Merge branch 'akpm'
[linux-2.6/next.git] / fs / ubifs / sb.c
blob93d938ad3d2a74ec74d56a5d64aba6860a44eb10
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS superblock. The superblock is stored at the first
25 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
26 * change it. The superblock node mostly contains geometry information.
29 #include "ubifs.h"
30 #include <linux/slab.h>
31 #include <linux/random.h>
32 #include <linux/math64.h>
35 * Default journal size in logical eraseblocks as a percent of total
36 * flash size.
38 #define DEFAULT_JNL_PERCENT 5
40 /* Default maximum journal size in bytes */
41 #define DEFAULT_MAX_JNL (32*1024*1024)
43 /* Default indexing tree fanout */
44 #define DEFAULT_FANOUT 8
46 /* Default number of data journal heads */
47 #define DEFAULT_JHEADS_CNT 1
49 /* Default positions of different LEBs in the main area */
50 #define DEFAULT_IDX_LEB 0
51 #define DEFAULT_DATA_LEB 1
52 #define DEFAULT_GC_LEB 2
54 /* Default number of LEB numbers in LPT's save table */
55 #define DEFAULT_LSAVE_CNT 256
57 /* Default reserved pool size as a percent of maximum free space */
58 #define DEFAULT_RP_PERCENT 5
60 /* The default maximum size of reserved pool in bytes */
61 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
63 /* Default time granularity in nanoseconds */
64 #define DEFAULT_TIME_GRAN 1000000000
66 /**
67 * create_default_filesystem - format empty UBI volume.
68 * @c: UBIFS file-system description object
70 * This function creates default empty file-system. Returns zero in case of
71 * success and a negative error code in case of failure.
73 static int create_default_filesystem(struct ubifs_info *c)
75 struct ubifs_sb_node *sup;
76 struct ubifs_mst_node *mst;
77 struct ubifs_idx_node *idx;
78 struct ubifs_branch *br;
79 struct ubifs_ino_node *ino;
80 struct ubifs_cs_node *cs;
81 union ubifs_key key;
82 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
83 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
84 int min_leb_cnt = UBIFS_MIN_LEB_CNT;
85 long long tmp64, main_bytes;
86 __le64 tmp_le64;
88 /* Some functions called from here depend on the @c->key_len filed */
89 c->key_len = UBIFS_SK_LEN;
92 * First of all, we have to calculate default file-system geometry -
93 * log size, journal size, etc.
95 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
96 /* We can first multiply then divide and have no overflow */
97 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
98 else
99 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
101 if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
102 jnl_lebs = UBIFS_MIN_JNL_LEBS;
103 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
104 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
107 * The log should be large enough to fit reference nodes for all bud
108 * LEBs. Because buds do not have to start from the beginning of LEBs
109 * (half of the LEB may contain committed data), the log should
110 * generally be larger, make it twice as large.
112 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
113 log_lebs = tmp / c->leb_size;
114 /* Plus one LEB reserved for commit */
115 log_lebs += 1;
116 if (c->leb_cnt - min_leb_cnt > 8) {
117 /* And some extra space to allow writes while committing */
118 log_lebs += 1;
119 min_leb_cnt += 1;
122 max_buds = jnl_lebs - log_lebs;
123 if (max_buds < UBIFS_MIN_BUD_LEBS)
124 max_buds = UBIFS_MIN_BUD_LEBS;
127 * Orphan nodes are stored in a separate area. One node can store a lot
128 * of orphan inode numbers, but when new orphan comes we just add a new
129 * orphan node. At some point the nodes are consolidated into one
130 * orphan node.
132 orph_lebs = UBIFS_MIN_ORPH_LEBS;
133 #ifdef CONFIG_UBIFS_FS_DEBUG
134 if (c->leb_cnt - min_leb_cnt > 1)
136 * For debugging purposes it is better to have at least 2
137 * orphan LEBs, because the orphan subsystem would need to do
138 * consolidations and would be stressed more.
