Merge branch 'akpm'
[linux-2.6/next.git] / fs / xfs / xfs_inode.c
blob0239a7c7c886a2c83a74352ee0504082cb328e26
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_bmap.h"
43 #include "xfs_error.h"
44 #include "xfs_utils.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_vnodeops.h"
48 #include "xfs_trace.h"
50 kmem_zone_t *xfs_ifork_zone;
51 kmem_zone_t *xfs_inode_zone;
54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
55 * freed from a file in a single transaction.
57 #define XFS_ITRUNC_MAX_EXTENTS 2
59 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 #ifdef DEBUG
66 * Make sure that the extents in the given memory buffer
67 * are valid.
69 STATIC void
70 xfs_validate_extents(
71 xfs_ifork_t *ifp,
72 int nrecs,
73 xfs_exntfmt_t fmt)
75 xfs_bmbt_irec_t irec;
76 xfs_bmbt_rec_host_t rec;
77 int i;
79 for (i = 0; i < nrecs; i++) {
80 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
81 rec.l0 = get_unaligned(&ep->l0);
82 rec.l1 = get_unaligned(&ep->l1);
83 xfs_bmbt_get_all(&rec, &irec);
84 if (fmt == XFS_EXTFMT_NOSTATE)
85 ASSERT(irec.br_state == XFS_EXT_NORM);
88 #else /* DEBUG */
89 #define xfs_validate_extents(ifp, nrecs, fmt)
90 #endif /* DEBUG */
93 * Check that none of the inode's in the buffer have a next
94 * unlinked field of 0.
96 #if defined(DEBUG)
97 void
98 xfs_inobp_check(
99 xfs_mount_t *mp,
100 xfs_buf_t *bp)
102 int i;
103 int j;
104 xfs_dinode_t *dip;
106 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108 for (i = 0; i < j; i++) {
109 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
110 i * mp->m_sb.sb_inodesize);
111 if (!dip->di_next_unlinked) {
112 xfs_alert(mp,
113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
114 bp);
115 ASSERT(dip->di_next_unlinked);
119 #endif
122 * Find the buffer associated with the given inode map
123 * We do basic validation checks on the buffer once it has been
124 * retrieved from disk.
126 STATIC int
127 xfs_imap_to_bp(
128 xfs_mount_t *mp,
129 xfs_trans_t *tp,
130 struct xfs_imap *imap,
131 xfs_buf_t **bpp,
132 uint buf_flags,
133 uint iget_flags)
135 int error;
136 int i;
137 int ni;
138 xfs_buf_t *bp;
140 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
141 (int)imap->im_len, buf_flags, &bp);
142 if (error) {
143 if (error != EAGAIN) {
144 xfs_warn(mp,
145 "%s: xfs_trans_read_buf() returned error %d.",
146 __func__, error);
147 } else {
148 ASSERT(buf_flags & XBF_TRYLOCK);
150 return error;
154 * Validate the magic number and version of every inode in the buffer
155 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
157 #ifdef DEBUG
158 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
159 #else /* usual case */
160 ni = 1;
161 #endif
163 for (i = 0; i < ni; i++) {
164 int di_ok;
165 xfs_dinode_t *dip;
167 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
168 (i << mp->m_sb.sb_inodelog));
169 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
170 XFS_DINODE_GOOD_VERSION(dip->di_version);
171 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
172 XFS_ERRTAG_ITOBP_INOTOBP,
173 XFS_RANDOM_ITOBP_INOTOBP))) {
174 if (iget_flags & XFS_IGET_UNTRUSTED) {
175 xfs_trans_brelse(tp, bp);
176 return XFS_ERROR(EINVAL);
178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 XFS_ERRLEVEL_HIGH, mp, dip);
180 #ifdef DEBUG
181 xfs_emerg(mp,
182 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
183 (unsigned long long)imap->im_blkno, i,
184 be16_to_cpu(dip->di_magic));
185 ASSERT(0);
186 #endif
187 xfs_trans_brelse(tp, bp);
188 return XFS_ERROR(EFSCORRUPTED);
192 xfs_inobp_check(mp, bp);
195 * Mark the buffer as an inode buffer now that it looks good
197 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
199 *bpp = bp;
200 return 0;
204 * This routine is called to map an inode number within a file
205 * system to the buffer containing the on-disk version of the
206 * inode. It returns a pointer to the buffer containing the
207 * on-disk inode in the bpp parameter, and in the dip parameter
208 * it returns a pointer to the on-disk inode within that buffer.
210 * If a non-zero error is returned, then the contents of bpp and
211 * dipp are undefined.
213 * Use xfs_imap() to determine the size and location of the
214 * buffer to read from disk.
217 xfs_inotobp(
218 xfs_mount_t *mp,
219 xfs_trans_t *tp,
220 xfs_ino_t ino,
221 xfs_dinode_t **dipp,
222 xfs_buf_t **bpp,
223 int *offset,
224 uint imap_flags)
226 struct xfs_imap imap;
227 xfs_buf_t *bp;
228 int error;
230 imap.im_blkno = 0;
231 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
232 if (error)
233 return error;
235 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
236 if (error)
237 return error;
239 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
240 *bpp = bp;
241 *offset = imap.im_boffset;
242 return 0;
247 * This routine is called to map an inode to the buffer containing
248 * the on-disk version of the inode. It returns a pointer to the
249 * buffer containing the on-disk inode in the bpp parameter, and in
250 * the dip parameter it returns a pointer to the on-disk inode within
251 * that buffer.
253 * If a non-zero error is returned, then the contents of bpp and
254 * dipp are undefined.
256 * The inode is expected to already been mapped to its buffer and read
257 * in once, thus we can use the mapping information stored in the inode
258 * rather than calling xfs_imap(). This allows us to avoid the overhead
259 * of looking at the inode btree for small block file systems
260 * (see xfs_imap()).
263 xfs_itobp(
264 xfs_mount_t *mp,
265 xfs_trans_t *tp,
266 xfs_inode_t *ip,
267 xfs_dinode_t **dipp,
268 xfs_buf_t **bpp,
269 uint buf_flags)
271 xfs_buf_t *bp;
272 int error;
274 ASSERT(ip->i_imap.im_blkno != 0);
276 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
277 if (error)
278 return error;
280 if (!bp) {
281 ASSERT(buf_flags & XBF_TRYLOCK);
282 ASSERT(tp == NULL);
283 *bpp = NULL;
284 return EAGAIN;
287 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
288 *bpp = bp;
289 return 0;
293 * Move inode type and inode format specific information from the
294 * on-disk inode to the in-core inode. For fifos, devs, and sockets
295 * this means set if_rdev to the proper value. For files, directories,
296 * and symlinks this means to bring in the in-line data or extent
297 * pointers. For a file in B-tree format, only the root is immediately
298 * brought in-core. The rest will be in-lined in if_extents when it
299 * is first referenced (see xfs_iread_extents()).
301 STATIC int
302 xfs_iformat(
303 xfs_inode_t *ip,
304 xfs_dinode_t *dip)
306 xfs_attr_shortform_t *atp;
307 int size;
308 int error;
309 xfs_fsize_t di_size;
310 ip->i_df.if_ext_max =
311 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
312 error = 0;
314 if (unlikely(be32_to_cpu(dip->di_nextents) +
315 be16_to_cpu(dip->di_anextents) >
316 be64_to_cpu(dip->di_nblocks))) {
317 xfs_warn(ip->i_mount,
318 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
319 (unsigned long long)ip->i_ino,
320 (int)(be32_to_cpu(dip->di_nextents) +
321 be16_to_cpu(dip->di_anextents)),
322 (unsigned long long)
323 be64_to_cpu(dip->di_nblocks));
324 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
325 ip->i_mount, dip);
326 return XFS_ERROR(EFSCORRUPTED);
329 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
330 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
331 (unsigned long long)ip->i_ino,
332 dip->di_forkoff);
333 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
334 ip->i_mount, dip);
335 return XFS_ERROR(EFSCORRUPTED);
338 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
339 !ip->i_mount->m_rtdev_targp)) {
340 xfs_warn(ip->i_mount,
341 "corrupt dinode %Lu, has realtime flag set.",
342 ip->i_ino);
343 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
344 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
345 return XFS_ERROR(EFSCORRUPTED);
348 switch (ip->i_d.di_mode & S_IFMT) {
349 case S_IFIFO:
350 case S_IFCHR:
351 case S_IFBLK:
352 case S_IFSOCK:
353 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
354 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
355 ip->i_mount, dip);
356 return XFS_ERROR(EFSCORRUPTED);
358 ip->i_d.di_size = 0;
359 ip->i_size = 0;
360 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
361 break;
363 case S_IFREG:
364 case S_IFLNK:
365 case S_IFDIR:
366 switch (dip->di_format) {
367 case XFS_DINODE_FMT_LOCAL:
369 * no local regular files yet
371 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
372 xfs_warn(ip->i_mount,
373 "corrupt inode %Lu (local format for regular file).",
374 (unsigned long long) ip->i_ino);
375 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
376 XFS_ERRLEVEL_LOW,
377 ip->i_mount, dip);
378 return XFS_ERROR(EFSCORRUPTED);
381 di_size = be64_to_cpu(dip->di_size);
382 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
383 xfs_warn(ip->i_mount,
384 "corrupt inode %Lu (bad size %Ld for local inode).",
385 (unsigned long long) ip->i_ino,
386 (long long) di_size);
387 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
388 XFS_ERRLEVEL_LOW,
389 ip->i_mount, dip);
390 return XFS_ERROR(EFSCORRUPTED);
393 size = (int)di_size;
394 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
395 break;
396 case XFS_DINODE_FMT_EXTENTS:
397 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
398 break;
399 case XFS_DINODE_FMT_BTREE:
400 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
401 break;
402 default:
403 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
404 ip->i_mount);
405 return XFS_ERROR(EFSCORRUPTED);
407 break;
409 default:
410 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
411 return XFS_ERROR(EFSCORRUPTED);
413 if (error) {
414 return error;
416 if (!XFS_DFORK_Q(dip))
417 return 0;
418 ASSERT(ip->i_afp == NULL);
419 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
420 ip->i_afp->if_ext_max =
421 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
422 switch (dip->di_aformat) {
423 case XFS_DINODE_FMT_LOCAL:
424 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
425 size = be16_to_cpu(atp->hdr.totsize);
427 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
428 xfs_warn(ip->i_mount,
429 "corrupt inode %Lu (bad attr fork size %Ld).",
430 (unsigned long long) ip->i_ino,
431 (long long) size);
432 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
433 XFS_ERRLEVEL_LOW,
434 ip->i_mount, dip);
435 return XFS_ERROR(EFSCORRUPTED);
438 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
439 break;
440 case XFS_DINODE_FMT_EXTENTS:
441 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
442 break;
443 case XFS_DINODE_FMT_BTREE:
444 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
445 break;
446 default:
447 error = XFS_ERROR(EFSCORRUPTED);
448 break;
450 if (error) {
451 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
452 ip->i_afp = NULL;
453 xfs_idestroy_fork(ip, XFS_DATA_FORK);
455 return error;
459 * The file is in-lined in the on-disk inode.
460 * If it fits into if_inline_data, then copy
461 * it there, otherwise allocate a buffer for it
462 * and copy the data there. Either way, set
463 * if_data to point at the data.
464 * If we allocate a buffer for the data, make
465 * sure that its size is a multiple of 4 and
466 * record the real size in i_real_bytes.
468 STATIC int
469 xfs_iformat_local(
470 xfs_inode_t *ip,
471 xfs_dinode_t *dip,
472 int whichfork,
473 int size)
475 xfs_ifork_t *ifp;
476 int real_size;
479 * If the size is unreasonable, then something
480 * is wrong and we just bail out rather than crash in
481 * kmem_alloc() or memcpy() below.
483 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
484 xfs_warn(ip->i_mount,
485 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
486 (unsigned long long) ip->i_ino, size,
487 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
488 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
489 ip->i_mount, dip);
490 return XFS_ERROR(EFSCORRUPTED);
492 ifp = XFS_IFORK_PTR(ip, whichfork);
493 real_size = 0;
494 if (size == 0)
495 ifp->if_u1.if_data = NULL;
496 else if (size <= sizeof(ifp->if_u2.if_inline_data))
497 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
498 else {
499 real_size = roundup(size, 4);
500 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
502 ifp->if_bytes = size;
503 ifp->if_real_bytes = real_size;
504 if (size)
505 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
506 ifp->if_flags &= ~XFS_IFEXTENTS;
507 ifp->if_flags |= XFS_IFINLINE;
508 return 0;
512 * The file consists of a set of extents all
513 * of which fit into the on-disk inode.
514 * If there are few enough extents to fit into
515 * the if_inline_ext, then copy them there.
516 * Otherwise allocate a buffer for them and copy
517 * them into it. Either way, set if_extents
518 * to point at the extents.
