Merge branch 'akpm'
[linux-2.6/next.git] / drivers / spi / spi-atmel.c
blobd3bff424286f109c6fcb1f0956096e604b0c0459
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
23 #include <asm/io.h>
24 #include <mach/board.h>
25 #include <asm/gpio.h>
26 #include <mach/cpu.h>
28 /* SPI register offsets */
29 #define SPI_CR 0x0000
30 #define SPI_MR 0x0004
31 #define SPI_RDR 0x0008
32 #define SPI_TDR 0x000c
33 #define SPI_SR 0x0010
34 #define SPI_IER 0x0014
35 #define SPI_IDR 0x0018
36 #define SPI_IMR 0x001c
37 #define SPI_CSR0 0x0030
38 #define SPI_CSR1 0x0034
39 #define SPI_CSR2 0x0038
40 #define SPI_CSR3 0x003c
41 #define SPI_RPR 0x0100
42 #define SPI_RCR 0x0104
43 #define SPI_TPR 0x0108
44 #define SPI_TCR 0x010c
45 #define SPI_RNPR 0x0110
46 #define SPI_RNCR 0x0114
47 #define SPI_TNPR 0x0118
48 #define SPI_TNCR 0x011c
49 #define SPI_PTCR 0x0120
50 #define SPI_PTSR 0x0124
52 /* Bitfields in CR */
53 #define SPI_SPIEN_OFFSET 0
54 #define SPI_SPIEN_SIZE 1
55 #define SPI_SPIDIS_OFFSET 1
56 #define SPI_SPIDIS_SIZE 1
57 #define SPI_SWRST_OFFSET 7
58 #define SPI_SWRST_SIZE 1
59 #define SPI_LASTXFER_OFFSET 24
60 #define SPI_LASTXFER_SIZE 1
62 /* Bitfields in MR */
63 #define SPI_MSTR_OFFSET 0
64 #define SPI_MSTR_SIZE 1
65 #define SPI_PS_OFFSET 1
66 #define SPI_PS_SIZE 1
67 #define SPI_PCSDEC_OFFSET 2
68 #define SPI_PCSDEC_SIZE 1
69 #define SPI_FDIV_OFFSET 3
70 #define SPI_FDIV_SIZE 1
71 #define SPI_MODFDIS_OFFSET 4
72 #define SPI_MODFDIS_SIZE 1
73 #define SPI_LLB_OFFSET 7
74 #define SPI_LLB_SIZE 1
75 #define SPI_PCS_OFFSET 16
76 #define SPI_PCS_SIZE 4
77 #define SPI_DLYBCS_OFFSET 24
78 #define SPI_DLYBCS_SIZE 8
80 /* Bitfields in RDR */
81 #define SPI_RD_OFFSET 0
82 #define SPI_RD_SIZE 16
84 /* Bitfields in TDR */
85 #define SPI_TD_OFFSET 0
86 #define SPI_TD_SIZE 16
88 /* Bitfields in SR */
89 #define SPI_RDRF_OFFSET 0
90 #define SPI_RDRF_SIZE 1
91 #define SPI_TDRE_OFFSET 1
92 #define SPI_TDRE_SIZE 1
93 #define SPI_MODF_OFFSET 2
94 #define SPI_MODF_SIZE 1
95 #define SPI_OVRES_OFFSET 3
96 #define SPI_OVRES_SIZE 1
97 #define SPI_ENDRX_OFFSET 4
98 #define SPI_ENDRX_SIZE 1
99 #define SPI_ENDTX_OFFSET 5
100 #define SPI_ENDTX_SIZE 1
101 #define SPI_RXBUFF_OFFSET 6
102 #define SPI_RXBUFF_SIZE 1
103 #define SPI_TXBUFE_OFFSET 7
104 #define SPI_TXBUFE_SIZE 1
105 #define SPI_NSSR_OFFSET 8
106 #define SPI_NSSR_SIZE 1
107 #define SPI_TXEMPTY_OFFSET 9
108 #define SPI_TXEMPTY_SIZE 1
109 #define SPI_SPIENS_OFFSET 16
110 #define SPI_SPIENS_SIZE 1
112 /* Bitfields in CSR0 */
113 #define SPI_CPOL_OFFSET 0
114 #define SPI_CPOL_SIZE 1
115 #define SPI_NCPHA_OFFSET 1
116 #define SPI_NCPHA_SIZE 1
117 #define SPI_CSAAT_OFFSET 3
118 #define SPI_CSAAT_SIZE 1
119 #define SPI_BITS_OFFSET 4
120 #define SPI_BITS_SIZE 4
121 #define SPI_SCBR_OFFSET 8
122 #define SPI_SCBR_SIZE 8
123 #define SPI_DLYBS_OFFSET 16
124 #define SPI_DLYBS_SIZE 8