140 orph_lebs += 1;
141 #endif
143 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
144 main_lebs -= orph_lebs;
146 lpt_first = UBIFS_LOG_LNUM + log_lebs;
147 c->lsave_cnt = DEFAULT_LSAVE_CNT;
148 c->max_leb_cnt = c->leb_cnt;
149 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
150 &big_lpt);
151 if (err)
152 return err;
154 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
155 lpt_first + lpt_lebs - 1);
157 main_first = c->leb_cnt - main_lebs;
159 /* Create default superblock */
160 tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
161 sup = kzalloc(tmp, GFP_KERNEL);
162 if (!sup)
163 return -ENOMEM;
165 tmp64 = (long long)max_buds * c->leb_size;
166 if (big_lpt)
167 sup_flags |= UBIFS_FLG_BIGLPT;
169 sup->ch.node_type = UBIFS_SB_NODE;
170 sup->key_hash = UBIFS_KEY_HASH_R5;
171 sup->flags = cpu_to_le32(sup_flags);
172 sup->min_io_size = cpu_to_le32(c->min_io_size);
173 sup->leb_size = cpu_to_le32(c->leb_size);
174 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
175 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
176 sup->max_bud_bytes = cpu_to_le64(tmp64);
177 sup->log_lebs = cpu_to_le32(log_lebs);
178 sup->lpt_lebs = cpu_to_le32(lpt_lebs);
179 sup->orph_lebs = cpu_to_le32(orph_lebs);
180 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT);
181 sup->fanout = cpu_to_le32(DEFAULT_FANOUT);
182 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt);
183 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
184 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
185 if (c->mount_opts.override_compr)
186 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
187 else
188 sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
190 generate_random_uuid(sup->uuid);
192 main_bytes = (long long)main_lebs * c->leb_size;
193 tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
194 if (tmp64 > DEFAULT_MAX_RP_SIZE)
195 tmp64 = DEFAULT_MAX_RP_SIZE;
196 sup->rp_size = cpu_to_le64(tmp64);
197 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
199 err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0, UBI_LONGTERM);
200 kfree(sup);
201 if (err)
202 return err;
204 dbg_gen("default superblock created at LEB 0:0");
206 /* Create default master node */
207 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
208 if (!mst)
209 return -ENOMEM;
211 mst->ch.node_type = UBIFS_MST_NODE;
212 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
213 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
214 mst->cmt_no = 0;
215 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
216 mst->root_offs = 0;
217 tmp = ubifs_idx_node_sz(c, 1);
218 mst->root_len = cpu_to_le32(tmp);
219 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB);
220 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
221 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size));
222 mst->index_size = cpu_to_le64(ALIGN(tmp, 8));
223 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum);
224 mst->lpt_offs = cpu_to_le32(c->lpt_offs);
225 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum);
226 mst->nhead_offs = cpu_to_le32(c->nhead_offs);
227 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum);
228 mst->ltab_offs = cpu_to_le32(c->ltab_offs);
229 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum);
230 mst->lsave_offs = cpu_to_le32(c->lsave_offs);
231 mst->lscan_lnum = cpu_to_le32(main_first);
232 mst->empty_lebs = cpu_to_le32(main_lebs - 2);
233 mst->idx_lebs = cpu_to_le32(1);
234 mst->leb_cnt = cpu_to_le32(c->leb_cnt);
236 /* Calculate lprops statistics */
237 tmp64 = main_bytes;
238 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
239 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
240 mst->total_free = cpu_to_le64(tmp64);
242 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
243 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
244 UBIFS_INO_NODE_SZ;
245 tmp64 += ino_waste;
246 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
247 mst->total_dirty = cpu_to_le64(tmp64);
249 /* The indexing LEB does not contribute to dark space */
250 tmp64 = (c->main_lebs - 1) * c->dark_wm;
251 mst->total_dark = cpu_to_le64(tmp64);
253 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
255 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0,
256 UBI_UNKNOWN);
257 if (err) {
258 kfree(mst);
259 return err;
261 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, 0,
262 UBI_UNKNOWN);
263 kfree(mst);
264 if (err)
265 return err;
267 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
269 /* Create the root indexing node */
270 tmp = ubifs_idx_node_sz(c, 1);
271 idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
272 if (!idx)
273 return -ENOMEM;
275 c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
276 c->key_hash = key_r5_hash;
278 idx->ch.node_type = UBIFS_IDX_NODE;
279 idx->child_cnt = cpu_to_le16(1);
280 ino_key_init(c, &key, UBIFS_ROOT_INO);
281 br = ubifs_idx_branch(c, idx, 0);
282 key_write_idx(c, &key, &br->key);
283 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
284 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ);
285 err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0,
286 UBI_UNKNOWN);
287 kfree(idx);
288 if (err)
289 return err;
291 dbg_gen("default root indexing node created LEB %d:0",
292 main_first + DEFAULT_IDX_LEB);
294 /* Create default root inode */
295 tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
296 ino = kzalloc(tmp, GFP_KERNEL);
297 if (!ino)
298 return -ENOMEM;
300 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
301 ino->ch.node_type = UBIFS_INO_NODE;
302 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
303 ino->nlink = cpu_to_le32(2);
304 tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
305 ino->atime_sec = tmp_le64;
306 ino->ctime_sec = tmp_le64;
307 ino->mtime_sec = tmp_le64;
308 ino->atime_nsec = 0;
309 ino->ctime_nsec = 0;
310 ino->mtime_nsec = 0;
311 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
312 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
314 /* Set compression enabled by default */
315 ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
317 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
318 main_first + DEFAULT_DATA_LEB, 0,
319 UBI_UNKNOWN);
320 kfree(ino);
321 if (err)
322 return err;
324 dbg_gen("root inode created at LEB %d:0",
325 main_first + DEFAULT_DATA_LEB);
328 * The first node in the log has to be the commit start node. This is
329 * always the case during normal file-system operation. Write a fake
330 * commit start node to the log.
