Merge branch 'akpm'
[linux-2.6/next.git] / drivers / md / raid1.c
blob56db3230c674343b7951a6f14a892dd1465c4a65
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
44 #define DEBUG 0
45 #define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
48 * Number of guaranteed r1bios in case of extreme VM load:
50 #define NR_RAID1_BIOS 256
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
58 struct pool_info *pi = data;
59 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 /* allocate a r1bio with room for raid_disks entries in the bios array */
62 return kzalloc(size, gfp_flags);
65 static void r1bio_pool_free(void *r1_bio, void *data)
67 kfree(r1_bio);
70 #define RESYNC_BLOCK_SIZE (64*1024)
71 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
72 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
73 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
74 #define RESYNC_WINDOW (2048*1024)
76 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
78 struct pool_info *pi = data;
79 struct page *page;
80 r1bio_t *r1_bio;
81 struct bio *bio;
82 int i, j;
84 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
85 if (!r1_bio)
86 return NULL;
89 * Allocate bios : 1 for reading, n-1 for writing
91 for (j = pi->raid_disks ; j-- ; ) {
92 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
93 if (!bio)
94 goto out_free_bio;
95 r1_bio->bios[j] = bio;
98 * Allocate RESYNC_PAGES data pages and attach them to
99 * the first bio.
100 * If this is a user-requested check/repair, allocate
101 * RESYNC_PAGES for each bio.
103 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
104 j = pi->raid_disks;
105 else
106 j = 1;
107 while(j--) {
108 bio = r1_bio->bios[j];
109 for (i = 0; i < RESYNC_PAGES; i++) {
110 page = alloc_page(gfp_flags);
111 if (unlikely(!page))
112 goto out_free_pages;
114 bio->bi_io_vec[i].bv_page = page;
115 bio->bi_vcnt = i+1;
118 /* If not user-requests, copy the page pointers to all bios */
119 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
120 for (i=0; i<RESYNC_PAGES ; i++)
121 for (j=1; j<pi->raid_disks; j++)
122 r1_bio->bios[j]->bi_io_vec[i].bv_page =
123 r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 r1_bio->master_bio = NULL;
128 return r1_bio;
130 out_free_pages:
131 for (j=0 ; j < pi->raid_disks; j++)
132 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
133 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
134 j = -1;
135 out_free_bio:
136 while ( ++j < pi->raid_disks )
137 bio_put(r1_bio->bios[j]);
138 r1bio_pool_free(r1_bio, data);
139 return NULL;
142 static void r1buf_pool_free(void *__r1_bio, void *data)
144 struct pool_info *pi = data;
145 int i,j;
146 r1bio_t *r1bio = __r1_bio;
148 for (i = 0; i < RESYNC_PAGES; i++)
149 for (j = pi->raid_disks; j-- ;) {
150 if (j == 0 ||
151 r1bio->bios[j]->bi_io_vec[i].bv_page !=
152 r1bio->bios[0]->bi_io_vec[i].bv_page)
153 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
155 for (i=0 ; i < pi->raid_disks; i++)
156 bio_put(r1bio->bios[i]);
158 r1bio_pool_free(r1bio, data);
161 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
163 int i;
165 for (i = 0; i < conf->raid_disks; i++) {
166 struct bio **bio = r1_bio->bios + i;
167 if (!BIO_SPECIAL(*bio))
168 bio_put(*bio);
169 *bio = NULL;
173 static void free_r1bio(r1bio_t *r1_bio)
175 conf_t *conf = r1_bio->mddev->private;
177 put_all_bios(conf, r1_bio);
178 mempool_free(r1_bio, conf->r1bio_pool);
181 static void put_buf(r1bio_t *r1_bio)
183 conf_t *conf = r1_bio->mddev->private;
184 int i;
186 for (i=0; i<conf->raid_disks; i++) {
187 struct bio *bio = r1_bio->bios[i];
188 if (bio->bi_end_io)
189 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 mempool_free(r1_bio, conf->r1buf_pool);
194 lower_barrier(conf);
197 static void reschedule_retry(r1bio_t *r1_bio)
199 unsigned long flags;
200 mddev_t *mddev = r1_bio->mddev;
201 conf_t *conf = mddev->private;
203 spin_lock_irqsave(&conf->device_lock, flags);
204 list_add(&r1_bio->retry_list, &conf->retry_list);
205 conf->nr_queued ++;
206 spin_unlock_irqrestore(&conf->device_lock, flags);
208 wake_up(&conf->wait_barrier);
209 md_wakeup_thread(mddev->thread);
213 * raid_end_bio_io() is called when we have finished servicing a mirrored
214 * operation and are ready to return a success/failure code to the buffer
215 * cache layer.
217 static void call_bio_endio(r1bio_t *r1_bio)
219 struct bio *bio = r1_bio->master_bio;
220 int done;
221 conf_t *conf = r1_bio->mddev->private;
223 if (bio->bi_phys_segments) {
224 unsigned long flags;
225 spin_lock_irqsave(&conf->device_lock, flags);
226 bio->bi_phys_segments--;
227 done = (bio->bi_phys_segments == 0);
228 spin_unlock_irqrestore(&conf->device_lock, flags);
229 } else
230 done = 1;
232 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
233 clear_bit(BIO_UPTODATE, &bio->bi_flags);
234 if (done) {
235 bio_endio(bio, 0);
237 * Wake up any possible resync thread that waits for the device
238 * to go idle.
240 allow_barrier(conf);
244 static void raid_end_bio_io(r1bio_t *r1_bio)
246 struct bio *bio = r1_bio->master_bio;
248 /* if nobody has done the final endio yet, do it now */
249 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
250 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
251 (bio_data_dir(bio) == WRITE) ? "write" : "read",
252 (unsigned long long) bio->bi_sector,
253 (unsigned long long) bio->bi_sector +
254 (bio->bi_size >> 9) - 1);
256 call_bio_endio(r1_bio);
258 free_r1bio(r1_bio);
262 * Update disk head position estimator based on IRQ completion info.
264 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
266 conf_t *conf = r1_bio->mddev->private;
268 conf->mirrors[disk].head_position =
269 r1_bio->sector + (r1_bio->sectors);
272 static void raid1_end_read_request(struct bio *bio, int error)
274 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
275 r1bio_t *r1_bio = bio->bi_private;
276 int mirror;
277 conf_t *conf = r1_bio->mddev->private;
279 mirror = r1_bio->read_disk;
281 * this branch is our 'one mirror IO has finished' event handler:
283 update_head_pos(mirror, r1_bio);
285 if (uptodate)
286 set_bit(R1BIO_Uptodate, &r1_bio->state);
287 else {
288 /* If all other devices have failed, we want to return
289 * the error upwards rather than fail the last device.
290 * Here we redefine "uptodate" to mean "Don't want to retry"
292 unsigned long flags;
293 spin_lock_irqsave(&conf->device_lock, flags);
294 if (r1_bio->mddev->degraded == conf->raid_disks ||
295 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
296 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
297 uptodate = 1;
298 spin_unlock_irqrestore(&conf->device_lock, flags);
301 if (uptodate)
302 raid_end_bio_io(r1_bio);
303 else {
305 * oops, read error:
307 char b[BDEVNAME_SIZE];
308 printk_ratelimited(
309 KERN_ERR "md/raid1:%s: %s: "
310 "rescheduling sector %llu\n",
311 mdname(conf->mddev),
312 bdevname(conf->mirrors[mirror].rdev->bdev,
314 (unsigned long long)r1_bio->sector);
315 set_bit(R1BIO_ReadError, &r1_bio->state);
316 reschedule_retry(r1_bio);
319 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
322 static void close_write(r1bio_t *r1_bio)
324 /* it really is the end of this request */
325 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
326 /* free extra copy of the data pages */
327 int i = r1_bio->behind_page_count;
328 while (i--)
329 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
330 kfree(r1_bio->behind_bvecs);
331 r1_bio->behind_bvecs = NULL;
333 /* clear the bitmap if all writes complete successfully */
334 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
335 r1_bio->sectors,
336 !test_bit(R1BIO_Degraded, &r1_bio->state),
337 test_bit(R1BIO_BehindIO, &r1_bio->state));
338 md_write_end(r1_bio->mddev);
341 static void r1_bio_write_done(r1bio_t *r1_bio)
343 if (!atomic_dec_and_test(&r1_bio->remaining))
344 return;
346 if (test_bit(R1BIO_WriteError, &r1_bio->state))
347 reschedule_retry(r1_bio);
348 else {
349 close_write(r1_bio);
350 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
351 reschedule_retry(r1_bio);
352 else
353 raid_end_bio_io(r1_bio);
357 static void raid1_end_write_request(struct bio *bio, int error)
359 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
360 r1bio_t *r1_bio = bio->bi_private;
361 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
362 conf_t *conf = r1_bio->mddev->private;
363 struct bio *to_put = NULL;
366 for (mirror = 0; mirror < conf->raid_disks; mirror++)
367 if (r1_bio->bios[mirror] == bio)
368 break;
371 * 'one mirror IO has finished' event handler:
373 if (!uptodate) {
374 set_bit(WriteErrorSeen,
375 &conf->mirrors[mirror].rdev->flags);
376 set_bit(R1BIO_WriteError, &r1_bio->state);
377 } else {
379 * Set R1BIO_Uptodate in our master bio, so that we
380 * will return a good error code for to the higher
381 * levels even if IO on some other mirrored buffer
382 * fails.
384 * The 'master' represents the composite IO operation
385 * to user-side. So if something waits for IO, then it
386 * will wait for the 'master' bio.
388 sector_t first_bad;
389 int bad_sectors;
391 r1_bio->bios[mirror] = NULL;
392 to_put = bio;
393 set_bit(R1BIO_Uptodate, &r1_bio->state);
395 /* Maybe we can clear some bad blocks. */
396 if (is_badblock(conf->mirrors[mirror].rdev,
397 r1_bio->sector, r1_bio->sectors,
398 &first_bad, &bad_sectors)) {
399 r1_bio->bios[mirror] = IO_MADE_GOOD;
400 set_bit(R1BIO_MadeGood, &r1_bio->state);
404 update_head_pos(mirror, r1_bio);
406 if (behind) {
407 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
408 atomic_dec(&r1_bio->behind_remaining);
411 * In behind mode, we ACK the master bio once the I/O
412 * has safely reached all non-writemostly
413 * disks. Setting the Returned bit ensures that this
414 * gets done only once -- we don't ever want to return
415 * -EIO here, instead we'll wait
417 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
418 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
419 /* Maybe we can return now */
420 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
421 struct bio *mbio = r1_bio->master_bio;
422 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
423 (unsigned long long) mbio->bi_sector,
424 (unsigned long long) mbio->bi_sector +
425 (mbio->bi_size >> 9) - 1);
426 call_bio_endio(r1_bio);
430 if (r1_bio->bios[mirror] == NULL)
431 rdev_dec_pending(conf->mirrors[mirror].rdev,
432 conf->mddev);
435 * Let's see if all mirrored write operations have finished
436 * already.