125 #define SPI_DLYBCT_OFFSET 24
126 #define SPI_DLYBCT_SIZE 8
128 /* Bitfields in RCR */
129 #define SPI_RXCTR_OFFSET 0
130 #define SPI_RXCTR_SIZE 16
132 /* Bitfields in TCR */
133 #define SPI_TXCTR_OFFSET 0
134 #define SPI_TXCTR_SIZE 16
136 /* Bitfields in RNCR */
137 #define SPI_RXNCR_OFFSET 0
138 #define SPI_RXNCR_SIZE 16
140 /* Bitfields in TNCR */
141 #define SPI_TXNCR_OFFSET 0
142 #define SPI_TXNCR_SIZE 16
144 /* Bitfields in PTCR */
145 #define SPI_RXTEN_OFFSET 0
146 #define SPI_RXTEN_SIZE 1
147 #define SPI_RXTDIS_OFFSET 1
148 #define SPI_RXTDIS_SIZE 1
149 #define SPI_TXTEN_OFFSET 8
150 #define SPI_TXTEN_SIZE 1
151 #define SPI_TXTDIS_OFFSET 9
152 #define SPI_TXTDIS_SIZE 1
154 /* Constants for BITS */
155 #define SPI_BITS_8_BPT 0
156 #define SPI_BITS_9_BPT 1
157 #define SPI_BITS_10_BPT 2
158 #define SPI_BITS_11_BPT 3
159 #define SPI_BITS_12_BPT 4
160 #define SPI_BITS_13_BPT 5
161 #define SPI_BITS_14_BPT 6
162 #define SPI_BITS_15_BPT 7
163 #define SPI_BITS_16_BPT 8
165 /* Bit manipulation macros */
166 #define SPI_BIT(name) \
167 (1 << SPI_##name##_OFFSET)
168 #define SPI_BF(name,value) \
169 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
170 #define SPI_BFEXT(name,value) \
171 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
172 #define SPI_BFINS(name,value,old) \
173 ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
174 | SPI_BF(name,value))
176 /* Register access macros */
177 #define spi_readl(port,reg) \
178 __raw_readl((port)->regs + SPI_##reg)
179 #define spi_writel(port,reg,value) \
180 __raw_writel((value), (port)->regs + SPI_##reg)
184 * The core SPI transfer engine just talks to a register bank to set up
185 * DMA transfers; transfer queue progress is driven by IRQs. The clock
186 * framework provides the base clock, subdivided for each spi_device.
188 struct atmel_spi {
189 spinlock_t lock;
191 void __iomem *regs;
192 int irq;
193 struct clk *clk;
194 struct platform_device *pdev;
195 struct spi_device *stay;
197 u8 stopping;
198 struct list_head queue;
199 struct spi_transfer *current_transfer;
200 unsigned long current_remaining_bytes;
201 struct spi_transfer *next_transfer;
202 unsigned long next_remaining_bytes;
204 void *buffer;
205 dma_addr_t buffer_dma;
208 /* Controller-specific per-slave state */
209 struct atmel_spi_device {
210 unsigned int npcs_pin;
211 u32 csr;
214 #define BUFFER_SIZE PAGE_SIZE
215 #define INVALID_DMA_ADDRESS 0xffffffff
218 * Version 2 of the SPI controller has
219 * - CR.LASTXFER
220 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
221 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
222 * - SPI_CSRx.CSAAT
223 * - SPI_CSRx.SBCR allows faster clocking
225 * We can determine the controller version by reading the VERSION
226 * register, but I haven't checked that it exists on all chips, and
227 * this is cheaper anyway.
