Merge branch 'akpm'
[linux-2.6/next.git] / drivers / scsi / isci / task.c
blobe2d9418683ce66ce45f2522eff72556287064464
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * BSD LICENSE
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 #include <linux/completion.h>
57 #include <linux/irqflags.h>
58 #include "sas.h"
59 #include <scsi/libsas.h>
60 #include "remote_device.h"
61 #include "remote_node_context.h"
62 #include "isci.h"
63 #include "request.h"
64 #include "task.h"
65 #include "host.h"
67 /**
68 * isci_task_refuse() - complete the request to the upper layer driver in
69 * the case where an I/O needs to be completed back in the submit path.
70 * @ihost: host on which the the request was queued
71 * @task: request to complete
72 * @response: response code for the completed task.
73 * @status: status code for the completed task.
76 static void isci_task_refuse(struct isci_host *ihost, struct sas_task *task,
77 enum service_response response,
78 enum exec_status status)
81 enum isci_completion_selection disposition;
83 disposition = isci_perform_normal_io_completion;
84 disposition = isci_task_set_completion_status(task, response, status,
85 disposition);
87 /* Tasks aborted specifically by a call to the lldd_abort_task
88 * function should not be completed to the host in the regular path.
90 switch (disposition) {
91 case isci_perform_normal_io_completion:
92 /* Normal notification (task_done) */
93 dev_dbg(&ihost->pdev->dev,
94 "%s: Normal - task = %p, response=%d, "
95 "status=%d\n",
96 __func__, task, response, status);
98 task->lldd_task = NULL;
100 isci_execpath_callback(ihost, task, task->task_done);
101 break;
103 case isci_perform_aborted_io_completion:
105 * No notification because this request is already in the
106 * abort path.
108 dev_dbg(&ihost->pdev->dev,
109 "%s: Aborted - task = %p, response=%d, "
110 "status=%d\n",
111 __func__, task, response, status);
112 break;
114 case isci_perform_error_io_completion:
115 /* Use sas_task_abort */
116 dev_dbg(&ihost->pdev->dev,
117 "%s: Error - task = %p, response=%d, "
118 "status=%d\n",
119 __func__, task, response, status);
121 isci_execpath_callback(ihost, task, sas_task_abort);
122 break;
124 default:
125 dev_dbg(&ihost->pdev->dev,
126 "%s: isci task notification default case!",
127 __func__);
128 sas_task_abort(task);
129 break;
133 #define for_each_sas_task(num, task) \
134 for (; num > 0; num--,\
135 task = list_entry(task->list.next, struct sas_task, list))
138 static inline int isci_device_io_ready(struct isci_remote_device *idev,
139 struct sas_task *task)
141 return idev ? test_bit(IDEV_IO_READY, &idev->flags) ||
142 (test_bit(IDEV_IO_NCQERROR, &idev->flags) &&
143 isci_task_is_ncq_recovery(task))
144 : 0;
147 * isci_task_execute_task() - This function is one of the SAS Domain Template
148 * functions. This function is called by libsas to send a task down to
149 * hardware.
150 * @task: This parameter specifies the SAS task to send.
151 * @num: This parameter specifies the number of tasks to queue.
152 * @gfp_flags: This parameter specifies the context of this call.
154 * status, zero indicates success.
156 int isci_task_execute_task(struct sas_task *task, int num, gfp_t gfp_flags)
158 struct isci_host *ihost = dev_to_ihost(task->dev);
159 struct isci_remote_device *idev;
160 unsigned long flags;
161 bool io_ready;
162 u16 tag;
164 dev_dbg(&ihost->pdev->dev, "%s: num=%d\n", __func__, num);
166 for_each_sas_task(num, task) {
167 enum sci_status status = SCI_FAILURE;
169 spin_lock_irqsave(&ihost->scic_lock, flags);
170 idev = isci_lookup_device(task->dev);
171 io_ready = isci_device_io_ready(idev, task);
172 tag = isci_alloc_tag(ihost);
173 spin_unlock_irqrestore(&ihost->scic_lock, flags);
175 dev_dbg(&ihost->pdev->dev,
176 "task: %p, num: %d dev: %p idev: %p:%#lx cmd = %p\n",
177 task, num, task->dev, idev, idev ? idev->flags : 0,
178 task->uldd_task);
180 if (!idev) {
181 isci_task_refuse(ihost, task, SAS_TASK_UNDELIVERED,
182 SAS_DEVICE_UNKNOWN);
183 } else if (!io_ready || tag == SCI_CONTROLLER_INVALID_IO_TAG) {
184 /* Indicate QUEUE_FULL so that the scsi midlayer
185 * retries.
187 isci_task_refuse(ihost, task, SAS_TASK_COMPLETE,
188 SAS_QUEUE_FULL);
189 } else {
190 /* There is a device and it's ready for I/O. */
191 spin_lock_irqsave(&task->task_state_lock, flags);
193 if (task->task_state_flags & SAS_TASK_STATE_ABORTED) {
194 /* The I/O was aborted. */
195 spin_unlock_irqrestore(&task->task_state_lock,
196 flags);
198 isci_task_refuse(ihost, task,
199 SAS_TASK_UNDELIVERED,
200 SAM_STAT_TASK_ABORTED);
201 } else {
202 task->task_state_flags |= SAS_TASK_AT_INITIATOR;
203 spin_unlock_irqrestore(&task->task_state_lock, flags);
205 /* build and send the request. */
206 status = isci_request_execute(ihost, idev, task, tag);
208 if (status != SCI_SUCCESS) {
210 spin_lock_irqsave(&task->task_state_lock, flags);
211 /* Did not really start this command. */
212 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
213 spin_unlock_irqrestore(&task->task_state_lock, flags);
215 /* Indicate QUEUE_FULL so that the scsi
216 * midlayer retries. if the request
217 * failed for remote device reasons,
218 * it gets returned as
219 * SAS_TASK_UNDELIVERED next time
220 * through.
222 isci_task_refuse(ihost, task,
223 SAS_TASK_COMPLETE,
224 SAS_QUEUE_FULL);
228 if (status != SCI_SUCCESS && tag != SCI_CONTROLLER_INVALID_IO_TAG) {
229 spin_lock_irqsave(&ihost->scic_lock, flags);
230 /* command never hit the device, so just free
231 * the tci and skip the sequence increment
233 isci_tci_free(ihost, ISCI_TAG_TCI(tag));
234 spin_unlock_irqrestore(&ihost->scic_lock, flags);
236 isci_put_device(idev);
238 return 0;
241 static enum sci_status isci_sata_management_task_request_build(struct isci_request *ireq)
243 struct isci_tmf *isci_tmf;
244 enum sci_status status;
246 if (tmf_task != ireq->ttype)
247 return SCI_FAILURE;
249 isci_tmf = isci_request_access_tmf(ireq);
251 switch (isci_tmf->tmf_code) {
253 case isci_tmf_sata_srst_high:
254 case isci_tmf_sata_srst_low: {
255 struct host_to_dev_fis *fis = &ireq->stp.cmd;
257 memset(fis, 0, sizeof(*fis));
259 fis->fis_type = 0x27;
260 fis->flags &= ~0x80;
261 fis->flags &= 0xF0;
262 if (isci_tmf->tmf_code == isci_tmf_sata_srst_high)
263 fis->control |= ATA_SRST;
264 else
265 fis->control &= ~ATA_SRST;
266 break;
268 /* other management commnd go here... */
269 default:
270 return SCI_FAILURE;
273 /* core builds the protocol specific request
274 * based on the h2d fis.
