1392 * that use this metadata.
1394 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1395 if (!pool->wq) {
1396 *error = "Error creating pool's workqueue";
1397 err_p = ERR_PTR(-ENOMEM);
1398 goto bad_wq;
1401 INIT_WORK(&pool->worker, do_worker);
1402 spin_lock_init(&pool->lock);
1403 bio_list_init(&pool->deferred_bios);
1404 INIT_LIST_HEAD(&pool->prepared_mappings);
1405 pool->low_water_triggered = 0;
1406 bio_list_init(&pool->retry_on_resume_list);
1407 ds_init(&pool->ds);
1409 pool->next_mapping = NULL;
1410 pool->mapping_pool =
1411 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1412 if (!pool->mapping_pool) {
1413 *error = "Error creating pool's mapping mempool";
1414 err_p = ERR_PTR(-ENOMEM);
1415 goto bad_mapping_pool;
1418 pool->endio_hook_pool =
1419 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1420 if (!pool->endio_hook_pool) {
1421 *error = "Error creating pool's endio_hook mempool";
1422 err_p = ERR_PTR(-ENOMEM);
1423 goto bad_endio_hook_pool;
1425 atomic_set(&pool->ref_count, 1);
1427 return pool;
1429 bad_endio_hook_pool:
1430 mempool_destroy(pool->mapping_pool);
1431 bad_mapping_pool:
1432 destroy_workqueue(pool->wq);
1433 bad_wq:
1434 dm_kcopyd_client_destroy(pool->copier);
1435 bad_kcopyd_client:
1436 prison_destroy(pool->prison);
1437 bad_prison:
1438 kfree(pool);
1439 bad_pool:
1440 if (dm_pool_metadata_close(pmd))
1441 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1443 return err_p;
1446 static void pool_inc(struct pool *pool)
1448 atomic_inc(&pool->ref_count);
1451 static void pool_dec(struct pool *pool)
1453 if (atomic_dec_and_test(&pool->ref_count))
1454 pool_destroy(pool);
1457 static struct pool *pool_find(struct mapped_device *pool_md,
1458 struct block_device *metadata_dev,
1459 unsigned long block_size,
1460 char **error)
1462 struct pool *pool;
1464 pool = pool_table_lookup(pool_md);
1465 if (pool)
1466 pool_inc(pool);
1467 else
1468 pool = pool_create(metadata_dev, block_size, error);
1470 return pool;
1473 /*----------------------------------------------------------------
1474 * Pool target methods
1475 *--------------------------------------------------------------*/
1476 struct pool_features {
1477 unsigned zero_new_blocks:1;
1480 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1481 struct dm_target *ti)
1483 int r;
1484 unsigned argc;
1485 const char *arg_name;
1487 static struct dm_arg _args[] = {
1488 {0, 1, "Invalid number of pool feature arguments"},
1492 * No feature arguments supplied.
1494 if (!as->argc)
1495 return 0;
1497 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1498 if (r)
1499 return -EINVAL;
1501 while (argc && !r) {
1502 arg_name = dm_shift_arg(as);
1503 argc--;
1505 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1506 pf->zero_new_blocks = 0;
1507 continue;
1510 ti->error = "Unrecognised pool feature requested";
1511 r = -EINVAL;
1514 return r;
1517 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1519 int r;
1520 unsigned long flags;
1521 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1523 spin_lock_irqsave(&pt->pool->lock, flags);
1524 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1525 spin_unlock_irqrestore(&pt->pool->lock, flags);
1527 if (!r) {
1528 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1529 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1532 return r;
1536 * thin-pool <metadata dev> <data dev>
1537 * <data block size (sectors)>
1538 * <low water mark (sectors)>
1539 * [<#feature args> [<arg>]*]
1541 * Optional feature arguments are:
1542 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1544 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1546 int r;
1547 struct pool_c *pt;
1548 struct pool *pool;
1549 struct pool_features pf;
1550 struct dm_arg_set as;
1551 struct dm_dev *data_dev;
1552 unsigned long block_size;
1553 dm_block_t low_water;
1554 struct dm_dev *metadata_dev;
1555 sector_t metadata_dev_size;
1557 if (argc < 4) {
1558 ti->error = "Invalid argument count";
1559 return -EINVAL;
1561 as.argc = argc;
1562 as.argv = argv;
1564 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1565 if (r) {
1566 ti->error = "Error opening metadata block device";
1567 return r;
1570 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1571 if (metadata_dev_size > METADATA_DEV_MAX_SECTORS) {
1572 ti->error = "Metadata device is too large";
1573 r = -EINVAL;
1574 goto out_metadata;
1577 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1578 if (r) {
1579 ti->error = "Error getting data device";
1580 goto out_metadata;
1583 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1584 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1585 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1586 !is_power_of_2(block_size)) {
1587 ti->error = "Invalid block size";
1588 r = -EINVAL;
1589 goto out;
1592 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water) ||
1593 !low_water) {
1594 ti->error = "Invalid low water mark";
1595 r = -EINVAL;
1596 goto out;
1600 * Set default pool features.