520 STATIC int
521 xfs_iformat_extents(
522 xfs_inode_t *ip,
523 xfs_dinode_t *dip,
524 int whichfork)
526 xfs_bmbt_rec_t *dp;
527 xfs_ifork_t *ifp;
528 int nex;
529 int size;
530 int i;
532 ifp = XFS_IFORK_PTR(ip, whichfork);
533 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
534 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
537 * If the number of extents is unreasonable, then something
538 * is wrong and we just bail out rather than crash in
539 * kmem_alloc() or memcpy() below.
541 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
542 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
543 (unsigned long long) ip->i_ino, nex);
544 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
545 ip->i_mount, dip);
546 return XFS_ERROR(EFSCORRUPTED);
549 ifp->if_real_bytes = 0;
550 if (nex == 0)
551 ifp->if_u1.if_extents = NULL;
552 else if (nex <= XFS_INLINE_EXTS)
553 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
554 else
555 xfs_iext_add(ifp, 0, nex);
557 ifp->if_bytes = size;
558 if (size) {
559 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
560 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
561 for (i = 0; i < nex; i++, dp++) {
562 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
563 ep->l0 = get_unaligned_be64(&dp->l0);
564 ep->l1 = get_unaligned_be64(&dp->l1);
566 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
567 if (whichfork != XFS_DATA_FORK ||
568 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
569 if (unlikely(xfs_check_nostate_extents(
570 ifp, 0, nex))) {
571 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
572 XFS_ERRLEVEL_LOW,
573 ip->i_mount);
574 return XFS_ERROR(EFSCORRUPTED);
577 ifp->if_flags |= XFS_IFEXTENTS;
578 return 0;
582 * The file has too many extents to fit into
583 * the inode, so they are in B-tree format.
584 * Allocate a buffer for the root of the B-tree
585 * and copy the root into it. The i_extents
586 * field will remain NULL until all of the
587 * extents are read in (when they are needed).
589 STATIC int
590 xfs_iformat_btree(
591 xfs_inode_t *ip,
592 xfs_dinode_t *dip,
593 int whichfork)
595 xfs_bmdr_block_t *dfp;
596 xfs_ifork_t *ifp;
597 /* REFERENCED */
598 int nrecs;
599 int size;
601 ifp = XFS_IFORK_PTR(ip, whichfork);
602 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
603 size = XFS_BMAP_BROOT_SPACE(dfp);
604 nrecs = be16_to_cpu(dfp->bb_numrecs);
607 * blow out if -- fork has less extents than can fit in
608 * fork (fork shouldn't be a btree format), root btree
609 * block has more records than can fit into the fork,
610 * or the number of extents is greater than the number of
611 * blocks.
613 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
614 || XFS_BMDR_SPACE_CALC(nrecs) >
615 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
616 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
617 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
618 (unsigned long long) ip->i_ino);
619 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
620 ip->i_mount, dip);
621 return XFS_ERROR(EFSCORRUPTED);
624 ifp->if_broot_bytes = size;
625 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
626 ASSERT(ifp->if_broot != NULL);
628 * Copy and convert from the on-disk structure
629 * to the in-memory structure.
631 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
632 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
633 ifp->if_broot, size);
634 ifp->if_flags &= ~XFS_IFEXTENTS;
635 ifp->if_flags |= XFS_IFBROOT;
637 return 0;
640 STATIC void
641 xfs_dinode_from_disk(
642 xfs_icdinode_t *to,
643 xfs_dinode_t *from)
645 to->di_magic = be16_to_cpu(from->di_magic);
646 to->di_mode = be16_to_cpu(from->di_mode);
647 to->di_version = from ->di_version;
648 to->di_format = from->di_format;
649 to->di_onlink = be16_to_cpu(from->di_onlink);
650 to->di_uid = be32_to_cpu(from->di_uid);
651 to->di_gid = be32_to_cpu(from->di_gid);
652 to->di_nlink = be32_to_cpu(from->di_nlink);
653 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
654 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
655 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
656 to->di_flushiter = be16_to_cpu(from->di_flushiter);
657 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
658 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
659 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
660 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
661 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
662 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
663 to->di_size = be64_to_cpu(from->di_size);
664 to->di_nblocks = be64_to_cpu(from->di_nblocks);
665 to->di_extsize = be32_to_cpu(from->di_extsize);
666 to->di_nextents = be32_to_cpu(from->di_nextents);
667 to->di_anextents = be16_to_cpu(from->di_anextents);
668 to->di_forkoff = from->di_forkoff;
669 to->di_aformat = from->di_aformat;
670 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
671 to->di_dmstate = be16_to_cpu(from->di_dmstate);
672 to->di_flags = be16_to_cpu(from->di_flags);
673 to->di_gen = be32_to_cpu(from->di_gen);
676 void
677 xfs_dinode_to_disk(
678 xfs_dinode_t *to,
679 xfs_icdinode_t *from)
681 to->di_magic = cpu_to_be16(from->di_magic);
682 to->di_mode = cpu_to_be16(from->di_mode);
683 to->di_version = from ->di_version;
684 to->di_format = from->di_format;
685 to->di_onlink = cpu_to_be16(from->di_onlink);
686 to->di_uid = cpu_to_be32(from->di_uid);
687 to->di_gid = cpu_to_be32(from->di_gid);
688 to->di_nlink = cpu_to_be32(from->di_nlink);
689 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
690 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
691 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
692 to->di_flushiter = cpu_to_be16(from->di_flushiter);
693 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
694 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
695 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
696 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
697 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
698 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
699 to->di_size = cpu_to_be64(from->di_size);
700 to->di_nblocks = cpu_to_be64(from->di_nblocks);
701 to->di_extsize = cpu_to_be32(from->di_extsize);
702 to->di_nextents = cpu_to_be32(from->di_nextents);
703 to->di_anextents = cpu_to_be16(from->di_anextents);
704 to->di_forkoff = from->di_forkoff;
705 to->di_aformat = from->di_aformat;
706 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
707 to->di_dmstate = cpu_to_be16(from->di_dmstate);
708 to->di_flags = cpu_to_be16(from->di_flags);
709 to->di_gen = cpu_to_be32(from->di_gen);
712 STATIC uint
713 _xfs_dic2xflags(
714 __uint16_t di_flags)
716 uint flags = 0;
718 if (di_flags & XFS_DIFLAG_ANY) {
719 if (di_flags & XFS_DIFLAG_REALTIME)
720 flags |= XFS_XFLAG_REALTIME;
721 if (di_flags & XFS_DIFLAG_PREALLOC)
722 flags |= XFS_XFLAG_PREALLOC;
723 if (di_flags & XFS_DIFLAG_IMMUTABLE)
724 flags |= XFS_XFLAG_IMMUTABLE;
725 if (di_flags & XFS_DIFLAG_APPEND)
726 flags |= XFS_XFLAG_APPEND;
727 if (di_flags & XFS_DIFLAG_SYNC)
728 flags |= XFS_XFLAG_SYNC;
729 if (di_flags & XFS_DIFLAG_NOATIME)
730 flags |= XFS_XFLAG_NOATIME;
731 if (di_flags & XFS_DIFLAG_NODUMP)
732 flags |= XFS_XFLAG_NODUMP;
733 if (di_flags & XFS_DIFLAG_RTINHERIT)
734 flags |= XFS_XFLAG_RTINHERIT;
735 if (di_flags & XFS_DIFLAG_PROJINHERIT)
736 flags |= XFS_XFLAG_PROJINHERIT;
737 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
738 flags |= XFS_XFLAG_NOSYMLINKS;
739 if (di_flags & XFS_DIFLAG_EXTSIZE)
740 flags |= XFS_XFLAG_EXTSIZE;
741 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
742 flags |= XFS_XFLAG_EXTSZINHERIT;
743 if (di_flags & XFS_DIFLAG_NODEFRAG)
744 flags |= XFS_XFLAG_NODEFRAG;
745 if (di_flags & XFS_DIFLAG_FILESTREAM)
746 flags |= XFS_XFLAG_FILESTREAM;
749 return flags;
752 uint
753 xfs_ip2xflags(
754 xfs_inode_t *ip)
756 xfs_icdinode_t *dic = &ip->i_d;
758 return _xfs_dic2xflags(dic->di_flags) |
759 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
762 uint
763 xfs_dic2xflags(
764 xfs_dinode_t *dip)
766 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
767 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
771 * Read the disk inode attributes into the in-core inode structure.
774 xfs_iread(
775 xfs_mount_t *mp,
776 xfs_trans_t *tp,
777 xfs_inode_t *ip,
778 uint iget_flags)
780 xfs_buf_t *bp;
781 xfs_dinode_t *dip;
782 int error;
785 * Fill in the location information in the in-core inode.
787 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
788 if (error)
789 return error;
792 * Get pointers to the on-disk inode and the buffer containing it.
794 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
795 XBF_LOCK, iget_flags);
796 if (error)
797 return error;
798 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
801 * If we got something that isn't an inode it means someone
802 * (nfs or dmi) has a stale handle.
804 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
805 #ifdef DEBUG
806 xfs_alert(mp,
807 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
808 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
809 #endif /* DEBUG */
810 error = XFS_ERROR(EINVAL);
811 goto out_brelse;
815 * If the on-disk inode is already linked to a directory
816 * entry, copy all of the inode into the in-core inode.
817 * xfs_iformat() handles copying in the inode format
818 * specific information.
819 * Otherwise, just get the truly permanent information.
821 if (dip->di_mode) {
822 xfs_dinode_from_disk(&ip->i_d, dip);
823 error = xfs_iformat(ip, dip);
824 if (error) {
825 #ifdef DEBUG
826 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
827 __func__, error);
828 #endif /* DEBUG */
829 goto out_brelse;
831 } else {
832 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
833 ip->i_d.di_version = dip->di_version;
834 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
835 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
837 * Make sure to pull in the mode here as well in
838 * case the inode is released without being used.
839 * This ensures that xfs_inactive() will see that
840 * the inode is already free and not try to mess
841 * with the uninitialized part of it.
843 ip->i_d.di_mode = 0;
845 * Initialize the per-fork minima and maxima for a new
846 * inode here. xfs_iformat will do it for old inodes.
848 ip->i_df.if_ext_max =
849 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
853 * The inode format changed when we moved the link count and
854 * made it 32 bits long. If this is an old format inode,
855 * convert it in memory to look like a new one. If it gets
856 * flushed to disk we will convert back before flushing or
857 * logging it. We zero out the new projid field and the old link
858 * count field. We'll handle clearing the pad field (the remains
859 * of the old uuid field) when we actually convert the inode to
860 * the new format. We don't change the version number so that we
861 * can distinguish this from a real new format inode.
863 if (ip->i_d.di_version == 1) {
864 ip->i_d.di_nlink = ip->i_d.di_onlink;
865 ip->i_d.di_onlink = 0;
866 xfs_set_projid(ip, 0);
869 ip->i_delayed_blks = 0;
870 ip->i_size = ip->i_d.di_size;
873 * Mark the buffer containing the inode as something to keep
874 * around for a while. This helps to keep recently accessed
875 * meta-data in-core longer.
877 xfs_buf_set_ref(bp, XFS_INO_REF);
880 * Use xfs_trans_brelse() to release the buffer containing the
881 * on-disk inode, because it was acquired with xfs_trans_read_buf()
882 * in xfs_itobp() above. If tp is NULL, this is just a normal
883 * brelse(). If we're within a transaction, then xfs_trans_brelse()
884 * will only release the buffer if it is not dirty within the
885 * transaction. It will be OK to release the buffer in this case,
886 * because inodes on disk are never destroyed and we will be
887 * locking the new in-core inode before putting it in the hash
888 * table where other processes can find it. Thus we don't have
889 * to worry about the inode being changed just because we released
890 * the buffer.
892 out_brelse:
893 xfs_trans_brelse(tp, bp);
894 return error;
898 * Read in extents from a btree-format inode.
899 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
902 xfs_iread_extents(
903 xfs_trans_t *tp,
904 xfs_inode_t *ip,
905 int whichfork)
907 int error;
908 xfs_ifork_t *ifp;
909 xfs_extnum_t nextents;
911 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
912 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
913 ip->i_mount);
914 return XFS_ERROR(EFSCORRUPTED);
916 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
917 ifp = XFS_IFORK_PTR(ip, whichfork);
920 * We know that the size is valid (it's checked in iformat_btree)
922 ifp->if_bytes = ifp->if_real_bytes = 0;
923 ifp->if_flags |= XFS_IFEXTENTS;
924 xfs_iext_add(ifp, 0, nextents);
925 error = xfs_bmap_read_extents(tp, ip, whichfork);
926 if (error) {
927 xfs_iext_destroy(ifp);
928 ifp->if_flags &= ~XFS_IFEXTENTS;
929 return error;
931 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
932 return 0;
936 * Allocate an inode on disk and return a copy of its in-core version.