229 static bool atmel_spi_is_v2(void)
231 return !cpu_is_at91rm9200();
235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
236 * they assume that spi slave device state will not change on deselect, so
237 * that automagic deselection is OK. ("NPCSx rises if no data is to be
238 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
239 * controllers have CSAAT and friends.
241 * Since the CSAAT functionality is a bit weird on newer controllers as
242 * well, we use GPIO to control nCSx pins on all controllers, updating
243 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
244 * support active-high chipselects despite the controller's belief that
245 * only active-low devices/systems exists.
247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
248 * right when driven with GPIO. ("Mode Fault does not allow more than one
249 * Master on Chip Select 0.") No workaround exists for that ... so for
250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
251 * and (c) will trigger that first erratum in some cases.
253 * TODO: Test if the atmel_spi_is_v2() branch below works on
254 * AT91RM9200 if we use some other register than CSR0. However, don't
255 * do this unconditionally since AP7000 has an errata where the BITS
256 * field in CSR0 overrides all other CSRs.
259 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
261 struct atmel_spi_device *asd = spi->controller_state;
262 unsigned active = spi->mode & SPI_CS_HIGH;
263 u32 mr;
265 if (atmel_spi_is_v2()) {
267 * Always use CSR0. This ensures that the clock
268 * switches to the correct idle polarity before we
269 * toggle the CS.
271 spi_writel(as, CSR0, asd->csr);
272 spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
273 | SPI_BIT(MSTR));
274 mr = spi_readl(as, MR);
275 gpio_set_value(asd->npcs_pin, active);
276 } else {
277 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
278 int i;
279 u32 csr;
281 /* Make sure clock polarity is correct */
282 for (i = 0; i < spi->master->num_chipselect; i++) {
283 csr = spi_readl(as, CSR0 + 4 * i);
284 if ((csr ^ cpol) & SPI_BIT(CPOL))
285 spi_writel(as, CSR0 + 4 * i,
286 csr ^ SPI_BIT(CPOL));
289 mr = spi_readl(as, MR);
290 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
291 if (spi->chip_select != 0)
292 gpio_set_value(asd->npcs_pin, active);
293 spi_writel(as, MR, mr);
296 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
297 asd->npcs_pin, active ? " (high)" : "",
298 mr);
301 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
303 struct atmel_spi_device *asd = spi->controller_state;
304 unsigned active = spi->mode & SPI_CS_HIGH;
305 u32 mr;
307 /* only deactivate *this* device; sometimes transfers to
308 * another device may be active when this routine is called.
310 mr = spi_readl(as, MR);
311 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
312 mr = SPI_BFINS(PCS, 0xf, mr);
313 spi_writel(as, MR, mr);
316 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
317 asd->npcs_pin, active ? " (low)" : "",
318 mr);
320 if (atmel_spi_is_v2() || spi->chip_select != 0)
321 gpio_set_value(asd->npcs_pin, !active);
324 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
325 struct spi_transfer *xfer)
327 return msg->transfers.prev == &xfer->transfer_list;
330 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
332 return xfer->delay_usecs == 0 && !xfer->cs_change;
335 static void atmel_spi_next_xfer_data(struct spi_master *master,
336 struct spi_transfer *xfer,
337 dma_addr_t *tx_dma,
338 dma_addr_t *rx_dma,
339 u32 *plen)
341 struct atmel_spi *as = spi_master_get_devdata(master);
342 u32 len = *plen;
344 /* use scratch buffer only when rx or tx data is unspecified */
345 if (xfer->rx_buf)
346 *rx_dma = xfer->rx_dma + xfer->len - *plen;
347 else {
348 *rx_dma = as->buffer_dma;
349 if (len > BUFFER_SIZE)
350 len = BUFFER_SIZE;
352 if (xfer->tx_buf)
353 *tx_dma = xfer->tx_dma + xfer->len - *plen;
354 else {
355 *tx_dma = as->buffer_dma;
356 if (len > BUFFER_SIZE)
357 len = BUFFER_SIZE;
358 memset(as->buffer, 0, len);
359 dma_sync_single_for_device(&as->pdev->dev,
360 as->buffer_dma, len, DMA_TO_DEVICE);
363 *plen = len;
367 * Submit next transfer for DMA.