1602 memset(&pf, 0, sizeof(pf));
1603 pf.zero_new_blocks = 1;
1605 dm_consume_args(&as, 4);
1606 r = parse_pool_features(&as, &pf, ti);
1607 if (r)
1608 goto out;
1610 pool = pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1611 block_size, &ti->error);
1612 if (IS_ERR(pool)) {
1613 r = PTR_ERR(pool);
1614 goto out;
1617 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1618 if (!pt) {
1619 pool_destroy(pool);
1620 r = -ENOMEM;
1621 goto out;
1623 pt->pool = pool;
1624 pt->ti = ti;
1625 pt->metadata_dev = metadata_dev;
1626 pt->data_dev = data_dev;
1627 pt->low_water_mark = low_water;
1628 pt->zero_new_blocks = pf.zero_new_blocks;
1629 ti->num_flush_requests = 1;
1630 ti->num_discard_requests = 0;
1631 ti->discards_supported = 0;
1632 ti->private = pt;
1634 pt->callbacks.congested_fn = pool_is_congested;
1635 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
1637 return 0;
1639 out:
1640 dm_put_device(ti, data_dev);
1641 out_metadata:
1642 dm_put_device(ti, metadata_dev);
1644 return r;
1647 static void pool_dtr(struct dm_target *ti)
1649 struct pool_c *pt = ti->private;
1651 unbind_control_target(pt->pool, ti);
1652 pool_dec(pt->pool);
1654 dm_put_device(ti, pt->metadata_dev);
1655 dm_put_device(ti, pt->data_dev);
1657 kfree(pt);
1660 static void __requeue_bios(struct pool *pool)
1662 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1663 bio_list_init(&pool->retry_on_resume_list);
1667 * Retrieves the number of blocks of the data device from
1668 * the superblock and compares it to the actual device size,
1669 * thus resizing the data device in case it has grown.
1671 * This both copes with opening preallocated data devices in the ctr
1672 * being followed by a resume
1673 * -and-
1674 * calling the resume method individually after userspace has
1675 * grown the data device in reaction to a table event.
1677 static int pool_preresume(struct dm_target *ti)
1679 int r;
1680 struct pool_c *pt = ti->private;
1681 struct pool *pool = pt->pool;
1682 dm_block_t data_size, sb_data_size;
1683 unsigned long flags;
1686 * Take control of the pool object.
1688 r = bind_control_target(pool, ti);
1689 if (r)
1690 return r;
1692 data_size = ti->len >> pool->block_shift;
1693 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
1694 if (r) {
1695 DMERR("failed to retrieve data device size");
1696 return r;
1699 if (data_size < sb_data_size) {
1700 DMERR("pool target too small, is %llu blocks (expected %llu)",
1701 data_size, sb_data_size);
1702 return -EINVAL;
1704 } else if (data_size > sb_data_size) {
1705 r = dm_pool_resize_data_dev(pool->pmd, data_size);
1706 if (r) {
1707 DMERR("failed to resize data device");
1708 return r;
1711 r = dm_pool_commit_metadata(pool->pmd);
1712 if (r) {
1713 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1714 __func__, r);
1715 return r;
1719 spin_lock_irqsave(&pool->lock, flags);
1720 pool->low_water_triggered = 0;
1721 __requeue_bios(pool);
1722 spin_unlock_irqrestore(&pool->lock, flags);
1724 wake_worker(pool);
1727 * The pool object is only present if the pool is active.