937 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
938 * appropriately within the inode. The uid and gid for the inode are
939 * set according to the contents of the given cred structure.
941 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
942 * has a free inode available, call xfs_iget()
943 * to obtain the in-core version of the allocated inode. Finally,
944 * fill in the inode and log its initial contents. In this case,
945 * ialloc_context would be set to NULL and call_again set to false.
947 * If xfs_dialloc() does not have an available inode,
948 * it will replenish its supply by doing an allocation. Since we can
949 * only do one allocation within a transaction without deadlocks, we
950 * must commit the current transaction before returning the inode itself.
951 * In this case, therefore, we will set call_again to true and return.
952 * The caller should then commit the current transaction, start a new
953 * transaction, and call xfs_ialloc() again to actually get the inode.
955 * To ensure that some other process does not grab the inode that
956 * was allocated during the first call to xfs_ialloc(), this routine
957 * also returns the [locked] bp pointing to the head of the freelist
958 * as ialloc_context. The caller should hold this buffer across
959 * the commit and pass it back into this routine on the second call.
961 * If we are allocating quota inodes, we do not have a parent inode
962 * to attach to or associate with (i.e. pip == NULL) because they
963 * are not linked into the directory structure - they are attached
964 * directly to the superblock - and so have no parent.
967 xfs_ialloc(
968 xfs_trans_t *tp,
969 xfs_inode_t *pip,
970 mode_t mode,
971 xfs_nlink_t nlink,
972 xfs_dev_t rdev,
973 prid_t prid,
974 int okalloc,
975 xfs_buf_t **ialloc_context,
976 boolean_t *call_again,
977 xfs_inode_t **ipp)
979 xfs_ino_t ino;
980 xfs_inode_t *ip;
981 uint flags;
982 int error;
983 timespec_t tv;
984 int filestreams = 0;
987 * Call the space management code to pick
988 * the on-disk inode to be allocated.
990 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
991 ialloc_context, call_again, &ino);
992 if (error)
993 return error;
994 if (*call_again || ino == NULLFSINO) {
995 *ipp = NULL;
996 return 0;
998 ASSERT(*ialloc_context == NULL);
1001 * Get the in-core inode with the lock held exclusively.
1002 * This is because we're setting fields here we need
1003 * to prevent others from looking at until we're done.
1005 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1006 XFS_ILOCK_EXCL, &ip);
1007 if (error)
1008 return error;
1009 ASSERT(ip != NULL);
1011 ip->i_d.di_mode = (__uint16_t)mode;
1012 ip->i_d.di_onlink = 0;
1013 ip->i_d.di_nlink = nlink;
1014 ASSERT(ip->i_d.di_nlink == nlink);
1015 ip->i_d.di_uid = current_fsuid();
1016 ip->i_d.di_gid = current_fsgid();
1017 xfs_set_projid(ip, prid);
1018 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1021 * If the superblock version is up to where we support new format
1022 * inodes and this is currently an old format inode, then change
1023 * the inode version number now. This way we only do the conversion
1024 * here rather than here and in the flush/logging code.
1026 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1027 ip->i_d.di_version == 1) {
1028 ip->i_d.di_version = 2;
1030 * We've already zeroed the old link count, the projid field,
1031 * and the pad field.
1036 * Project ids won't be stored on disk if we are using a version 1 inode.
1038 if ((prid != 0) && (ip->i_d.di_version == 1))
1039 xfs_bump_ino_vers2(tp, ip);
1041 if (pip && XFS_INHERIT_GID(pip)) {
1042 ip->i_d.di_gid = pip->i_d.di_gid;
1043 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1044 ip->i_d.di_mode |= S_ISGID;
1049 * If the group ID of the new file does not match the effective group
1050 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1051 * (and only if the irix_sgid_inherit compatibility variable is set).
1053 if ((irix_sgid_inherit) &&
1054 (ip->i_d.di_mode & S_ISGID) &&
1055 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1056 ip->i_d.di_mode &= ~S_ISGID;
1059 ip->i_d.di_size = 0;
1060 ip->i_size = 0;
1061 ip->i_d.di_nextents = 0;
1062 ASSERT(ip->i_d.di_nblocks == 0);
1064 nanotime(&tv);
1065 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1066 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1067 ip->i_d.di_atime = ip->i_d.di_mtime;
1068 ip->i_d.di_ctime = ip->i_d.di_mtime;
1071 * di_gen will have been taken care of in xfs_iread.
1073 ip->i_d.di_extsize = 0;
1074 ip->i_d.di_dmevmask = 0;
1075 ip->i_d.di_dmstate = 0;
1076 ip->i_d.di_flags = 0;
1077 flags = XFS_ILOG_CORE;
1078 switch (mode & S_IFMT) {
1079 case S_IFIFO:
1080 case S_IFCHR:
1081 case S_IFBLK:
1082 case S_IFSOCK:
1083 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1084 ip->i_df.if_u2.if_rdev = rdev;
1085 ip->i_df.if_flags = 0;
1086 flags |= XFS_ILOG_DEV;
1087 break;
1088 case S_IFREG:
1090 * we can't set up filestreams until after the VFS inode
1091 * is set up properly.
1093 if (pip && xfs_inode_is_filestream(pip))
1094 filestreams = 1;
1095 /* fall through */
1096 case S_IFDIR:
1097 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1098 uint di_flags = 0;
1100 if (S_ISDIR(mode)) {
1101 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1102 di_flags |= XFS_DIFLAG_RTINHERIT;
1103 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1104 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1105 ip->i_d.di_extsize = pip->i_d.di_extsize;
1107 } else if (S_ISREG(mode)) {
1108 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1109 di_flags |= XFS_DIFLAG_REALTIME;
1110 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1111 di_flags |= XFS_DIFLAG_EXTSIZE;
1112 ip->i_d.di_extsize = pip->i_d.di_extsize;
1115 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1116 xfs_inherit_noatime)
1117 di_flags |= XFS_DIFLAG_NOATIME;
1118 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1119 xfs_inherit_nodump)
1120 di_flags |= XFS_DIFLAG_NODUMP;
1121 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1122 xfs_inherit_sync)
1123 di_flags |= XFS_DIFLAG_SYNC;
1124 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1125 xfs_inherit_nosymlinks)
1126 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1127 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1128 di_flags |= XFS_DIFLAG_PROJINHERIT;
1129 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1130 xfs_inherit_nodefrag)
1131 di_flags |= XFS_DIFLAG_NODEFRAG;
1132 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1133 di_flags |= XFS_DIFLAG_FILESTREAM;
1134 ip->i_d.di_flags |= di_flags;
1136 /* FALLTHROUGH */
1137 case S_IFLNK:
1138 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1139 ip->i_df.if_flags = XFS_IFEXTENTS;
1140 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1141 ip->i_df.if_u1.if_extents = NULL;
1142 break;
1143 default:
1144 ASSERT(0);
1147 * Attribute fork settings for new inode.
1149 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1150 ip->i_d.di_anextents = 0;
1153 * Log the new values stuffed into the inode.
1155 xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1156 xfs_trans_log_inode(tp, ip, flags);
1158 /* now that we have an i_mode we can setup inode ops and unlock */
1159 xfs_setup_inode(ip);
1161 /* now we have set up the vfs inode we can associate the filestream */
1162 if (filestreams) {
1163 error = xfs_filestream_associate(pip, ip);
1164 if (error < 0)
1165 return -error;
1166 if (!error)
1167 xfs_iflags_set(ip, XFS_IFILESTREAM);
1170 *ipp = ip;
1171 return 0;
1175 * Check to make sure that there are no blocks allocated to the
1176 * file beyond the size of the file. We don't check this for
1177 * files with fixed size extents or real time extents, but we
1178 * at least do it for regular files.
1180 #ifdef DEBUG
1181 STATIC void
1182 xfs_isize_check(
1183 struct xfs_inode *ip,
1184 xfs_fsize_t isize)
1186 struct xfs_mount *mp = ip->i_mount;
1187 xfs_fileoff_t map_first;
1188 int nimaps;
1189 xfs_bmbt_irec_t imaps[2];
1191 if (!S_ISREG(ip->i_d.di_mode))
1192 return;
1194 if (XFS_IS_REALTIME_INODE(ip))
1195 return;
1197 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1198 return;
1200 nimaps = 2;
1201 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1203 * The filesystem could be shutting down, so bmapi may return
1204 * an error.
1206 if (xfs_bmapi(NULL, ip, map_first,
1207 (XFS_B_TO_FSB(mp,
1208 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1209 map_first),
1210 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1211 NULL))
1212 return;
1213 ASSERT(nimaps == 1);
1214 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1216 #else /* DEBUG */
1217 #define xfs_isize_check(ip, isize)
1218 #endif /* DEBUG */
1221 * Free up the underlying blocks past new_size. The new size must be smaller
1222 * than the current size. This routine can be used both for the attribute and
1223 * data fork, and does not modify the inode size, which is left to the caller.
1225 * The transaction passed to this routine must have made a permanent log
1226 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1227 * given transaction and start new ones, so make sure everything involved in
1228 * the transaction is tidy before calling here. Some transaction will be
1229 * returned to the caller to be committed. The incoming transaction must
1230 * already include the inode, and both inode locks must be held exclusively.
1231 * The inode must also be "held" within the transaction. On return the inode
1232 * will be "held" within the returned transaction. This routine does NOT
1233 * require any disk space to be reserved for it within the transaction.
1235 * If we get an error, we must return with the inode locked and linked into the
1236 * current transaction. This keeps things simple for the higher level code,
1237 * because it always knows that the inode is locked and held in the transaction
1238 * that returns to it whether errors occur or not. We don't mark the inode
1239 * dirty on error so that transactions can be easily aborted if possible.
1242 xfs_itruncate_extents(
1243 struct xfs_trans **tpp,
1244 struct xfs_inode *ip,
1245 int whichfork,
1246 xfs_fsize_t new_size)
1248 struct xfs_mount *mp = ip->i_mount;
1249 struct xfs_trans *tp = *tpp;
1250 struct xfs_trans *ntp;
1251 xfs_bmap_free_t free_list;
1252 xfs_fsblock_t first_block;
1253 xfs_fileoff_t first_unmap_block;
1254 xfs_fileoff_t last_block;
1255 xfs_filblks_t unmap_len;
1256 int committed;
1257 int error = 0;
1258 int done = 0;
1260 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1261 ASSERT(new_size <= ip->i_size);
1262 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1263 ASSERT(ip->i_itemp != NULL);
1264 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1265 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1268 * Since it is possible for space to become allocated beyond
1269 * the end of the file (in a crash where the space is allocated
1270 * but the inode size is not yet updated), simply remove any
1271 * blocks which show up between the new EOF and the maximum
1272 * possible file size. If the first block to be removed is
1273 * beyond the maximum file size (ie it is the same as last_block),
1274 * then there is nothing to do.
1276 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1277 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1278 if (first_unmap_block == last_block)
1279 return 0;
1281 ASSERT(first_unmap_block < last_block);
1282 unmap_len = last_block - first_unmap_block + 1;
1283 while (!done) {
1284 xfs_bmap_init(&free_list, &first_block);
1285 error = xfs_bunmapi(tp, ip,
1286 first_unmap_block, unmap_len,
1287 xfs_bmapi_aflag(whichfork),
1288 XFS_ITRUNC_MAX_EXTENTS,
1289 &first_block, &free_list,
1290 &done);
1291 if (error)
1292 goto out_bmap_cancel;
1295 * Duplicate the transaction that has the permanent
1296 * reservation and commit the old transaction.
1298 error = xfs_bmap_finish(&tp, &free_list, &committed);
1299 if (committed)
1300 xfs_trans_ijoin(tp, ip);
1301 if (error)
1302 goto out_bmap_cancel;
1304 if (committed) {
1306 * Mark the inode dirty so it will be logged and
1307 * moved forward in the log as part of every commit.
1309 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1312 ntp = xfs_trans_dup(tp);
1313 error = xfs_trans_commit(tp, 0);
1314 tp = ntp;
1316 xfs_trans_ijoin(tp, ip);
1318 if (error)
1319 goto out;
1322 * Transaction commit worked ok so we can drop the extra ticket
1323 * reference that we gained in xfs_trans_dup()
1325 xfs_log_ticket_put(tp->t_ticket);
1326 error = xfs_trans_reserve(tp, 0,
1327 XFS_ITRUNCATE_LOG_RES(mp), 0,
1328 XFS_TRANS_PERM_LOG_RES,
1329 XFS_ITRUNCATE_LOG_COUNT);
1330 if (error)
1331 goto out;
1334 out:
1335 *tpp = tp;
1336 return error;
1337 out_bmap_cancel:
1339 * If the bunmapi call encounters an error, return to the caller where
1340 * the transaction can be properly aborted. We just need to make sure
1341 * we're not holding any resources that we were not when we came in.
