2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
32 #include "xfs_iomap.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_trace.h"
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
43 * Prime number of hash buckets since address is used as the key.
46 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
47 static wait_queue_head_t xfs_ioend_wq
[NVSYNC
];
54 for (i
= 0; i
< NVSYNC
; i
++)
55 init_waitqueue_head(&xfs_ioend_wq
[i
]);
62 wait_queue_head_t
*wq
= to_ioend_wq(ip
);
64 wait_event(*wq
, (atomic_read(&ip
->i_iocount
) == 0));
71 if (atomic_dec_and_test(&ip
->i_iocount
))
72 wake_up(to_ioend_wq(ip
));
81 struct buffer_head
*bh
, *head
;
83 *delalloc
= *unwritten
= 0;
85 bh
= head
= page_buffers(page
);
87 if (buffer_unwritten(bh
))
89 else if (buffer_delay(bh
))
91 } while ((bh
= bh
->b_this_page
) != head
);
94 STATIC
struct block_device
*
95 xfs_find_bdev_for_inode(
98 struct xfs_inode
*ip
= XFS_I(inode
);
99 struct xfs_mount
*mp
= ip
->i_mount
;
101 if (XFS_IS_REALTIME_INODE(ip
))
102 return mp
->m_rtdev_targp
->bt_bdev
;
104 return mp
->m_ddev_targp
->bt_bdev
;
108 * We're now finished for good with this ioend structure.
109 * Update the page state via the associated buffer_heads,
110 * release holds on the inode and bio, and finally free
111 * up memory. Do not use the ioend after this.
117 struct buffer_head
*bh
, *next
;
118 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
120 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
121 next
= bh
->b_private
;
122 bh
->b_end_io(bh
, !ioend
->io_error
);
126 * Volume managers supporting multiple paths can send back ENODEV
127 * when the final path disappears. In this case continuing to fill
128 * the page cache with dirty data which cannot be written out is
129 * evil, so prevent that.
131 if (unlikely(ioend
->io_error
== -ENODEV
)) {
132 xfs_do_force_shutdown(ip
->i_mount
, SHUTDOWN_DEVICE_REQ
,
137 mempool_free(ioend
, xfs_ioend_pool
);
141 * If the end of the current ioend is beyond the current EOF,
142 * return the new EOF value, otherwise zero.
148 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
152 bsize
= ioend
->io_offset
+ ioend
->io_size
;
153 isize
= MAX(ip
->i_size
, ip
->i_new_size
);
154 isize
= MIN(isize
, bsize
);
155 return isize
> ip
->i_d
.di_size
? isize
: 0;
159 * Update on-disk file size now that data has been written to disk. The
160 * current in-memory file size is i_size. If a write is beyond eof i_new_size
161 * will be the intended file size until i_size is updated. If this write does
162 * not extend all the way to the valid file size then restrict this update to
163 * the end of the write.
165 * This function does not block as blocking on the inode lock in IO completion
166 * can lead to IO completion order dependency deadlocks.. If it can't get the
167 * inode ilock it will return EAGAIN. Callers must handle this.
173 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
176 if (unlikely(ioend
->io_error
))
179 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
))
182 isize
= xfs_ioend_new_eof(ioend
);
184 trace_xfs_setfilesize(ip
, ioend
->io_offset
, ioend
->io_size
);
185 ip
->i_d
.di_size
= isize
;
186 xfs_mark_inode_dirty(ip
);
189 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
194 * Schedule IO completion handling on the final put of an ioend.
198 struct xfs_ioend
*ioend
)
200 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
201 if (ioend
->io_type
== IO_UNWRITTEN
)
202 queue_work(xfsconvertd_workqueue
, &ioend
->io_work
);
204 queue_work(xfsdatad_workqueue
, &ioend
->io_work
);
209 * IO write completion.
213 struct work_struct
*work
)
215 xfs_ioend_t
*ioend
= container_of(work
, xfs_ioend_t
, io_work
);
216 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
220 * For unwritten extents we need to issue transactions to convert a
221 * range to normal written extens after the data I/O has finished.