1729 pool->pool_md = dm_table_get_md(ti->table);
1730 pool_table_insert(pool);
1732 return 0;
1735 static void pool_postsuspend(struct dm_target *ti)
1737 int r;
1738 struct pool_c *pt = ti->private;
1739 struct pool *pool = pt->pool;
1741 flush_workqueue(pool->wq);
1743 r = dm_pool_commit_metadata(pool->pmd);
1744 if (r) {
1745 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1746 __func__, r);
1747 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
1750 pool_table_remove(pool);
1751 pool->pool_md = NULL;
1754 static int check_arg_count(unsigned argc, unsigned args_required)
1756 if (argc != args_required) {
1757 DMWARN("Message received with %u arguments instead of %u.",
1758 argc, args_required);
1759 return -EINVAL;
1762 return 0;
1765 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
1767 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
1768 *dev_id <= MAX_DEV_ID)
1769 return 0;
1771 if (warning)
1772 DMWARN("Message received with invalid device id: %s", arg);
1774 return -EINVAL;
1777 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
1779 dm_thin_id dev_id;
1780 int r;
1782 r = check_arg_count(argc, 2);
1783 if (r)
1784 return r;
1786 r = read_dev_id(argv[1], &dev_id, 1);
1787 if (r)
1788 return r;
1790 r = dm_pool_create_thin(pool->pmd, dev_id);
1791 if (r) {
1792 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
1793 argv[1]);
1794 return r;
1797 return 0;
1800 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
1802 dm_thin_id dev_id;
1803 dm_thin_id origin_dev_id;
1804 int r;
1806 r = check_arg_count(argc, 3);
1807 if (r)
1808 return r;
1810 r = read_dev_id(argv[1], &dev_id, 1);
1811 if (r)
1812 return r;
1814 r = read_dev_id(argv[2], &origin_dev_id, 1);
1815 if (r)
1816 return r;
1818 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
1819 if (r) {
1820 DMWARN("Creation of new snapshot %s of device %s failed.",
1821 argv[1], argv[2]);
1822 return r;
1825 return 0;
1828 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
1830 dm_thin_id dev_id;
1831 int r;
1833 r = check_arg_count(argc, 2);
1834 if (r)
1835 return r;
1837 r = read_dev_id(argv[1], &dev_id, 1);
1838 if (r)
1839 return r;
1841 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
1842 if (r)
1843 DMWARN("Deletion of thin device %s failed.", argv[1]);
1845 return r;
1848 static int process_trim_mesg(unsigned argc, char **argv, struct pool *pool)
1850 dm_thin_id dev_id;
1851 sector_t new_size;
1852 int r;
1854 r = check_arg_count(argc, 3);
1855 if (r)
1856 return r;
1858 r = read_dev_id(argv[1], &dev_id, 1);
1859 if (r)
1860 return r;
1862 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_size)) {
1863 DMWARN("trim device %s: Invalid new size: %s sectors.",
1864 argv[1], argv[2]);
1865 return -EINVAL;
1868 r = dm_pool_trim_thin_device(pool->pmd, dev_id,
1869 dm_sector_div_up(new_size, pool->sectors_per_block));
1870 if (r)
1871 DMWARN("Attempt to trim thin device %s failed.", argv[1]);
1873 return r;
1876 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
1878 dm_thin_id old_id, new_id;
1879 int r;
1881 r = check_arg_count(argc, 3);
1882 if (r)
1883 return r;
1885 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
1886 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
1887 return -EINVAL;
1890 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
1891 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
1892 return -EINVAL;
1895 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
1896 if (r) {
1897 DMWARN("Failed to change transaction id from %s to %s.",
1898 argv[1], argv[2]);
1899 return r;
1902 return 0;
1906 * Messages supported:
1907 * create_thin <dev_id>
1908 * create_snap <dev_id> <origin_id>
1909 * delete <dev_id>
1910 * trim <dev_id> <new_size_in_sectors>
1911 * set_transaction_id <current_trans_id> <new_trans_id>
1913 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
1915 int r = -EINVAL;
1916 struct pool_c *pt = ti->private;
1917 struct pool *pool = pt->pool;
1919 if (!strcasecmp(argv[0], "create_thin"))
1920 r = process_create_thin_mesg(argc, argv, pool);
1922 else if (!strcasecmp(argv[0], "create_snap"))
1923 r = process_create_snap_mesg(argc, argv, pool);
1925 else if (!strcasecmp(argv[0], "delete"))
