Merge branch 'akpm'
[linux-2.6/next.git] / drivers / md / persistent-data / dm-btree-remove.c
blobe7071f66dc39d18b0b241a7a5ee44b244991d6b7
1 /*
2 * Copyright (C) 2011 Red Hat, Inc. All rights reserved.
4 * This file is released under the GPL.
5 */
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
11 #include <linux/export.h>
14 * Removing an entry from a btree
15 * ==============================
17 * A very important constraint for our btree is that no node, except the
18 * root, may have fewer than a certain number of entries.
19 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
21 * Ensuring this is complicated by the way we want to only ever hold the
22 * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23 * fashion.
25 * Each node may have a left or right sibling. When decending the spine,
26 * if a node contains only MIN_ENTRIES then we try and increase this to at
27 * least MIN_ENTRIES + 1. We do this in the following ways:
29 * [A] No siblings => this can only happen if the node is the root, in which
30 * case we copy the childs contents over the root.
32 * [B] No left sibling
33 * ==> rebalance(node, right sibling)
35 * [C] No right sibling
36 * ==> rebalance(left sibling, node)
38 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39 * ==> delete node adding it's contents to left and right
41 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42 * ==> rebalance(left, node, right)
44 * After these operations it's possible that the our original node no
45 * longer contains the desired sub tree. For this reason this rebalancing
46 * is performed on the children of the current node. This also avoids
47 * having a special case for the root.
49 * Once this rebalancing has occurred we can then step into the child node
50 * for internal nodes. Or delete the entry for leaf nodes.
54 * Some little utilities for moving node data around.
56 static void node_shift(struct node *n, int shift)
58 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
60 if (shift < 0) {
61 shift = -shift;
62 memmove(key_ptr(n, 0),
63 key_ptr(n, shift),
64 (nr_entries - shift) * sizeof(__le64));
65 memmove(value_ptr(n, 0, sizeof(__le64)),
66 value_ptr(n, shift, sizeof(__le64)),
67 (nr_entries - shift) * sizeof(__le64));
68 } else {
69 memmove(key_ptr(n, shift),
70 key_ptr(n, 0),
71 nr_entries * sizeof(__le64));
72 memmove(value_ptr(n, shift, sizeof(__le64)),
73 value_ptr(n, 0, sizeof(__le64)),
74 nr_entries * sizeof(__le64));
78 static void node_copy(struct node *left, struct node *right, int shift)
80 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
82 if (shift < 0) {
83 shift = -shift;
84 memcpy(key_ptr(left, nr_left),
85 key_ptr(right, 0),
86 shift * sizeof(__le64));
87 memcpy(value_ptr(left, nr_left, sizeof(__le64)),
88 value_ptr(right, 0, sizeof(__le64)),
89 shift * sizeof(__le64));
90 } else {
91 memcpy(key_ptr(right, 0),
92 key_ptr(left, nr_left - shift),
93 shift * sizeof(__le64));
94 memcpy(value_ptr(right, 0, sizeof(__le64)),
95 value_ptr(left, nr_left - shift, sizeof(__le64)),
96 shift * sizeof(__le64));
101 * Delete a specific entry from a leaf node.
103 static void delete_at(struct node *n, unsigned index, size_t value_size)
105 unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
106 unsigned nr_to_copy = nr_entries - (index + 1);
108 if (nr_to_copy) {
109 memmove(key_ptr(n, index),
110 key_ptr(n, index + 1),
111 nr_to_copy * sizeof(__le64));
113 memmove(value_ptr(n, index, value_size),
114 value_ptr(n, index + 1, value_size),
115 nr_to_copy * value_size);
118 n->header.nr_entries = cpu_to_le32(nr_entries - 1);
121 static unsigned del_threshold(struct node *n)
123 return le32_to_cpu(n->header.max_entries) / 3;
126 static unsigned merge_threshold(struct node *n)
129 * The extra one is because we know we're potentially going to
130 * delete an entry.