223 if (ioend
->io_type
== IO_UNWRITTEN
&&
224 likely(!ioend
->io_error
&& !XFS_FORCED_SHUTDOWN(ip
->i_mount
))) {
226 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
229 ioend
->io_error
= error
;
233 * We might have to update the on-disk file size after extending
236 error
= xfs_setfilesize(ioend
);
237 ASSERT(!error
|| error
== EAGAIN
);
240 * If we didn't complete processing of the ioend, requeue it to the
241 * tail of the workqueue for another attempt later. Otherwise destroy
244 if (error
== EAGAIN
) {
245 atomic_inc(&ioend
->io_remaining
);
246 xfs_finish_ioend(ioend
);
247 /* ensure we don't spin on blocked ioends */
251 aio_complete(ioend
->io_iocb
, ioend
->io_result
, 0);
252 xfs_destroy_ioend(ioend
);
257 * Call IO completion handling in caller context on the final put of an ioend.
260 xfs_finish_ioend_sync(
261 struct xfs_ioend
*ioend
)
263 if (atomic_dec_and_test(&ioend
->io_remaining
))
264 xfs_end_io(&ioend
->io_work
);
268 * Allocate and initialise an IO completion structure.
269 * We need to track unwritten extent write completion here initially.
270 * We'll need to extend this for updating the ondisk inode size later
280 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
283 * Set the count to 1 initially, which will prevent an I/O
284 * completion callback from happening before we have started
285 * all the I/O from calling the completion routine too early.
287 atomic_set(&ioend
->io_remaining
, 1);
289 ioend
->io_list
= NULL
;
290 ioend
->io_type
= type
;
291 ioend
->io_inode
= inode
;
292 ioend
->io_buffer_head
= NULL
;
293 ioend
->io_buffer_tail
= NULL
;
294 atomic_inc(&XFS_I(ioend
->io_inode
)->i_iocount
);
295 ioend
->io_offset
= 0;
297 ioend
->io_iocb
= NULL
;
298 ioend
->io_result
= 0;
300 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
308 struct xfs_bmbt_irec
*imap
,
312 struct xfs_inode
*ip
= XFS_I(inode
);
313 struct xfs_mount
*mp
= ip
->i_mount
;
314 ssize_t count
= 1 << inode
->i_blkbits
;
315 xfs_fileoff_t offset_fsb
, end_fsb
;
317 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
320 if (XFS_FORCED_SHUTDOWN(mp
))
321 return -XFS_ERROR(EIO
);
323 if (type
== IO_UNWRITTEN
)
324 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
326 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
328 return -XFS_ERROR(EAGAIN
);
329 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
332 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
333 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
334 ASSERT(offset
<= mp
->m_maxioffset
);
336 if (offset
+ count
> mp
->m_maxioffset
)
337 count
= mp
->m_maxioffset
- offset
;
338 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
339 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
340 error
= xfs_bmapi(NULL
, ip
, offset_fsb
, end_fsb
- offset_fsb
,
341 bmapi_flags
, NULL
, 0, imap
, &nimaps
, NULL
);
342 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
345 return -XFS_ERROR(error
);
347 if (type
== IO_DELALLOC
&&
348 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
349 error
= xfs_iomap_write_allocate(ip
, offset
, count
, imap
);
351 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
352 return -XFS_ERROR(error
);
356 if (type
== IO_UNWRITTEN
) {
358 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
359 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
363 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
370 struct xfs_bmbt_irec
*imap
,
373 offset
>>= inode
->i_blkbits
;
375 return offset
>= imap
->br_startoff
&&
376 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
380 * BIO completion handler for buffered IO.
387 xfs_ioend_t
*ioend
= bio
->bi_private
;
389 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
390 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
392 /* Toss bio and pass work off to an xfsdatad thread */
393 bio
->bi_private
= NULL
;
394 bio
->bi_end_io
= NULL
;
397 xfs_finish_ioend(ioend
);
401 xfs_submit_ioend_bio(
402 struct writeback_control
*wbc
,
406 atomic_inc(&ioend
->io_remaining
);
407 bio
->bi_private
= ioend
;
408 bio
->bi_end_io
= xfs_end_bio
;
411 * If the I/O is beyond EOF we mark the inode dirty immediately
412 * but don't update the inode size until I/O completion.