332 tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
333 cs = kzalloc(tmp, GFP_KERNEL);
334 if (!cs)
335 return -ENOMEM;
337 cs->ch.node_type = UBIFS_CS_NODE;
338 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM,
339 0, UBI_UNKNOWN);
340 kfree(cs);
342 ubifs_msg("default file-system created");
343 return 0;
347 * validate_sb - validate superblock node.
348 * @c: UBIFS file-system description object
349 * @sup: superblock node
351 * This function validates superblock node @sup. Since most of data was read
352 * from the superblock and stored in @c, the function validates fields in @c
353 * instead. Returns zero in case of success and %-EINVAL in case of validation
354 * failure.
356 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
358 long long max_bytes;
359 int err = 1, min_leb_cnt;
361 if (!c->key_hash) {
362 err = 2;
363 goto failed;
366 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
367 err = 3;
368 goto failed;
371 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
372 ubifs_err("min. I/O unit mismatch: %d in superblock, %d real",
373 le32_to_cpu(sup->min_io_size), c->min_io_size);
374 goto failed;
377 if (le32_to_cpu(sup->leb_size) != c->leb_size) {
378 ubifs_err("LEB size mismatch: %d in superblock, %d real",
379 le32_to_cpu(sup->leb_size), c->leb_size);
380 goto failed;
383 if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
384 c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
385 c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
386 c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
387 err = 4;
388 goto failed;
392 * Calculate minimum allowed amount of main area LEBs. This is very
393 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
394 * have just read from the superblock.
396 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
397 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
399 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
400 ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, "
401 "%d minimum required", c->leb_cnt, c->vi.size,
402 min_leb_cnt);
403 goto failed;
406 if (c->max_leb_cnt < c->leb_cnt) {
407 ubifs_err("max. LEB count %d less than LEB count %d",
408 c->max_leb_cnt, c->leb_cnt);
409 goto failed;
412 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
413 err = 7;
414 goto failed;
417 if (c->max_bud_bytes < (long long)c->leb_size * UBIFS_MIN_BUD_LEBS ||
418 c->max_bud_bytes > (long long)c->leb_size * c->main_lebs) {
419 err = 8;
420 goto failed;
423 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
424 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
425 err = 9;
426 goto failed;
429 if (c->fanout < UBIFS_MIN_FANOUT ||
430 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
431 err = 10;
432 goto failed;
435 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
436 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
437 c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
438 err = 11;
439 goto failed;
442 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
443 c->orph_lebs + c->main_lebs != c->leb_cnt) {
444 err = 12;
445 goto failed;
448 if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
449 err = 13;
450 goto failed;
453 max_bytes = c->main_lebs * (long long)c->leb_size;
454 if (c->rp_size < 0 || max_bytes < c->rp_size) {
455 err = 14;
456 goto failed;
459 if (le32_to_cpu(sup->time_gran) > 1000000000 ||
460 le32_to_cpu(sup->time_gran) < 1) {
461 err = 15;
462 goto failed;
465 return 0;
467 failed:
468 ubifs_err("bad superblock, error %d", err);
469 dbg_dump_node(c, sup);
470 return -EINVAL;
474 * ubifs_read_sb_node - read superblock node.
475 * @c: UBIFS file-system description object
477 * This function returns a pointer to the superblock node or a negative error
478 * code. Note, the user of this function is responsible of kfree()'ing the
479 * returned superblock buffer.