368 * lock is held, spi irq is blocked
370 static void atmel_spi_next_xfer(struct spi_master *master,
371 struct spi_message *msg)
373 struct atmel_spi *as = spi_master_get_devdata(master);
374 struct spi_transfer *xfer;
375 u32 len, remaining;
376 u32 ieval;
377 dma_addr_t tx_dma, rx_dma;
379 if (!as->current_transfer)
380 xfer = list_entry(msg->transfers.next,
381 struct spi_transfer, transfer_list);
382 else if (!as->next_transfer)
383 xfer = list_entry(as->current_transfer->transfer_list.next,
384 struct spi_transfer, transfer_list);
385 else
386 xfer = NULL;
388 if (xfer) {
389 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
391 len = xfer->len;
392 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
393 remaining = xfer->len - len;
395 spi_writel(as, RPR, rx_dma);
396 spi_writel(as, TPR, tx_dma);
398 if (msg->spi->bits_per_word > 8)
399 len >>= 1;
400 spi_writel(as, RCR, len);
401 spi_writel(as, TCR, len);
403 dev_dbg(&msg->spi->dev,
404 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
405 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
406 xfer->rx_buf, xfer->rx_dma);
407 } else {
408 xfer = as->next_transfer;
409 remaining = as->next_remaining_bytes;
412 as->current_transfer = xfer;
413 as->current_remaining_bytes = remaining;
415 if (remaining > 0)
416 len = remaining;
417 else if (!atmel_spi_xfer_is_last(msg, xfer)
418 && atmel_spi_xfer_can_be_chained(xfer)) {
419 xfer = list_entry(xfer->transfer_list.next,
420 struct spi_transfer, transfer_list);
421 len = xfer->len;
422 } else
423 xfer = NULL;
425 as->next_transfer = xfer;
427 if (xfer) {
428 u32 total;
430 total = len;
431 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
432 as->next_remaining_bytes = total - len;
434 spi_writel(as, RNPR, rx_dma);
435 spi_writel(as, TNPR, tx_dma);
437 if (msg->spi->bits_per_word > 8)
438 len >>= 1;
439 spi_writel(as, RNCR, len);
440 spi_writel(as, TNCR, len);
442 dev_dbg(&msg->spi->dev,
443 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
444 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
445 xfer->rx_buf, xfer->rx_dma);
446 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
447 } else {
448 spi_writel(as, RNCR, 0);
449 spi_writel(as, TNCR, 0);
450 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
453 /* REVISIT: We're waiting for ENDRX before we start the next
454 * transfer because we need to handle some difficult timing
455 * issues otherwise. If we wait for ENDTX in one transfer and
456 * then starts waiting for ENDRX in the next, it's difficult
457 * to tell the difference between the ENDRX interrupt we're
458 * actually waiting for and the ENDRX interrupt of the
459 * previous transfer.
461 * It should be doable, though. Just not now...
463 spi_writel(as, IER, ieval);
464 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
467 static void atmel_spi_next_message(struct spi_master *master)
469 struct atmel_spi *as = spi_master_get_devdata(master);
470 struct spi_message *msg;
471 struct spi_device *spi;
473 BUG_ON(as->current_transfer);
475 msg = list_entry(as->queue.next, struct spi_message, queue);
476 spi = msg->spi;
478 dev_dbg(master->dev.parent, "start message %p for %s\n",
479 msg, dev_name(&spi->dev));
481 /* select chip if it's not still active */
482 if (as->stay) {
483 if (as->stay != spi) {
484 cs_deactivate(as, as->stay);
485 cs_activate(as, spi);
487 as->stay = NULL;
488 } else
489 cs_activate(as, spi);
491 atmel_spi_next_xfer(master, msg);
495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
496 * - The buffer is either valid for CPU access, else NULL
497 * - If the buffer is valid, so is its DMA address
499 * This driver manages the dma address unless message->is_dma_mapped.