276 status = sci_task_request_construct_sata(ireq);
278 return status;
281 static struct isci_request *isci_task_request_build(struct isci_host *ihost,
282 struct isci_remote_device *idev,
283 u16 tag, struct isci_tmf *isci_tmf)
285 enum sci_status status = SCI_FAILURE;
286 struct isci_request *ireq = NULL;
287 struct domain_device *dev;
289 dev_dbg(&ihost->pdev->dev,
290 "%s: isci_tmf = %p\n", __func__, isci_tmf);
292 dev = idev->domain_dev;
294 /* do common allocation and init of request object. */
295 ireq = isci_tmf_request_from_tag(ihost, isci_tmf, tag);
296 if (!ireq)
297 return NULL;
299 /* let the core do it's construct. */
300 status = sci_task_request_construct(ihost, idev, tag,
301 ireq);
303 if (status != SCI_SUCCESS) {
304 dev_warn(&ihost->pdev->dev,
305 "%s: sci_task_request_construct failed - "
306 "status = 0x%x\n",
307 __func__,
308 status);
309 return NULL;
312 /* XXX convert to get this from task->tproto like other drivers */
313 if (dev->dev_type == SAS_END_DEV) {
314 isci_tmf->proto = SAS_PROTOCOL_SSP;
315 status = sci_task_request_construct_ssp(ireq);
316 if (status != SCI_SUCCESS)
317 return NULL;
320 if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
321 isci_tmf->proto = SAS_PROTOCOL_SATA;
322 status = isci_sata_management_task_request_build(ireq);
324 if (status != SCI_SUCCESS)
325 return NULL;
327 return ireq;
330 static int isci_task_execute_tmf(struct isci_host *ihost,
331 struct isci_remote_device *idev,
332 struct isci_tmf *tmf, unsigned long timeout_ms)
334 DECLARE_COMPLETION_ONSTACK(completion);
335 enum sci_task_status status = SCI_TASK_FAILURE;
336 struct isci_request *ireq;
337 int ret = TMF_RESP_FUNC_FAILED;
338 unsigned long flags;
339 unsigned long timeleft;
340 u16 tag;
342 spin_lock_irqsave(&ihost->scic_lock, flags);
343 tag = isci_alloc_tag(ihost);
344 spin_unlock_irqrestore(&ihost->scic_lock, flags);
346 if (tag == SCI_CONTROLLER_INVALID_IO_TAG)
347 return ret;
349 /* sanity check, return TMF_RESP_FUNC_FAILED
350 * if the device is not there and ready.
352 if (!idev ||
353 (!test_bit(IDEV_IO_READY, &idev->flags) &&
354 !test_bit(IDEV_IO_NCQERROR, &idev->flags))) {
355 dev_dbg(&ihost->pdev->dev,
356 "%s: idev = %p not ready (%#lx)\n",
357 __func__,
358 idev, idev ? idev->flags : 0);
359 goto err_tci;
360 } else
361 dev_dbg(&ihost->pdev->dev,
362 "%s: idev = %p\n",
363 __func__, idev);
365 /* Assign the pointer to the TMF's completion kernel wait structure. */
366 tmf->complete = &completion;
368 ireq = isci_task_request_build(ihost, idev, tag, tmf);
369 if (!ireq)
370 goto err_tci;
372 spin_lock_irqsave(&ihost->scic_lock, flags);
374 /* start the TMF io. */
375 status = sci_controller_start_task(ihost, idev, ireq);
377 if (status != SCI_TASK_SUCCESS) {
378 dev_dbg(&ihost->pdev->dev,
379 "%s: start_io failed - status = 0x%x, request = %p\n",
380 __func__,
381 status,
382 ireq);
383 spin_unlock_irqrestore(&ihost->scic_lock, flags);
384 goto err_tci;
387 if (tmf->cb_state_func != NULL)
388 tmf->cb_state_func(isci_tmf_started, tmf, tmf->cb_data);
390 isci_request_change_state(ireq, started);
392 /* add the request to the remote device request list. */
393 list_add(&ireq->dev_node, &idev->reqs_in_process);
395 spin_unlock_irqrestore(&ihost->scic_lock, flags);
397 /* Wait for the TMF to complete, or a timeout. */
398 timeleft = wait_for_completion_timeout(&completion,
399 msecs_to_jiffies(timeout_ms));
401 if (timeleft == 0) {
402 spin_lock_irqsave(&ihost->scic_lock, flags);
404 if (tmf->cb_state_func != NULL)
405 tmf->cb_state_func(isci_tmf_timed_out, tmf, tmf->cb_data);
407 sci_controller_terminate_request(ihost,
408 idev,
409 ireq);
411 spin_unlock_irqrestore(&ihost->scic_lock, flags);
413 wait_for_completion(tmf->complete);
416 isci_print_tmf(tmf);
418 if (tmf->status == SCI_SUCCESS)
419 ret = TMF_RESP_FUNC_COMPLETE;
420 else if (tmf->status == SCI_FAILURE_IO_RESPONSE_VALID) {
421 dev_dbg(&ihost->pdev->dev,
422 "%s: tmf.status == "
423 "SCI_FAILURE_IO_RESPONSE_VALID\n",
424 __func__);
425 ret = TMF_RESP_FUNC_COMPLETE;
427 /* Else - leave the default "failed" status alone. */
429 dev_dbg(&ihost->pdev->dev,
430 "%s: completed request = %p\n",
431 __func__,
432 ireq);
434 return ret;
436 err_tci:
437 spin_lock_irqsave(&ihost->scic_lock, flags);
438 isci_tci_free(ihost, ISCI_TAG_TCI(tag));
439 spin_unlock_irqrestore(&ihost->scic_lock, flags);
441 return ret;
444 static void isci_task_build_tmf(struct isci_tmf *tmf,
445 enum isci_tmf_function_codes code,
446 void (*tmf_sent_cb)(enum isci_tmf_cb_state,
447 struct isci_tmf *,
448 void *),
449 void *cb_data)
451 memset(tmf, 0, sizeof(*tmf));
453 tmf->tmf_code = code;
454 tmf->cb_state_func = tmf_sent_cb;
455 tmf->cb_data = cb_data;
458 static void isci_task_build_abort_task_tmf(struct isci_tmf *tmf,
459 enum isci_tmf_function_codes code,
460 void (*tmf_sent_cb)(enum isci_tmf_cb_state,
461 struct isci_tmf *,
462 void *),
463 struct isci_request *old_request)
465 isci_task_build_tmf(tmf, code, tmf_sent_cb, old_request);
466 tmf->io_tag = old_request->io_tag;
470 * isci_task_validate_request_to_abort() - This function checks the given I/O
471 * against the "started" state. If the request is still "started", it's
472 * state is changed to aborted. NOTE: isci_host->scic_lock MUST BE HELD
473 * BEFORE CALLING THIS FUNCTION.