438 r1_bio_write_done(r1_bio);
440 if (to_put)
441 bio_put(to_put);
446 * This routine returns the disk from which the requested read should
447 * be done. There is a per-array 'next expected sequential IO' sector
448 * number - if this matches on the next IO then we use the last disk.
449 * There is also a per-disk 'last know head position' sector that is
450 * maintained from IRQ contexts, both the normal and the resync IO
451 * completion handlers update this position correctly. If there is no
452 * perfect sequential match then we pick the disk whose head is closest.
454 * If there are 2 mirrors in the same 2 devices, performance degrades
455 * because position is mirror, not device based.
457 * The rdev for the device selected will have nr_pending incremented.
459 static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
461 const sector_t this_sector = r1_bio->sector;
462 int sectors;
463 int best_good_sectors;
464 int start_disk;
465 int best_disk;
466 int i;
467 sector_t best_dist;
468 mdk_rdev_t *rdev;
469 int choose_first;
471 rcu_read_lock();
473 * Check if we can balance. We can balance on the whole
474 * device if no resync is going on, or below the resync window.
475 * We take the first readable disk when above the resync window.
477 retry:
478 sectors = r1_bio->sectors;
479 best_disk = -1;
480 best_dist = MaxSector;
481 best_good_sectors = 0;
483 if (conf->mddev->recovery_cp < MaxSector &&
484 (this_sector + sectors >= conf->next_resync)) {
485 choose_first = 1;
486 start_disk = 0;
487 } else {
488 choose_first = 0;
489 start_disk = conf->last_used;
492 for (i = 0 ; i < conf->raid_disks ; i++) {
493 sector_t dist;
494 sector_t first_bad;
495 int bad_sectors;
497 int disk = start_disk + i;
498 if (disk >= conf->raid_disks)
499 disk -= conf->raid_disks;
501 rdev = rcu_dereference(conf->mirrors[disk].rdev);
502 if (r1_bio->bios[disk] == IO_BLOCKED
503 || rdev == NULL
504 || test_bit(Faulty, &rdev->flags))
505 continue;
506 if (!test_bit(In_sync, &rdev->flags) &&
507 rdev->recovery_offset < this_sector + sectors)
508 continue;
509 if (test_bit(WriteMostly, &rdev->flags)) {
510 /* Don't balance among write-mostly, just
511 * use the first as a last resort */
512 if (best_disk < 0)
513 best_disk = disk;
514 continue;
516 /* This is a reasonable device to use. It might
517 * even be best.
519 if (is_badblock(rdev, this_sector, sectors,
520 &first_bad, &bad_sectors)) {
521 if (best_dist < MaxSector)
522 /* already have a better device */
523 continue;
524 if (first_bad <= this_sector) {
525 /* cannot read here. If this is the 'primary'
526 * device, then we must not read beyond
527 * bad_sectors from another device..
529 bad_sectors -= (this_sector - first_bad);
530 if (choose_first && sectors > bad_sectors)
531 sectors = bad_sectors;
532 if (best_good_sectors > sectors)
533 best_good_sectors = sectors;
535 } else {
536 sector_t good_sectors = first_bad - this_sector;
537 if (good_sectors > best_good_sectors) {
538 best_good_sectors = good_sectors;
539 best_disk = disk;
541 if (choose_first)
542 break;
544 continue;
545 } else
546 best_good_sectors = sectors;
548 dist = abs(this_sector - conf->mirrors[disk].head_position);
549 if (choose_first
550 /* Don't change to another disk for sequential reads */
551 || conf->next_seq_sect == this_sector
552 || dist == 0
553 /* If device is idle, use it */
554 || atomic_read(&rdev->nr_pending) == 0) {
555 best_disk = disk;
556 break;
558 if (dist < best_dist) {
559 best_dist = dist;
560 best_disk = disk;
564 if (best_disk >= 0) {
565 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
566 if (!rdev)
567 goto retry;
568 atomic_inc(&rdev->nr_pending);
569 if (test_bit(Faulty, &rdev->flags)) {
570 /* cannot risk returning a device that failed
571 * before we inc'ed nr_pending
573 rdev_dec_pending(rdev, conf->mddev);
574 goto retry;
576 sectors = best_good_sectors;
577 conf->next_seq_sect = this_sector + sectors;
578 conf->last_used = best_disk;
580 rcu_read_unlock();
581 *max_sectors = sectors;
583 return best_disk;
586 int md_raid1_congested(mddev_t *mddev, int bits)
588 conf_t *conf = mddev->private;
589 int i, ret = 0;
591 rcu_read_lock();
592 for (i = 0; i < mddev->raid_disks; i++) {
593 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
594 if (rdev && !test_bit(Faulty, &rdev->flags)) {
595 struct request_queue *q = bdev_get_queue(rdev->bdev);
597 BUG_ON(!q);
599 /* Note the '|| 1' - when read_balance prefers
600 * non-congested targets, it can be removed
602 if ((bits & (1<<BDI_async_congested)) || 1)
603 ret |= bdi_congested(&q->backing_dev_info, bits);
604 else
605 ret &= bdi_congested(&q->backing_dev_info, bits);
608 rcu_read_unlock();
609 return ret;
611 EXPORT_SYMBOL_GPL(md_raid1_congested);
613 static int raid1_congested(void *data, int bits)
615 mddev_t *mddev = data;
617 return mddev_congested(mddev, bits) ||
618 md_raid1_congested(mddev, bits);
621 static void flush_pending_writes(conf_t *conf)
623 /* Any writes that have been queued but are awaiting
624 * bitmap updates get flushed here.
626 spin_lock_irq(&conf->device_lock);
628 if (conf->pending_bio_list.head) {
629 struct bio *bio;
630 bio = bio_list_get(&conf->pending_bio_list);
631 spin_unlock_irq(&conf->device_lock);
632 /* flush any pending bitmap writes to
633 * disk before proceeding w/ I/O */
634 bitmap_unplug(conf->mddev->bitmap);
636 while (bio) { /* submit pending writes */
637 struct bio *next = bio->bi_next;
638 bio->bi_next = NULL;
639 generic_make_request(bio);
640 bio = next;
642 } else
643 spin_unlock_irq(&conf->device_lock);
646 /* Barriers....
647 * Sometimes we need to suspend IO while we do something else,
648 * either some resync/recovery, or reconfigure the array.
649 * To do this we raise a 'barrier'.
650 * The 'barrier' is a counter that can be raised multiple times
651 * to count how many activities are happening which preclude
652 * normal IO.
653 * We can only raise the barrier if there is no pending IO.
654 * i.e. if nr_pending == 0.
655 * We choose only to raise the barrier if no-one is waiting for the
656 * barrier to go down. This means that as soon as an IO request
657 * is ready, no other operations which require a barrier will start
658 * until the IO request has had a chance.
660 * So: regular IO calls 'wait_barrier'. When that returns there
661 * is no backgroup IO happening, It must arrange to call
662 * allow_barrier when it has finished its IO.
663 * backgroup IO calls must call raise_barrier. Once that returns
664 * there is no normal IO happeing. It must arrange to call
665 * lower_barrier when the particular background IO completes.
667 #define RESYNC_DEPTH 32
669 static void raise_barrier(conf_t *conf)
671 spin_lock_irq(&conf->resync_lock);
673 /* Wait until no block IO is waiting */
674 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
675 conf->resync_lock, );
677 /* block any new IO from starting */
678 conf->barrier++;
680 /* Now wait for all pending IO to complete */
681 wait_event_lock_irq(conf->wait_barrier,
682 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
683 conf->resync_lock, );
685 spin_unlock_irq(&conf->resync_lock);
688 static void lower_barrier(conf_t *conf)
690 unsigned long flags;
691 BUG_ON(conf->barrier <= 0);
692 spin_lock_irqsave(&conf->resync_lock, flags);
693 conf->barrier--;
694 spin_unlock_irqrestore(&conf->resync_lock, flags);
695 wake_up(&conf->wait_barrier);
698 static void wait_barrier(conf_t *conf)
700 spin_lock_irq(&conf->resync_lock);
701 if (conf->barrier) {
702 conf->nr_waiting++;
703 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
704 conf->resync_lock,
706 conf->nr_waiting--;
708 conf->nr_pending++;
709 spin_unlock_irq(&conf->resync_lock);
712 static void allow_barrier(conf_t *conf)
714 unsigned long flags;
715 spin_lock_irqsave(&conf->resync_lock, flags);
716 conf->nr_pending--;
717 spin_unlock_irqrestore(&conf->resync_lock, flags);
718 wake_up(&conf->wait_barrier);
721 static void freeze_array(conf_t *conf)
723 /* stop syncio and normal IO and wait for everything to
724 * go quite.
725 * We increment barrier and nr_waiting, and then
726 * wait until nr_pending match nr_queued+1
727 * This is called in the context of one normal IO request
728 * that has failed. Thus any sync request that might be pending
729 * will be blocked by nr_pending, and we need to wait for
730 * pending IO requests to complete or be queued for re-try.
731 * Thus the number queued (nr_queued) plus this request (1)
732 * must match the number of pending IOs (nr_pending) before
733 * we continue.