1343 xfs_bmap_cancel(&free_list);
1344 goto out;
1348 xfs_itruncate_data(
1349 struct xfs_trans **tpp,
1350 struct xfs_inode *ip,
1351 xfs_fsize_t new_size)
1353 int error;
1355 trace_xfs_itruncate_data_start(ip, new_size);
1358 * The first thing we do is set the size to new_size permanently on
1359 * disk. This way we don't have to worry about anyone ever being able
1360 * to look at the data being freed even in the face of a crash.
1361 * What we're getting around here is the case where we free a block, it
1362 * is allocated to another file, it is written to, and then we crash.
1363 * If the new data gets written to the file but the log buffers
1364 * containing the free and reallocation don't, then we'd end up with
1365 * garbage in the blocks being freed. As long as we make the new_size
1366 * permanent before actually freeing any blocks it doesn't matter if
1367 * they get written to.
1369 if (ip->i_d.di_nextents > 0) {
1371 * If we are not changing the file size then do not update
1372 * the on-disk file size - we may be called from
1373 * xfs_inactive_free_eofblocks(). If we update the on-disk
1374 * file size and then the system crashes before the contents
1375 * of the file are flushed to disk then the files may be
1376 * full of holes (ie NULL files bug).
1378 if (ip->i_size != new_size) {
1379 ip->i_d.di_size = new_size;
1380 ip->i_size = new_size;
1381 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1385 error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
1386 if (error)
1387 return error;
1390 * If we are not changing the file size then do not update the on-disk
1391 * file size - we may be called from xfs_inactive_free_eofblocks().
1392 * If we update the on-disk file size and then the system crashes
1393 * before the contents of the file are flushed to disk then the files
1394 * may be full of holes (ie NULL files bug).
1396 xfs_isize_check(ip, new_size);
1397 if (ip->i_size != new_size) {
1398 ip->i_d.di_size = new_size;
1399 ip->i_size = new_size;
1402 ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
1403 ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
1406 * Always re-log the inode so that our permanent transaction can keep
1407 * on rolling it forward in the log.
1409 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1411 trace_xfs_itruncate_data_end(ip, new_size);
1412 return 0;
1416 * This is called when the inode's link count goes to 0.
1417 * We place the on-disk inode on a list in the AGI. It
1418 * will be pulled from this list when the inode is freed.
1421 xfs_iunlink(
1422 xfs_trans_t *tp,
1423 xfs_inode_t *ip)
1425 xfs_mount_t *mp;
1426 xfs_agi_t *agi;
1427 xfs_dinode_t *dip;
1428 xfs_buf_t *agibp;
1429 xfs_buf_t *ibp;
1430 xfs_agino_t agino;
1431 short bucket_index;
1432 int offset;
1433 int error;
1435 ASSERT(ip->i_d.di_nlink == 0);
1436 ASSERT(ip->i_d.di_mode != 0);
1438 mp = tp->t_mountp;
1441 * Get the agi buffer first. It ensures lock ordering
1442 * on the list.
1444 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1445 if (error)
1446 return error;
1447 agi = XFS_BUF_TO_AGI(agibp);
1450 * Get the index into the agi hash table for the
1451 * list this inode will go on.
1453 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1454 ASSERT(agino != 0);
1455 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1456 ASSERT(agi->agi_unlinked[bucket_index]);
1457 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1459 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1461 * There is already another inode in the bucket we need
1462 * to add ourselves to. Add us at the front of the list.
1463 * Here we put the head pointer into our next pointer,
1464 * and then we fall through to point the head at us.
1466 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1467 if (error)
1468 return error;
1470 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1471 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1472 offset = ip->i_imap.im_boffset +
1473 offsetof(xfs_dinode_t, di_next_unlinked);
1474 xfs_trans_inode_buf(tp, ibp);
1475 xfs_trans_log_buf(tp, ibp, offset,
1476 (offset + sizeof(xfs_agino_t) - 1));
1477 xfs_inobp_check(mp, ibp);
1481 * Point the bucket head pointer at the inode being inserted.
1483 ASSERT(agino != 0);
1484 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1485 offset = offsetof(xfs_agi_t, agi_unlinked) +
1486 (sizeof(xfs_agino_t) * bucket_index);
1487 xfs_trans_log_buf(tp, agibp, offset,
1488 (offset + sizeof(xfs_agino_t) - 1));
1489 return 0;
1493 * Pull the on-disk inode from the AGI unlinked list.
1495 STATIC int
1496 xfs_iunlink_remove(
1497 xfs_trans_t *tp,
1498 xfs_inode_t *ip)
1500 xfs_ino_t next_ino;
1501 xfs_mount_t *mp;
1502 xfs_agi_t *agi;
1503 xfs_dinode_t *dip;
1504 xfs_buf_t *agibp;
1505 xfs_buf_t *ibp;
1506 xfs_agnumber_t agno;
1507 xfs_agino_t agino;
1508 xfs_agino_t next_agino;
1509 xfs_buf_t *last_ibp;
1510 xfs_dinode_t *last_dip = NULL;
1511 short bucket_index;
1512 int offset, last_offset = 0;
1513 int error;
1515 mp = tp->t_mountp;
1516 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1519 * Get the agi buffer first. It ensures lock ordering
1520 * on the list.
1522 error = xfs_read_agi(mp, tp, agno, &agibp);
1523 if (error)
1524 return error;
1526 agi = XFS_BUF_TO_AGI(agibp);
1529 * Get the index into the agi hash table for the
1530 * list this inode will go on.
1532 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1533 ASSERT(agino != 0);
1534 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1535 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1536 ASSERT(agi->agi_unlinked[bucket_index]);
1538 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1540 * We're at the head of the list. Get the inode's
1541 * on-disk buffer to see if there is anyone after us
1542 * on the list. Only modify our next pointer if it
1543 * is not already NULLAGINO. This saves us the overhead
1544 * of dealing with the buffer when there is no need to
1545 * change it.
1547 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1548 if (error) {
1549 xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1550 __func__, error);
1551 return error;
1553 next_agino = be32_to_cpu(dip->di_next_unlinked);
1554 ASSERT(next_agino != 0);
1555 if (next_agino != NULLAGINO) {
1556 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1557 offset = ip->i_imap.im_boffset +
1558 offsetof(xfs_dinode_t, di_next_unlinked);
1559 xfs_trans_inode_buf(tp, ibp);
1560 xfs_trans_log_buf(tp, ibp, offset,
1561 (offset + sizeof(xfs_agino_t) - 1));
1562 xfs_inobp_check(mp, ibp);
1563 } else {
1564 xfs_trans_brelse(tp, ibp);
1567 * Point the bucket head pointer at the next inode.
1569 ASSERT(next_agino != 0);
1570 ASSERT(next_agino != agino);
1571 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1572 offset = offsetof(xfs_agi_t, agi_unlinked) +
1573 (sizeof(xfs_agino_t) * bucket_index);
1574 xfs_trans_log_buf(tp, agibp, offset,
1575 (offset + sizeof(xfs_agino_t) - 1));
1576 } else {
1578 * We need to search the list for the inode being freed.
1580 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1581 last_ibp = NULL;
1582 while (next_agino != agino) {
1584 * If the last inode wasn't the one pointing to
1585 * us, then release its buffer since we're not
1586 * going to do anything with it.
1588 if (last_ibp != NULL) {
1589 xfs_trans_brelse(tp, last_ibp);
1591 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1592 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1593 &last_ibp, &last_offset, 0);
1594 if (error) {
1595 xfs_warn(mp,
1596 "%s: xfs_inotobp() returned error %d.",
1597 __func__, error);
1598 return error;
1600 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1601 ASSERT(next_agino != NULLAGINO);
1602 ASSERT(next_agino != 0);
1605 * Now last_ibp points to the buffer previous to us on
1606 * the unlinked list. Pull us from the list.
1608 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1609 if (error) {
1610 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1611 __func__, error);
1612 return error;
1614 next_agino = be32_to_cpu(dip->di_next_unlinked);
1615 ASSERT(next_agino != 0);
1616 ASSERT(next_agino != agino);
1617 if (next_agino != NULLAGINO) {
1618 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1619 offset = ip->i_imap.im_boffset +
1620 offsetof(xfs_dinode_t, di_next_unlinked);
1621 xfs_trans_inode_buf(tp, ibp);
1622 xfs_trans_log_buf(tp, ibp, offset,
1623 (offset + sizeof(xfs_agino_t) - 1));
1624 xfs_inobp_check(mp, ibp);
1625 } else {
1626 xfs_trans_brelse(tp, ibp);
1629 * Point the previous inode on the list to the next inode.
1631 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1632 ASSERT(next_agino != 0);
1633 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1634 xfs_trans_inode_buf(tp, last_ibp);
1635 xfs_trans_log_buf(tp, last_ibp, offset,
1636 (offset + sizeof(xfs_agino_t) - 1));
1637 xfs_inobp_check(mp, last_ibp);
1639 return 0;
1643 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1644 * inodes that are in memory - they all must be marked stale and attached to
1645 * the cluster buffer.
1647 STATIC void
1648 xfs_ifree_cluster(
1649 xfs_inode_t *free_ip,
1650 xfs_trans_t *tp,
1651 xfs_ino_t inum)
1653 xfs_mount_t *mp = free_ip->i_mount;
1654 int blks_per_cluster;
1655 int nbufs;
1656 int ninodes;
1657 int i, j;
1658 xfs_daddr_t blkno;
1659 xfs_buf_t *bp;
1660 xfs_inode_t *ip;
1661 xfs_inode_log_item_t *iip;
1662 xfs_log_item_t *lip;
1663 struct xfs_perag *pag;
1665 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1666 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1667 blks_per_cluster = 1;
1668 ninodes = mp->m_sb.sb_inopblock;
1669 nbufs = XFS_IALLOC_BLOCKS(mp);
1670 } else {
1671 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1672 mp->m_sb.sb_blocksize;
1673 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1674 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1677 for (j = 0; j < nbufs; j++, inum += ninodes) {
1678 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1679 XFS_INO_TO_AGBNO(mp, inum));
1682 * We obtain and lock the backing buffer first in the process
1683 * here, as we have to ensure that any dirty inode that we
1684 * can't get the flush lock on is attached to the buffer.
1685 * If we scan the in-memory inodes first, then buffer IO can
1686 * complete before we get a lock on it, and hence we may fail
1687 * to mark all the active inodes on the buffer stale.
1689 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1690 mp->m_bsize * blks_per_cluster,
1691 XBF_LOCK);
1694 * Walk the inodes already attached to the buffer and mark them
1695 * stale. These will all have the flush locks held, so an
1696 * in-memory inode walk can't lock them. By marking them all
1697 * stale first, we will not attempt to lock them in the loop
1698 * below as the XFS_ISTALE flag will be set.
1700 lip = bp->b_fspriv;
1701 while (lip) {
1702 if (lip->li_type == XFS_LI_INODE) {
1703 iip = (xfs_inode_log_item_t *)lip;
1704 ASSERT(iip->ili_logged == 1);
1705 lip->li_cb = xfs_istale_done;
1706 xfs_trans_ail_copy_lsn(mp->m_ail,
1707 &iip->ili_flush_lsn,
1708 &iip->ili_item.li_lsn);
1709 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1711 lip = lip->li_bio_list;
1716 * For each inode in memory attempt to add it to the inode
1717 * buffer and set it up for being staled on buffer IO
1718 * completion. This is safe as we've locked out tail pushing
1719 * and flushing by locking the buffer.
1721 * We have already marked every inode that was part of a
1722 * transaction stale above, which means there is no point in
1723 * even trying to lock them.
1725 for (i = 0; i < ninodes; i++) {
1726 retry:
1727 rcu_read_lock();
1728 ip = radix_tree_lookup(&pag->pag_ici_root,
1729 XFS_INO_TO_AGINO(mp, (inum + i)));
1731 /* Inode not in memory, nothing to do */
1732 if (!ip) {
1733 rcu_read_unlock();
1734 continue;
1738 * because this is an RCU protected lookup, we could
1739 * find a recently freed or even reallocated inode
1740 * during the lookup. We need to check under the
1741 * i_flags_lock for a valid inode here. Skip it if it
1742 * is not valid, the wrong inode or stale.
1744 spin_lock(&ip->i_flags_lock);
1745 if (ip->i_ino != inum + i ||
1746 __xfs_iflags_test(ip, XFS_ISTALE)) {
1747 spin_unlock(&ip->i_flags_lock);
1748 rcu_read_unlock();
1749 continue;
1751 spin_unlock(&ip->i_flags_lock);
1754 * Don't try to lock/unlock the current inode, but we
1755 * _cannot_ skip the other inodes that we did not find
1756 * in the list attached to the buffer and are not
1757 * already marked stale. If we can't lock it, back off
1758 * and retry.