474 * @isci_request: This parameter specifies the request object to control.
475 * @isci_host: This parameter specifies the ISCI host object
476 * @isci_device: This is the device to which the request is pending.
477 * @aborted_io_completion: This is a completion structure that will be added to
478 * the request in case it is changed to aborting; this completion is
479 * triggered when the request is fully completed.
481 * Either "started" on successful change of the task status to "aborted", or
482 * "unallocated" if the task cannot be controlled.
484 static enum isci_request_status isci_task_validate_request_to_abort(
485 struct isci_request *isci_request,
486 struct isci_host *isci_host,
487 struct isci_remote_device *isci_device,
488 struct completion *aborted_io_completion)
490 enum isci_request_status old_state = unallocated;
492 /* Only abort the task if it's in the
493 * device's request_in_process list
495 if (isci_request && !list_empty(&isci_request->dev_node)) {
496 old_state = isci_request_change_started_to_aborted(
497 isci_request, aborted_io_completion);
501 return old_state;
505 * isci_request_cleanup_completed_loiterer() - This function will take care of
506 * the final cleanup on any request which has been explicitly terminated.
507 * @isci_host: This parameter specifies the ISCI host object
508 * @isci_device: This is the device to which the request is pending.
509 * @isci_request: This parameter specifies the terminated request object.
510 * @task: This parameter is the libsas I/O request.
512 static void isci_request_cleanup_completed_loiterer(
513 struct isci_host *isci_host,
514 struct isci_remote_device *isci_device,
515 struct isci_request *isci_request,
516 struct sas_task *task)
518 unsigned long flags;
520 dev_dbg(&isci_host->pdev->dev,
521 "%s: isci_device=%p, request=%p, task=%p\n",
522 __func__, isci_device, isci_request, task);
524 if (task != NULL) {
526 spin_lock_irqsave(&task->task_state_lock, flags);
527 task->lldd_task = NULL;
529 task->task_state_flags &= ~SAS_TASK_NEED_DEV_RESET;
531 isci_set_task_doneflags(task);
533 /* If this task is not in the abort path, call task_done. */
534 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
536 spin_unlock_irqrestore(&task->task_state_lock, flags);
537 task->task_done(task);
538 } else
539 spin_unlock_irqrestore(&task->task_state_lock, flags);
542 if (isci_request != NULL) {
543 spin_lock_irqsave(&isci_host->scic_lock, flags);
544 list_del_init(&isci_request->dev_node);
545 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
550 * isci_terminate_request_core() - This function will terminate the given
551 * request, and wait for it to complete. This function must only be called
552 * from a thread that can wait. Note that the request is terminated and
553 * completed (back to the host, if started there).
554 * @ihost: This SCU.
555 * @idev: The target.
556 * @isci_request: The I/O request to be terminated.
559 static void isci_terminate_request_core(struct isci_host *ihost,
560 struct isci_remote_device *idev,
561 struct isci_request *isci_request)
563 enum sci_status status = SCI_SUCCESS;
564 bool was_terminated = false;
565 bool needs_cleanup_handling = false;
566 enum isci_request_status request_status;
567 unsigned long flags;
568 unsigned long termination_completed = 1;
569 struct completion *io_request_completion;
570 struct sas_task *task;
572 dev_dbg(&ihost->pdev->dev,
573 "%s: device = %p; request = %p\n",
574 __func__, idev, isci_request);
576 spin_lock_irqsave(&ihost->scic_lock, flags);
578 io_request_completion = isci_request->io_request_completion;
580 task = (isci_request->ttype == io_task)
581 ? isci_request_access_task(isci_request)
582 : NULL;
584 /* Note that we are not going to control
585 * the target to abort the request.
587 set_bit(IREQ_COMPLETE_IN_TARGET, &isci_request->flags);
589 /* Make sure the request wasn't just sitting around signalling
590 * device condition (if the request handle is NULL, then the
591 * request completed but needed additional handling here).
593 if (!test_bit(IREQ_TERMINATED, &isci_request->flags)) {
594 was_terminated = true;
595 needs_cleanup_handling = true;
596 status = sci_controller_terminate_request(ihost,
597 idev,
598 isci_request);
600 spin_unlock_irqrestore(&ihost->scic_lock, flags);
603 * The only time the request to terminate will
604 * fail is when the io request is completed and
605 * being aborted.
607 if (status != SCI_SUCCESS) {
608 dev_dbg(&ihost->pdev->dev,
609 "%s: sci_controller_terminate_request"
610 " returned = 0x%x\n",
611 __func__, status);
613 isci_request->io_request_completion = NULL;
615 } else {
616 if (was_terminated) {
617 dev_dbg(&ihost->pdev->dev,
618 "%s: before completion wait (%p/%p)\n",
619 __func__, isci_request, io_request_completion);
621 /* Wait here for the request to complete. */
622 #define TERMINATION_TIMEOUT_MSEC 500
623 termination_completed
624 = wait_for_completion_timeout(
625 io_request_completion,
626 msecs_to_jiffies(TERMINATION_TIMEOUT_MSEC));
628 if (!termination_completed) {
630 /* The request to terminate has timed out. */
631 spin_lock_irqsave(&ihost->scic_lock,
632 flags);
634 /* Check for state changes. */
635 if (!test_bit(IREQ_TERMINATED, &isci_request->flags)) {
637 /* The best we can do is to have the
638 * request die a silent death if it
639 * ever really completes.
641 * Set the request state to "dead",
642 * and clear the task pointer so that
643 * an actual completion event callback
644 * doesn't do anything.
646 isci_request->status = dead;
647 isci_request->io_request_completion
648 = NULL;
650 if (isci_request->ttype == io_task) {
652 /* Break links with the
653 * sas_task.