735 spin_lock_irq(&conf->resync_lock);
736 conf->barrier++;
737 conf->nr_waiting++;
738 wait_event_lock_irq(conf->wait_barrier,
739 conf->nr_pending == conf->nr_queued+1,
740 conf->resync_lock,
741 flush_pending_writes(conf));
742 spin_unlock_irq(&conf->resync_lock);
744 static void unfreeze_array(conf_t *conf)
746 /* reverse the effect of the freeze */
747 spin_lock_irq(&conf->resync_lock);
748 conf->barrier--;
749 conf->nr_waiting--;
750 wake_up(&conf->wait_barrier);
751 spin_unlock_irq(&conf->resync_lock);
755 /* duplicate the data pages for behind I/O
757 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
759 int i;
760 struct bio_vec *bvec;
761 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
762 GFP_NOIO);
763 if (unlikely(!bvecs))
764 return;
766 bio_for_each_segment(bvec, bio, i) {
767 bvecs[i] = *bvec;
768 bvecs[i].bv_page = alloc_page(GFP_NOIO);
769 if (unlikely(!bvecs[i].bv_page))
770 goto do_sync_io;
771 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
772 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
773 kunmap(bvecs[i].bv_page);
774 kunmap(bvec->bv_page);
776 r1_bio->behind_bvecs = bvecs;
777 r1_bio->behind_page_count = bio->bi_vcnt;
778 set_bit(R1BIO_BehindIO, &r1_bio->state);
779 return;
781 do_sync_io:
782 for (i = 0; i < bio->bi_vcnt; i++)
783 if (bvecs[i].bv_page)
784 put_page(bvecs[i].bv_page);
785 kfree(bvecs);
786 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
789 static int make_request(mddev_t *mddev, struct bio * bio)
791 conf_t *conf = mddev->private;
792 mirror_info_t *mirror;
793 r1bio_t *r1_bio;
794 struct bio *read_bio;
795 int i, disks;
796 struct bitmap *bitmap;
797 unsigned long flags;
798 const int rw = bio_data_dir(bio);
799 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
800 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
801 mdk_rdev_t *blocked_rdev;
802 int plugged;
803 int first_clone;
804 int sectors_handled;
805 int max_sectors;
808 * Register the new request and wait if the reconstruction
809 * thread has put up a bar for new requests.
810 * Continue immediately if no resync is active currently.
813 md_write_start(mddev, bio); /* wait on superblock update early */
815 if (bio_data_dir(bio) == WRITE &&
816 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
817 bio->bi_sector < mddev->suspend_hi) {
818 /* As the suspend_* range is controlled by
819 * userspace, we want an interruptible
820 * wait.
822 DEFINE_WAIT(w);
823 for (;;) {
824 flush_signals(current);
825 prepare_to_wait(&conf->wait_barrier,
826 &w, TASK_INTERRUPTIBLE);
827 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
828 bio->bi_sector >= mddev->suspend_hi)
829 break;
830 schedule();
832 finish_wait(&conf->wait_barrier, &w);
835 wait_barrier(conf);
837 bitmap = mddev->bitmap;
840 * make_request() can abort the operation when READA is being
841 * used and no empty request is available.
844 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
846 r1_bio->master_bio = bio;
847 r1_bio->sectors = bio->bi_size >> 9;
848 r1_bio->state = 0;
849 r1_bio->mddev = mddev;
850 r1_bio->sector = bio->bi_sector;
852 /* We might need to issue multiple reads to different
853 * devices if there are bad blocks around, so we keep
854 * track of the number of reads in bio->bi_phys_segments.
855 * If this is 0, there is only one r1_bio and no locking
856 * will be needed when requests complete. If it is
857 * non-zero, then it is the number of not-completed requests.
859 bio->bi_phys_segments = 0;
860 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
862 if (rw == READ) {
864 * read balancing logic:
866 int rdisk;
868 read_again:
869 rdisk = read_balance(conf, r1_bio, &max_sectors);
871 if (rdisk < 0) {
872 /* couldn't find anywhere to read from */
873 raid_end_bio_io(r1_bio);
874 return 0;
876 mirror = conf->mirrors + rdisk;
878 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
879 bitmap) {
880 /* Reading from a write-mostly device must
881 * take care not to over-take any writes
882 * that are 'behind'
884 wait_event(bitmap->behind_wait,
885 atomic_read(&bitmap->behind_writes) == 0);
887 r1_bio->read_disk = rdisk;
889 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
890 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
891 max_sectors);
893 r1_bio->bios[rdisk] = read_bio;
895 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
896 read_bio->bi_bdev = mirror->rdev->bdev;
897 read_bio->bi_end_io = raid1_end_read_request;
898 read_bio->bi_rw = READ | do_sync;
899 read_bio->bi_private = r1_bio;
901 if (max_sectors < r1_bio->sectors) {
902 /* could not read all from this device, so we will
903 * need another r1_bio.
906 sectors_handled = (r1_bio->sector + max_sectors
907 - bio->bi_sector);
908 r1_bio->sectors = max_sectors;
909 spin_lock_irq(&conf->device_lock);
910 if (bio->bi_phys_segments == 0)
911 bio->bi_phys_segments = 2;
912 else
913 bio->bi_phys_segments++;
914 spin_unlock_irq(&conf->device_lock);
915 /* Cannot call generic_make_request directly
916 * as that will be queued in __make_request
917 * and subsequent mempool_alloc might block waiting
918 * for it. So hand bio over to raid1d.
920 reschedule_retry(r1_bio);
922 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
924 r1_bio->master_bio = bio;
925 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
926 r1_bio->state = 0;
927 r1_bio->mddev = mddev;
928 r1_bio->sector = bio->bi_sector + sectors_handled;
929 goto read_again;
930 } else
931 generic_make_request(read_bio);
932 return 0;
936 * WRITE:
938 /* first select target devices under rcu_lock and
939 * inc refcount on their rdev. Record them by setting
940 * bios[x] to bio
941 * If there are known/acknowledged bad blocks on any device on
942 * which we have seen a write error, we want to avoid writing those
943 * blocks.
944 * This potentially requires several writes to write around
945 * the bad blocks. Each set of writes gets it's own r1bio
946 * with a set of bios attached.
948 plugged = mddev_check_plugged(mddev);
950 disks = conf->raid_disks;
951 retry_write:
952 blocked_rdev = NULL;
953 rcu_read_lock();
954 max_sectors = r1_bio->sectors;
955 for (i = 0; i < disks; i++) {
956 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
957 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
958 atomic_inc(&rdev->nr_pending);
959 blocked_rdev = rdev;
960 break;
962 r1_bio->bios[i] = NULL;
963 if (!rdev || test_bit(Faulty, &rdev->flags)) {
964 set_bit(R1BIO_Degraded, &r1_bio->state);
965 continue;
968 atomic_inc(&rdev->nr_pending);
969 if (test_bit(WriteErrorSeen, &rdev->flags)) {
970 sector_t first_bad;
971 int bad_sectors;
972 int is_bad;
974 is_bad = is_badblock(rdev, r1_bio->sector,
975 max_sectors,
976 &first_bad, &bad_sectors);
977 if (is_bad < 0) {
978 /* mustn't write here until the bad block is
979 * acknowledged*/
980 set_bit(BlockedBadBlocks, &rdev->flags);
981 blocked_rdev = rdev;
982 break;
984 if (is_bad && first_bad <= r1_bio->sector) {
985 /* Cannot write here at all */
986 bad_sectors -= (r1_bio->sector - first_bad);
987 if (bad_sectors < max_sectors)
988 /* mustn't write more than bad_sectors
989 * to other devices yet
991 max_sectors = bad_sectors;
992 rdev_dec_pending(rdev, mddev);
993 /* We don't set R1BIO_Degraded as that
994 * only applies if the disk is
995 * missing, so it might be re-added,
996 * and we want to know to recover this
997 * chunk.
998 * In this case the device is here,
999 * and the fact that this chunk is not
1000 * in-sync is recorded in the bad
1001 * block log
1003 continue;
1005 if (is_bad) {
1006 int good_sectors = first_bad - r1_bio->sector;
1007 if (good_sectors < max_sectors)
1008 max_sectors = good_sectors;
1011 r1_bio->bios[i] = bio;
1013 rcu_read_unlock();
1015 if (unlikely(blocked_rdev)) {
1016 /* Wait for this device to become unblocked */
1017 int j;
1019 for (j = 0; j < i; j++)
1020 if (r1_bio->bios[j])
1021 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1022 r1_bio->state = 0;
1023 allow_barrier(conf);
1024 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1025 wait_barrier(conf);
1026 goto retry_write;
1029 if (max_sectors < r1_bio->sectors) {
1030 /* We are splitting this write into multiple parts, so
1031 * we need to prepare for allocating another r1_bio.
1033 r1_bio->sectors = max_sectors;
1034 spin_lock_irq(&conf->device_lock);
1035 if (bio->bi_phys_segments == 0)
1036 bio->bi_phys_segments = 2;
1037 else
1038 bio->bi_phys_segments++;
1039 spin_unlock_irq(&conf->device_lock);
1041 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1043 atomic_set(&r1_bio->remaining, 1);
1044 atomic_set(&r1_bio->behind_remaining, 0);
1046 first_clone = 1;
1047 for (i = 0; i < disks; i++) {
1048 struct bio *mbio;
1049 if (!r1_bio->bios[i])
1050 continue;
1052 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1053 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1055 if (first_clone) {
1056 /* do behind I/O ?