501 static int
502 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
504 struct device *dev = &as->pdev->dev;
506 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
507 if (xfer->tx_buf) {
508 /* tx_buf is a const void* where we need a void * for the dma
509 * mapping */
510 void *nonconst_tx = (void *)xfer->tx_buf;
512 xfer->tx_dma = dma_map_single(dev,
513 nonconst_tx, xfer->len,
514 DMA_TO_DEVICE);
515 if (dma_mapping_error(dev, xfer->tx_dma))
516 return -ENOMEM;
518 if (xfer->rx_buf) {
519 xfer->rx_dma = dma_map_single(dev,
520 xfer->rx_buf, xfer->len,
521 DMA_FROM_DEVICE);
522 if (dma_mapping_error(dev, xfer->rx_dma)) {
523 if (xfer->tx_buf)
524 dma_unmap_single(dev,
525 xfer->tx_dma, xfer->len,
526 DMA_TO_DEVICE);
527 return -ENOMEM;
530 return 0;
533 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
534 struct spi_transfer *xfer)
536 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
537 dma_unmap_single(master->dev.parent, xfer->tx_dma,
538 xfer->len, DMA_TO_DEVICE);
539 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
540 dma_unmap_single(master->dev.parent, xfer->rx_dma,
541 xfer->len, DMA_FROM_DEVICE);
544 static void
545 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
546 struct spi_message *msg, int status, int stay)
548 if (!stay || status < 0)
549 cs_deactivate(as, msg->spi);
550 else
551 as->stay = msg->spi;
553 list_del(&msg->queue);
554 msg->status = status;
556 dev_dbg(master->dev.parent,
557 "xfer complete: %u bytes transferred\n",
558 msg->actual_length);
560 spin_unlock(&as->lock);
561 msg->complete(msg->context);
562 spin_lock(&as->lock);
564 as->current_transfer = NULL;
565 as->next_transfer = NULL;
567 /* continue if needed */
568 if (list_empty(&as->queue) || as->stopping)
569 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
570 else
571 atmel_spi_next_message(master);
574 static irqreturn_t
575 atmel_spi_interrupt(int irq, void *dev_id)
577 struct spi_master *master = dev_id;
578 struct atmel_spi *as = spi_master_get_devdata(master);
579 struct spi_message *msg;
580 struct spi_transfer *xfer;
581 u32 status, pending, imr;
582 int ret = IRQ_NONE;
584 spin_lock(&as->lock);
586 xfer = as->current_transfer;
587 msg = list_entry(as->queue.next, struct spi_message, queue);
589 imr = spi_readl(as, IMR);
590 status = spi_readl(as, SR);
591 pending = status & imr;
593 if (pending & SPI_BIT(OVRES)) {
594 int timeout;
596 ret = IRQ_HANDLED;
598 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
599 | SPI_BIT(OVRES)));
602 * When we get an overrun, we disregard the current
603 * transfer. Data will not be copied back from any
604 * bounce buffer and msg->actual_len will not be
605 * updated with the last xfer.
607 * We will also not process any remaning transfers in
608 * the message.
610 * First, stop the transfer and unmap the DMA buffers.
612 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
613 if (!msg->is_dma_mapped)
614 atmel_spi_dma_unmap_xfer(master, xfer);
616 /* REVISIT: udelay in irq is unfriendly */
617 if (xfer->delay_usecs)
618 udelay(xfer->delay_usecs);
620 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
621 spi_readl(as, TCR), spi_readl(as, RCR));
624 * Clean up DMA registers and make sure the data
625 * registers are empty.