1926 r = process_delete_mesg(argc, argv, pool);
1928 else if (!strcasecmp(argv[0], "trim"))
1929 r = process_trim_mesg(argc, argv, pool);
1931 else if (!strcasecmp(argv[0], "set_transaction_id"))
1932 r = process_set_transaction_id_mesg(argc, argv, pool);
1934 else
1935 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
1937 if (!r) {
1938 r = dm_pool_commit_metadata(pool->pmd);
1939 if (r)
1940 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
1941 argv[0], r);
1944 return r;
1948 * Status line is:
1949 * <transaction id> <used metadata sectors>/<total metadata sectors>
1950 * <used data sectors>/<total data sectors> <held metadata root>
1952 static int pool_status(struct dm_target *ti, status_type_t type,
1953 char *result, unsigned maxlen)
1955 int r;
1956 unsigned sz = 0;
1957 uint64_t transaction_id;
1958 dm_block_t nr_free_blocks_data;
1959 dm_block_t nr_free_blocks_metadata;
1960 dm_block_t nr_blocks_data;
1961 dm_block_t nr_blocks_metadata;
1962 dm_block_t held_root;
1963 char buf[BDEVNAME_SIZE];
1964 char buf2[BDEVNAME_SIZE];
1965 struct pool_c *pt = ti->private;
1966 struct pool *pool = pt->pool;
1968 switch (type) {
1969 case STATUSTYPE_INFO:
1970 r = dm_pool_get_metadata_transaction_id(pool->pmd,
1971 &transaction_id);
1972 if (r)
1973 return r;
1975 r = dm_pool_get_free_metadata_block_count(pool->pmd,
1976 &nr_free_blocks_metadata);
1977 if (r)
1978 return r;
1980 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
1981 if (r)
1982 return r;
1984 r = dm_pool_get_free_block_count(pool->pmd,
1985 &nr_free_blocks_data);
1986 if (r)
1987 return r;
1989 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
1990 if (r)
1991 return r;
1993 r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
1994 if (r)
1995 return r;
1997 DMEMIT("%llu %llu/%llu %llu/%llu", (unsigned long long)transaction_id,
1998 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata) *
1999 pool->sectors_per_block,
2000 (unsigned long long)nr_blocks_metadata * pool->sectors_per_block,
2001 (unsigned long long)(nr_blocks_data - nr_free_blocks_data) *
2002 pool->sectors_per_block,
2003 (unsigned long long)nr_blocks_data * pool->sectors_per_block);
2005 if (held_root)
2006 DMEMIT("%llu", held_root);
2007 else
2008 DMEMIT("-");
2010 break;
2012 case STATUSTYPE_TABLE:
2013 DMEMIT("%s %s %lu %llu ",
2014 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2015 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2016 (unsigned long)pool->sectors_per_block,
2017 (unsigned long long)pt->low_water_mark);
2019 DMEMIT("%u ", !pool->zero_new_blocks);
2021 if (!pool->zero_new_blocks)
2022 DMEMIT("skip_block_zeroing ");
2023 break;
2026 return 0;
2029 static int pool_iterate_devices(struct dm_target *ti,
2030 iterate_devices_callout_fn fn, void *data)
2032 struct pool_c *pt = ti->private;
2034 return fn(ti, pt->data_dev, 0, ti->len, data);
2037 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2038 struct bio_vec *biovec, int max_size)
2040 struct pool_c *pt = ti->private;
2041 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2043 if (!q->merge_bvec_fn)
2044 return max_size;
2046 bvm->bi_bdev = pt->data_dev->bdev;
2048 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2051 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2053 struct pool_c *pt = ti->private;
2054 struct pool *pool = pt->pool;
2056 blk_limits_io_min(limits, 0);
2057 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2060 static struct target_type pool_target = {
2061 .name = "thin-pool",
2062 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE,
2063 .version = {1, 0, 0},
2064 .module = THIS_MODULE,
2065 .ctr = pool_ctr,
2066 .dtr = pool_dtr,
2067 .map = pool_map,
2068 .postsuspend = pool_postsuspend,
2069 .preresume = pool_preresume,
2070 .message = pool_message,
2071 .status = pool_status,
2072 .merge = pool_merge,
2073 .iterate_devices = pool_iterate_devices,
2074 .io_hints = pool_io_hints,
2077 /*----------------------------------------------------------------*/
2079 static void thin_dtr(struct dm_target *ti)
2081 struct thin_c *tc = ti->private;
2083 pool_dec(tc->pool);
2084 dm_pool_close_thin_device(tc->td);
2085 dm_put_device(ti, tc->pool_dev);
2086 kfree(tc);