414 if (xfs_ioend_new_eof(ioend
))
415 xfs_mark_inode_dirty(XFS_I(ioend
->io_inode
));
417 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
, bio
);
422 struct buffer_head
*bh
)
424 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
425 struct bio
*bio
= bio_alloc(GFP_NOIO
, nvecs
);
427 ASSERT(bio
->bi_private
== NULL
);
428 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
429 bio
->bi_bdev
= bh
->b_bdev
;
434 xfs_start_buffer_writeback(
435 struct buffer_head
*bh
)
437 ASSERT(buffer_mapped(bh
));
438 ASSERT(buffer_locked(bh
));
439 ASSERT(!buffer_delay(bh
));
440 ASSERT(!buffer_unwritten(bh
));
442 mark_buffer_async_write(bh
);
443 set_buffer_uptodate(bh
);
444 clear_buffer_dirty(bh
);
448 xfs_start_page_writeback(
453 ASSERT(PageLocked(page
));
454 ASSERT(!PageWriteback(page
));
456 clear_page_dirty_for_io(page
);
457 set_page_writeback(page
);
459 /* If no buffers on the page are to be written, finish it here */
461 end_page_writeback(page
);
464 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
466 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
470 * Submit all of the bios for all of the ioends we have saved up, covering the
471 * initial writepage page and also any probed pages.
473 * Because we may have multiple ioends spanning a page, we need to start
474 * writeback on all the buffers before we submit them for I/O. If we mark the
475 * buffers as we got, then we can end up with a page that only has buffers
476 * marked async write and I/O complete on can occur before we mark the other
477 * buffers async write.
479 * The end result of this is that we trip a bug in end_page_writeback() because
480 * we call it twice for the one page as the code in end_buffer_async_write()
481 * assumes that all buffers on the page are started at the same time.
483 * The fix is two passes across the ioend list - one to start writeback on the
484 * buffer_heads, and then submit them for I/O on the second pass.
488 struct writeback_control
*wbc
,
491 xfs_ioend_t
*head
= ioend
;
493 struct buffer_head
*bh
;
495 sector_t lastblock
= 0;
497 /* Pass 1 - start writeback */
499 next
= ioend
->io_list
;
500 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
)
501 xfs_start_buffer_writeback(bh
);
502 } while ((ioend
= next
) != NULL
);
504 /* Pass 2 - submit I/O */
507 next
= ioend
->io_list
;
510 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
514 bio
= xfs_alloc_ioend_bio(bh
);
515 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
516 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
520 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
521 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
525 lastblock
= bh
->b_blocknr
;
528 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
529 xfs_finish_ioend(ioend
);
530 } while ((ioend
= next
) != NULL
);
534 * Cancel submission of all buffer_heads so far in this endio.
535 * Toss the endio too. Only ever called for the initial page
536 * in a writepage request, so only ever one page.
543 struct buffer_head
*bh
, *next_bh
;
546 next
= ioend
->io_list
;
547 bh
= ioend
->io_buffer_head
;
549 next_bh
= bh
->b_private
;
550 clear_buffer_async_write(bh
);
552 } while ((bh
= next_bh
) != NULL
);
554 xfs_ioend_wake(XFS_I(ioend
->io_inode
));
555 mempool_free(ioend
, xfs_ioend_pool
);
556 } while ((ioend
= next
) != NULL
);
560 * Test to see if we've been building up a completion structure for
561 * earlier buffers -- if so, we try to append to this ioend if we
562 * can, otherwise we finish off any current ioend and start another.
563 * Return true if we've finished the given ioend.