655 isci_request->ttype_ptr.io_task_ptr
656 = NULL;
658 } else
659 termination_completed = 1;
661 spin_unlock_irqrestore(&ihost->scic_lock,
662 flags);
664 if (!termination_completed) {
666 dev_dbg(&ihost->pdev->dev,
667 "%s: *** Timeout waiting for "
668 "termination(%p/%p)\n",
669 __func__, io_request_completion,
670 isci_request);
672 /* The request can no longer be referenced
673 * safely since it may go away if the
674 * termination every really does complete.
676 isci_request = NULL;
679 if (termination_completed)
680 dev_dbg(&ihost->pdev->dev,
681 "%s: after completion wait (%p/%p)\n",
682 __func__, isci_request, io_request_completion);
685 if (termination_completed) {
687 isci_request->io_request_completion = NULL;
689 /* Peek at the status of the request. This will tell
690 * us if there was special handling on the request such that it
691 * needs to be detached and freed here.
693 spin_lock_irqsave(&isci_request->state_lock, flags);
694 request_status = isci_request->status;
696 if ((isci_request->ttype == io_task) /* TMFs are in their own thread */
697 && ((request_status == aborted)
698 || (request_status == aborting)
699 || (request_status == terminating)
700 || (request_status == completed)
701 || (request_status == dead)
705 /* The completion routine won't free a request in
706 * the aborted/aborting/etc. states, so we do
707 * it here.
709 needs_cleanup_handling = true;
711 spin_unlock_irqrestore(&isci_request->state_lock, flags);
714 if (needs_cleanup_handling)
715 isci_request_cleanup_completed_loiterer(
716 ihost, idev, isci_request, task);
721 * isci_terminate_pending_requests() - This function will change the all of the
722 * requests on the given device's state to "aborting", will terminate the
723 * requests, and wait for them to complete. This function must only be
724 * called from a thread that can wait. Note that the requests are all
725 * terminated and completed (back to the host, if started there).
726 * @isci_host: This parameter specifies SCU.
727 * @idev: This parameter specifies the target.
730 void isci_terminate_pending_requests(struct isci_host *ihost,
731 struct isci_remote_device *idev)
733 struct completion request_completion;
734 enum isci_request_status old_state;
735 unsigned long flags;
736 LIST_HEAD(list);
738 spin_lock_irqsave(&ihost->scic_lock, flags);
739 list_splice_init(&idev->reqs_in_process, &list);
741 /* assumes that isci_terminate_request_core deletes from the list */
742 while (!list_empty(&list)) {
743 struct isci_request *ireq = list_entry(list.next, typeof(*ireq), dev_node);
745 /* Change state to "terminating" if it is currently
746 * "started".
748 old_state = isci_request_change_started_to_newstate(ireq,
749 &request_completion,
750 terminating);
751 switch (old_state) {
752 case started:
753 case completed:
754 case aborting:
755 break;
756 default:
757 /* termination in progress, or otherwise dispositioned.
758 * We know the request was on 'list' so should be safe
759 * to move it back to reqs_in_process
761 list_move(&ireq->dev_node, &idev->reqs_in_process);
762 ireq = NULL;
763 break;
766 if (!ireq)
767 continue;
768 spin_unlock_irqrestore(&ihost->scic_lock, flags);
770 init_completion(&request_completion);
772 dev_dbg(&ihost->pdev->dev,
773 "%s: idev=%p request=%p; task=%p old_state=%d\n",
774 __func__, idev, ireq,
775 ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL,
776 old_state);
778 /* If the old_state is started:
779 * This request was not already being aborted. If it had been,
780 * then the aborting I/O (ie. the TMF request) would not be in
781 * the aborting state, and thus would be terminated here. Note
782 * that since the TMF completion's call to the kernel function
783 * "complete()" does not happen until the pending I/O request
784 * terminate fully completes, we do not have to implement a
785 * special wait here for already aborting requests - the
786 * termination of the TMF request will force the request
787 * to finish it's already started terminate.
789 * If old_state == completed:
790 * This request completed from the SCU hardware perspective
791 * and now just needs cleaning up in terms of freeing the
792 * request and potentially calling up to libsas.
794 * If old_state == aborting:
795 * This request has already gone through a TMF timeout, but may
796 * not have been terminated; needs cleaning up at least.
798 isci_terminate_request_core(ihost, idev, ireq);
799 spin_lock_irqsave(&ihost->scic_lock, flags);
801 spin_unlock_irqrestore(&ihost->scic_lock, flags);
805 * isci_task_send_lu_reset_sas() - This function is called by of the SAS Domain
806 * Template functions.
807 * @lun: This parameter specifies the lun to be reset.
809 * status, zero indicates success.
811 static int isci_task_send_lu_reset_sas(
812 struct isci_host *isci_host,
813 struct isci_remote_device *isci_device,
814 u8 *lun)
816 struct isci_tmf tmf;
817 int ret = TMF_RESP_FUNC_FAILED;
819 dev_dbg(&isci_host->pdev->dev,
820 "%s: isci_host = %p, isci_device = %p\n",
821 __func__, isci_host, isci_device);
822 /* Send the LUN reset to the target. By the time the call returns,
823 * the TMF has fully exected in the target (in which case the return
824 * value is "TMF_RESP_FUNC_COMPLETE", or the request timed-out (or
825 * was otherwise unable to be executed ("TMF_RESP_FUNC_FAILED").
827 isci_task_build_tmf(&tmf, isci_tmf_ssp_lun_reset, NULL, NULL);
829 #define ISCI_LU_RESET_TIMEOUT_MS 2000 /* 2 second timeout. */
830 ret = isci_task_execute_tmf(isci_host, isci_device, &tmf, ISCI_LU_RESET_TIMEOUT_MS);
832 if (ret == TMF_RESP_FUNC_COMPLETE)
833 dev_dbg(&isci_host->pdev->dev,
834 "%s: %p: TMF_LU_RESET passed\n",
835 __func__, isci_device);
836 else
837 dev_dbg(&isci_host->pdev->dev,
838 "%s: %p: TMF_LU_RESET failed (%x)\n",
839 __func__, isci_device, ret);
841 return ret;
844 static int isci_task_send_lu_reset_sata(struct isci_host *ihost,
845 struct isci_remote_device *idev, u8 *lun)
847 int ret = TMF_RESP_FUNC_FAILED;
848 struct isci_tmf tmf;
850 /* Send the soft reset to the target */
851 #define ISCI_SRST_TIMEOUT_MS 25000 /* 25 second timeout. */
852 isci_task_build_tmf(&tmf, isci_tmf_sata_srst_high, NULL, NULL);
854 ret = isci_task_execute_tmf(ihost, idev, &tmf, ISCI_SRST_TIMEOUT_MS);
856 if (ret != TMF_RESP_FUNC_COMPLETE) {
857 dev_dbg(&ihost->pdev->dev,
858 "%s: Assert SRST failed (%p) = %x",
859 __func__, idev, ret);
861 /* Return the failure so that the LUN reset is escalated
862 * to a target reset.