1057 * Not if there are too many, or cannot
1058 * allocate memory, or a reader on WriteMostly
1059 * is waiting for behind writes to flush */
1060 if (bitmap &&
1061 (atomic_read(&bitmap->behind_writes)
1062 < mddev->bitmap_info.max_write_behind) &&
1063 !waitqueue_active(&bitmap->behind_wait))
1064 alloc_behind_pages(mbio, r1_bio);
1066 bitmap_startwrite(bitmap, r1_bio->sector,
1067 r1_bio->sectors,
1068 test_bit(R1BIO_BehindIO,
1069 &r1_bio->state));
1070 first_clone = 0;
1072 if (r1_bio->behind_bvecs) {
1073 struct bio_vec *bvec;
1074 int j;
1076 /* Yes, I really want the '__' version so that
1077 * we clear any unused pointer in the io_vec, rather
1078 * than leave them unchanged. This is important
1079 * because when we come to free the pages, we won't
1080 * know the original bi_idx, so we just free
1081 * them all
1083 __bio_for_each_segment(bvec, mbio, j, 0)
1084 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1085 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1086 atomic_inc(&r1_bio->behind_remaining);
1089 r1_bio->bios[i] = mbio;
1091 mbio->bi_sector = (r1_bio->sector +
1092 conf->mirrors[i].rdev->data_offset);
1093 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1094 mbio->bi_end_io = raid1_end_write_request;
1095 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1096 mbio->bi_private = r1_bio;
1098 atomic_inc(&r1_bio->remaining);
1099 spin_lock_irqsave(&conf->device_lock, flags);
1100 bio_list_add(&conf->pending_bio_list, mbio);
1101 spin_unlock_irqrestore(&conf->device_lock, flags);
1103 r1_bio_write_done(r1_bio);
1105 /* In case raid1d snuck in to freeze_array */
1106 wake_up(&conf->wait_barrier);
1108 if (sectors_handled < (bio->bi_size >> 9)) {
1109 /* We need another r1_bio. It has already been counted
1110 * in bio->bi_phys_segments
1112 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1113 r1_bio->master_bio = bio;
1114 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1115 r1_bio->state = 0;
1116 r1_bio->mddev = mddev;
1117 r1_bio->sector = bio->bi_sector + sectors_handled;
1118 goto retry_write;
1121 if (do_sync || !bitmap || !plugged)
1122 md_wakeup_thread(mddev->thread);
1124 return 0;
1127 static void status(struct seq_file *seq, mddev_t *mddev)
1129 conf_t *conf = mddev->private;
1130 int i;
1132 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1133 conf->raid_disks - mddev->degraded);
1134 rcu_read_lock();
1135 for (i = 0; i < conf->raid_disks; i++) {
1136 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1137 seq_printf(seq, "%s",
1138 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1140 rcu_read_unlock();
1141 seq_printf(seq, "]");
1145 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1147 char b[BDEVNAME_SIZE];
1148 conf_t *conf = mddev->private;
1151 * If it is not operational, then we have already marked it as dead
1152 * else if it is the last working disks, ignore the error, let the
1153 * next level up know.
1154 * else mark the drive as failed
1156 if (test_bit(In_sync, &rdev->flags)
1157 && (conf->raid_disks - mddev->degraded) == 1) {
1159 * Don't fail the drive, act as though we were just a
1160 * normal single drive.
1161 * However don't try a recovery from this drive as
1162 * it is very likely to fail.
1164 conf->recovery_disabled = mddev->recovery_disabled;
1165 return;
1167 set_bit(Blocked, &rdev->flags);
1168 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1169 unsigned long flags;
1170 spin_lock_irqsave(&conf->device_lock, flags);
1171 mddev->degraded++;
1172 set_bit(Faulty, &rdev->flags);
1173 spin_unlock_irqrestore(&conf->device_lock, flags);
1175 * if recovery is running, make sure it aborts.
1177 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1178 } else
1179 set_bit(Faulty, &rdev->flags);
1180 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1181 printk(KERN_ALERT
1182 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1183 "md/raid1:%s: Operation continuing on %d devices.\n",
1184 mdname(mddev), bdevname(rdev->bdev, b),
1185 mdname(mddev), conf->raid_disks - mddev->degraded);
1188 static void print_conf(conf_t *conf)
1190 int i;
1192 printk(KERN_DEBUG "RAID1 conf printout:\n");
1193 if (!conf) {
1194 printk(KERN_DEBUG "(!conf)\n");
1195 return;
1197 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1198 conf->raid_disks);
1200 rcu_read_lock();
1201 for (i = 0; i < conf->raid_disks; i++) {
1202 char b[BDEVNAME_SIZE];
1203 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1204 if (rdev)
1205 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1206 i, !test_bit(In_sync, &rdev->flags),
1207 !test_bit(Faulty, &rdev->flags),
1208 bdevname(rdev->bdev,b));
1210 rcu_read_unlock();
1213 static void close_sync(conf_t *conf)
1215 wait_barrier(conf);
1216 allow_barrier(conf);
1218 mempool_destroy(conf->r1buf_pool);
1219 conf->r1buf_pool = NULL;
1222 static int raid1_spare_active(mddev_t *mddev)
1224 int i;
1225 conf_t *conf = mddev->private;
1226 int count = 0;
1227 unsigned long flags;
1230 * Find all failed disks within the RAID1 configuration
1231 * and mark them readable.
1232 * Called under mddev lock, so rcu protection not needed.
1234 for (i = 0; i < conf->raid_disks; i++) {
1235 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1236 if (rdev
1237 && !test_bit(Faulty, &rdev->flags)
1238 && !test_and_set_bit(In_sync, &rdev->flags)) {
1239 count++;
1240 sysfs_notify_dirent_safe(rdev->sysfs_state);
1243 spin_lock_irqsave(&conf->device_lock, flags);
1244 mddev->degraded -= count;
1245 spin_unlock_irqrestore(&conf->device_lock, flags);
1247 print_conf(conf);
1248 return count;
1252 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1254 conf_t *conf = mddev->private;
1255 int err = -EEXIST;
1256 int mirror = 0;
1257 mirror_info_t *p;
1258 int first = 0;
1259 int last = mddev->raid_disks - 1;
1261 if (mddev->recovery_disabled == conf->recovery_disabled)
1262 return -EBUSY;
1264 if (rdev->raid_disk >= 0)
1265 first = last = rdev->raid_disk;
1267 for (mirror = first; mirror <= last; mirror++)
1268 if ( !(p=conf->mirrors+mirror)->rdev) {
1270 disk_stack_limits(mddev->gendisk, rdev->bdev,
1271 rdev->data_offset << 9);
1272 /* as we don't honour merge_bvec_fn, we must
1273 * never risk violating it, so limit
1274 * ->max_segments to one lying with a single
1275 * page, as a one page request is never in
1276 * violation.
1278 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1279 blk_queue_max_segments(mddev->queue, 1);
1280 blk_queue_segment_boundary(mddev->queue,
1281 PAGE_CACHE_SIZE - 1);
1284 p->head_position = 0;
1285 rdev->raid_disk = mirror;
1286 err = 0;
1287 /* As all devices are equivalent, we don't need a full recovery
1288 * if this was recently any drive of the array
1290 if (rdev->saved_raid_disk < 0)
1291 conf->fullsync = 1;
1292 rcu_assign_pointer(p->rdev, rdev);
1293 break;
1295 md_integrity_add_rdev(rdev, mddev);
1296 print_conf(conf);
1297 return err;
1300 static int raid1_remove_disk(mddev_t *mddev, int number)
1302 conf_t *conf = mddev->private;
1303 int err = 0;
1304 mdk_rdev_t *rdev;
1305 mirror_info_t *p = conf->mirrors+ number;
1307 print_conf(conf);
1308 rdev = p->rdev;
1309 if (rdev) {
1310 if (test_bit(In_sync, &rdev->flags) ||
1311 atomic_read(&rdev->nr_pending)) {
1312 err = -EBUSY;
1313 goto abort;
1315 /* Only remove non-faulty devices if recovery
1316 * is not possible.
1318 if (!test_bit(Faulty, &rdev->flags) &&
1319 mddev->recovery_disabled != conf->recovery_disabled &&
1320 mddev->degraded < conf->raid_disks) {
1321 err = -EBUSY;
1322 goto abort;
1324 p->rdev = NULL;
1325 synchronize_rcu();
1326 if (atomic_read(&rdev->nr_pending)) {
1327 /* lost the race, try later */
1328 err = -EBUSY;
1329 p->rdev = rdev;
1330 goto abort;
1332 err = md_integrity_register(mddev);
1334 abort:
1336 print_conf(conf);
1337 return err;
1341 static void end_sync_read(struct bio *bio, int error)
1343 r1bio_t *r1_bio = bio->bi_private;
1344 int i;
1346 for (i=r1_bio->mddev->raid_disks; i--; )
1347 if (r1_bio->bios[i] == bio)
1348 break;
1349 BUG_ON(i < 0);
1350 update_head_pos(i, r1_bio);
1352 * we have read a block, now it needs to be re-written,
1353 * or re-read if the read failed.
1354 * We don't do much here, just schedule handling by raid1d
1356 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1357 set_bit(R1BIO_Uptodate, &r1_bio->state);
1359 if (atomic_dec_and_test(&r1_bio->remaining))
1360 reschedule_retry(r1_bio);
1363 static void end_sync_write(struct bio *bio, int error)
1365 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1366 r1bio_t *r1_bio = bio->bi_private;
1367 mddev_t *mddev = r1_bio->mddev;
1368 conf_t *conf = mddev->private;
1369 int i;
1370 int mirror=0;
1371 sector_t first_bad;
1372 int bad_sectors;
1374 for (i = 0; i < conf->raid_disks; i++)
1375 if (r1_bio->bios[i] == bio) {
1376 mirror = i;
1377 break;
1379 if (!uptodate) {
1380 sector_t sync_blocks = 0;
1381 sector_t s = r1_bio->sector;
1382 long sectors_to_go = r1_bio->sectors;
1383 /* make sure these bits doesn't get cleared. */
1384 do {
1385 bitmap_end_sync(mddev->bitmap, s,
1386 &sync_blocks, 1);
1387 s += sync_blocks;
1388 sectors_to_go -= sync_blocks;
1389 } while (sectors_to_go > 0);
1390 set_bit(WriteErrorSeen,
1391 &conf->mirrors[mirror].rdev->flags);
1392 set_bit(R1BIO_WriteError, &r1_bio->state);
1393 } else if (is_badblock(conf->mirrors[mirror].rdev,
1394 r1_bio->sector,
1395 r1_bio->sectors,
1396 &first_bad, &bad_sectors) &&
1397 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1398 r1_bio->sector,
1399 r1_bio->sectors,
1400 &first_bad, &bad_sectors)
1402 set_bit(R1BIO_MadeGood, &r1_bio->state);
1404 update_head_pos(mirror, r1_bio);
1406 if (atomic_dec_and_test(&r1_bio->remaining)) {
1407 int s = r1_bio->sectors;
1408 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1409 test_bit(R1BIO_WriteError, &r1_bio->state))
1410 reschedule_retry(r1_bio);
1411 else {
1412 put_buf(r1_bio);
1413 md_done_sync(mddev, s, uptodate);
1418 static int r1_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1419 int sectors, struct page *page, int rw)
1421 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1422 /* success */
1423 return 1;
1424 if (rw == WRITE)
1425 set_bit(WriteErrorSeen, &rdev->flags);
1426 /* need to record an error - either for the block or the device */
1427 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1428 md_error(rdev->mddev, rdev);
1429 return 0;
1432 static int fix_sync_read_error(r1bio_t *r1_bio)
1434 /* Try some synchronous reads of other devices to get
1435 * good data, much like with normal read errors. Only
1436 * read into the pages we already have so we don't
1437 * need to re-issue the read request.