627 spi_writel(as, RNCR, 0);
628 spi_writel(as, TNCR, 0);
629 spi_writel(as, RCR, 0);
630 spi_writel(as, TCR, 0);
631 for (timeout = 1000; timeout; timeout--)
632 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
633 break;
634 if (!timeout)
635 dev_warn(master->dev.parent,
636 "timeout waiting for TXEMPTY");
637 while (spi_readl(as, SR) & SPI_BIT(RDRF))
638 spi_readl(as, RDR);
640 /* Clear any overrun happening while cleaning up */
641 spi_readl(as, SR);
643 atmel_spi_msg_done(master, as, msg, -EIO, 0);
644 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
645 ret = IRQ_HANDLED;
647 spi_writel(as, IDR, pending);
649 if (as->current_remaining_bytes == 0) {
650 msg->actual_length += xfer->len;
652 if (!msg->is_dma_mapped)
653 atmel_spi_dma_unmap_xfer(master, xfer);
655 /* REVISIT: udelay in irq is unfriendly */
656 if (xfer->delay_usecs)
657 udelay(xfer->delay_usecs);
659 if (atmel_spi_xfer_is_last(msg, xfer)) {
660 /* report completed message */
661 atmel_spi_msg_done(master, as, msg, 0,
662 xfer->cs_change);
663 } else {
664 if (xfer->cs_change) {
665 cs_deactivate(as, msg->spi);
666 udelay(1);
667 cs_activate(as, msg->spi);
671 * Not done yet. Submit the next transfer.
673 * FIXME handle protocol options for xfer
675 atmel_spi_next_xfer(master, msg);
677 } else {
679 * Keep going, we still have data to send in
680 * the current transfer.
682 atmel_spi_next_xfer(master, msg);
686 spin_unlock(&as->lock);
688 return ret;
691 static int atmel_spi_setup(struct spi_device *spi)
693 struct atmel_spi *as;
694 struct atmel_spi_device *asd;
695 u32 scbr, csr;
696 unsigned int bits = spi->bits_per_word;
697 unsigned long bus_hz;
698 unsigned int npcs_pin;
699 int ret;
701 as = spi_master_get_devdata(spi->master);
703 if (as->stopping)
704 return -ESHUTDOWN;
706 if (spi->chip_select > spi->master->num_chipselect) {
707 dev_dbg(&spi->dev,
708 "setup: invalid chipselect %u (%u defined)\n",
709 spi->chip_select, spi->master->num_chipselect);
710 return -EINVAL;
713 if (bits < 8 || bits > 16) {
714 dev_dbg(&spi->dev,
715 "setup: invalid bits_per_word %u (8 to 16)\n",
716 bits);
717 return -EINVAL;
720 /* see notes above re chipselect */
721 if (!atmel_spi_is_v2()
722 && spi->chip_select == 0
723 && (spi->mode & SPI_CS_HIGH)) {
724 dev_dbg(&spi->dev, "setup: can't be active-high\n");
725 return -EINVAL;
728 /* v1 chips start out at half the peripheral bus speed. */
729 bus_hz = clk_get_rate(as->clk);
730 if (!atmel_spi_is_v2())
731 bus_hz /= 2;
733 if (spi->max_speed_hz) {
735 * Calculate the lowest divider that satisfies the
736 * constraint, assuming div32/fdiv/mbz == 0.
738 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
741 * If the resulting divider doesn't fit into the
742 * register bitfield, we can't satisfy the constraint.
744 if (scbr >= (1 << SPI_SCBR_SIZE)) {
745 dev_dbg(&spi->dev,
746 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
747 spi->max_speed_hz, scbr, bus_hz/255);
748 return -EINVAL;
750 } else
751 /* speed zero means "as slow as possible" */
752 scbr = 0xff;
754 csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
755 if (spi->mode & SPI_CPOL)
756 csr |= SPI_BIT(CPOL);
757 if (!(spi->mode & SPI_CPHA))
758 csr |= SPI_BIT(NCPHA);
760 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
762 * DLYBCT would add delays between words, slowing down transfers.
763 * It could potentially be useful to cope with DMA bottlenecks, but
764 * in those cases it's probably best to just use a lower bitrate.