865 return ret;
869 * isci_task_lu_reset() - This function is one of the SAS Domain Template
870 * functions. This is one of the Task Management functoins called by libsas,
871 * to reset the given lun. Note the assumption that while this call is
872 * executing, no I/O will be sent by the host to the device.
873 * @lun: This parameter specifies the lun to be reset.
875 * status, zero indicates success.
877 int isci_task_lu_reset(struct domain_device *domain_device, u8 *lun)
879 struct isci_host *isci_host = dev_to_ihost(domain_device);
880 struct isci_remote_device *isci_device;
881 unsigned long flags;
882 int ret;
884 spin_lock_irqsave(&isci_host->scic_lock, flags);
885 isci_device = isci_lookup_device(domain_device);
886 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
888 dev_dbg(&isci_host->pdev->dev,
889 "%s: domain_device=%p, isci_host=%p; isci_device=%p\n",
890 __func__, domain_device, isci_host, isci_device);
892 if (isci_device)
893 set_bit(IDEV_EH, &isci_device->flags);
895 /* If there is a device reset pending on any request in the
896 * device's list, fail this LUN reset request in order to
897 * escalate to the device reset.
899 if (!isci_device ||
900 isci_device_is_reset_pending(isci_host, isci_device)) {
901 dev_dbg(&isci_host->pdev->dev,
902 "%s: No dev (%p), or "
903 "RESET PENDING: domain_device=%p\n",
904 __func__, isci_device, domain_device);
905 ret = TMF_RESP_FUNC_FAILED;
906 goto out;
909 /* Send the task management part of the reset. */
910 if (sas_protocol_ata(domain_device->tproto)) {
911 ret = isci_task_send_lu_reset_sata(isci_host, isci_device, lun);
912 } else
913 ret = isci_task_send_lu_reset_sas(isci_host, isci_device, lun);
915 /* If the LUN reset worked, all the I/O can now be terminated. */
916 if (ret == TMF_RESP_FUNC_COMPLETE)
917 /* Terminate all I/O now. */
918 isci_terminate_pending_requests(isci_host,
919 isci_device);
921 out:
922 isci_put_device(isci_device);
923 return ret;
927 /* int (*lldd_clear_nexus_port)(struct asd_sas_port *); */
928 int isci_task_clear_nexus_port(struct asd_sas_port *port)
930 return TMF_RESP_FUNC_FAILED;
935 int isci_task_clear_nexus_ha(struct sas_ha_struct *ha)
937 return TMF_RESP_FUNC_FAILED;
940 /* Task Management Functions. Must be called from process context. */
943 * isci_abort_task_process_cb() - This is a helper function for the abort task
944 * TMF command. It manages the request state with respect to the successful
945 * transmission / completion of the abort task request.
946 * @cb_state: This parameter specifies when this function was called - after
947 * the TMF request has been started and after it has timed-out.
948 * @tmf: This parameter specifies the TMF in progress.
952 static void isci_abort_task_process_cb(
953 enum isci_tmf_cb_state cb_state,
954 struct isci_tmf *tmf,
955 void *cb_data)
957 struct isci_request *old_request;
959 old_request = (struct isci_request *)cb_data;
961 dev_dbg(&old_request->isci_host->pdev->dev,
962 "%s: tmf=%p, old_request=%p\n",
963 __func__, tmf, old_request);
965 switch (cb_state) {
967 case isci_tmf_started:
968 /* The TMF has been started. Nothing to do here, since the
969 * request state was already set to "aborted" by the abort
970 * task function.
972 if ((old_request->status != aborted)
973 && (old_request->status != completed))
974 dev_dbg(&old_request->isci_host->pdev->dev,
975 "%s: Bad request status (%d): tmf=%p, old_request=%p\n",
976 __func__, old_request->status, tmf, old_request);
977 break;
979 case isci_tmf_timed_out:
981 /* Set the task's state to "aborting", since the abort task
982 * function thread set it to "aborted" (above) in anticipation
983 * of the task management request working correctly. Since the
984 * timeout has now fired, the TMF request failed. We set the
985 * state such that the request completion will indicate the
986 * device is no longer present.
988 isci_request_change_state(old_request, aborting);
989 break;
991 default:
992 dev_dbg(&old_request->isci_host->pdev->dev,
993 "%s: Bad cb_state (%d): tmf=%p, old_request=%p\n",
994 __func__, cb_state, tmf, old_request);
995 break;
1000 * isci_task_abort_task() - This function is one of the SAS Domain Template
1001 * functions. This function is called by libsas to abort a specified task.
1002 * @task: This parameter specifies the SAS task to abort.
1004 * status, zero indicates success.
1006 int isci_task_abort_task(struct sas_task *task)
1008 struct isci_host *isci_host = dev_to_ihost(task->dev);
1009 DECLARE_COMPLETION_ONSTACK(aborted_io_completion);
1010 struct isci_request *old_request = NULL;
1011 enum isci_request_status old_state;
1012 struct isci_remote_device *isci_device = NULL;
1013 struct isci_tmf tmf;
1014 int ret = TMF_RESP_FUNC_FAILED;
1015 unsigned long flags;
1016 bool any_dev_reset = false;
1018 /* Get the isci_request reference from the task. Note that
1019 * this check does not depend on the pending request list
1020 * in the device, because tasks driving resets may land here
1021 * after completion in the core.
1023 spin_lock_irqsave(&isci_host->scic_lock, flags);
1024 spin_lock(&task->task_state_lock);
1026 old_request = task->lldd_task;
1028 /* If task is already done, the request isn't valid */
1029 if (!(task->task_state_flags & SAS_TASK_STATE_DONE) &&
1030 (task->task_state_flags & SAS_TASK_AT_INITIATOR) &&
1031 old_request)
1032 isci_device = isci_lookup_device(task->dev);
1034 spin_unlock(&task->task_state_lock);
1035 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
1037 dev_dbg(&isci_host->pdev->dev,
1038 "%s: task = %p\n", __func__, task);
1040 if (!isci_device || !old_request)
1041 goto out;
1043 set_bit(IDEV_EH, &isci_device->flags);
1045 /* This version of the driver will fail abort requests for
1046 * SATA/STP. Failing the abort request this way will cause the
1047 * SCSI error handler thread to escalate to LUN reset
1049 if (sas_protocol_ata(task->task_proto)) {
1050 dev_dbg(&isci_host->pdev->dev,
1051 " task %p is for a STP/SATA device;"
1052 " returning TMF_RESP_FUNC_FAILED\n"
1053 " to cause a LUN reset...\n", task);
1054 goto out;
1057 dev_dbg(&isci_host->pdev->dev,
1058 "%s: old_request == %p\n", __func__, old_request);
1060 any_dev_reset = isci_device_is_reset_pending(isci_host, isci_device);
1062 spin_lock_irqsave(&task->task_state_lock, flags);
1064 any_dev_reset = any_dev_reset || (task->task_state_flags & SAS_TASK_NEED_DEV_RESET);
1066 /* If the extraction of the request reference from the task
1067 * failed, then the request has been completed (or if there is a
1068 * pending reset then this abort request function must be failed
1069 * in order to escalate to the target reset).