568 struct buffer_head
*bh
,
571 xfs_ioend_t
**result
,
574 xfs_ioend_t
*ioend
= *result
;
576 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
577 xfs_ioend_t
*previous
= *result
;
579 ioend
= xfs_alloc_ioend(inode
, type
);
580 ioend
->io_offset
= offset
;
581 ioend
->io_buffer_head
= bh
;
582 ioend
->io_buffer_tail
= bh
;
584 previous
->io_list
= ioend
;
587 ioend
->io_buffer_tail
->b_private
= bh
;
588 ioend
->io_buffer_tail
= bh
;
591 bh
->b_private
= NULL
;
592 ioend
->io_size
+= bh
->b_size
;
598 struct buffer_head
*bh
,
599 struct xfs_bmbt_irec
*imap
,
603 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
604 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
605 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
607 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
608 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
610 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
611 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
613 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
616 set_buffer_mapped(bh
);
622 struct buffer_head
*bh
,
623 struct xfs_bmbt_irec
*imap
,
626 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
627 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
629 xfs_map_buffer(inode
, bh
, imap
, offset
);
630 set_buffer_mapped(bh
);
631 clear_buffer_delay(bh
);
632 clear_buffer_unwritten(bh
);
636 * Test if a given page is suitable for writing as part of an unwritten
637 * or delayed allocate extent.
644 if (PageWriteback(page
))
647 if (page
->mapping
&& page_has_buffers(page
)) {
648 struct buffer_head
*bh
, *head
;
651 bh
= head
= page_buffers(page
);
653 if (buffer_unwritten(bh
))
654 acceptable
= (type
== IO_UNWRITTEN
);
655 else if (buffer_delay(bh
))
656 acceptable
= (type
== IO_DELALLOC
);
657 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
658 acceptable
= (type
== IO_OVERWRITE
);
661 } while ((bh
= bh
->b_this_page
) != head
);
671 * Allocate & map buffers for page given the extent map. Write it out.
672 * except for the original page of a writepage, this is called on
673 * delalloc/unwritten pages only, for the original page it is possible
674 * that the page has no mapping at all.
681 struct xfs_bmbt_irec
*imap
,
682 xfs_ioend_t
**ioendp
,
683 struct writeback_control
*wbc
)
685 struct buffer_head
*bh
, *head
;
686 xfs_off_t end_offset
;
687 unsigned long p_offset
;
690 int count
= 0, done
= 0, uptodate
= 1;
691 xfs_off_t offset
= page_offset(page
);
693 if (page
->index
!= tindex
)
695 if (!trylock_page(page
))
697 if (PageWriteback(page
))
698 goto fail_unlock_page
;
699 if (page
->mapping
!= inode
->i_mapping
)
700 goto fail_unlock_page
;
701 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
702 goto fail_unlock_page
;
705 * page_dirty is initially a count of buffers on the page before
706 * EOF and is decremented as we move each into a cleanable state.
710 * End offset is the highest offset that this page should represent.
711 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
712 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
713 * hence give us the correct page_dirty count. On any other page,
714 * it will be zero and in that case we need page_dirty to be the
715 * count of buffers on the page.
717 end_offset
= min_t(unsigned long long,
718 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
721 len
= 1 << inode
->i_blkbits
;
722 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
724 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
725 page_dirty
= p_offset
/ len
;
727 bh
= head
= page_buffers(page
);
729 if (offset
>= end_offset
)
731 if (!buffer_uptodate(bh
))
733 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
738 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
740 if (buffer_unwritten(bh
))
742 else if (buffer_delay(bh
))
747 if (!xfs_imap_valid(inode
, imap
, offset
)) {
753 if (type
!= IO_OVERWRITE
)
754 xfs_map_at_offset(inode
, bh
, imap
, offset
);
755 xfs_add_to_ioend(inode
, bh
, offset
, type
,
763 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
765 if (uptodate
&& bh
== head
)
766 SetPageUptodate(page
);
769 if (--wbc
->nr_to_write
<= 0 &&
770 wbc
->sync_mode
== WB_SYNC_NONE
)
773 xfs_start_page_writeback(page
, !page_dirty
, count
);
783 * Convert & write out a cluster of pages in the same extent as defined
784 * by mp and following the start page.