481 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
483 struct ubifs_sb_node *sup;
484 int err;
486 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
487 if (!sup)
488 return ERR_PTR(-ENOMEM);
490 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
491 UBIFS_SB_LNUM, 0);
492 if (err) {
493 kfree(sup);
494 return ERR_PTR(err);
497 return sup;
501 * ubifs_write_sb_node - write superblock node.
502 * @c: UBIFS file-system description object
503 * @sup: superblock node read with 'ubifs_read_sb_node()'
505 * This function returns %0 on success and a negative error code on failure.
507 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
509 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
511 ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
512 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len, UBI_LONGTERM);
516 * ubifs_read_superblock - read superblock.
517 * @c: UBIFS file-system description object
519 * This function finds, reads and checks the superblock. If an empty UBI volume
520 * is being mounted, this function creates default superblock. Returns zero in
521 * case of success, and a negative error code in case of failure.
523 int ubifs_read_superblock(struct ubifs_info *c)
525 int err, sup_flags;
526 struct ubifs_sb_node *sup;
528 if (c->empty) {
529 err = create_default_filesystem(c);
530 if (err)
531 return err;
534 sup = ubifs_read_sb_node(c);
535 if (IS_ERR(sup))
536 return PTR_ERR(sup);
538 c->fmt_version = le32_to_cpu(sup->fmt_version);
539 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
542 * The software supports all previous versions but not future versions,
543 * due to the unavailability of time-travelling equipment.
545 if (c->fmt_version > UBIFS_FORMAT_VERSION) {
546 ubifs_assert(!c->ro_media || c->ro_mount);
547 if (!c->ro_mount ||
548 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
549 ubifs_err("on-flash format version is w%d/r%d, but "
550 "software only supports up to version "
551 "w%d/r%d", c->fmt_version,
552 c->ro_compat_version, UBIFS_FORMAT_VERSION,
553 UBIFS_RO_COMPAT_VERSION);
554 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
555 ubifs_msg("only R/O mounting is possible");
556 err = -EROFS;
557 } else
558 err = -EINVAL;
559 goto out;
563 * The FS is mounted R/O, and the media format is
564 * R/O-compatible with the UBIFS implementation, so we can
565 * mount.
567 c->rw_incompat = 1;
570 if (c->fmt_version < 3) {
571 ubifs_err("on-flash format version %d is not supported",
572 c->fmt_version);
573 err = -EINVAL;
574 goto out;
577 switch (sup->key_hash) {
578 case UBIFS_KEY_HASH_R5:
579 c->key_hash = key_r5_hash;
580 c->key_hash_type = UBIFS_KEY_HASH_R5;
581 break;
583 case UBIFS_KEY_HASH_TEST:
584 c->key_hash = key_test_hash;
585 c->key_hash_type = UBIFS_KEY_HASH_TEST;
586 break;
589 c->key_fmt = sup->key_fmt;
591 switch (c->key_fmt) {
592 case UBIFS_SIMPLE_KEY_FMT:
593 c->key_len = UBIFS_SK_LEN;
594 break;
595 default:
596 ubifs_err("unsupported key format");
597 err = -EINVAL;
598 goto out;
601 c->leb_cnt = le32_to_cpu(sup->leb_cnt);
602 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt);
603 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
604 c->log_lebs = le32_to_cpu(sup->log_lebs);
605 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs);
606 c->orph_lebs = le32_to_cpu(sup->orph_lebs);
607 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
608 c->fanout = le32_to_cpu(sup->fanout);
609 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt);
610 c->rp_size = le64_to_cpu(sup->rp_size);
611 c->rp_uid = le32_to_cpu(sup->rp_uid);
612 c->rp_gid = le32_to_cpu(sup->rp_gid);
613 sup_flags = le32_to_cpu(sup->flags);
614 if (!c->mount_opts.override_compr)
615 c->default_compr = le16_to_cpu(sup->default_compr);
617 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
618 memcpy(&c->uuid, &sup->uuid, 16);
619 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
620 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
622 /* Automatically increase file system size to the maximum size */
623 c->old_leb_cnt = c->leb_cnt;
624 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
625 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
626 if (c->ro_mount)
627 dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
628 c->old_leb_cnt, c->leb_cnt);
629 else {
630 dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
631 c->old_leb_cnt, c->leb_cnt);
632 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
633 err = ubifs_write_sb_node(c, sup);
634 if (err)
635 goto out;
636 c->old_leb_cnt = c->leb_cnt;
640 c->log_bytes = (long long)c->log_lebs * c->leb_size;
641 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
642 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
643 c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
644 c->orph_first = c->lpt_last + 1;
645 c->orph_last = c->orph_first + c->orph_lebs - 1;
646 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
647 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
648 c->main_first = c->leb_cnt - c->main_lebs;
650 err = validate_sb(c, sup);
651 out:
652 kfree(sup);
653 return err;
657 * fixup_leb - fixup/unmap an LEB containing free space.