1438 * We don't need to freeze the array, because being in an
1439 * active sync request, there is no normal IO, and
1440 * no overlapping syncs.
1441 * We don't need to check is_badblock() again as we
1442 * made sure that anything with a bad block in range
1443 * will have bi_end_io clear.
1445 mddev_t *mddev = r1_bio->mddev;
1446 conf_t *conf = mddev->private;
1447 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1448 sector_t sect = r1_bio->sector;
1449 int sectors = r1_bio->sectors;
1450 int idx = 0;
1452 while(sectors) {
1453 int s = sectors;
1454 int d = r1_bio->read_disk;
1455 int success = 0;
1456 mdk_rdev_t *rdev;
1457 int start;
1459 if (s > (PAGE_SIZE>>9))
1460 s = PAGE_SIZE >> 9;
1461 do {
1462 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1463 /* No rcu protection needed here devices
1464 * can only be removed when no resync is
1465 * active, and resync is currently active
1467 rdev = conf->mirrors[d].rdev;
1468 if (sync_page_io(rdev, sect, s<<9,
1469 bio->bi_io_vec[idx].bv_page,
1470 READ, false)) {
1471 success = 1;
1472 break;
1475 d++;
1476 if (d == conf->raid_disks)
1477 d = 0;
1478 } while (!success && d != r1_bio->read_disk);
1480 if (!success) {
1481 char b[BDEVNAME_SIZE];
1482 int abort = 0;
1483 /* Cannot read from anywhere, this block is lost.
1484 * Record a bad block on each device. If that doesn't
1485 * work just disable and interrupt the recovery.
1486 * Don't fail devices as that won't really help.
1488 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1489 " for block %llu\n",
1490 mdname(mddev),
1491 bdevname(bio->bi_bdev, b),
1492 (unsigned long long)r1_bio->sector);
1493 for (d = 0; d < conf->raid_disks; d++) {
1494 rdev = conf->mirrors[d].rdev;
1495 if (!rdev || test_bit(Faulty, &rdev->flags))
1496 continue;
1497 if (!rdev_set_badblocks(rdev, sect, s, 0))
1498 abort = 1;
1500 if (abort) {
1501 mddev->recovery_disabled = 1;
1502 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1503 md_done_sync(mddev, r1_bio->sectors, 0);
1504 put_buf(r1_bio);
1505 return 0;
1507 /* Try next page */
1508 sectors -= s;
1509 sect += s;
1510 idx++;
1511 continue;
1514 start = d;
1515 /* write it back and re-read */
1516 while (d != r1_bio->read_disk) {
1517 if (d == 0)
1518 d = conf->raid_disks;
1519 d--;
1520 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1521 continue;
1522 rdev = conf->mirrors[d].rdev;
1523 if (r1_sync_page_io(rdev, sect, s,
1524 bio->bi_io_vec[idx].bv_page,
1525 WRITE) == 0) {
1526 r1_bio->bios[d]->bi_end_io = NULL;
1527 rdev_dec_pending(rdev, mddev);
1530 d = start;
1531 while (d != r1_bio->read_disk) {
1532 if (d == 0)
1533 d = conf->raid_disks;
1534 d--;
1535 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1536 continue;
1537 rdev = conf->mirrors[d].rdev;
1538 if (r1_sync_page_io(rdev, sect, s,
1539 bio->bi_io_vec[idx].bv_page,
1540 READ) != 0)
1541 atomic_add(s, &rdev->corrected_errors);
1543 sectors -= s;
1544 sect += s;
1545 idx ++;
1547 set_bit(R1BIO_Uptodate, &r1_bio->state);
1548 set_bit(BIO_UPTODATE, &bio->bi_flags);
1549 return 1;
1552 static int process_checks(r1bio_t *r1_bio)
1554 /* We have read all readable devices. If we haven't
1555 * got the block, then there is no hope left.
1556 * If we have, then we want to do a comparison
1557 * and skip the write if everything is the same.
1558 * If any blocks failed to read, then we need to
1559 * attempt an over-write
1561 mddev_t *mddev = r1_bio->mddev;
1562 conf_t *conf = mddev->private;
1563 int primary;
1564 int i;
1566 for (primary = 0; primary < conf->raid_disks; primary++)
1567 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1568 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1569 r1_bio->bios[primary]->bi_end_io = NULL;
1570 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1571 break;
1573 r1_bio->read_disk = primary;
1574 for (i = 0; i < conf->raid_disks; i++) {
1575 int j;
1576 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1577 struct bio *pbio = r1_bio->bios[primary];
1578 struct bio *sbio = r1_bio->bios[i];
1579 int size;
1581 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1582 continue;
1584 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1585 for (j = vcnt; j-- ; ) {
1586 struct page *p, *s;
1587 p = pbio->bi_io_vec[j].bv_page;
1588 s = sbio->bi_io_vec[j].bv_page;
1589 if (memcmp(page_address(p),
1590 page_address(s),
1591 PAGE_SIZE))
1592 break;
1594 } else
1595 j = 0;
1596 if (j >= 0)
1597 mddev->resync_mismatches += r1_bio->sectors;
1598 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1599 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1600 /* No need to write to this device. */
1601 sbio->bi_end_io = NULL;
1602 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1603 continue;
1605 /* fixup the bio for reuse */
1606 sbio->bi_vcnt = vcnt;
1607 sbio->bi_size = r1_bio->sectors << 9;
1608 sbio->bi_idx = 0;
1609 sbio->bi_phys_segments = 0;
1610 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1611 sbio->bi_flags |= 1 << BIO_UPTODATE;
1612 sbio->bi_next = NULL;
1613 sbio->bi_sector = r1_bio->sector +
1614 conf->mirrors[i].rdev->data_offset;
1615 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1616 size = sbio->bi_size;
1617 for (j = 0; j < vcnt ; j++) {
1618 struct bio_vec *bi;
1619 bi = &sbio->bi_io_vec[j];
1620 bi->bv_offset = 0;
1621 if (size > PAGE_SIZE)
1622 bi->bv_len = PAGE_SIZE;
1623 else
1624 bi->bv_len = size;
1625 size -= PAGE_SIZE;
1626 memcpy(page_address(bi->bv_page),
1627 page_address(pbio->bi_io_vec[j].bv_page),
1628 PAGE_SIZE);
1631 return 0;
1634 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1636 conf_t *conf = mddev->private;
1637 int i;
1638 int disks = conf->raid_disks;
1639 struct bio *bio, *wbio;
1641 bio = r1_bio->bios[r1_bio->read_disk];
1643 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1644 /* ouch - failed to read all of that. */
1645 if (!fix_sync_read_error(r1_bio))
1646 return;
1648 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1649 if (process_checks(r1_bio) < 0)
1650 return;
1652 * schedule writes
1654 atomic_set(&r1_bio->remaining, 1);
1655 for (i = 0; i < disks ; i++) {
1656 wbio = r1_bio->bios[i];
1657 if (wbio->bi_end_io == NULL ||
1658 (wbio->bi_end_io == end_sync_read &&
1659 (i == r1_bio->read_disk ||
1660 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1661 continue;
1663 wbio->bi_rw = WRITE;
1664 wbio->bi_end_io = end_sync_write;
1665 atomic_inc(&r1_bio->remaining);
1666 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1668 generic_make_request(wbio);
1671 if (atomic_dec_and_test(&r1_bio->remaining)) {
1672 /* if we're here, all write(s) have completed, so clean up */
1673 md_done_sync(mddev, r1_bio->sectors, 1);
1674 put_buf(r1_bio);
1679 * This is a kernel thread which:
1681 * 1. Retries failed read operations on working mirrors.
1682 * 2. Updates the raid superblock when problems encounter.
1683 * 3. Performs writes following reads for array synchronising.
1686 static void fix_read_error(conf_t *conf, int read_disk,
1687 sector_t sect, int sectors)
1689 mddev_t *mddev = conf->mddev;
1690 while(sectors) {
1691 int s = sectors;
1692 int d = read_disk;
1693 int success = 0;
1694 int start;
1695 mdk_rdev_t *rdev;
1697 if (s > (PAGE_SIZE>>9))
1698 s = PAGE_SIZE >> 9;
1700 do {
1701 /* Note: no rcu protection needed here
1702 * as this is synchronous in the raid1d thread
1703 * which is the thread that might remove
1704 * a device. If raid1d ever becomes multi-threaded....
1706 sector_t first_bad;
1707 int bad_sectors;
1709 rdev = conf->mirrors[d].rdev;
1710 if (rdev &&
1711 test_bit(In_sync, &rdev->flags) &&
1712 is_badblock(rdev, sect, s,
1713 &first_bad, &bad_sectors) == 0 &&
1714 sync_page_io(rdev, sect, s<<9,
1715 conf->tmppage, READ, false))
1716 success = 1;
1717 else {
1718 d++;
1719 if (d == conf->raid_disks)
1720 d = 0;
1722 } while (!success && d != read_disk);
1724 if (!success) {
1725 /* Cannot read from anywhere - mark it bad */
1726 mdk_rdev_t *rdev = conf->mirrors[read_disk].rdev;
1727 if (!rdev_set_badblocks(rdev, sect, s, 0))
1728 md_error(mddev, rdev);
1729 break;
1731 /* write it back and re-read */
1732 start = d;
1733 while (d != read_disk) {
1734 if (d==0)
1735 d = conf->raid_disks;
1736 d--;
1737 rdev = conf->mirrors[d].rdev;
1738 if (rdev &&
1739 test_bit(In_sync, &rdev->flags))
1740 r1_sync_page_io(rdev, sect, s,
1741 conf->tmppage, WRITE);
1743 d = start;
1744 while (d != read_disk) {
1745 char b[BDEVNAME_SIZE];
1746 if (d==0)
1747 d = conf->raid_disks;
1748 d--;
1749 rdev = conf->mirrors[d].rdev;
1750 if (rdev &&
1751 test_bit(In_sync, &rdev->flags)) {
1752 if (r1_sync_page_io(rdev, sect, s,
1753 conf->tmppage, READ)) {
1754 atomic_add(s, &rdev->corrected_errors);
1755 printk(KERN_INFO
1756 "md/raid1:%s: read error corrected "
1757 "(%d sectors at %llu on %s)\n",
1758 mdname(mddev), s,
1759 (unsigned long long)(sect +
1760 rdev->data_offset),
1761 bdevname(rdev->bdev, b));
1765 sectors -= s;
1766 sect += s;
1770 static void bi_complete(struct bio *bio, int error)
1772 complete((struct completion *)bio->bi_private);
1775 static int submit_bio_wait(int rw, struct bio *bio)
1777 struct completion event;
1778 rw |= REQ_SYNC;
1780 init_completion(&event);
1781 bio->bi_private = &event;
1782 bio->bi_end_io = bi_complete;
1783 submit_bio(rw, bio);
1784 wait_for_completion(&event);
1786 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1789 static int narrow_write_error(r1bio_t *r1_bio, int i)
1791 mddev_t *mddev = r1_bio->mddev;
1792 conf_t *conf = mddev->private;
1793 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1794 int vcnt, idx;
1795 struct bio_vec *vec;
1797 /* bio has the data to be written to device 'i' where
1798 * we just recently had a write error.