790 struct xfs_bmbt_irec
*imap
,
791 xfs_ioend_t
**ioendp
,
792 struct writeback_control
*wbc
,
798 pagevec_init(&pvec
, 0);
799 while (!done
&& tindex
<= tlast
) {
800 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
802 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
805 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
806 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
812 pagevec_release(&pvec
);
818 xfs_vm_invalidatepage(
820 unsigned long offset
)
822 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
);
823 block_invalidatepage(page
, offset
);
827 * If the page has delalloc buffers on it, we need to punch them out before we
828 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
829 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
830 * is done on that same region - the delalloc extent is returned when none is
831 * supposed to be there.
833 * We prevent this by truncating away the delalloc regions on the page before
834 * invalidating it. Because they are delalloc, we can do this without needing a
835 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
836 * truncation without a transaction as there is no space left for block
837 * reservation (typically why we see a ENOSPC in writeback).
839 * This is not a performance critical path, so for now just do the punching a
840 * buffer head at a time.
843 xfs_aops_discard_page(
846 struct inode
*inode
= page
->mapping
->host
;
847 struct xfs_inode
*ip
= XFS_I(inode
);
848 struct buffer_head
*bh
, *head
;
849 loff_t offset
= page_offset(page
);
851 if (!xfs_is_delayed_page(page
, IO_DELALLOC
))
854 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
857 xfs_alert(ip
->i_mount
,
858 "page discard on page %p, inode 0x%llx, offset %llu.",
859 page
, ip
->i_ino
, offset
);
861 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
862 bh
= head
= page_buffers(page
);
865 xfs_fileoff_t start_fsb
;
867 if (!buffer_delay(bh
))
870 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
871 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
873 /* something screwed, just bail */
874 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
875 xfs_alert(ip
->i_mount
,
876 "page discard unable to remove delalloc mapping.");
881 offset
+= 1 << inode
->i_blkbits
;
883 } while ((bh
= bh
->b_this_page
) != head
);
885 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
887 xfs_vm_invalidatepage(page
, 0);
892 * Write out a dirty page.
894 * For delalloc space on the page we need to allocate space and flush it.
895 * For unwritten space on the page we need to start the conversion to
896 * regular allocated space.
897 * For any other dirty buffer heads on the page we should flush them.
902 struct writeback_control
*wbc
)
904 struct inode
*inode
= page
->mapping
->host
;
905 struct buffer_head
*bh
, *head
;
906 struct xfs_bmbt_irec imap
;
907 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
910 __uint64_t end_offset
;
911 pgoff_t end_index
, last_index
;
913 int err
, imap_valid
= 0, uptodate
= 1;
917 trace_xfs_writepage(inode
, page
, 0);
919 ASSERT(page_has_buffers(page
));
922 * Refuse to write the page out if we are called from reclaim context.
924 * This avoids stack overflows when called from deeply used stacks in
925 * random callers for direct reclaim or memcg reclaim. We explicitly
926 * allow reclaim from kswapd as the stack usage there is relatively low.
928 * This should never happen except in the case of a VM regression so
931 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
936 * Given that we do not allow direct reclaim to call us, we should
937 * never be called while in a filesystem transaction.
939 if (WARN_ON(current
->flags
& PF_FSTRANS
))
942 /* Is this page beyond the end of the file? */
943 offset
= i_size_read(inode
);
944 end_index
= offset
>> PAGE_CACHE_SHIFT
;
945 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
946 if (page
->index
>= end_index
) {
947 if ((page
->index
>= end_index
+ 1) ||
948 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
954 end_offset
= min_t(unsigned long long,
955 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
957 len
= 1 << inode
->i_blkbits
;
959 bh
= head
= page_buffers(page
);
960 offset
= page_offset(page
);
963 if (wbc
->sync_mode
== WB_SYNC_NONE
)
969 if (offset
>= end_offset
)
971 if (!buffer_uptodate(bh
))
975 * set_page_dirty dirties all buffers in a page, independent
976 * of their state. The dirty state however is entirely
977 * meaningless for holes (!mapped && uptodate), so skip
978 * buffers covering holes here.