132 return 2 * (le32_to_cpu(n->header.max_entries) / 3) + 1;
135 struct child {
136 unsigned index;
137 struct dm_block *block;
138 struct node *n;
141 static struct dm_btree_value_type le64_type = {
142 .context = NULL,
143 .size = sizeof(__le64),
144 .inc = NULL,
145 .dec = NULL,
146 .equal = NULL
149 static int init_child(struct dm_btree_info *info, struct node *parent,
150 unsigned index, struct child *result)
152 int r, inc;
153 dm_block_t root;
155 result->index = index;
156 root = value64(parent, index);
158 r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
159 &result->block, &inc);
160 if (r)
161 return r;
163 result->n = dm_block_data(result->block);
165 if (inc)
166 inc_children(info->tm, result->n, &le64_type);
168 return 0;
171 static int exit_child(struct dm_btree_info *info, struct child *c)
173 return dm_tm_unlock(info->tm, c->block);
176 static void shift(struct node *left, struct node *right, int count)
178 if (!count)
179 return;
181 if (count > 0) {
182 node_shift(right, count);
183 node_copy(left, right, count);
184 } else {
185 node_copy(left, right, count);
186 node_shift(right, count);
189 left->header.nr_entries =
190 cpu_to_le32(le32_to_cpu(left->header.nr_entries) - count);
192 right->header.nr_entries =
193 cpu_to_le32(le32_to_cpu(right->header.nr_entries) + count);
196 static void __rebalance2(struct dm_btree_info *info, struct node *parent,
197 struct child *l, struct child *r)
199 struct node *left = l->n;
200 struct node *right = r->n;
201 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
202 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
204 if (nr_left + nr_right <= merge_threshold(left)) {
206 * Merge
208 node_copy(left, right, -nr_right);
209 left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
211 *((__le64 *) value_ptr(parent, l->index, sizeof(__le64))) =
212 cpu_to_le64(dm_block_location(l->block));
213 delete_at(parent, r->index, sizeof(__le64));
216 * We need to decrement the right block, but not it's
217 * children, since they're still referenced by left.
219 dm_tm_dec(info->tm, dm_block_location(r->block));
220 } else {
222 * Rebalance.
224 unsigned target_left = (nr_left + nr_right) / 2;
226 shift(left, right, nr_left - target_left);
227 *((__le64 *) value_ptr(parent, l->index, sizeof(__le64))) =
228 cpu_to_le64(dm_block_location(l->block));
229 *((__le64 *) value_ptr(parent, r->index, sizeof(__le64))) =
230 cpu_to_le64(dm_block_location(r->block));
231 *key_ptr(parent, r->index) = right->keys[0];
235 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
236 unsigned left_index)
238 int r;
239 struct node *parent;
240 struct child left, right;
242 parent = dm_block_data(shadow_current(s));
244 r = init_child(info, parent, left_index, &left);
245 if (r)
246 return r;
248 r = init_child(info, parent, left_index + 1, &right);
249 if (r) {
250 exit_child(info, &left);
251 return r;
254 __rebalance2(info, parent, &left, &right);
256 r = exit_child(info, &left);
257 if (r) {
258 exit_child(info, &right);
259 return r;
262 r = exit_child(info, &right);
263 if (r)
264 return r;
266 return 0;
269 static void __rebalance3(struct dm_btree_info *info, struct node *parent,
270 struct child *l, struct child *c, struct child *r)
272 struct node *left = l->n;
273 struct node *center = c->n;
274 struct node *right = r->n;
276 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
277 uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
278 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
279 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
281 unsigned target;
283 if (((nr_left + nr_center + nr_right) / 2) < merge_threshold(center)) {
285 * Delete center node:
287 * We dump as many entries from center as possible into
288 * left, then the rest in right, then rebalance2. This
289 * wastes some cpu, but I want something simple atm.
291 unsigned shift = min(max_entries - nr_left, nr_center);
293 node_copy(left, center, -shift);
294 left->header.nr_entries = cpu_to_le32(nr_left + shift);
296 if (shift != nr_center) {
297 shift = nr_center - shift;
298 node_shift(right, shift);
299 node_copy(center, right, shift);
300 right->header.nr_entries = cpu_to_le32(nr_right + shift);
303 *((__le64 *) value_ptr(parent, l->index, sizeof(__le64))) =
304 cpu_to_le64(dm_block_location(l->block));
305 *((__le64 *) value_ptr(parent, r->index, sizeof(__le64))) =
306 cpu_to_le64(dm_block_location(r->block));
307 *key_ptr(parent, r->index) = right->keys[0];
309 delete_at(parent, c->index, sizeof(__le64));
310 r->index--;
312 dm_tm_dec(info->tm, dm_block_location(c->block));
313 __rebalance2(info, parent, l, r);
315 return;
319 * Rebalance
321 target = (nr_left + nr_center + nr_right) / 3;
322 BUG_ON(target == nr_center);
325 * Adjust the left node
327 shift(left, center, nr_left - target);
330 * Adjust the right node
332 shift(center, right, target - nr_right);
334 *((__le64 *) value_ptr(parent, l->index, sizeof(__le64))) =
335 cpu_to_le64(dm_block_location(l->block));
336 *((__le64 *) value_ptr(parent, c->index, sizeof(__le64))) =
337 cpu_to_le64(dm_block_location(c->block));
338 *((__le64 *) value_ptr(parent, r->index, sizeof(__le64))) =
339 cpu_to_le64(dm_block_location(r->block));
341 *key_ptr(parent, c->index) = center->keys[0];
342 *key_ptr(parent, r->index) = right->keys[0];
345 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
346 unsigned left_index)
348 int r;
349 struct node *parent = dm_block_data(shadow_current(s));
350 struct child left, center, right;
353 * FIXME: fill out an array?