1760 if (ip != free_ip &&
1761 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1762 rcu_read_unlock();
1763 delay(1);
1764 goto retry;
1766 rcu_read_unlock();
1768 xfs_iflock(ip);
1769 xfs_iflags_set(ip, XFS_ISTALE);
1772 * we don't need to attach clean inodes or those only
1773 * with unlogged changes (which we throw away, anyway).
1775 iip = ip->i_itemp;
1776 if (!iip || xfs_inode_clean(ip)) {
1777 ASSERT(ip != free_ip);
1778 ip->i_update_core = 0;
1779 xfs_ifunlock(ip);
1780 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781 continue;
1784 iip->ili_last_fields = iip->ili_format.ilf_fields;
1785 iip->ili_format.ilf_fields = 0;
1786 iip->ili_logged = 1;
1787 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1788 &iip->ili_item.li_lsn);
1790 xfs_buf_attach_iodone(bp, xfs_istale_done,
1791 &iip->ili_item);
1793 if (ip != free_ip)
1794 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1797 xfs_trans_stale_inode_buf(tp, bp);
1798 xfs_trans_binval(tp, bp);
1801 xfs_perag_put(pag);
1805 * This is called to return an inode to the inode free list.
1806 * The inode should already be truncated to 0 length and have
1807 * no pages associated with it. This routine also assumes that
1808 * the inode is already a part of the transaction.
1810 * The on-disk copy of the inode will have been added to the list
1811 * of unlinked inodes in the AGI. We need to remove the inode from
1812 * that list atomically with respect to freeing it here.
1815 xfs_ifree(
1816 xfs_trans_t *tp,
1817 xfs_inode_t *ip,
1818 xfs_bmap_free_t *flist)
1820 int error;
1821 int delete;
1822 xfs_ino_t first_ino;
1823 xfs_dinode_t *dip;
1824 xfs_buf_t *ibp;
1826 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1827 ASSERT(ip->i_d.di_nlink == 0);
1828 ASSERT(ip->i_d.di_nextents == 0);
1829 ASSERT(ip->i_d.di_anextents == 0);
1830 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1831 (!S_ISREG(ip->i_d.di_mode)));
1832 ASSERT(ip->i_d.di_nblocks == 0);
1835 * Pull the on-disk inode from the AGI unlinked list.
1837 error = xfs_iunlink_remove(tp, ip);
1838 if (error != 0) {
1839 return error;
1842 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1843 if (error != 0) {
1844 return error;
1846 ip->i_d.di_mode = 0; /* mark incore inode as free */
1847 ip->i_d.di_flags = 0;
1848 ip->i_d.di_dmevmask = 0;
1849 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1850 ip->i_df.if_ext_max =
1851 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
1852 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1853 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1855 * Bump the generation count so no one will be confused
1856 * by reincarnations of this inode.
1858 ip->i_d.di_gen++;
1860 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1862 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
1863 if (error)
1864 return error;
1867 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1868 * from picking up this inode when it is reclaimed (its incore state
1869 * initialzed but not flushed to disk yet). The in-core di_mode is
1870 * already cleared and a corresponding transaction logged.
1871 * The hack here just synchronizes the in-core to on-disk
1872 * di_mode value in advance before the actual inode sync to disk.
1873 * This is OK because the inode is already unlinked and would never
1874 * change its di_mode again for this inode generation.
1875 * This is a temporary hack that would require a proper fix
1876 * in the future.
1878 dip->di_mode = 0;
1880 if (delete) {
1881 xfs_ifree_cluster(ip, tp, first_ino);
1884 return 0;
1888 * Reallocate the space for if_broot based on the number of records
1889 * being added or deleted as indicated in rec_diff. Move the records
1890 * and pointers in if_broot to fit the new size. When shrinking this
1891 * will eliminate holes between the records and pointers created by
1892 * the caller. When growing this will create holes to be filled in
1893 * by the caller.
1895 * The caller must not request to add more records than would fit in
1896 * the on-disk inode root. If the if_broot is currently NULL, then
1897 * if we adding records one will be allocated. The caller must also
1898 * not request that the number of records go below zero, although
1899 * it can go to zero.
1901 * ip -- the inode whose if_broot area is changing
1902 * ext_diff -- the change in the number of records, positive or negative,
1903 * requested for the if_broot array.
1905 void
1906 xfs_iroot_realloc(
1907 xfs_inode_t *ip,
1908 int rec_diff,
1909 int whichfork)
1911 struct xfs_mount *mp = ip->i_mount;
1912 int cur_max;
1913 xfs_ifork_t *ifp;
1914 struct xfs_btree_block *new_broot;
1915 int new_max;
1916 size_t new_size;
1917 char *np;
1918 char *op;
1921 * Handle the degenerate case quietly.
1923 if (rec_diff == 0) {
1924 return;
1927 ifp = XFS_IFORK_PTR(ip, whichfork);
1928 if (rec_diff > 0) {
1930 * If there wasn't any memory allocated before, just
1931 * allocate it now and get out.
1933 if (ifp->if_broot_bytes == 0) {
1934 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1935 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1936 ifp->if_broot_bytes = (int)new_size;
1937 return;
1941 * If there is already an existing if_broot, then we need
1942 * to realloc() it and shift the pointers to their new
1943 * location. The records don't change location because
1944 * they are kept butted up against the btree block header.
1946 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1947 new_max = cur_max + rec_diff;
1948 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1949 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1950 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1951 KM_SLEEP | KM_NOFS);
1952 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1953 ifp->if_broot_bytes);
1954 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1955 (int)new_size);
1956 ifp->if_broot_bytes = (int)new_size;
1957 ASSERT(ifp->if_broot_bytes <=
1958 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1959 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1960 return;
1964 * rec_diff is less than 0. In this case, we are shrinking the
1965 * if_broot buffer. It must already exist. If we go to zero
1966 * records, just get rid of the root and clear the status bit.
1968 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1969 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1970 new_max = cur_max + rec_diff;
1971 ASSERT(new_max >= 0);
1972 if (new_max > 0)
1973 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1974 else
1975 new_size = 0;
1976 if (new_size > 0) {
1977 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1979 * First copy over the btree block header.
1981 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1982 } else {
1983 new_broot = NULL;
1984 ifp->if_flags &= ~XFS_IFBROOT;
1988 * Only copy the records and pointers if there are any.
1990 if (new_max > 0) {
1992 * First copy the records.
1994 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1995 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1996 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1999 * Then copy the pointers.
2001 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2002 ifp->if_broot_bytes);
2003 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2004 (int)new_size);
2005 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2007 kmem_free(ifp->if_broot);
2008 ifp->if_broot = new_broot;
2009 ifp->if_broot_bytes = (int)new_size;
2010 ASSERT(ifp->if_broot_bytes <=
2011 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2012 return;
2017 * This is called when the amount of space needed for if_data
2018 * is increased or decreased. The change in size is indicated by
2019 * the number of bytes that need to be added or deleted in the
2020 * byte_diff parameter.
2022 * If the amount of space needed has decreased below the size of the
2023 * inline buffer, then switch to using the inline buffer. Otherwise,
2024 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2025 * to what is needed.
2027 * ip -- the inode whose if_data area is changing
2028 * byte_diff -- the change in the number of bytes, positive or negative,
2029 * requested for the if_data array.
2031 void
2032 xfs_idata_realloc(
2033 xfs_inode_t *ip,
2034 int byte_diff,
2035 int whichfork)
2037 xfs_ifork_t *ifp;
2038 int new_size;
2039 int real_size;
2041 if (byte_diff == 0) {
2042 return;
2045 ifp = XFS_IFORK_PTR(ip, whichfork);
2046 new_size = (int)ifp->if_bytes + byte_diff;
2047 ASSERT(new_size >= 0);
2049 if (new_size == 0) {
2050 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2051 kmem_free(ifp->if_u1.if_data);
2053 ifp->if_u1.if_data = NULL;
2054 real_size = 0;
2055 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2057 * If the valid extents/data can fit in if_inline_ext/data,
2058 * copy them from the malloc'd vector and free it.
2060 if (ifp->if_u1.if_data == NULL) {
2061 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2062 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2063 ASSERT(ifp->if_real_bytes != 0);
2064 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2065 new_size);
2066 kmem_free(ifp->if_u1.if_data);
2067 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2069 real_size = 0;
2070 } else {
2072 * Stuck with malloc/realloc.
2073 * For inline data, the underlying buffer must be
2074 * a multiple of 4 bytes in size so that it can be
2075 * logged and stay on word boundaries. We enforce
2076 * that here.
2078 real_size = roundup(new_size, 4);
2079 if (ifp->if_u1.if_data == NULL) {
2080 ASSERT(ifp->if_real_bytes == 0);
2081 ifp->if_u1.if_data = kmem_alloc(real_size,
2082 KM_SLEEP | KM_NOFS);
2083 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2085 * Only do the realloc if the underlying size
2086 * is really changing.
2088 if (ifp->if_real_bytes != real_size) {
2089 ifp->if_u1.if_data =
2090 kmem_realloc(ifp->if_u1.if_data,
2091 real_size,
2092 ifp->if_real_bytes,
2093 KM_SLEEP | KM_NOFS);
2095 } else {
2096 ASSERT(ifp->if_real_bytes == 0);
2097 ifp->if_u1.if_data = kmem_alloc(real_size,
2098 KM_SLEEP | KM_NOFS);
2099 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2100 ifp->if_bytes);
2103 ifp->if_real_bytes = real_size;
2104 ifp->if_bytes = new_size;
2105 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2108 void
2109 xfs_idestroy_fork(
2110 xfs_inode_t *ip,
2111 int whichfork)
2113 xfs_ifork_t *ifp;
2115 ifp = XFS_IFORK_PTR(ip, whichfork);
2116 if (ifp->if_broot != NULL) {
2117 kmem_free(ifp->if_broot);
2118 ifp->if_broot = NULL;
2122 * If the format is local, then we can't have an extents
2123 * array so just look for an inline data array. If we're
2124 * not local then we may or may not have an extents list,
2125 * so check and free it up if we do.
2127 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2128 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2129 (ifp->if_u1.if_data != NULL)) {
2130 ASSERT(ifp->if_real_bytes != 0);
2131 kmem_free(ifp->if_u1.if_data);
2132 ifp->if_u1.if_data = NULL;
2133 ifp->if_real_bytes = 0;
2135 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2136 ((ifp->if_flags & XFS_IFEXTIREC) ||
2137 ((ifp->if_u1.if_extents != NULL) &&
2138 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2139 ASSERT(ifp->if_real_bytes != 0);
2140 xfs_iext_destroy(ifp);
2142 ASSERT(ifp->if_u1.if_extents == NULL ||
2143 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2144 ASSERT(ifp->if_real_bytes == 0);
2145 if (whichfork == XFS_ATTR_FORK) {
2146 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2147 ip->i_afp = NULL;
2152 * This is called to unpin an inode. The caller must have the inode locked
2153 * in at least shared mode so that the buffer cannot be subsequently pinned
2154 * once someone is waiting for it to be unpinned.
2156 static void
2157 xfs_iunpin_nowait(
2158 struct xfs_inode *ip)
2160 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2162 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2164 /* Give the log a push to start the unpinning I/O */
2165 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2169 void
2170 xfs_iunpin_wait(
2171 struct xfs_inode *ip)
2173 if (xfs_ipincount(ip)) {
2174 xfs_iunpin_nowait(ip);
2175 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2180 * xfs_iextents_copy()
2182 * This is called to copy the REAL extents (as opposed to the delayed
2183 * allocation extents) from the inode into the given buffer. It
2184 * returns the number of bytes copied into the buffer.
2186 * If there are no delayed allocation extents, then we can just
2187 * memcpy() the extents into the buffer. Otherwise, we need to
2188 * examine each extent in turn and skip those which are delayed.
2191 xfs_iextents_copy(
2192 xfs_inode_t *ip,
2193 xfs_bmbt_rec_t *dp,
2194 int whichfork)
2196 int copied;
2197 int i;
2198 xfs_ifork_t *ifp;
2199 int nrecs;
2200 xfs_fsblock_t start_block;
2202 ifp = XFS_IFORK_PTR(ip, whichfork);
2203 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2204 ASSERT(ifp->if_bytes > 0);
2206 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2207 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2208 ASSERT(nrecs > 0);
2211 * There are some delayed allocation extents in the
2212 * inode, so copy the extents one at a time and skip
2213 * the delayed ones. There must be at least one
2214 * non-delayed extent.
2216 copied = 0;
2217 for (i = 0; i < nrecs; i++) {
2218 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2219 start_block = xfs_bmbt_get_startblock(ep);
2220 if (isnullstartblock(start_block)) {
2222 * It's a delayed allocation extent, so skip it.
2224 continue;
2227 /* Translate to on disk format */
2228 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2229 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2230 dp++;
2231 copied++;
2233 ASSERT(copied != 0);
2234 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2236 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2240 * Each of the following cases stores data into the same region
2241 * of the on-disk inode, so only one of them can be valid at
2242 * any given time. While it is possible to have conflicting formats
2243 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2244 * in EXTENTS format, this can only happen when the fork has
2245 * changed formats after being modified but before being flushed.