980 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
985 if (buffer_unwritten(bh
)) {
986 if (type
!= IO_UNWRITTEN
) {
990 } else if (buffer_delay(bh
)) {
991 if (type
!= IO_DELALLOC
) {
995 } else if (buffer_uptodate(bh
)) {
996 if (type
!= IO_OVERWRITE
) {
1001 if (PageUptodate(page
)) {
1002 ASSERT(buffer_mapped(bh
));
1009 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1012 * If we didn't have a valid mapping then we need to
1013 * put the new mapping into a separate ioend structure.
1014 * This ensures non-contiguous extents always have
1015 * separate ioends, which is particularly important
1016 * for unwritten extent conversion at I/O completion
1020 err
= xfs_map_blocks(inode
, offset
, &imap
, type
,
1024 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1028 if (type
!= IO_OVERWRITE
)
1029 xfs_map_at_offset(inode
, bh
, &imap
, offset
);
1030 xfs_add_to_ioend(inode
, bh
, offset
, type
, &ioend
,
1038 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1040 if (uptodate
&& bh
== head
)
1041 SetPageUptodate(page
);
1043 xfs_start_page_writeback(page
, 1, count
);
1045 if (ioend
&& imap_valid
) {
1046 xfs_off_t end_index
;
1048 end_index
= imap
.br_startoff
+ imap
.br_blockcount
;
1051 end_index
<<= inode
->i_blkbits
;
1054 end_index
= (end_index
- 1) >> PAGE_CACHE_SHIFT
;
1056 /* check against file size */
1057 if (end_index
> last_index
)
1058 end_index
= last_index
;
1060 xfs_cluster_write(inode
, page
->index
+ 1, &imap
, &ioend
,
1065 xfs_submit_ioend(wbc
, iohead
);
1071 xfs_cancel_ioend(iohead
);
1076 xfs_aops_discard_page(page
);
1077 ClearPageUptodate(page
);
1082 redirty_page_for_writepage(wbc
, page
);
1089 struct address_space
*mapping
,
1090 struct writeback_control
*wbc
)
1092 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1093 return generic_writepages(mapping
, wbc
);
1097 * Called to move a page into cleanable state - and from there
1098 * to be released. The page should already be clean. We always
1099 * have buffer heads in this call.
1101 * Returns 1 if the page is ok to release, 0 otherwise.
1108 int delalloc
, unwritten
;
1110 trace_xfs_releasepage(page
->mapping
->host
, page
, 0);
1112 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1114 if (WARN_ON(delalloc
))
1116 if (WARN_ON(unwritten
))
1119 return try_to_free_buffers(page
);
1124 struct inode
*inode
,
1126 struct buffer_head
*bh_result
,
1130 struct xfs_inode
*ip
= XFS_I(inode
);
1131 struct xfs_mount
*mp
= ip
->i_mount
;
1132 xfs_fileoff_t offset_fsb
, end_fsb
;
1135 struct xfs_bmbt_irec imap
;
1141 if (XFS_FORCED_SHUTDOWN(mp
))
1142 return -XFS_ERROR(EIO
);
1144 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1145 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1146 size
= bh_result
->b_size
;
1148 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1152 lockmode
= XFS_ILOCK_EXCL
;
1153 xfs_ilock(ip
, lockmode
);
1155 lockmode
= xfs_ilock_map_shared(ip
);
1158 ASSERT(offset
<= mp
->m_maxioffset
);
1159 if (offset
+ size
> mp
->m_maxioffset
)
1160 size
= mp
->m_maxioffset
- offset
;
1161 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1162 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1164 error
= xfs_bmapi(NULL
, ip
, offset_fsb
, end_fsb
- offset_fsb
,
1165 XFS_BMAPI_ENTIRE
, NULL
, 0, &imap
, &nimaps
, NULL
);
1171 (imap
.br_startblock
== HOLESTARTBLOCK
||
1172 imap
.br_startblock
== DELAYSTARTBLOCK
))) {
1174 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1177 error
= xfs_iomap_write_delay(ip
, offset
, size
, &imap
);
1182 trace_xfs_get_blocks_alloc(ip
, offset
, size
, 0, &imap
);
1183 } else if (nimaps
) {
1184 trace_xfs_get_blocks_found(ip
, offset
, size
, 0, &imap
);
1186 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1189 xfs_iunlock(ip
, lockmode
);
1191 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1192 imap
.br_startblock
!= DELAYSTARTBLOCK
) {
1194 * For unwritten extents do not report a disk address on
1195 * the read case (treat as if we're reading into a hole).