355 r = init_child(info, parent, left_index, &left);
356 if (r)
357 return r;
359 r = init_child(info, parent, left_index + 1, &center);
360 if (r) {
361 exit_child(info, &left);
362 return r;
365 r = init_child(info, parent, left_index + 2, &right);
366 if (r) {
367 exit_child(info, &left);
368 exit_child(info, &center);
369 return r;
372 __rebalance3(info, parent, &left, &center, &right);
374 r = exit_child(info, &left);
375 if (r) {
376 exit_child(info, &center);
377 exit_child(info, &right);
378 return r;
381 r = exit_child(info, &center);
382 if (r) {
383 exit_child(info, &right);
384 return r;
387 r = exit_child(info, &right);
388 if (r)
389 return r;
391 return 0;
394 static int get_nr_entries(struct dm_transaction_manager *tm,
395 dm_block_t b, uint32_t *result)
397 int r;
398 struct dm_block *block;
399 struct node *n;
401 r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
402 if (r)
403 return r;
405 n = dm_block_data(block);
406 *result = le32_to_cpu(n->header.nr_entries);
408 return dm_tm_unlock(tm, block);
411 static int rebalance_children(struct shadow_spine *s,
412 struct dm_btree_info *info, uint64_t key)
414 int i, r, has_left_sibling, has_right_sibling;
415 uint32_t child_entries;
416 struct node *n;
418 n = dm_block_data(shadow_current(s));
420 if (le32_to_cpu(n->header.nr_entries) == 1) {
421 struct dm_block *child;
422 dm_block_t b = value64(n, 0);
424 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
425 if (r)
426 return r;
428 memcpy(n, dm_block_data(child),
429 dm_bm_block_size(dm_tm_get_bm(info->tm)));
430 r = dm_tm_unlock(info->tm, child);
431 dm_tm_dec(info->tm, dm_block_location(child));
433 return r;
436 i = lower_bound(n, key);
437 if (i < 0)
438 return -ENODATA;
440 r = get_nr_entries(info->tm, value64(n, i), &child_entries);
441 if (r)
442 return r;
444 if (child_entries > del_threshold(n))
445 return 0;
447 has_left_sibling = i > 0 ? 1 : 0;
448 has_right_sibling =
449 (i >= (le32_to_cpu(n->header.nr_entries) - 1)) ? 0 : 1;
451 if (!has_left_sibling)
452 r = rebalance2(s, info, i);
454 else if (!has_right_sibling)
455 r = rebalance2(s, info, i - 1);
457 else
458 r = rebalance3(s, info, i - 1);
460 return r;
463 static int do_leaf(struct node *n, uint64_t key, unsigned *index)
465 int i = lower_bound(n, key);
467 if ((i < 0) ||
468 (i >= le32_to_cpu(n->header.nr_entries)) ||
469 (le64_to_cpu(n->keys[i]) != key))
470 return -ENODATA;
472 *index = i;
474 return 0;
478 * Prepares for removal from one level of the hierarchy. The caller must
479 * actually call delete_at() to remove the entry at index.
481 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
482 struct dm_btree_value_type *vt, dm_block_t root,
483 uint64_t key, unsigned *index)
485 int i = *index, inc, r;
486 struct node *n;
488 for (;;) {
489 r = shadow_step(s, root, vt, &inc);
490 if (r < 0)
491 break;
494 * We have to patch up the parent node, ugly, but I don't
495 * see a way to do this automatically as part of the spine
496 * op.
498 if (shadow_has_parent(s)) {
499 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
500 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i, sizeof(uint64_t)),
501 &location, sizeof(__le64));
504 n = dm_block_data(shadow_current(s));
505 if (inc)
506 inc_children(info->tm, n, vt);
508 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
509 return do_leaf(n, key, index);
511 r = rebalance_children(s, info, key);
512 if (r)
513 break;
515 n = dm_block_data(shadow_current(s));
516 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
517 return do_leaf(n, key, index);
519 i = lower_bound(n, key);
522 * We know the key is present, or else
523 * rebalance_children would have returned
524 * -ENODATA
526 root = value64(n, i);
529 return r;
532 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
533 uint64_t *keys, dm_block_t *new_root)
535 unsigned level, last_level = info->levels - 1;
536 int index = 0, r = 0;
537 struct shadow_spine spine;
538 struct node *n;
540 init_shadow_spine(&spine, info);
541 for (level = 0; level < info->levels; level++) {
542 r = remove_raw(&spine, info,
543 (level == last_level ?
544 &info->value_type : &le64_type),
545 root, keys[level], (unsigned *)&index);
546 if (r < 0)
547 break;
549 n = dm_block_data(shadow_current(&spine));
550 if (level != last_level) {
551 root = value64(n, index);
552 continue;
555 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
557 if (info->value_type.dec)
558 info->value_type.dec(info->value_type.context,
559 value_ptr(n, index, info->value_type.size));
561 delete_at(n, index, info->value_type.size);
563 r = 0;
564 *new_root = shadow_root(&spine);
567 exit_shadow_spine(&spine);
569 return r;
571 EXPORT_SYMBOL_GPL(dm_btree_remove);