658 * @c: UBIFS file-system description object
659 * @lnum: the LEB number to fix up
660 * @len: number of used bytes in LEB (starting at offset 0)
662 * This function reads the contents of the given LEB number @lnum, then fixes
663 * it up, so that empty min. I/O units in the end of LEB are actually erased on
664 * flash (rather than being just all-0xff real data). If the LEB is completely
665 * empty, it is simply unmapped.
667 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
669 int err;
671 ubifs_assert(len >= 0);
672 ubifs_assert(len % c->min_io_size == 0);
673 ubifs_assert(len < c->leb_size);
675 if (len == 0) {
676 dbg_mnt("unmap empty LEB %d", lnum);
677 return ubifs_leb_unmap(c, lnum);
680 dbg_mnt("fixup LEB %d, data len %d", lnum, len);
681 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
682 if (err)
683 return err;
685 return ubifs_leb_change(c, lnum, c->sbuf, len, UBI_UNKNOWN);
689 * fixup_free_space - find & remap all LEBs containing free space.
690 * @c: UBIFS file-system description object
692 * This function walks through all LEBs in the filesystem and fiexes up those
693 * containing free/empty space.
695 static int fixup_free_space(struct ubifs_info *c)
697 int lnum, err = 0;
698 struct ubifs_lprops *lprops;
700 ubifs_get_lprops(c);
702 /* Fixup LEBs in the master area */
703 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
704 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
705 if (err)
706 goto out;
709 /* Unmap unused log LEBs */
710 lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
711 while (lnum != c->ltail_lnum) {
712 err = fixup_leb(c, lnum, 0);
713 if (err)
714 goto out;
715 lnum = ubifs_next_log_lnum(c, lnum);
718 /* Fixup the current log head */
719 err = fixup_leb(c, c->lhead_lnum, c->lhead_offs);
720 if (err)
721 goto out;
723 /* Fixup LEBs in the LPT area */
724 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
725 int free = c->ltab[lnum - c->lpt_first].free;
727 if (free > 0) {
728 err = fixup_leb(c, lnum, c->leb_size - free);
729 if (err)
730 goto out;
734 /* Unmap LEBs in the orphans area */
735 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
736 err = fixup_leb(c, lnum, 0);
737 if (err)
738 goto out;
741 /* Fixup LEBs in the main area */
742 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
743 lprops = ubifs_lpt_lookup(c, lnum);
744 if (IS_ERR(lprops)) {
745 err = PTR_ERR(lprops);
746 goto out;
749 if (lprops->free > 0) {
750 err = fixup_leb(c, lnum, c->leb_size - lprops->free);
751 if (err)
752 goto out;
756 out:
757 ubifs_release_lprops(c);
758 return err;
762 * ubifs_fixup_free_space - find & fix all LEBs with free space.
763 * @c: UBIFS file-system description object
765 * This function fixes up LEBs containing free space on first mount, if the
766 * appropriate flag was set when the FS was created. Each LEB with one or more
767 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
768 * the free space is actually erased. E.g., this is necessary for some NAND
769 * chips, since the free space may have been programmed like real "0xff" data
770 * (generating a non-0xff ECC), causing future writes to the not-really-erased
771 * NAND pages to behave badly. After the space is fixed up, the superblock flag
772 * is cleared, so that this is skipped for all future mounts.
774 int ubifs_fixup_free_space(struct ubifs_info *c)
776 int err;
777 struct ubifs_sb_node *sup;
779 ubifs_assert(c->space_fixup);
780 ubifs_assert(!c->ro_mount);
782 ubifs_msg("start fixing up free space");
784 err = fixup_free_space(c);
785 if (err)
786 return err;
788 sup = ubifs_read_sb_node(c);
789 if (IS_ERR(sup))
790 return PTR_ERR(sup);
792 /* Free-space fixup is no longer required */
793 c->space_fixup = 0;
794 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
796 err = ubifs_write_sb_node(c, sup);
797 kfree(sup);
798 if (err)
799 return err;
801 ubifs_msg("free space fixup complete");
802 return err;