2246 * In these cases, the format always takes precedence, because the
2247 * format indicates the current state of the fork.
2249 /*ARGSUSED*/
2250 STATIC void
2251 xfs_iflush_fork(
2252 xfs_inode_t *ip,
2253 xfs_dinode_t *dip,
2254 xfs_inode_log_item_t *iip,
2255 int whichfork,
2256 xfs_buf_t *bp)
2258 char *cp;
2259 xfs_ifork_t *ifp;
2260 xfs_mount_t *mp;
2261 #ifdef XFS_TRANS_DEBUG
2262 int first;
2263 #endif
2264 static const short brootflag[2] =
2265 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2266 static const short dataflag[2] =
2267 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2268 static const short extflag[2] =
2269 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2271 if (!iip)
2272 return;
2273 ifp = XFS_IFORK_PTR(ip, whichfork);
2275 * This can happen if we gave up in iformat in an error path,
2276 * for the attribute fork.
2278 if (!ifp) {
2279 ASSERT(whichfork == XFS_ATTR_FORK);
2280 return;
2282 cp = XFS_DFORK_PTR(dip, whichfork);
2283 mp = ip->i_mount;
2284 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2285 case XFS_DINODE_FMT_LOCAL:
2286 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2287 (ifp->if_bytes > 0)) {
2288 ASSERT(ifp->if_u1.if_data != NULL);
2289 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2290 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2292 break;
2294 case XFS_DINODE_FMT_EXTENTS:
2295 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2296 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2297 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2298 (ifp->if_bytes > 0)) {
2299 ASSERT(xfs_iext_get_ext(ifp, 0));
2300 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2301 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2302 whichfork);
2304 break;
2306 case XFS_DINODE_FMT_BTREE:
2307 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2308 (ifp->if_broot_bytes > 0)) {
2309 ASSERT(ifp->if_broot != NULL);
2310 ASSERT(ifp->if_broot_bytes <=
2311 (XFS_IFORK_SIZE(ip, whichfork) +
2312 XFS_BROOT_SIZE_ADJ));
2313 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2314 (xfs_bmdr_block_t *)cp,
2315 XFS_DFORK_SIZE(dip, mp, whichfork));
2317 break;
2319 case XFS_DINODE_FMT_DEV:
2320 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2321 ASSERT(whichfork == XFS_DATA_FORK);
2322 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2324 break;
2326 case XFS_DINODE_FMT_UUID:
2327 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2328 ASSERT(whichfork == XFS_DATA_FORK);
2329 memcpy(XFS_DFORK_DPTR(dip),
2330 &ip->i_df.if_u2.if_uuid,
2331 sizeof(uuid_t));
2333 break;
2335 default:
2336 ASSERT(0);
2337 break;
2341 STATIC int
2342 xfs_iflush_cluster(
2343 xfs_inode_t *ip,
2344 xfs_buf_t *bp)
2346 xfs_mount_t *mp = ip->i_mount;
2347 struct xfs_perag *pag;
2348 unsigned long first_index, mask;
2349 unsigned long inodes_per_cluster;
2350 int ilist_size;
2351 xfs_inode_t **ilist;
2352 xfs_inode_t *iq;
2353 int nr_found;
2354 int clcount = 0;
2355 int bufwasdelwri;
2356 int i;
2358 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2360 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2361 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2362 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2363 if (!ilist)
2364 goto out_put;
2366 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2367 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2368 rcu_read_lock();
2369 /* really need a gang lookup range call here */
2370 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2371 first_index, inodes_per_cluster);
2372 if (nr_found == 0)
2373 goto out_free;
2375 for (i = 0; i < nr_found; i++) {
2376 iq = ilist[i];
2377 if (iq == ip)
2378 continue;
2381 * because this is an RCU protected lookup, we could find a
2382 * recently freed or even reallocated inode during the lookup.
2383 * We need to check under the i_flags_lock for a valid inode
2384 * here. Skip it if it is not valid or the wrong inode.
2386 spin_lock(&ip->i_flags_lock);
2387 if (!ip->i_ino ||
2388 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2389 spin_unlock(&ip->i_flags_lock);
2390 continue;
2392 spin_unlock(&ip->i_flags_lock);
2395 * Do an un-protected check to see if the inode is dirty and
2396 * is a candidate for flushing. These checks will be repeated
2397 * later after the appropriate locks are acquired.
2399 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2400 continue;
2403 * Try to get locks. If any are unavailable or it is pinned,
2404 * then this inode cannot be flushed and is skipped.
2407 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2408 continue;
2409 if (!xfs_iflock_nowait(iq)) {
2410 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2411 continue;
2413 if (xfs_ipincount(iq)) {
2414 xfs_ifunlock(iq);
2415 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2416 continue;
2420 * arriving here means that this inode can be flushed. First
2421 * re-check that it's dirty before flushing.
2423 if (!xfs_inode_clean(iq)) {
2424 int error;
2425 error = xfs_iflush_int(iq, bp);
2426 if (error) {
2427 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2428 goto cluster_corrupt_out;
2430 clcount++;
2431 } else {
2432 xfs_ifunlock(iq);
2434 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2437 if (clcount) {
2438 XFS_STATS_INC(xs_icluster_flushcnt);
2439 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2442 out_free:
2443 rcu_read_unlock();
2444 kmem_free(ilist);
2445 out_put:
2446 xfs_perag_put(pag);
2447 return 0;
2450 cluster_corrupt_out:
2452 * Corruption detected in the clustering loop. Invalidate the
2453 * inode buffer and shut down the filesystem.
2455 rcu_read_unlock();
2457 * Clean up the buffer. If it was B_DELWRI, just release it --
2458 * brelse can handle it with no problems. If not, shut down the
2459 * filesystem before releasing the buffer.
2461 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2462 if (bufwasdelwri)
2463 xfs_buf_relse(bp);
2465 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2467 if (!bufwasdelwri) {
2469 * Just like incore_relse: if we have b_iodone functions,
2470 * mark the buffer as an error and call them. Otherwise
2471 * mark it as stale and brelse.
2473 if (bp->b_iodone) {
2474 XFS_BUF_UNDONE(bp);
2475 XFS_BUF_STALE(bp);
2476 xfs_buf_ioerror(bp, EIO);
2477 xfs_buf_ioend(bp, 0);
2478 } else {
2479 XFS_BUF_STALE(bp);
2480 xfs_buf_relse(bp);
2485 * Unlocks the flush lock
2487 xfs_iflush_abort(iq);
2488 kmem_free(ilist);
2489 xfs_perag_put(pag);
2490 return XFS_ERROR(EFSCORRUPTED);
2494 * xfs_iflush() will write a modified inode's changes out to the
2495 * inode's on disk home. The caller must have the inode lock held
2496 * in at least shared mode and the inode flush completion must be
2497 * active as well. The inode lock will still be held upon return from
2498 * the call and the caller is free to unlock it.
2499 * The inode flush will be completed when the inode reaches the disk.
2500 * The flags indicate how the inode's buffer should be written out.
2503 xfs_iflush(
2504 xfs_inode_t *ip,
2505 uint flags)
2507 xfs_inode_log_item_t *iip;
2508 xfs_buf_t *bp;
2509 xfs_dinode_t *dip;
2510 xfs_mount_t *mp;
2511 int error;
2513 XFS_STATS_INC(xs_iflush_count);
2515 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2516 ASSERT(!completion_done(&ip->i_flush));
2517 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2518 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2520 iip = ip->i_itemp;
2521 mp = ip->i_mount;
2524 * We can't flush the inode until it is unpinned, so wait for it if we
2525 * are allowed to block. We know no one new can pin it, because we are
2526 * holding the inode lock shared and you need to hold it exclusively to
2527 * pin the inode.
2529 * If we are not allowed to block, force the log out asynchronously so
2530 * that when we come back the inode will be unpinned. If other inodes
2531 * in the same cluster are dirty, they will probably write the inode
2532 * out for us if they occur after the log force completes.
2534 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2535 xfs_iunpin_nowait(ip);
2536 xfs_ifunlock(ip);
2537 return EAGAIN;
2539 xfs_iunpin_wait(ip);
2542 * For stale inodes we cannot rely on the backing buffer remaining
2543 * stale in cache for the remaining life of the stale inode and so
2544 * xfs_itobp() below may give us a buffer that no longer contains
2545 * inodes below. We have to check this after ensuring the inode is
2546 * unpinned so that it is safe to reclaim the stale inode after the
2547 * flush call.
2549 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2550 xfs_ifunlock(ip);
2551 return 0;
2555 * This may have been unpinned because the filesystem is shutting
2556 * down forcibly. If that's the case we must not write this inode
2557 * to disk, because the log record didn't make it to disk!
2559 if (XFS_FORCED_SHUTDOWN(mp)) {
2560 ip->i_update_core = 0;
2561 if (iip)
2562 iip->ili_format.ilf_fields = 0;
2563 xfs_ifunlock(ip);
2564 return XFS_ERROR(EIO);
2568 * Get the buffer containing the on-disk inode.
2570 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2571 (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2572 if (error || !bp) {
2573 xfs_ifunlock(ip);
2574 return error;
2578 * First flush out the inode that xfs_iflush was called with.
2580 error = xfs_iflush_int(ip, bp);
2581 if (error)
2582 goto corrupt_out;
2585 * If the buffer is pinned then push on the log now so we won't
2586 * get stuck waiting in the write for too long.
2588 if (xfs_buf_ispinned(bp))
2589 xfs_log_force(mp, 0);
2592 * inode clustering:
2593 * see if other inodes can be gathered into this write
2595 error = xfs_iflush_cluster(ip, bp);
2596 if (error)
2597 goto cluster_corrupt_out;
2599 if (flags & SYNC_WAIT)
2600 error = xfs_bwrite(mp, bp);
2601 else
2602 xfs_bdwrite(mp, bp);
2603 return error;
2605 corrupt_out:
2606 xfs_buf_relse(bp);
2607 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2608 cluster_corrupt_out:
2610 * Unlocks the flush lock
2612 xfs_iflush_abort(ip);
2613 return XFS_ERROR(EFSCORRUPTED);
2617 STATIC int
2618 xfs_iflush_int(
2619 xfs_inode_t *ip,
2620 xfs_buf_t *bp)
2622 xfs_inode_log_item_t *iip;
2623 xfs_dinode_t *dip;
2624 xfs_mount_t *mp;
2625 #ifdef XFS_TRANS_DEBUG
2626 int first;
2627 #endif
2629 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2630 ASSERT(!completion_done(&ip->i_flush));
2631 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2632 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2634 iip = ip->i_itemp;
2635 mp = ip->i_mount;
2637 /* set *dip = inode's place in the buffer */
2638 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2641 * Clear i_update_core before copying out the data.
2642 * This is for coordination with our timestamp updates
2643 * that don't hold the inode lock. They will always
2644 * update the timestamps BEFORE setting i_update_core,
2645 * so if we clear i_update_core after they set it we
2646 * are guaranteed to see their updates to the timestamps.
2647 * I believe that this depends on strongly ordered memory
2648 * semantics, but we have that. We use the SYNCHRONIZE
2649 * macro to make sure that the compiler does not reorder
2650 * the i_update_core access below the data copy below.
2652 ip->i_update_core = 0;
2653 SYNCHRONIZE();
2656 * Make sure to get the latest timestamps from the Linux inode.
2658 xfs_synchronize_times(ip);
2660 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2661 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2662 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2663 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2664 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2665 goto corrupt_out;
2667 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2668 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2669 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2670 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2671 __func__, ip->i_ino, ip, ip->i_d.di_magic);
2672 goto corrupt_out;
2674 if (S_ISREG(ip->i_d.di_mode)) {
2675 if (XFS_TEST_ERROR(
2676 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2677 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2678 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2679 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2680 "%s: Bad regular inode %Lu, ptr 0x%p",
2681 __func__, ip->i_ino, ip);
2682 goto corrupt_out;
2684 } else if (S_ISDIR(ip->i_d.di_mode)) {
2685 if (XFS_TEST_ERROR(
2686 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2687 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2688 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2689 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2690 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2691 "%s: Bad directory inode %Lu, ptr 0x%p",
2692 __func__, ip->i_ino, ip);
2693 goto corrupt_out;
2696 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2697 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2698 XFS_RANDOM_IFLUSH_5)) {
2699 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2700 "%s: detected corrupt incore inode %Lu, "
2701 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2702 __func__, ip->i_ino,
2703 ip->i_d.di_nextents + ip->i_d.di_anextents,
2704 ip->i_d.di_nblocks, ip);
2705 goto corrupt_out;
2707 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2708 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2709 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2710 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2711 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2712 goto corrupt_out;
2715 * bump the flush iteration count, used to detect flushes which
2716 * postdate a log record during recovery.