1071 if ((old_request == NULL) || any_dev_reset) {
1073 /* If the device reset task flag is set, fail the task
1074 * management request. Otherwise, the original request
1075 * has completed.
1077 if (any_dev_reset) {
1079 /* Turn off the task's DONE to make sure this
1080 * task is escalated to a target reset.
1082 task->task_state_flags &= ~SAS_TASK_STATE_DONE;
1084 /* Make the reset happen as soon as possible. */
1085 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
1087 spin_unlock_irqrestore(&task->task_state_lock, flags);
1089 /* Fail the task management request in order to
1090 * escalate to the target reset.
1092 ret = TMF_RESP_FUNC_FAILED;
1094 dev_dbg(&isci_host->pdev->dev,
1095 "%s: Failing task abort in order to "
1096 "escalate to target reset because\n"
1097 "SAS_TASK_NEED_DEV_RESET is set for "
1098 "task %p on dev %p\n",
1099 __func__, task, isci_device);
1102 } else {
1103 /* The request has already completed and there
1104 * is nothing to do here other than to set the task
1105 * done bit, and indicate that the task abort function
1106 * was sucessful.
1108 isci_set_task_doneflags(task);
1110 spin_unlock_irqrestore(&task->task_state_lock, flags);
1112 ret = TMF_RESP_FUNC_COMPLETE;
1114 dev_dbg(&isci_host->pdev->dev,
1115 "%s: abort task not needed for %p\n",
1116 __func__, task);
1118 goto out;
1119 } else {
1120 spin_unlock_irqrestore(&task->task_state_lock, flags);
1123 spin_lock_irqsave(&isci_host->scic_lock, flags);
1125 /* Check the request status and change to "aborted" if currently
1126 * "starting"; if true then set the I/O kernel completion
1127 * struct that will be triggered when the request completes.
1129 old_state = isci_task_validate_request_to_abort(
1130 old_request, isci_host, isci_device,
1131 &aborted_io_completion);
1132 if ((old_state != started) &&
1133 (old_state != completed) &&
1134 (old_state != aborting)) {
1136 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
1138 /* The request was already being handled by someone else (because
1139 * they got to set the state away from started).
1141 dev_dbg(&isci_host->pdev->dev,
1142 "%s: device = %p; old_request %p already being aborted\n",
1143 __func__,
1144 isci_device, old_request);
1145 ret = TMF_RESP_FUNC_COMPLETE;
1146 goto out;
1148 if (task->task_proto == SAS_PROTOCOL_SMP ||
1149 test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)) {
1151 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
1153 dev_dbg(&isci_host->pdev->dev,
1154 "%s: SMP request (%d)"
1155 " or complete_in_target (%d), thus no TMF\n",
1156 __func__, (task->task_proto == SAS_PROTOCOL_SMP),
1157 test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags));
1159 /* Set the state on the task. */
1160 isci_task_all_done(task);
1162 ret = TMF_RESP_FUNC_COMPLETE;
1164 /* Stopping and SMP devices are not sent a TMF, and are not
1165 * reset, but the outstanding I/O request is terminated below.
1167 } else {
1168 /* Fill in the tmf stucture */
1169 isci_task_build_abort_task_tmf(&tmf, isci_tmf_ssp_task_abort,
1170 isci_abort_task_process_cb,
1171 old_request);
1173 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
1175 #define ISCI_ABORT_TASK_TIMEOUT_MS 500 /* half second timeout. */
1176 ret = isci_task_execute_tmf(isci_host, isci_device, &tmf,
1177 ISCI_ABORT_TASK_TIMEOUT_MS);
1179 if (ret != TMF_RESP_FUNC_COMPLETE)
1180 dev_dbg(&isci_host->pdev->dev,
1181 "%s: isci_task_send_tmf failed\n",
1182 __func__);
1184 if (ret == TMF_RESP_FUNC_COMPLETE) {
1185 set_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags);
1187 /* Clean up the request on our side, and wait for the aborted
1188 * I/O to complete.
1190 isci_terminate_request_core(isci_host, isci_device, old_request);
1193 /* Make sure we do not leave a reference to aborted_io_completion */
1194 old_request->io_request_completion = NULL;
1195 out:
1196 isci_put_device(isci_device);
1197 return ret;
1201 * isci_task_abort_task_set() - This function is one of the SAS Domain Template
1202 * functions. This is one of the Task Management functoins called by libsas,
1203 * to abort all task for the given lun.
1204 * @d_device: This parameter specifies the domain device associated with this
1205 * request.
1206 * @lun: This parameter specifies the lun associated with this request.
1208 * status, zero indicates success.
1210 int isci_task_abort_task_set(
1211 struct domain_device *d_device,
1212 u8 *lun)
1214 return TMF_RESP_FUNC_FAILED;
1219 * isci_task_clear_aca() - This function is one of the SAS Domain Template
1220 * functions. This is one of the Task Management functoins called by libsas.
1221 * @d_device: This parameter specifies the domain device associated with this
1222 * request.
1223 * @lun: This parameter specifies the lun associated with this request.
1225 * status, zero indicates success.
1227 int isci_task_clear_aca(
1228 struct domain_device *d_device,
1229 u8 *lun)
1231 return TMF_RESP_FUNC_FAILED;
1237 * isci_task_clear_task_set() - This function is one of the SAS Domain Template
1238 * functions. This is one of the Task Management functoins called by libsas.
1239 * @d_device: This parameter specifies the domain device associated with this
1240 * request.
1241 * @lun: This parameter specifies the lun associated with this request.
1243 * status, zero indicates success.
1245 int isci_task_clear_task_set(
1246 struct domain_device *d_device,
1247 u8 *lun)
1249 return TMF_RESP_FUNC_FAILED;
1254 * isci_task_query_task() - This function is implemented to cause libsas to
1255 * correctly escalate the failed abort to a LUN or target reset (this is
1256 * because sas_scsi_find_task libsas function does not correctly interpret
1257 * all return codes from the abort task call). When TMF_RESP_FUNC_SUCC is
1258 * returned, libsas turns this into a LUN reset; when FUNC_FAILED is
1259 * returned, libsas will turn this into a target reset
1260 * @task: This parameter specifies the sas task being queried.
1261 * @lun: This parameter specifies the lun associated with this request.
1263 * status, zero indicates success.