1197 if (create
|| !ISUNWRITTEN(&imap
))
1198 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1199 if (create
&& ISUNWRITTEN(&imap
)) {
1201 bh_result
->b_private
= inode
;
1202 set_buffer_unwritten(bh_result
);
1207 * If this is a realtime file, data may be on a different device.
1208 * to that pointed to from the buffer_head b_bdev currently.
1210 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1213 * If we previously allocated a block out beyond eof and we are now
1214 * coming back to use it then we will need to flag it as new even if it
1215 * has a disk address.
1217 * With sub-block writes into unwritten extents we also need to mark
1218 * the buffer as new so that the unwritten parts of the buffer gets
1222 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1223 (offset
>= i_size_read(inode
)) ||
1224 (new || ISUNWRITTEN(&imap
))))
1225 set_buffer_new(bh_result
);
1227 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1230 set_buffer_uptodate(bh_result
);
1231 set_buffer_mapped(bh_result
);
1232 set_buffer_delay(bh_result
);
1237 * If this is O_DIRECT or the mpage code calling tell them how large
1238 * the mapping is, so that we can avoid repeated get_blocks calls.
1240 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1241 xfs_off_t mapping_size
;
1243 mapping_size
= imap
.br_startoff
+ imap
.br_blockcount
- iblock
;
1244 mapping_size
<<= inode
->i_blkbits
;
1246 ASSERT(mapping_size
> 0);
1247 if (mapping_size
> size
)
1248 mapping_size
= size
;
1249 if (mapping_size
> LONG_MAX
)
1250 mapping_size
= LONG_MAX
;
1252 bh_result
->b_size
= mapping_size
;
1258 xfs_iunlock(ip
, lockmode
);
1264 struct inode
*inode
,
1266 struct buffer_head
*bh_result
,
1269 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 0);
1273 xfs_get_blocks_direct(
1274 struct inode
*inode
,
1276 struct buffer_head
*bh_result
,
1279 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 1);
1283 * Complete a direct I/O write request.
1285 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1286 * need to issue a transaction to convert the range from unwritten to written
1287 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1288 * to do this and we are done. But in case this was a successful AIO
1289 * request this handler is called from interrupt context, from which we
1290 * can't start transactions. In that case offload the I/O completion to
1291 * the workqueues we also use for buffered I/O completion.
1294 xfs_end_io_direct_write(
1302 struct xfs_ioend
*ioend
= iocb
->private;
1305 * blockdev_direct_IO can return an error even after the I/O
1306 * completion handler was called. Thus we need to protect
1307 * against double-freeing.
1309 iocb
->private = NULL
;
1311 ioend
->io_offset
= offset
;
1312 ioend
->io_size
= size
;
1313 if (private && size
> 0)
1314 ioend
->io_type
= IO_UNWRITTEN
;
1318 * If we are converting an unwritten extent we need to delay
1319 * the AIO completion until after the unwrittent extent
1320 * conversion has completed, otherwise do it ASAP.