2090 * Thin target parameters:
2092 * <pool_dev> <dev_id>
2094 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2095 * dev_id: the internal device identifier
2097 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2099 int r;
2100 struct thin_c *tc;
2101 struct dm_dev *pool_dev;
2102 struct mapped_device *pool_md;
2104 if (argc != 2) {
2105 ti->error = "Invalid argument count";
2106 return -EINVAL;
2109 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2110 if (!tc) {
2111 ti->error = "Out of memory";
2112 return -ENOMEM;
2115 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2116 if (r) {
2117 ti->error = "Error opening pool device";
2118 goto bad_pool_dev;
2120 tc->pool_dev = pool_dev;
2122 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2123 ti->error = "Invalid device id";
2124 r = -EINVAL;
2125 goto bad_common;
2128 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2129 if (!pool_md) {
2130 ti->error = "Couldn't get pool mapped device";
2131 r = -EINVAL;
2132 goto bad_common;
2135 tc->pool = pool_table_lookup(pool_md);
2136 if (!tc->pool) {
2137 ti->error = "Couldn't find pool object";
2138 r = -EINVAL;
2139 goto bad_pool_lookup;
2141 pool_inc(tc->pool);
2143 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2144 if (r) {
2145 ti->error = "Couldn't open thin internal device";
2146 goto bad_thin_open;
2149 ti->split_io = tc->pool->sectors_per_block;
2150 ti->num_flush_requests = 1;
2151 ti->num_discard_requests = 0;
2152 ti->discards_supported = 0;
2154 dm_put(pool_md);
2156 return 0;
2158 bad_thin_open:
2159 pool_dec(tc->pool);
2160 bad_pool_lookup:
2161 dm_put(pool_md);
2162 bad_common:
2163 dm_put_device(ti, tc->pool_dev);
2164 bad_pool_dev:
2165 kfree(tc);
2167 return r;
2170 static int thin_map(struct dm_target *ti, struct bio *bio,
2171 union map_info *map_context)
2173 bio->bi_sector -= ti->begin;
2175 return thin_bio_map(ti, bio, map_context);
2179 * <nr mapped sectors> <highest mapped sector>
2181 static int thin_status(struct dm_target *ti, status_type_t type,
2182 char *result, unsigned maxlen)
2184 int r;
2185 ssize_t sz = 0;
2186 dm_block_t mapped, highest;
2187 char buf[BDEVNAME_SIZE];
2188 struct thin_c *tc = ti->private;
2190 if (!tc->td)
2191 DMEMIT("-");
2192 else {
2193 switch (type) {
2194 case STATUSTYPE_INFO:
2195 r = dm_thin_get_mapped_count(tc->td, &mapped);
2196 if (r)
2197 return r;
2199 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2200 if (r < 0)
2201 return r;
2203 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2204 if (r)
2205 DMEMIT("%llu", ((highest + 1) *
2206 tc->pool->sectors_per_block) - 1);
2207 else
2208 DMEMIT("-");
2209 break;
2211 case STATUSTYPE_TABLE:
2212 DMEMIT("%s %lu",
2213 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2214 (unsigned long) tc->dev_id);
2215 break;
2219 return 0;
2222 static int thin_iterate_devices(struct dm_target *ti,
2223 iterate_devices_callout_fn fn, void *data)
2225 struct thin_c *tc = ti->private;
2227 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block, data);
2230 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2232 struct thin_c *tc = ti->private;
2234 blk_limits_io_min(limits, 0);
2235 blk_limits_io_opt(limits, tc->pool->sectors_per_block << SECTOR_SHIFT);
2238 static struct target_type thin_target = {
2239 .name = "thin",
2240 .version = {1, 0, 0},
2241 .module = THIS_MODULE,
2242 .ctr = thin_ctr,
2243 .dtr = thin_dtr,
2244 .map = thin_map,
2245 .status = thin_status,
2246 .iterate_devices = thin_iterate_devices,
2247 .io_hints = thin_io_hints,
2250 /*----------------------------------------------------------------*/
2252 static int __init dm_thin_init(void)
2254 int r;
2256 pool_table_init();
2258 r = dm_register_target(&thin_target);
2259 if (r)
2260 return r;
2262 r = dm_register_target(&pool_target);
2263 if (r)
2264 dm_unregister_target(&thin_target);
2266 return r;
2269 static void dm_thin_exit(void)
2271 dm_unregister_target(&thin_target);
2272 dm_unregister_target(&pool_target);
2275 module_init(dm_thin_init);
2276 module_exit(dm_thin_exit);
2278 MODULE_DESCRIPTION(DM_NAME "device-mapper thin provisioning target");
2279 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2280 MODULE_LICENSE("GPL");