2719 ip->i_d.di_flushiter++;
2722 * Copy the dirty parts of the inode into the on-disk
2723 * inode. We always copy out the core of the inode,
2724 * because if the inode is dirty at all the core must
2725 * be.
2727 xfs_dinode_to_disk(dip, &ip->i_d);
2729 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2730 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2731 ip->i_d.di_flushiter = 0;
2734 * If this is really an old format inode and the superblock version
2735 * has not been updated to support only new format inodes, then
2736 * convert back to the old inode format. If the superblock version
2737 * has been updated, then make the conversion permanent.
2739 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2740 if (ip->i_d.di_version == 1) {
2741 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2743 * Convert it back.
2745 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2746 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2747 } else {
2749 * The superblock version has already been bumped,
2750 * so just make the conversion to the new inode
2751 * format permanent.
2753 ip->i_d.di_version = 2;
2754 dip->di_version = 2;
2755 ip->i_d.di_onlink = 0;
2756 dip->di_onlink = 0;
2757 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2758 memset(&(dip->di_pad[0]), 0,
2759 sizeof(dip->di_pad));
2760 ASSERT(xfs_get_projid(ip) == 0);
2764 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2765 if (XFS_IFORK_Q(ip))
2766 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2767 xfs_inobp_check(mp, bp);
2770 * We've recorded everything logged in the inode, so we'd
2771 * like to clear the ilf_fields bits so we don't log and
2772 * flush things unnecessarily. However, we can't stop
2773 * logging all this information until the data we've copied
2774 * into the disk buffer is written to disk. If we did we might
2775 * overwrite the copy of the inode in the log with all the
2776 * data after re-logging only part of it, and in the face of
2777 * a crash we wouldn't have all the data we need to recover.
2779 * What we do is move the bits to the ili_last_fields field.
2780 * When logging the inode, these bits are moved back to the
2781 * ilf_fields field. In the xfs_iflush_done() routine we
2782 * clear ili_last_fields, since we know that the information
2783 * those bits represent is permanently on disk. As long as
2784 * the flush completes before the inode is logged again, then
2785 * both ilf_fields and ili_last_fields will be cleared.
2787 * We can play with the ilf_fields bits here, because the inode
2788 * lock must be held exclusively in order to set bits there
2789 * and the flush lock protects the ili_last_fields bits.
2790 * Set ili_logged so the flush done
2791 * routine can tell whether or not to look in the AIL.
2792 * Also, store the current LSN of the inode so that we can tell
2793 * whether the item has moved in the AIL from xfs_iflush_done().
2794 * In order to read the lsn we need the AIL lock, because
2795 * it is a 64 bit value that cannot be read atomically.
2797 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2798 iip->ili_last_fields = iip->ili_format.ilf_fields;
2799 iip->ili_format.ilf_fields = 0;
2800 iip->ili_logged = 1;
2802 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2803 &iip->ili_item.li_lsn);
2806 * Attach the function xfs_iflush_done to the inode's
2807 * buffer. This will remove the inode from the AIL
2808 * and unlock the inode's flush lock when the inode is
2809 * completely written to disk.
2811 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2813 ASSERT(bp->b_fspriv != NULL);
2814 ASSERT(bp->b_iodone != NULL);
2815 } else {
2817 * We're flushing an inode which is not in the AIL and has
2818 * not been logged but has i_update_core set. For this
2819 * case we can use a B_DELWRI flush and immediately drop
2820 * the inode flush lock because we can avoid the whole
2821 * AIL state thing. It's OK to drop the flush lock now,
2822 * because we've already locked the buffer and to do anything
2823 * you really need both.
2825 if (iip != NULL) {
2826 ASSERT(iip->ili_logged == 0);
2827 ASSERT(iip->ili_last_fields == 0);
2828 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2830 xfs_ifunlock(ip);
2833 return 0;
2835 corrupt_out:
2836 return XFS_ERROR(EFSCORRUPTED);
2840 * Return a pointer to the extent record at file index idx.
2842 xfs_bmbt_rec_host_t *
2843 xfs_iext_get_ext(
2844 xfs_ifork_t *ifp, /* inode fork pointer */
2845 xfs_extnum_t idx) /* index of target extent */
2847 ASSERT(idx >= 0);
2848 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2850 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2851 return ifp->if_u1.if_ext_irec->er_extbuf;
2852 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2853 xfs_ext_irec_t *erp; /* irec pointer */
2854 int erp_idx = 0; /* irec index */
2855 xfs_extnum_t page_idx = idx; /* ext index in target list */
2857 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2858 return &erp->er_extbuf[page_idx];
2859 } else if (ifp->if_bytes) {
2860 return &ifp->if_u1.if_extents[idx];
2861 } else {
2862 return NULL;
2867 * Insert new item(s) into the extent records for incore inode
2868 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2870 void
2871 xfs_iext_insert(
2872 xfs_inode_t *ip, /* incore inode pointer */
2873 xfs_extnum_t idx, /* starting index of new items */
2874 xfs_extnum_t count, /* number of inserted items */
2875 xfs_bmbt_irec_t *new, /* items to insert */
2876 int state) /* type of extent conversion */
2878 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2879 xfs_extnum_t i; /* extent record index */
2881 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2883 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2884 xfs_iext_add(ifp, idx, count);
2885 for (i = idx; i < idx + count; i++, new++)
2886 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2890 * This is called when the amount of space required for incore file
2891 * extents needs to be increased. The ext_diff parameter stores the
2892 * number of new extents being added and the idx parameter contains
2893 * the extent index where the new extents will be added. If the new
2894 * extents are being appended, then we just need to (re)allocate and
2895 * initialize the space. Otherwise, if the new extents are being
2896 * inserted into the middle of the existing entries, a bit more work
2897 * is required to make room for the new extents to be inserted. The
2898 * caller is responsible for filling in the new extent entries upon
2899 * return.
2901 void
2902 xfs_iext_add(
2903 xfs_ifork_t *ifp, /* inode fork pointer */
2904 xfs_extnum_t idx, /* index to begin adding exts */
2905 int ext_diff) /* number of extents to add */
2907 int byte_diff; /* new bytes being added */
2908 int new_size; /* size of extents after adding */
2909 xfs_extnum_t nextents; /* number of extents in file */
2911 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2912 ASSERT((idx >= 0) && (idx <= nextents));
2913 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2914 new_size = ifp->if_bytes + byte_diff;
2916 * If the new number of extents (nextents + ext_diff)
2917 * fits inside the inode, then continue to use the inline
2918 * extent buffer.
2920 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2921 if (idx < nextents) {
2922 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2923 &ifp->if_u2.if_inline_ext[idx],
2924 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2925 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2927 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2928 ifp->if_real_bytes = 0;
2931 * Otherwise use a linear (direct) extent list.
2932 * If the extents are currently inside the inode,
2933 * xfs_iext_realloc_direct will switch us from
2934 * inline to direct extent allocation mode.
2936 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2937 xfs_iext_realloc_direct(ifp, new_size);
2938 if (idx < nextents) {
2939 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2940 &ifp->if_u1.if_extents[idx],
2941 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2942 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2945 /* Indirection array */
2946 else {
2947 xfs_ext_irec_t *erp;
2948 int erp_idx = 0;
2949 int page_idx = idx;
2951 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2952 if (ifp->if_flags & XFS_IFEXTIREC) {
2953 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2954 } else {
2955 xfs_iext_irec_init(ifp);
2956 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2957 erp = ifp->if_u1.if_ext_irec;
2959 /* Extents fit in target extent page */
2960 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2961 if (page_idx < erp->er_extcount) {
2962 memmove(&erp->er_extbuf[page_idx + ext_diff],
2963 &erp->er_extbuf[page_idx],
2964 (erp->er_extcount - page_idx) *
2965 sizeof(xfs_bmbt_rec_t));
2966 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2968 erp->er_extcount += ext_diff;
2969 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2971 /* Insert a new extent page */
2972 else if (erp) {
2973 xfs_iext_add_indirect_multi(ifp,
2974 erp_idx, page_idx, ext_diff);
2977 * If extent(s) are being appended to the last page in
2978 * the indirection array and the new extent(s) don't fit
2979 * in the page, then erp is NULL and erp_idx is set to
2980 * the next index needed in the indirection array.
2982 else {
2983 int count = ext_diff;
2985 while (count) {
2986 erp = xfs_iext_irec_new(ifp, erp_idx);
2987 erp->er_extcount = count;
2988 count -= MIN(count, (int)XFS_LINEAR_EXTS);
2989 if (count) {
2990 erp_idx++;
2995 ifp->if_bytes = new_size;
2999 * This is called when incore extents are being added to the indirection
3000 * array and the new extents do not fit in the target extent list. The
3001 * erp_idx parameter contains the irec index for the target extent list
3002 * in the indirection array, and the idx parameter contains the extent
3003 * index within the list. The number of extents being added is stored
3004 * in the count parameter.
3006 * |-------| |-------|
3007 * | | | | idx - number of extents before idx
3008 * | idx | | count |
3009 * | | | | count - number of extents being inserted at idx
3010 * |-------| |-------|
3011 * | count | | nex2 | nex2 - number of extents after idx + count
3012 * |-------| |-------|
3014 void
3015 xfs_iext_add_indirect_multi(
3016 xfs_ifork_t *ifp, /* inode fork pointer */
3017 int erp_idx, /* target extent irec index */
3018 xfs_extnum_t idx, /* index within target list */
3019 int count) /* new extents being added */
3021 int byte_diff; /* new bytes being added */
3022 xfs_ext_irec_t *erp; /* pointer to irec entry */
3023 xfs_extnum_t ext_diff; /* number of extents to add */
3024 xfs_extnum_t ext_cnt; /* new extents still needed */
3025 xfs_extnum_t nex2; /* extents after idx + count */
3026 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3027 int nlists; /* number of irec's (lists) */
3029 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3030 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3031 nex2 = erp->er_extcount - idx;
3032 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3035 * Save second part of target extent list
3036 * (all extents past */
3037 if (nex2) {
3038 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3039 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3040 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3041 erp->er_extcount -= nex2;
3042 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3043 memset(&erp->er_extbuf[idx], 0, byte_diff);
3047 * Add the new extents to the end of the target
3048 * list, then allocate new irec record(s) and
3049 * extent buffer(s) as needed to store the rest
3050 * of the new extents.
3052 ext_cnt = count;
3053 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3054 if (ext_diff) {
3055 erp->er_extcount += ext_diff;
3056 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3057 ext_cnt -= ext_diff;
3059 while (ext_cnt) {
3060 erp_idx++;
3061 erp = xfs_iext_irec_new(ifp, erp_idx);
3062 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3063 erp->er_extcount = ext_diff;
3064 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3065 ext_cnt -= ext_diff;
3068 /* Add nex2 extents back to indirection array */
3069 if (nex2) {
3070 xfs_extnum_t ext_avail;
3071 int i;
3073 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3074 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3075 i = 0;
3077 * If nex2 extents fit in the current page, append
3078 * nex2_ep after the new extents.
3080 if (nex2 <= ext_avail) {
3081 i = erp->er_extcount;
3084 * Otherwise, check if space is available in the
3085 * next page.
3087 else if ((erp_idx < nlists - 1) &&
3088 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3089 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3090 erp_idx++;
3091 erp++;
3092 /* Create a hole for nex2 extents */
3093 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3094 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3097 * Final choice, create a new extent page for
3098 * nex2 extents.
3100 else {
3101 erp_idx++;
3102 erp = xfs_iext_irec_new(ifp, erp_idx);
3104 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3105 kmem_free(nex2_ep);
3106 erp->er_extcount += nex2;
3107 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3112 * This is called when the amount of space required for incore file
3113 * extents needs to be decreased. The ext_diff parameter stores the
3114 * number of extents to be removed and the idx parameter contains
3115 * the extent index where the extents will be removed from.
3117 * If the amount of space needed has decreased below the linear
3118 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3119 * extent array. Otherwise, use kmem_realloc() to adjust the
3120 * size to what is needed.
3122 void
3123 xfs_iext_remove(
3124 xfs_inode_t *ip, /* incore inode pointer */
3125 xfs_extnum_t idx, /* index to begin removing exts */
3126 int ext_diff, /* number of extents to remove */
3127 int state) /* type of extent conversion */
3129 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3130 xfs_extnum_t nextents; /* number of extents in file */
3131 int new_size; /* size of extents after removal */
3133 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3135 ASSERT(ext_diff > 0);
3136 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3137 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3139 if (new_size == 0) {
3140 xfs_iext_destroy(ifp);
3141 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3142 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3143 } else if (ifp->if_real_bytes) {
3144 xfs_iext_remove_direct(ifp, idx, ext_diff);
3145 } else {
3146 xfs_iext_remove_inline(ifp, idx, ext_diff);
3148 ifp->if_bytes = new_size;
3152 * This removes ext_diff extents from the inline buffer, beginning
3153 * at extent index idx.