1799 * We repeatedly clone the bio and trim down to one block,
1800 * then try the write. Where the write fails we record
1801 * a bad block.
1802 * It is conceivable that the bio doesn't exactly align with
1803 * blocks. We must handle this somehow.
1805 * We currently own a reference on the rdev.
1808 int block_sectors;
1809 sector_t sector;
1810 int sectors;
1811 int sect_to_write = r1_bio->sectors;
1812 int ok = 1;
1814 if (rdev->badblocks.shift < 0)
1815 return 0;
1817 block_sectors = 1 << rdev->badblocks.shift;
1818 sector = r1_bio->sector;
1819 sectors = ((sector + block_sectors)
1820 & ~(sector_t)(block_sectors - 1))
1821 - sector;
1823 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1824 vcnt = r1_bio->behind_page_count;
1825 vec = r1_bio->behind_bvecs;
1826 idx = 0;
1827 while (vec[idx].bv_page == NULL)
1828 idx++;
1829 } else {
1830 vcnt = r1_bio->master_bio->bi_vcnt;
1831 vec = r1_bio->master_bio->bi_io_vec;
1832 idx = r1_bio->master_bio->bi_idx;
1834 while (sect_to_write) {
1835 struct bio *wbio;
1836 if (sectors > sect_to_write)
1837 sectors = sect_to_write;
1838 /* Write at 'sector' for 'sectors'*/
1840 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1841 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1842 wbio->bi_sector = r1_bio->sector;
1843 wbio->bi_rw = WRITE;
1844 wbio->bi_vcnt = vcnt;
1845 wbio->bi_size = r1_bio->sectors << 9;
1846 wbio->bi_idx = idx;
1848 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1849 wbio->bi_sector += rdev->data_offset;
1850 wbio->bi_bdev = rdev->bdev;
1851 if (submit_bio_wait(WRITE, wbio) == 0)
1852 /* failure! */
1853 ok = rdev_set_badblocks(rdev, sector,
1854 sectors, 0)
1855 && ok;
1857 bio_put(wbio);
1858 sect_to_write -= sectors;
1859 sector += sectors;
1860 sectors = block_sectors;
1862 return ok;
1865 static void handle_sync_write_finished(conf_t *conf, r1bio_t *r1_bio)
1867 int m;
1868 int s = r1_bio->sectors;
1869 for (m = 0; m < conf->raid_disks ; m++) {
1870 mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1871 struct bio *bio = r1_bio->bios[m];
1872 if (bio->bi_end_io == NULL)
1873 continue;
1874 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1875 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1876 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1878 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1879 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1880 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1881 md_error(conf->mddev, rdev);
1884 put_buf(r1_bio);
1885 md_done_sync(conf->mddev, s, 1);
1888 static void handle_write_finished(conf_t *conf, r1bio_t *r1_bio)
1890 int m;
1891 for (m = 0; m < conf->raid_disks ; m++)
1892 if (r1_bio->bios[m] == IO_MADE_GOOD) {
1893 mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1894 rdev_clear_badblocks(rdev,
1895 r1_bio->sector,
1896 r1_bio->sectors);
1897 rdev_dec_pending(rdev, conf->mddev);
1898 } else if (r1_bio->bios[m] != NULL) {
1899 /* This drive got a write error. We need to
1900 * narrow down and record precise write
1901 * errors.
1903 if (!narrow_write_error(r1_bio, m)) {
1904 md_error(conf->mddev,
1905 conf->mirrors[m].rdev);
1906 /* an I/O failed, we can't clear the bitmap */
1907 set_bit(R1BIO_Degraded, &r1_bio->state);
1909 rdev_dec_pending(conf->mirrors[m].rdev,
1910 conf->mddev);
1912 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1913 close_write(r1_bio);
1914 raid_end_bio_io(r1_bio);
1917 static void handle_read_error(conf_t *conf, r1bio_t *r1_bio)
1919 int disk;
1920 int max_sectors;
1921 mddev_t *mddev = conf->mddev;
1922 struct bio *bio;
1923 char b[BDEVNAME_SIZE];
1924 mdk_rdev_t *rdev;
1926 clear_bit(R1BIO_ReadError, &r1_bio->state);
1927 /* we got a read error. Maybe the drive is bad. Maybe just
1928 * the block and we can fix it.
1929 * We freeze all other IO, and try reading the block from
1930 * other devices. When we find one, we re-write
1931 * and check it that fixes the read error.
1932 * This is all done synchronously while the array is
1933 * frozen
1935 if (mddev->ro == 0) {
1936 freeze_array(conf);
1937 fix_read_error(conf, r1_bio->read_disk,
1938 r1_bio->sector, r1_bio->sectors);
1939 unfreeze_array(conf);
1940 } else
1941 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1943 bio = r1_bio->bios[r1_bio->read_disk];
1944 bdevname(bio->bi_bdev, b);
1945 read_more:
1946 disk = read_balance(conf, r1_bio, &max_sectors);
1947 if (disk == -1) {
1948 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1949 " read error for block %llu\n",
1950 mdname(mddev), b, (unsigned long long)r1_bio->sector);
1951 raid_end_bio_io(r1_bio);
1952 } else {
1953 const unsigned long do_sync
1954 = r1_bio->master_bio->bi_rw & REQ_SYNC;
1955 if (bio) {
1956 r1_bio->bios[r1_bio->read_disk] =
1957 mddev->ro ? IO_BLOCKED : NULL;
1958 bio_put(bio);
1960 r1_bio->read_disk = disk;
1961 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1962 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1963 r1_bio->bios[r1_bio->read_disk] = bio;
1964 rdev = conf->mirrors[disk].rdev;
1965 printk_ratelimited(KERN_ERR
1966 "md/raid1:%s: redirecting sector %llu"
1967 " to other mirror: %s\n",
1968 mdname(mddev),
1969 (unsigned long long)r1_bio->sector,
1970 bdevname(rdev->bdev, b));
1971 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1972 bio->bi_bdev = rdev->bdev;
1973 bio->bi_end_io = raid1_end_read_request;
1974 bio->bi_rw = READ | do_sync;
1975 bio->bi_private = r1_bio;
1976 if (max_sectors < r1_bio->sectors) {
1977 /* Drat - have to split this up more */
1978 struct bio *mbio = r1_bio->master_bio;
1979 int sectors_handled = (r1_bio->sector + max_sectors
1980 - mbio->bi_sector);
1981 r1_bio->sectors = max_sectors;
1982 spin_lock_irq(&conf->device_lock);
1983 if (mbio->bi_phys_segments == 0)
1984 mbio->bi_phys_segments = 2;
1985 else
1986 mbio->bi_phys_segments++;
1987 spin_unlock_irq(&conf->device_lock);
1988 generic_make_request(bio);
1989 bio = NULL;
1991 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1993 r1_bio->master_bio = mbio;
1994 r1_bio->sectors = (mbio->bi_size >> 9)
1995 - sectors_handled;
1996 r1_bio->state = 0;
1997 set_bit(R1BIO_ReadError, &r1_bio->state);
1998 r1_bio->mddev = mddev;
1999 r1_bio->sector = mbio->bi_sector + sectors_handled;
2001 goto read_more;
2002 } else
2003 generic_make_request(bio);
2007 static void raid1d(mddev_t *mddev)
2009 r1bio_t *r1_bio;
2010 unsigned long flags;
2011 conf_t *conf = mddev->private;
2012 struct list_head *head = &conf->retry_list;
2013 struct blk_plug plug;
2015 md_check_recovery(mddev);
2017 blk_start_plug(&plug);
2018 for (;;) {
2020 if (atomic_read(&mddev->plug_cnt) == 0)
2021 flush_pending_writes(conf);
2023 spin_lock_irqsave(&conf->device_lock, flags);
2024 if (list_empty(head)) {
2025 spin_unlock_irqrestore(&conf->device_lock, flags);
2026 break;
2028 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
2029 list_del(head->prev);
2030 conf->nr_queued--;
2031 spin_unlock_irqrestore(&conf->device_lock, flags);
2033 mddev = r1_bio->mddev;
2034 conf = mddev->private;
2035 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2036 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2037 test_bit(R1BIO_WriteError, &r1_bio->state))
2038 handle_sync_write_finished(conf, r1_bio);
2039 else
2040 sync_request_write(mddev, r1_bio);
2041 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2042 test_bit(R1BIO_WriteError, &r1_bio->state))
2043 handle_write_finished(conf, r1_bio);
2044 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2045 handle_read_error(conf, r1_bio);
2046 else
2047 /* just a partial read to be scheduled from separate
2048 * context
2050 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2052 cond_resched();
2053 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2054 md_check_recovery(mddev);
2056 blk_finish_plug(&plug);
2060 static int init_resync(conf_t *conf)
2062 int buffs;
2064 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2065 BUG_ON(conf->r1buf_pool);
2066 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2067 conf->poolinfo);
2068 if (!conf->r1buf_pool)
2069 return -ENOMEM;
2070 conf->next_resync = 0;
2071 return 0;
2075 * perform a "sync" on one "block"
2077 * We need to make sure that no normal I/O request - particularly write
2078 * requests - conflict with active sync requests.
2080 * This is achieved by tracking pending requests and a 'barrier' concept
2081 * that can be installed to exclude normal IO requests.