766 csr |= SPI_BF(DLYBS, 0);
767 csr |= SPI_BF(DLYBCT, 0);
769 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
770 npcs_pin = (unsigned int)spi->controller_data;
771 asd = spi->controller_state;
772 if (!asd) {
773 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
774 if (!asd)
775 return -ENOMEM;
777 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
778 if (ret) {
779 kfree(asd);
780 return ret;
783 asd->npcs_pin = npcs_pin;
784 spi->controller_state = asd;
785 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
786 } else {
787 unsigned long flags;
789 spin_lock_irqsave(&as->lock, flags);
790 if (as->stay == spi)
791 as->stay = NULL;
792 cs_deactivate(as, spi);
793 spin_unlock_irqrestore(&as->lock, flags);
796 asd->csr = csr;
798 dev_dbg(&spi->dev,
799 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
800 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
802 if (!atmel_spi_is_v2())
803 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
805 return 0;
808 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
810 struct atmel_spi *as;
811 struct spi_transfer *xfer;
812 unsigned long flags;
813 struct device *controller = spi->master->dev.parent;
814 u8 bits;
815 struct atmel_spi_device *asd;
817 as = spi_master_get_devdata(spi->master);
819 dev_dbg(controller, "new message %p submitted for %s\n",
820 msg, dev_name(&spi->dev));
822 if (unlikely(list_empty(&msg->transfers)))
823 return -EINVAL;
825 if (as->stopping)
826 return -ESHUTDOWN;
828 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
829 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
830 dev_dbg(&spi->dev, "missing rx or tx buf\n");
831 return -EINVAL;
834 if (xfer->bits_per_word) {
835 asd = spi->controller_state;
836 bits = (asd->csr >> 4) & 0xf;
837 if (bits != xfer->bits_per_word - 8) {
838 dev_dbg(&spi->dev, "you can't yet change "
839 "bits_per_word in transfers\n");
840 return -ENOPROTOOPT;
844 /* FIXME implement these protocol options!! */
845 if (xfer->speed_hz) {
846 dev_dbg(&spi->dev, "no protocol options yet\n");
847 return -ENOPROTOOPT;
851 * DMA map early, for performance (empties dcache ASAP) and
852 * better fault reporting. This is a DMA-only driver.
854 * NOTE that if dma_unmap_single() ever starts to do work on
855 * platforms supported by this driver, we would need to clean
856 * up mappings for previously-mapped transfers.
858 if (!msg->is_dma_mapped) {
859 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
860 return -ENOMEM;
864 #ifdef VERBOSE
865 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
866 dev_dbg(controller,
867 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
868 xfer, xfer->len,
869 xfer->tx_buf, xfer->tx_dma,
870 xfer->rx_buf, xfer->rx_dma);
872 #endif
874 msg->status = -EINPROGRESS;
875 msg->actual_length = 0;
877 spin_lock_irqsave(&as->lock, flags);
878 list_add_tail(&msg->queue, &as->queue);
879 if (!as->current_transfer)
880 atmel_spi_next_message(spi->master);
881 spin_unlock_irqrestore(&as->lock, flags);
883 return 0;
886 static void atmel_spi_cleanup(struct spi_device *spi)
888 struct atmel_spi *as = spi_master_get_devdata(spi->master);
889 struct atmel_spi_device *asd = spi->controller_state;
890 unsigned gpio = (unsigned) spi->controller_data;
891 unsigned long flags;
893 if (!asd)
894 return;
896 spin_lock_irqsave(&as->lock, flags);
897 if (as->stay == spi) {
898 as->stay = NULL;
899 cs_deactivate(as, spi);
901 spin_unlock_irqrestore(&as->lock, flags);
903 spi->controller_state = NULL;
904 gpio_free(gpio);
905 kfree(asd);
908 /*-------------------------------------------------------------------------*/
910 static int __init atmel_spi_probe(struct platform_device *pdev)
912 struct resource *regs;
913 int irq;
914 struct clk *clk;
915 int ret;
916 struct spi_master *master;
917 struct atmel_spi *as;
919 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
920 if (!regs)
921 return -ENXIO;
923 irq = platform_get_irq(pdev, 0);
924 if (irq < 0)
925 return irq;
927 clk = clk_get(&pdev->dev, "spi_clk");
928 if (IS_ERR(clk))
929 return PTR_ERR(clk);
931 /* setup spi core then atmel-specific driver state */
932 ret = -ENOMEM;
933 master = spi_alloc_master(&pdev->dev, sizeof *as);
934 if (!master)
935 goto out_free;
937 /* the spi->mode bits understood by this driver: */
938 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
940 master->bus_num = pdev->id;
941 master->num_chipselect = 4;
942 master->setup = atmel_spi_setup;
943 master->transfer = atmel_spi_transfer;
944 master->cleanup = atmel_spi_cleanup;
945 platform_set_drvdata(pdev, master);
947 as = spi_master_get_devdata(master);
950 * Scratch buffer is used for throwaway rx and tx data.