1265 int isci_task_query_task(
1266 struct sas_task *task)
1268 /* See if there is a pending device reset for this device. */
1269 if (task->task_state_flags & SAS_TASK_NEED_DEV_RESET)
1270 return TMF_RESP_FUNC_FAILED;
1271 else
1272 return TMF_RESP_FUNC_SUCC;
1276 * isci_task_request_complete() - This function is called by the sci core when
1277 * an task request completes.
1278 * @ihost: This parameter specifies the ISCI host object
1279 * @ireq: This parameter is the completed isci_request object.
1280 * @completion_status: This parameter specifies the completion status from the
1281 * sci core.
1283 * none.
1285 void
1286 isci_task_request_complete(struct isci_host *ihost,
1287 struct isci_request *ireq,
1288 enum sci_task_status completion_status)
1290 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
1291 struct completion *tmf_complete;
1293 dev_dbg(&ihost->pdev->dev,
1294 "%s: request = %p, status=%d\n",
1295 __func__, ireq, completion_status);
1297 isci_request_change_state(ireq, completed);
1299 tmf->status = completion_status;
1300 set_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags);
1302 if (tmf->proto == SAS_PROTOCOL_SSP) {
1303 memcpy(&tmf->resp.resp_iu,
1304 &ireq->ssp.rsp,
1305 SSP_RESP_IU_MAX_SIZE);
1306 } else if (tmf->proto == SAS_PROTOCOL_SATA) {
1307 memcpy(&tmf->resp.d2h_fis,
1308 &ireq->stp.rsp,
1309 sizeof(struct dev_to_host_fis));
1312 /* PRINT_TMF( ((struct isci_tmf *)request->task)); */
1313 tmf_complete = tmf->complete;
1315 sci_controller_complete_io(ihost, ireq->target_device, ireq);
1316 /* set the 'terminated' flag handle to make sure it cannot be terminated
1317 * or completed again.
1319 set_bit(IREQ_TERMINATED, &ireq->flags);
1321 isci_request_change_state(ireq, unallocated);
1322 list_del_init(&ireq->dev_node);
1324 /* The task management part completes last. */
1325 complete(tmf_complete);
1328 static void isci_smp_task_timedout(unsigned long _task)
1330 struct sas_task *task = (void *) _task;
1331 unsigned long flags;
1333 spin_lock_irqsave(&task->task_state_lock, flags);
1334 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
1335 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
1336 spin_unlock_irqrestore(&task->task_state_lock, flags);
1338 complete(&task->completion);
1341 static void isci_smp_task_done(struct sas_task *task)
1343 if (!del_timer(&task->timer))
1344 return;
1345 complete(&task->completion);
1348 static int isci_smp_execute_task(struct isci_host *ihost,
1349 struct domain_device *dev, void *req,
1350 int req_size, void *resp, int resp_size)
1352 int res, retry;
1353 struct sas_task *task = NULL;
1355 for (retry = 0; retry < 3; retry++) {
1356 task = sas_alloc_task(GFP_KERNEL);
1357 if (!task)
1358 return -ENOMEM;
1360 task->dev = dev;
1361 task->task_proto = dev->tproto;
1362 sg_init_one(&task->smp_task.smp_req, req, req_size);
1363 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
1365 task->task_done = isci_smp_task_done;
1367 task->timer.data = (unsigned long) task;
1368 task->timer.function = isci_smp_task_timedout;
1369 task->timer.expires = jiffies + 10*HZ;
1370 add_timer(&task->timer);
1372 res = isci_task_execute_task(task, 1, GFP_KERNEL);
1374 if (res) {
1375 del_timer(&task->timer);
1376 dev_dbg(&ihost->pdev->dev,
1377 "%s: executing SMP task failed:%d\n",
1378 __func__, res);
1379 goto ex_err;
1382 wait_for_completion(&task->completion);
1383 res = -ECOMM;
1384 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1385 dev_dbg(&ihost->pdev->dev,
1386 "%s: smp task timed out or aborted\n",
1387 __func__);
1388 isci_task_abort_task(task);
1389 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
1390 dev_dbg(&ihost->pdev->dev,
1391 "%s: SMP task aborted and not done\n",
1392 __func__);
1393 goto ex_err;
1396 if (task->task_status.resp == SAS_TASK_COMPLETE &&
1397 task->task_status.stat == SAM_STAT_GOOD) {
1398 res = 0;
1399 break;
1401 if (task->task_status.resp == SAS_TASK_COMPLETE &&
1402 task->task_status.stat == SAS_DATA_UNDERRUN) {
1403 /* no error, but return the number of bytes of
1404 * underrun */
1405 res = task->task_status.residual;
1406 break;
1408 if (task->task_status.resp == SAS_TASK_COMPLETE &&
1409 task->task_status.stat == SAS_DATA_OVERRUN) {
1410 res = -EMSGSIZE;
1411 break;
1412 } else {
1413 dev_dbg(&ihost->pdev->dev,
1414 "%s: task to dev %016llx response: 0x%x "
1415 "status 0x%x\n", __func__,
1416 SAS_ADDR(dev->sas_addr),
1417 task->task_status.resp,
1418 task->task_status.stat);
1419 sas_free_task(task);
1420 task = NULL;
1423 ex_err:
1424 BUG_ON(retry == 3 && task != NULL);
1425 sas_free_task(task);
1426 return res;
1429 #define DISCOVER_REQ_SIZE 16
1430 #define DISCOVER_RESP_SIZE 56
1432 int isci_smp_get_phy_attached_dev_type(struct isci_host *ihost,
1433 struct domain_device *dev,
1434 int phy_id, int *adt)
1436 struct smp_resp *disc_resp;
1437 u8 *disc_req;
1438 int res;
1440 disc_resp = kzalloc(DISCOVER_RESP_SIZE, GFP_KERNEL);
1441 if (!disc_resp)
1442 return -ENOMEM;
1444 disc_req = kzalloc(DISCOVER_REQ_SIZE, GFP_KERNEL);
1445 if (disc_req) {
1446 disc_req[0] = SMP_REQUEST;
1447 disc_req[1] = SMP_DISCOVER;
1448 disc_req[9] = phy_id;
1449 } else {
1450 kfree(disc_resp);
1451 return -ENOMEM;
1453 res = isci_smp_execute_task(ihost, dev, disc_req, DISCOVER_REQ_SIZE,
1454 disc_resp, DISCOVER_RESP_SIZE);
1455 if (!res) {
1456 if (disc_resp->result != SMP_RESP_FUNC_ACC)
1457 res = disc_resp->result;
1458 else
1459 *adt = disc_resp->disc.attached_dev_type;
1461 kfree(disc_req);
1462 kfree(disc_resp);
1464 return res;