2084 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2086 conf_t *conf = mddev->private;
2087 r1bio_t *r1_bio;
2088 struct bio *bio;
2089 sector_t max_sector, nr_sectors;
2090 int disk = -1;
2091 int i;
2092 int wonly = -1;
2093 int write_targets = 0, read_targets = 0;
2094 sector_t sync_blocks;
2095 int still_degraded = 0;
2096 int good_sectors = RESYNC_SECTORS;
2097 int min_bad = 0; /* number of sectors that are bad in all devices */
2099 if (!conf->r1buf_pool)
2100 if (init_resync(conf))
2101 return 0;
2103 max_sector = mddev->dev_sectors;
2104 if (sector_nr >= max_sector) {
2105 /* If we aborted, we need to abort the
2106 * sync on the 'current' bitmap chunk (there will
2107 * only be one in raid1 resync.
2108 * We can find the current addess in mddev->curr_resync
2110 if (mddev->curr_resync < max_sector) /* aborted */
2111 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2112 &sync_blocks, 1);
2113 else /* completed sync */
2114 conf->fullsync = 0;
2116 bitmap_close_sync(mddev->bitmap);
2117 close_sync(conf);
2118 return 0;
2121 if (mddev->bitmap == NULL &&
2122 mddev->recovery_cp == MaxSector &&
2123 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2124 conf->fullsync == 0) {
2125 *skipped = 1;
2126 return max_sector - sector_nr;
2128 /* before building a request, check if we can skip these blocks..
2129 * This call the bitmap_start_sync doesn't actually record anything
2131 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2132 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2133 /* We can skip this block, and probably several more */
2134 *skipped = 1;
2135 return sync_blocks;
2138 * If there is non-resync activity waiting for a turn,
2139 * and resync is going fast enough,
2140 * then let it though before starting on this new sync request.
2142 if (!go_faster && conf->nr_waiting)
2143 msleep_interruptible(1000);
2145 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2146 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2147 raise_barrier(conf);
2149 conf->next_resync = sector_nr;
2151 rcu_read_lock();
2153 * If we get a correctably read error during resync or recovery,
2154 * we might want to read from a different device. So we
2155 * flag all drives that could conceivably be read from for READ,
2156 * and any others (which will be non-In_sync devices) for WRITE.
2157 * If a read fails, we try reading from something else for which READ
2158 * is OK.
2161 r1_bio->mddev = mddev;
2162 r1_bio->sector = sector_nr;
2163 r1_bio->state = 0;
2164 set_bit(R1BIO_IsSync, &r1_bio->state);
2166 for (i=0; i < conf->raid_disks; i++) {
2167 mdk_rdev_t *rdev;
2168 bio = r1_bio->bios[i];
2170 /* take from bio_init */
2171 bio->bi_next = NULL;
2172 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2173 bio->bi_flags |= 1 << BIO_UPTODATE;
2174 bio->bi_comp_cpu = -1;
2175 bio->bi_rw = READ;
2176 bio->bi_vcnt = 0;
2177 bio->bi_idx = 0;
2178 bio->bi_phys_segments = 0;
2179 bio->bi_size = 0;
2180 bio->bi_end_io = NULL;
2181 bio->bi_private = NULL;
2183 rdev = rcu_dereference(conf->mirrors[i].rdev);
2184 if (rdev == NULL ||
2185 test_bit(Faulty, &rdev->flags)) {
2186 still_degraded = 1;
2187 } else if (!test_bit(In_sync, &rdev->flags)) {
2188 bio->bi_rw = WRITE;
2189 bio->bi_end_io = end_sync_write;
2190 write_targets ++;
2191 } else {
2192 /* may need to read from here */
2193 sector_t first_bad = MaxSector;
2194 int bad_sectors;
2196 if (is_badblock(rdev, sector_nr, good_sectors,
2197 &first_bad, &bad_sectors)) {
2198 if (first_bad > sector_nr)
2199 good_sectors = first_bad - sector_nr;
2200 else {
2201 bad_sectors -= (sector_nr - first_bad);
2202 if (min_bad == 0 ||
2203 min_bad > bad_sectors)
2204 min_bad = bad_sectors;
2207 if (sector_nr < first_bad) {
2208 if (test_bit(WriteMostly, &rdev->flags)) {
2209 if (wonly < 0)
2210 wonly = i;
2211 } else {
2212 if (disk < 0)
2213 disk = i;
2215 bio->bi_rw = READ;
2216 bio->bi_end_io = end_sync_read;
2217 read_targets++;
2220 if (bio->bi_end_io) {
2221 atomic_inc(&rdev->nr_pending);
2222 bio->bi_sector = sector_nr + rdev->data_offset;
2223 bio->bi_bdev = rdev->bdev;
2224 bio->bi_private = r1_bio;
2227 rcu_read_unlock();
2228 if (disk < 0)
2229 disk = wonly;
2230 r1_bio->read_disk = disk;
2232 if (read_targets == 0 && min_bad > 0) {
2233 /* These sectors are bad on all InSync devices, so we
2234 * need to mark them bad on all write targets
2236 int ok = 1;
2237 for (i = 0 ; i < conf->raid_disks ; i++)
2238 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2239 mdk_rdev_t *rdev =
2240 rcu_dereference(conf->mirrors[i].rdev);
2241 ok = rdev_set_badblocks(rdev, sector_nr,
2242 min_bad, 0
2243 ) && ok;
2245 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2246 *skipped = 1;
2247 put_buf(r1_bio);
2249 if (!ok) {
2250 /* Cannot record the badblocks, so need to
2251 * abort the resync.
2252 * If there are multiple read targets, could just
2253 * fail the really bad ones ???
2255 conf->recovery_disabled = mddev->recovery_disabled;
2256 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2257 return 0;
2258 } else
2259 return min_bad;
2262 if (min_bad > 0 && min_bad < good_sectors) {
2263 /* only resync enough to reach the next bad->good
2264 * transition */
2265 good_sectors = min_bad;
2268 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2269 /* extra read targets are also write targets */
2270 write_targets += read_targets-1;
2272 if (write_targets == 0 || read_targets == 0) {
2273 /* There is nowhere to write, so all non-sync
2274 * drives must be failed - so we are finished
2276 sector_t rv = max_sector - sector_nr;
2277 *skipped = 1;
2278 put_buf(r1_bio);
2279 return rv;
2282 if (max_sector > mddev->resync_max)
2283 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2284 if (max_sector > sector_nr + good_sectors)
2285 max_sector = sector_nr + good_sectors;
2286 nr_sectors = 0;
2287 sync_blocks = 0;
2288 do {
2289 struct page *page;
2290 int len = PAGE_SIZE;
2291 if (sector_nr + (len>>9) > max_sector)
2292 len = (max_sector - sector_nr) << 9;
2293 if (len == 0)
2294 break;
2295 if (sync_blocks == 0) {
2296 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2297 &sync_blocks, still_degraded) &&
2298 !conf->fullsync &&
2299 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2300 break;
2301 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2302 if ((len >> 9) > sync_blocks)
2303 len = sync_blocks<<9;
2306 for (i=0 ; i < conf->raid_disks; i++) {
2307 bio = r1_bio->bios[i];
2308 if (bio->bi_end_io) {
2309 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2310 if (bio_add_page(bio, page, len, 0) == 0) {
2311 /* stop here */
2312 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2313 while (i > 0) {
2314 i--;
2315 bio = r1_bio->bios[i];
2316 if (bio->bi_end_io==NULL)
2317 continue;
2318 /* remove last page from this bio */
2319 bio->bi_vcnt--;
2320 bio->bi_size -= len;
2321 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2323 goto bio_full;
2327 nr_sectors += len>>9;
2328 sector_nr += len>>9;
2329 sync_blocks -= (len>>9);
2330 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2331 bio_full:
2332 r1_bio->sectors = nr_sectors;
2334 /* For a user-requested sync, we read all readable devices and do a
2335 * compare
2337 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2338 atomic_set(&r1_bio->remaining, read_targets);
2339 for (i=0; i<conf->raid_disks; i++) {
2340 bio = r1_bio->bios[i];
2341 if (bio->bi_end_io == end_sync_read) {
2342 md_sync_acct(bio->bi_bdev, nr_sectors);
2343 generic_make_request(bio);
2346 } else {
2347 atomic_set(&r1_bio->remaining, 1);
2348 bio = r1_bio->bios[r1_bio->read_disk];
2349 md_sync_acct(bio->bi_bdev, nr_sectors);
2350 generic_make_request(bio);
2353 return nr_sectors;
2356 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2358 if (sectors)
2359 return sectors;
2361 return mddev->dev_sectors;
2364 static conf_t *setup_conf(mddev_t *mddev)
2366 conf_t *conf;
2367 int i;
2368 mirror_info_t *disk;
2369 mdk_rdev_t *rdev;
2370 int err = -ENOMEM;
2372 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2373 if (!conf)
2374 goto abort;
2376 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2377 GFP_KERNEL);
2378 if (!conf->mirrors)
2379 goto abort;
2381 conf->tmppage = alloc_page(GFP_KERNEL);
2382 if (!conf->tmppage)
2383 goto abort;
2385 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2386 if (!conf->poolinfo)
2387 goto abort;
2388 conf->poolinfo->raid_disks = mddev->raid_disks;
2389 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2390 r1bio_pool_free,
2391 conf->poolinfo);
2392 if (!conf->r1bio_pool)
2393 goto abort;
2395 conf->poolinfo->mddev = mddev;
2397 spin_lock_init(&conf->device_lock);
2398 list_for_each_entry(rdev, &mddev->disks, same_set) {
2399 int disk_idx = rdev->raid_disk;
2400 if (disk_idx >= mddev->raid_disks
2401 || disk_idx < 0)
2402 continue;
2403 disk = conf->mirrors + disk_idx;
2405 disk->rdev = rdev;
2407 disk->head_position = 0;
2409 conf->raid_disks = mddev->raid_disks;
2410 conf->mddev = mddev;
2411 INIT_LIST_HEAD(&conf->retry_list);
2413 spin_lock_init(&conf->resync_lock);
2414 init_waitqueue_head(&conf->wait_barrier);
2416 bio_list_init(&conf->pending_bio_list);
2418 conf->last_used = -1;
2419 for (i = 0; i < conf->raid_disks; i++) {
2421 disk = conf->mirrors + i;
2423 if (!disk->rdev ||
2424 !test_bit(In_sync, &disk->rdev->flags)) {
2425 disk->head_position = 0;
2426 if (disk->rdev)
2427 conf->fullsync = 1;
2428 } else if (conf->last_used < 0)
2430 * The first working device is used as a
2431 * starting point to read balancing.