1322 if (ioend
->io_type
== IO_UNWRITTEN
) {
1323 ioend
->io_iocb
= iocb
;
1324 ioend
->io_result
= ret
;
1326 aio_complete(iocb
, ret
, 0);
1328 xfs_finish_ioend(ioend
);
1330 xfs_finish_ioend_sync(ioend
);
1333 /* XXX: probably should move into the real I/O completion handler */
1334 inode_dio_done(ioend
->io_inode
);
1341 const struct iovec
*iov
,
1343 unsigned long nr_segs
)
1345 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1346 struct block_device
*bdev
= xfs_find_bdev_for_inode(inode
);
1350 iocb
->private = xfs_alloc_ioend(inode
, IO_DIRECT
);
1352 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1354 xfs_get_blocks_direct
,
1355 xfs_end_io_direct_write
, NULL
, 0);
1356 if (ret
!= -EIOCBQUEUED
&& iocb
->private)
1357 xfs_destroy_ioend(iocb
->private);
1359 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1361 xfs_get_blocks_direct
,
1369 xfs_vm_write_failed(
1370 struct address_space
*mapping
,
1373 struct inode
*inode
= mapping
->host
;
1375 if (to
> inode
->i_size
) {
1377 * punch out the delalloc blocks we have already allocated. We
1378 * don't call xfs_setattr() to do this as we may be in the
1379 * middle of a multi-iovec write and so the vfs inode->i_size
1380 * will not match the xfs ip->i_size and so it will zero too
1381 * much. Hence we jus truncate the page cache to zero what is
1382 * necessary and punch the delalloc blocks directly.
1384 struct xfs_inode
*ip
= XFS_I(inode
);
1385 xfs_fileoff_t start_fsb
;
1386 xfs_fileoff_t end_fsb
;
1389 truncate_pagecache(inode
, to
, inode
->i_size
);
1392 * Check if there are any blocks that are outside of i_size
1393 * that need to be trimmed back.
1395 start_fsb
= XFS_B_TO_FSB(ip
->i_mount
, inode
->i_size
) + 1;
1396 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, to
);
1397 if (end_fsb
<= start_fsb
)
1400 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1401 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
,
1402 end_fsb
- start_fsb
);
1404 /* something screwed, just bail */
1405 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1406 xfs_alert(ip
->i_mount
,
1407 "xfs_vm_write_failed: unable to clean up ino %lld",
1411 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1418 struct address_space
*mapping
,
1422 struct page
**pagep
,
1427 ret
= block_write_begin(mapping
, pos
, len
, flags
| AOP_FLAG_NOFS
,
1428 pagep
, xfs_get_blocks
);
1430 xfs_vm_write_failed(mapping
, pos
+ len
);
1437 struct address_space
*mapping
,
1446 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1447 if (unlikely(ret
< len
))
1448 xfs_vm_write_failed(mapping
, pos
+ len
);
1454 struct address_space
*mapping
,
1457 struct inode
*inode
= (struct inode
*)mapping
->host
;
1458 struct xfs_inode
*ip
= XFS_I(inode
);
1460 trace_xfs_vm_bmap(XFS_I(inode
));
1461 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1462 xfs_flush_pages(ip
, (xfs_off_t
)0, -1, 0, FI_REMAPF
);
1463 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1464 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1469 struct file
*unused
,
1472 return mpage_readpage(page
, xfs_get_blocks
);
1477 struct file
*unused
,
1478 struct address_space
*mapping
,
1479 struct list_head
*pages
,
1482 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1485 const struct address_space_operations xfs_address_space_operations
= {
1486 .readpage
= xfs_vm_readpage
,
1487 .readpages
= xfs_vm_readpages
,
1488 .writepage
= xfs_vm_writepage
,
1489 .writepages
= xfs_vm_writepages
,
1490 .releasepage
= xfs_vm_releasepage
,
1491 .invalidatepage
= xfs_vm_invalidatepage
,
1492 .write_begin
= xfs_vm_write_begin
,
1493 .write_end
= xfs_vm_write_end
,
1494 .bmap
= xfs_vm_bmap
,
1495 .direct_IO
= xfs_vm_direct_IO
,
1496 .migratepage
= buffer_migrate_page
,
1497 .is_partially_uptodate
= block_is_partially_uptodate
,
1498 .error_remove_page
= generic_error_remove_page
,