1467 static void isci_wait_for_smp_phy_reset(struct isci_remote_device *idev, int phy_num)
1469 struct domain_device *dev = idev->domain_dev;
1470 struct isci_port *iport = idev->isci_port;
1471 struct isci_host *ihost = iport->isci_host;
1472 int res, iteration = 0, attached_device_type;
1473 #define STP_WAIT_MSECS 25000
1474 unsigned long tmo = msecs_to_jiffies(STP_WAIT_MSECS);
1475 unsigned long deadline = jiffies + tmo;
1476 enum {
1477 SMP_PHYWAIT_PHYDOWN,
1478 SMP_PHYWAIT_PHYUP,
1479 SMP_PHYWAIT_DONE
1480 } phy_state = SMP_PHYWAIT_PHYDOWN;
1482 /* While there is time, wait for the phy to go away and come back */
1483 while (time_is_after_jiffies(deadline) && phy_state != SMP_PHYWAIT_DONE) {
1484 int event = atomic_read(&iport->event);
1486 ++iteration;
1488 tmo = wait_event_timeout(ihost->eventq,
1489 event != atomic_read(&iport->event) ||
1490 !test_bit(IPORT_BCN_BLOCKED, &iport->flags),
1491 tmo);
1492 /* link down, stop polling */
1493 if (!test_bit(IPORT_BCN_BLOCKED, &iport->flags))
1494 break;
1496 dev_dbg(&ihost->pdev->dev,
1497 "%s: iport %p, iteration %d,"
1498 " phase %d: time_remaining %lu, bcns = %d\n",
1499 __func__, iport, iteration, phy_state,
1500 tmo, test_bit(IPORT_BCN_PENDING, &iport->flags));
1502 res = isci_smp_get_phy_attached_dev_type(ihost, dev, phy_num,
1503 &attached_device_type);
1504 tmo = deadline - jiffies;
1506 if (res) {
1507 dev_dbg(&ihost->pdev->dev,
1508 "%s: iteration %d, phase %d:"
1509 " SMP error=%d, time_remaining=%lu\n",
1510 __func__, iteration, phy_state, res, tmo);
1511 break;
1513 dev_dbg(&ihost->pdev->dev,
1514 "%s: iport %p, iteration %d,"
1515 " phase %d: time_remaining %lu, bcns = %d, "
1516 "attdevtype = %x\n",
1517 __func__, iport, iteration, phy_state,
1518 tmo, test_bit(IPORT_BCN_PENDING, &iport->flags),
1519 attached_device_type);
1521 switch (phy_state) {
1522 case SMP_PHYWAIT_PHYDOWN:
1523 /* Has the device gone away? */
1524 if (!attached_device_type)
1525 phy_state = SMP_PHYWAIT_PHYUP;
1527 break;
1529 case SMP_PHYWAIT_PHYUP:
1530 /* Has the device come back? */
1531 if (attached_device_type)
1532 phy_state = SMP_PHYWAIT_DONE;
1533 break;
1535 case SMP_PHYWAIT_DONE:
1536 break;
1540 dev_dbg(&ihost->pdev->dev, "%s: done\n", __func__);
1543 static int isci_reset_device(struct isci_host *ihost,
1544 struct isci_remote_device *idev)
1546 struct sas_phy *phy = sas_find_local_phy(idev->domain_dev);
1547 struct isci_port *iport = idev->isci_port;
1548 enum sci_status status;
1549 unsigned long flags;
1550 int rc;
1552 dev_dbg(&ihost->pdev->dev, "%s: idev %p\n", __func__, idev);
1554 spin_lock_irqsave(&ihost->scic_lock, flags);
1555 status = sci_remote_device_reset(idev);
1556 if (status != SCI_SUCCESS) {
1557 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1559 dev_dbg(&ihost->pdev->dev,
1560 "%s: sci_remote_device_reset(%p) returned %d!\n",
1561 __func__, idev, status);
1563 return TMF_RESP_FUNC_FAILED;
1565 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1567 /* Make sure all pending requests are able to be fully terminated. */
1568 isci_device_clear_reset_pending(ihost, idev);
1570 /* If this is a device on an expander, disable BCN processing. */
1571 if (!scsi_is_sas_phy_local(phy))
1572 set_bit(IPORT_BCN_BLOCKED, &iport->flags);
1574 rc = sas_phy_reset(phy, true);
1576 /* Terminate in-progress I/O now. */
1577 isci_remote_device_nuke_requests(ihost, idev);
1579 /* Since all pending TCs have been cleaned, resume the RNC. */
1580 spin_lock_irqsave(&ihost->scic_lock, flags);
1581 status = sci_remote_device_reset_complete(idev);
1582 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1584 /* If this is a device on an expander, bring the phy back up. */
1585 if (!scsi_is_sas_phy_local(phy)) {
1586 /* A phy reset will cause the device to go away then reappear.
1587 * Since libsas will take action on incoming BCNs (eg. remove
1588 * a device going through an SMP phy-control driven reset),
1589 * we need to wait until the phy comes back up before letting
1590 * discovery proceed in libsas.
1592 isci_wait_for_smp_phy_reset(idev, phy->number);
1594 spin_lock_irqsave(&ihost->scic_lock, flags);
1595 isci_port_bcn_enable(ihost, idev->isci_port);
1596 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1599 if (status != SCI_SUCCESS) {
1600 dev_dbg(&ihost->pdev->dev,
1601 "%s: sci_remote_device_reset_complete(%p) "
1602 "returned %d!\n", __func__, idev, status);
1605 dev_dbg(&ihost->pdev->dev, "%s: idev %p complete.\n", __func__, idev);
1607 return rc;
1610 int isci_task_I_T_nexus_reset(struct domain_device *dev)
1612 struct isci_host *ihost = dev_to_ihost(dev);
1613 struct isci_remote_device *idev;
1614 unsigned long flags;
1615 int ret;
1617 spin_lock_irqsave(&ihost->scic_lock, flags);
1618 idev = isci_lookup_device(dev);
1619 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1621 if (!idev || !test_bit(IDEV_EH, &idev->flags)) {
1622 ret = TMF_RESP_FUNC_COMPLETE;
1623 goto out;
1626 ret = isci_reset_device(ihost, idev);
1627 out:
1628 isci_put_device(idev);
1629 return ret;
1632 int isci_bus_reset_handler(struct scsi_cmnd *cmd)
1634 struct domain_device *dev = sdev_to_domain_dev(cmd->device);
1635 struct isci_host *ihost = dev_to_ihost(dev);
1636 struct isci_remote_device *idev;
1637 unsigned long flags;
1638 int ret;
1640 spin_lock_irqsave(&ihost->scic_lock, flags);
1641 idev = isci_lookup_device(dev);
1642 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1644 if (!idev) {
1645 ret = TMF_RESP_FUNC_COMPLETE;
1646 goto out;
1649 ret = isci_reset_device(ihost, idev);
1650 out:
1651 isci_put_device(idev);
1652 return ret;