2433 conf->last_used = i;
2436 err = -EIO;
2437 if (conf->last_used < 0) {
2438 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2439 mdname(mddev));
2440 goto abort;
2442 err = -ENOMEM;
2443 conf->thread = md_register_thread(raid1d, mddev, NULL);
2444 if (!conf->thread) {
2445 printk(KERN_ERR
2446 "md/raid1:%s: couldn't allocate thread\n",
2447 mdname(mddev));
2448 goto abort;
2451 return conf;
2453 abort:
2454 if (conf) {
2455 if (conf->r1bio_pool)
2456 mempool_destroy(conf->r1bio_pool);
2457 kfree(conf->mirrors);
2458 safe_put_page(conf->tmppage);
2459 kfree(conf->poolinfo);
2460 kfree(conf);
2462 return ERR_PTR(err);
2465 static int run(mddev_t *mddev)
2467 conf_t *conf;
2468 int i;
2469 mdk_rdev_t *rdev;
2471 if (mddev->level != 1) {
2472 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2473 mdname(mddev), mddev->level);
2474 return -EIO;
2476 if (mddev->reshape_position != MaxSector) {
2477 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2478 mdname(mddev));
2479 return -EIO;
2482 * copy the already verified devices into our private RAID1
2483 * bookkeeping area. [whatever we allocate in run(),
2484 * should be freed in stop()]
2486 if (mddev->private == NULL)
2487 conf = setup_conf(mddev);
2488 else
2489 conf = mddev->private;
2491 if (IS_ERR(conf))
2492 return PTR_ERR(conf);
2494 list_for_each_entry(rdev, &mddev->disks, same_set) {
2495 if (!mddev->gendisk)
2496 continue;
2497 disk_stack_limits(mddev->gendisk, rdev->bdev,
2498 rdev->data_offset << 9);
2499 /* as we don't honour merge_bvec_fn, we must never risk
2500 * violating it, so limit ->max_segments to 1 lying within
2501 * a single page, as a one page request is never in violation.
2503 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2504 blk_queue_max_segments(mddev->queue, 1);
2505 blk_queue_segment_boundary(mddev->queue,
2506 PAGE_CACHE_SIZE - 1);
2510 mddev->degraded = 0;
2511 for (i=0; i < conf->raid_disks; i++)
2512 if (conf->mirrors[i].rdev == NULL ||
2513 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2514 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2515 mddev->degraded++;
2517 if (conf->raid_disks - mddev->degraded == 1)
2518 mddev->recovery_cp = MaxSector;
2520 if (mddev->recovery_cp != MaxSector)
2521 printk(KERN_NOTICE "md/raid1:%s: not clean"
2522 " -- starting background reconstruction\n",
2523 mdname(mddev));
2524 printk(KERN_INFO
2525 "md/raid1:%s: active with %d out of %d mirrors\n",
2526 mdname(mddev), mddev->raid_disks - mddev->degraded,
2527 mddev->raid_disks);
2530 * Ok, everything is just fine now
2532 mddev->thread = conf->thread;
2533 conf->thread = NULL;
2534 mddev->private = conf;
2536 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2538 if (mddev->queue) {
2539 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2540 mddev->queue->backing_dev_info.congested_data = mddev;
2542 return md_integrity_register(mddev);
2545 static int stop(mddev_t *mddev)
2547 conf_t *conf = mddev->private;
2548 struct bitmap *bitmap = mddev->bitmap;
2550 /* wait for behind writes to complete */
2551 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2552 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2553 mdname(mddev));
2554 /* need to kick something here to make sure I/O goes? */
2555 wait_event(bitmap->behind_wait,
2556 atomic_read(&bitmap->behind_writes) == 0);
2559 raise_barrier(conf);
2560 lower_barrier(conf);
2562 md_unregister_thread(mddev->thread);
2563 mddev->thread = NULL;
2564 if (conf->r1bio_pool)
2565 mempool_destroy(conf->r1bio_pool);
2566 kfree(conf->mirrors);
2567 kfree(conf->poolinfo);
2568 kfree(conf);
2569 mddev->private = NULL;
2570 return 0;
2573 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2575 /* no resync is happening, and there is enough space
2576 * on all devices, so we can resize.
2577 * We need to make sure resync covers any new space.
2578 * If the array is shrinking we should possibly wait until
2579 * any io in the removed space completes, but it hardly seems
2580 * worth it.
2582 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2583 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2584 return -EINVAL;
2585 set_capacity(mddev->gendisk, mddev->array_sectors);
2586 revalidate_disk(mddev->gendisk);
2587 if (sectors > mddev->dev_sectors &&
2588 mddev->recovery_cp > mddev->dev_sectors) {
2589 mddev->recovery_cp = mddev->dev_sectors;
2590 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2592 mddev->dev_sectors = sectors;
2593 mddev->resync_max_sectors = sectors;
2594 return 0;
2597 static int raid1_reshape(mddev_t *mddev)
2599 /* We need to:
2600 * 1/ resize the r1bio_pool
2601 * 2/ resize conf->mirrors
2603 * We allocate a new r1bio_pool if we can.
2604 * Then raise a device barrier and wait until all IO stops.
2605 * Then resize conf->mirrors and swap in the new r1bio pool.
2607 * At the same time, we "pack" the devices so that all the missing
2608 * devices have the higher raid_disk numbers.
2610 mempool_t *newpool, *oldpool;
2611 struct pool_info *newpoolinfo;
2612 mirror_info_t *newmirrors;
2613 conf_t *conf = mddev->private;
2614 int cnt, raid_disks;
2615 unsigned long flags;
2616 int d, d2, err;
2618 /* Cannot change chunk_size, layout, or level */
2619 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2620 mddev->layout != mddev->new_layout ||
2621 mddev->level != mddev->new_level) {
2622 mddev->new_chunk_sectors = mddev->chunk_sectors;
2623 mddev->new_layout = mddev->layout;
2624 mddev->new_level = mddev->level;
2625 return -EINVAL;
2628 err = md_allow_write(mddev);
2629 if (err)
2630 return err;
2632 raid_disks = mddev->raid_disks + mddev->delta_disks;
2634 if (raid_disks < conf->raid_disks) {
2635 cnt=0;
2636 for (d= 0; d < conf->raid_disks; d++)
2637 if (conf->mirrors[d].rdev)
2638 cnt++;
2639 if (cnt > raid_disks)
2640 return -EBUSY;
2643 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2644 if (!newpoolinfo)
2645 return -ENOMEM;
2646 newpoolinfo->mddev = mddev;
2647 newpoolinfo->raid_disks = raid_disks;
2649 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2650 r1bio_pool_free, newpoolinfo);
2651 if (!newpool) {
2652 kfree(newpoolinfo);
2653 return -ENOMEM;
2655 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2656 if (!newmirrors) {
2657 kfree(newpoolinfo);
2658 mempool_destroy(newpool);
2659 return -ENOMEM;
2662 raise_barrier(conf);
2664 /* ok, everything is stopped */
2665 oldpool = conf->r1bio_pool;
2666 conf->r1bio_pool = newpool;
2668 for (d = d2 = 0; d < conf->raid_disks; d++) {
2669 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2670 if (rdev && rdev->raid_disk != d2) {
2671 sysfs_unlink_rdev(mddev, rdev);
2672 rdev->raid_disk = d2;
2673 sysfs_unlink_rdev(mddev, rdev);
2674 if (sysfs_link_rdev(mddev, rdev))
2675 printk(KERN_WARNING
2676 "md/raid1:%s: cannot register rd%d\n",
2677 mdname(mddev), rdev->raid_disk);
2679 if (rdev)
2680 newmirrors[d2++].rdev = rdev;
2682 kfree(conf->mirrors);
2683 conf->mirrors = newmirrors;
2684 kfree(conf->poolinfo);
2685 conf->poolinfo = newpoolinfo;
2687 spin_lock_irqsave(&conf->device_lock, flags);
2688 mddev->degraded += (raid_disks - conf->raid_disks);
2689 spin_unlock_irqrestore(&conf->device_lock, flags);
2690 conf->raid_disks = mddev->raid_disks = raid_disks;
2691 mddev->delta_disks = 0;
2693 conf->last_used = 0; /* just make sure it is in-range */
2694 lower_barrier(conf);
2696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2697 md_wakeup_thread(mddev->thread);
2699 mempool_destroy(oldpool);
2700 return 0;
2703 static void raid1_quiesce(mddev_t *mddev, int state)
2705 conf_t *conf = mddev->private;
2707 switch(state) {
2708 case 2: /* wake for suspend */
2709 wake_up(&conf->wait_barrier);
2710 break;
2711 case 1:
2712 raise_barrier(conf);
2713 break;
2714 case 0:
2715 lower_barrier(conf);
2716 break;
2720 static void *raid1_takeover(mddev_t *mddev)
2722 /* raid1 can take over:
2723 * raid5 with 2 devices, any layout or chunk size
2725 if (mddev->level == 5 && mddev->raid_disks == 2) {
2726 conf_t *conf;
2727 mddev->new_level = 1;
2728 mddev->new_layout = 0;
2729 mddev->new_chunk_sectors = 0;
2730 conf = setup_conf(mddev);
2731 if (!IS_ERR(conf))
2732 conf->barrier = 1;
2733 return conf;
2735 return ERR_PTR(-EINVAL);
2738 static struct mdk_personality raid1_personality =
2740 .name = "raid1",
2741 .level = 1,
2742 .owner = THIS_MODULE,
2743 .make_request = make_request,
2744 .run = run,
2745 .stop = stop,
2746 .status = status,
2747 .error_handler = error,
2748 .hot_add_disk = raid1_add_disk,
2749 .hot_remove_disk= raid1_remove_disk,
2750 .spare_active = raid1_spare_active,
2751 .sync_request = sync_request,
2752 .resize = raid1_resize,
2753 .size = raid1_size,
2754 .check_reshape = raid1_reshape,
2755 .quiesce = raid1_quiesce,
2756 .takeover = raid1_takeover,
2759 static int __init raid_init(void)
2761 return register_md_personality(&raid1_personality);
2764 static void raid_exit(void)
2766 unregister_md_personality(&raid1_personality);
2769 module_init(raid_init);
2770 module_exit(raid_exit);
2771 MODULE_LICENSE("GPL");
2772 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2773 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2774 MODULE_ALIAS("md-raid1");
2775 MODULE_ALIAS("md-level-1");