951 * It's coherent to minimize dcache pollution.
953 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
954 &as->buffer_dma, GFP_KERNEL);
955 if (!as->buffer)
956 goto out_free;
958 spin_lock_init(&as->lock);
959 INIT_LIST_HEAD(&as->queue);
960 as->pdev = pdev;
961 as->regs = ioremap(regs->start, resource_size(regs));
962 if (!as->regs)
963 goto out_free_buffer;
964 as->irq = irq;
965 as->clk = clk;
967 ret = request_irq(irq, atmel_spi_interrupt, 0,
968 dev_name(&pdev->dev), master);
969 if (ret)
970 goto out_unmap_regs;
972 /* Initialize the hardware */
973 clk_enable(clk);
974 spi_writel(as, CR, SPI_BIT(SWRST));
975 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
976 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
977 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
978 spi_writel(as, CR, SPI_BIT(SPIEN));
980 /* go! */
981 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
982 (unsigned long)regs->start, irq);
984 ret = spi_register_master(master);
985 if (ret)
986 goto out_reset_hw;
988 return 0;
990 out_reset_hw:
991 spi_writel(as, CR, SPI_BIT(SWRST));
992 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
993 clk_disable(clk);
994 free_irq(irq, master);
995 out_unmap_regs:
996 iounmap(as->regs);
997 out_free_buffer:
998 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
999 as->buffer_dma);
1000 out_free:
1001 clk_put(clk);
1002 spi_master_put(master);
1003 return ret;
1006 static int __exit atmel_spi_remove(struct platform_device *pdev)
1008 struct spi_master *master = platform_get_drvdata(pdev);
1009 struct atmel_spi *as = spi_master_get_devdata(master);
1010 struct spi_message *msg;
1012 /* reset the hardware and block queue progress */
1013 spin_lock_irq(&as->lock);
1014 as->stopping = 1;
1015 spi_writel(as, CR, SPI_BIT(SWRST));
1016 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017 spi_readl(as, SR);
1018 spin_unlock_irq(&as->lock);
1020 /* Terminate remaining queued transfers */
1021 list_for_each_entry(msg, &as->queue, queue) {
1022 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023 * but we shouldn't depend on that...
1025 msg->status = -ESHUTDOWN;
1026 msg->complete(msg->context);
1029 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030 as->buffer_dma);
1032 clk_disable(as->clk);
1033 clk_put(as->clk);
1034 free_irq(as->irq, master);
1035 iounmap(as->regs);
1037 spi_unregister_master(master);
1039 return 0;
1042 #ifdef CONFIG_PM
1044 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1046 struct spi_master *master = platform_get_drvdata(pdev);
1047 struct atmel_spi *as = spi_master_get_devdata(master);
1049 clk_disable(as->clk);
1050 return 0;
1053 static int atmel_spi_resume(struct platform_device *pdev)
1055 struct spi_master *master = platform_get_drvdata(pdev);
1056 struct atmel_spi *as = spi_master_get_devdata(master);
1058 clk_enable(as->clk);
1059 return 0;
1062 #else
1063 #define atmel_spi_suspend NULL
1064 #define atmel_spi_resume NULL
1065 #endif
1068 static struct platform_driver atmel_spi_driver = {
1069 .driver = {
1070 .name = "atmel_spi",
1071 .owner = THIS_MODULE,
1073 .suspend = atmel_spi_suspend,
1074 .resume = atmel_spi_resume,
1075 .remove = __exit_p(atmel_spi_remove),
1078 static int __init atmel_spi_init(void)
1080 return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
1082 module_init(atmel_spi_init);
1084 static void __exit atmel_spi_exit(void)
1086 platform_driver_unregister(&atmel_spi_driver);
1088 module_exit(atmel_spi_exit);
1090 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1091 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1092 MODULE_LICENSE("GPL");
1093 MODULE_ALIAS("platform:atmel_spi");