3155 void
3156 xfs_iext_remove_inline(
3157 xfs_ifork_t *ifp, /* inode fork pointer */
3158 xfs_extnum_t idx, /* index to begin removing exts */
3159 int ext_diff) /* number of extents to remove */
3161 int nextents; /* number of extents in file */
3163 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3164 ASSERT(idx < XFS_INLINE_EXTS);
3165 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3166 ASSERT(((nextents - ext_diff) > 0) &&
3167 (nextents - ext_diff) < XFS_INLINE_EXTS);
3169 if (idx + ext_diff < nextents) {
3170 memmove(&ifp->if_u2.if_inline_ext[idx],
3171 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3172 (nextents - (idx + ext_diff)) *
3173 sizeof(xfs_bmbt_rec_t));
3174 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3175 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3176 } else {
3177 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3178 ext_diff * sizeof(xfs_bmbt_rec_t));
3183 * This removes ext_diff extents from a linear (direct) extent list,
3184 * beginning at extent index idx. If the extents are being removed
3185 * from the end of the list (ie. truncate) then we just need to re-
3186 * allocate the list to remove the extra space. Otherwise, if the
3187 * extents are being removed from the middle of the existing extent
3188 * entries, then we first need to move the extent records beginning
3189 * at idx + ext_diff up in the list to overwrite the records being
3190 * removed, then remove the extra space via kmem_realloc.
3192 void
3193 xfs_iext_remove_direct(
3194 xfs_ifork_t *ifp, /* inode fork pointer */
3195 xfs_extnum_t idx, /* index to begin removing exts */
3196 int ext_diff) /* number of extents to remove */
3198 xfs_extnum_t nextents; /* number of extents in file */
3199 int new_size; /* size of extents after removal */
3201 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3202 new_size = ifp->if_bytes -
3203 (ext_diff * sizeof(xfs_bmbt_rec_t));
3204 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3206 if (new_size == 0) {
3207 xfs_iext_destroy(ifp);
3208 return;
3210 /* Move extents up in the list (if needed) */
3211 if (idx + ext_diff < nextents) {
3212 memmove(&ifp->if_u1.if_extents[idx],
3213 &ifp->if_u1.if_extents[idx + ext_diff],
3214 (nextents - (idx + ext_diff)) *
3215 sizeof(xfs_bmbt_rec_t));
3217 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3218 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3220 * Reallocate the direct extent list. If the extents
3221 * will fit inside the inode then xfs_iext_realloc_direct
3222 * will switch from direct to inline extent allocation
3223 * mode for us.
3225 xfs_iext_realloc_direct(ifp, new_size);
3226 ifp->if_bytes = new_size;
3230 * This is called when incore extents are being removed from the
3231 * indirection array and the extents being removed span multiple extent
3232 * buffers. The idx parameter contains the file extent index where we
3233 * want to begin removing extents, and the count parameter contains
3234 * how many extents need to be removed.
3236 * |-------| |-------|
3237 * | nex1 | | | nex1 - number of extents before idx
3238 * |-------| | count |
3239 * | | | | count - number of extents being removed at idx
3240 * | count | |-------|
3241 * | | | nex2 | nex2 - number of extents after idx + count
3242 * |-------| |-------|
3244 void
3245 xfs_iext_remove_indirect(
3246 xfs_ifork_t *ifp, /* inode fork pointer */
3247 xfs_extnum_t idx, /* index to begin removing extents */
3248 int count) /* number of extents to remove */
3250 xfs_ext_irec_t *erp; /* indirection array pointer */
3251 int erp_idx = 0; /* indirection array index */
3252 xfs_extnum_t ext_cnt; /* extents left to remove */
3253 xfs_extnum_t ext_diff; /* extents to remove in current list */
3254 xfs_extnum_t nex1; /* number of extents before idx */
3255 xfs_extnum_t nex2; /* extents after idx + count */
3256 int page_idx = idx; /* index in target extent list */
3258 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3259 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3260 ASSERT(erp != NULL);
3261 nex1 = page_idx;
3262 ext_cnt = count;
3263 while (ext_cnt) {
3264 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3265 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3267 * Check for deletion of entire list;
3268 * xfs_iext_irec_remove() updates extent offsets.
3270 if (ext_diff == erp->er_extcount) {
3271 xfs_iext_irec_remove(ifp, erp_idx);
3272 ext_cnt -= ext_diff;
3273 nex1 = 0;
3274 if (ext_cnt) {
3275 ASSERT(erp_idx < ifp->if_real_bytes /
3276 XFS_IEXT_BUFSZ);
3277 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3278 nex1 = 0;
3279 continue;
3280 } else {
3281 break;
3284 /* Move extents up (if needed) */
3285 if (nex2) {
3286 memmove(&erp->er_extbuf[nex1],
3287 &erp->er_extbuf[nex1 + ext_diff],
3288 nex2 * sizeof(xfs_bmbt_rec_t));
3290 /* Zero out rest of page */
3291 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3292 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3293 /* Update remaining counters */
3294 erp->er_extcount -= ext_diff;
3295 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3296 ext_cnt -= ext_diff;
3297 nex1 = 0;
3298 erp_idx++;
3299 erp++;
3301 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3302 xfs_iext_irec_compact(ifp);
3306 * Create, destroy, or resize a linear (direct) block of extents.
3308 void
3309 xfs_iext_realloc_direct(
3310 xfs_ifork_t *ifp, /* inode fork pointer */
3311 int new_size) /* new size of extents */
3313 int rnew_size; /* real new size of extents */
3315 rnew_size = new_size;
3317 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3318 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3319 (new_size != ifp->if_real_bytes)));
3321 /* Free extent records */
3322 if (new_size == 0) {
3323 xfs_iext_destroy(ifp);
3325 /* Resize direct extent list and zero any new bytes */
3326 else if (ifp->if_real_bytes) {
3327 /* Check if extents will fit inside the inode */
3328 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3329 xfs_iext_direct_to_inline(ifp, new_size /
3330 (uint)sizeof(xfs_bmbt_rec_t));
3331 ifp->if_bytes = new_size;
3332 return;
3334 if (!is_power_of_2(new_size)){
3335 rnew_size = roundup_pow_of_two(new_size);
3337 if (rnew_size != ifp->if_real_bytes) {
3338 ifp->if_u1.if_extents =
3339 kmem_realloc(ifp->if_u1.if_extents,
3340 rnew_size,
3341 ifp->if_real_bytes, KM_NOFS);
3343 if (rnew_size > ifp->if_real_bytes) {
3344 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3345 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3346 rnew_size - ifp->if_real_bytes);
3350 * Switch from the inline extent buffer to a direct
3351 * extent list. Be sure to include the inline extent
3352 * bytes in new_size.
3354 else {
3355 new_size += ifp->if_bytes;
3356 if (!is_power_of_2(new_size)) {
3357 rnew_size = roundup_pow_of_two(new_size);
3359 xfs_iext_inline_to_direct(ifp, rnew_size);
3361 ifp->if_real_bytes = rnew_size;
3362 ifp->if_bytes = new_size;
3366 * Switch from linear (direct) extent records to inline buffer.
3368 void
3369 xfs_iext_direct_to_inline(
3370 xfs_ifork_t *ifp, /* inode fork pointer */
3371 xfs_extnum_t nextents) /* number of extents in file */
3373 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3374 ASSERT(nextents <= XFS_INLINE_EXTS);
3376 * The inline buffer was zeroed when we switched
3377 * from inline to direct extent allocation mode,
3378 * so we don't need to clear it here.
3380 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3381 nextents * sizeof(xfs_bmbt_rec_t));
3382 kmem_free(ifp->if_u1.if_extents);
3383 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3384 ifp->if_real_bytes = 0;
3388 * Switch from inline buffer to linear (direct) extent records.
3389 * new_size should already be rounded up to the next power of 2
3390 * by the caller (when appropriate), so use new_size as it is.
3391 * However, since new_size may be rounded up, we can't update
3392 * if_bytes here. It is the caller's responsibility to update
3393 * if_bytes upon return.
3395 void
3396 xfs_iext_inline_to_direct(
3397 xfs_ifork_t *ifp, /* inode fork pointer */
3398 int new_size) /* number of extents in file */
3400 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3401 memset(ifp->if_u1.if_extents, 0, new_size);
3402 if (ifp->if_bytes) {
3403 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3404 ifp->if_bytes);
3405 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3406 sizeof(xfs_bmbt_rec_t));
3408 ifp->if_real_bytes = new_size;
3412 * Resize an extent indirection array to new_size bytes.
3414 STATIC void
3415 xfs_iext_realloc_indirect(
3416 xfs_ifork_t *ifp, /* inode fork pointer */
3417 int new_size) /* new indirection array size */
3419 int nlists; /* number of irec's (ex lists) */
3420 int size; /* current indirection array size */
3422 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3423 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3424 size = nlists * sizeof(xfs_ext_irec_t);
3425 ASSERT(ifp->if_real_bytes);
3426 ASSERT((new_size >= 0) && (new_size != size));
3427 if (new_size == 0) {
3428 xfs_iext_destroy(ifp);
3429 } else {
3430 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3431 kmem_realloc(ifp->if_u1.if_ext_irec,
3432 new_size, size, KM_NOFS);
3437 * Switch from indirection array to linear (direct) extent allocations.
3439 STATIC void
3440 xfs_iext_indirect_to_direct(
3441 xfs_ifork_t *ifp) /* inode fork pointer */
3443 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3444 xfs_extnum_t nextents; /* number of extents in file */
3445 int size; /* size of file extents */
3447 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3448 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3449 ASSERT(nextents <= XFS_LINEAR_EXTS);
3450 size = nextents * sizeof(xfs_bmbt_rec_t);
3452 xfs_iext_irec_compact_pages(ifp);
3453 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3455 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3456 kmem_free(ifp->if_u1.if_ext_irec);
3457 ifp->if_flags &= ~XFS_IFEXTIREC;
3458 ifp->if_u1.if_extents = ep;
3459 ifp->if_bytes = size;
3460 if (nextents < XFS_LINEAR_EXTS) {
3461 xfs_iext_realloc_direct(ifp, size);
3466 * Free incore file extents.
3468 void
3469 xfs_iext_destroy(
3470 xfs_ifork_t *ifp) /* inode fork pointer */
3472 if (ifp->if_flags & XFS_IFEXTIREC) {
3473 int erp_idx;
3474 int nlists;
3476 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3477 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3478 xfs_iext_irec_remove(ifp, erp_idx);
3480 ifp->if_flags &= ~XFS_IFEXTIREC;
3481 } else if (ifp->if_real_bytes) {
3482 kmem_free(ifp->if_u1.if_extents);
3483 } else if (ifp->if_bytes) {
3484 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3485 sizeof(xfs_bmbt_rec_t));
3487 ifp->if_u1.if_extents = NULL;
3488 ifp->if_real_bytes = 0;
3489 ifp->if_bytes = 0;
3493 * Return a pointer to the extent record for file system block bno.
3495 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3496 xfs_iext_bno_to_ext(
3497 xfs_ifork_t *ifp, /* inode fork pointer */
3498 xfs_fileoff_t bno, /* block number to search for */
3499 xfs_extnum_t *idxp) /* index of target extent */
3501 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3502 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3503 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3504 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3505 int high; /* upper boundary in search */
3506 xfs_extnum_t idx = 0; /* index of target extent */
3507 int low; /* lower boundary in search */
3508 xfs_extnum_t nextents; /* number of file extents */
3509 xfs_fileoff_t startoff = 0; /* start offset of extent */
3511 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3512 if (nextents == 0) {
3513 *idxp = 0;
3514 return NULL;
3516 low = 0;
3517 if (ifp->if_flags & XFS_IFEXTIREC) {
3518 /* Find target extent list */
3519 int erp_idx = 0;
3520 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3521 base = erp->er_extbuf;
3522 high = erp->er_extcount - 1;
3523 } else {
3524 base = ifp->if_u1.if_extents;
3525 high = nextents - 1;
3527 /* Binary search extent records */
3528 while (low <= high) {
3529 idx = (low + high) >> 1;
3530 ep = base + idx;
3531 startoff = xfs_bmbt_get_startoff(ep);
3532 blockcount = xfs_bmbt_get_blockcount(ep);
3533 if (bno < startoff) {
3534 high = idx - 1;
3535 } else if (bno >= startoff + blockcount) {
3536 low = idx + 1;
3537 } else {
3538 /* Convert back to file-based extent index */
3539 if (ifp->if_flags & XFS_IFEXTIREC) {
3540 idx += erp->er_extoff;
3542 *idxp = idx;
3543 return ep;
3546 /* Convert back to file-based extent index */
3547 if (ifp->if_flags & XFS_IFEXTIREC) {
3548 idx += erp->er_extoff;
3550 if (bno >= startoff + blockcount) {
3551 if (++idx == nextents) {
3552 ep = NULL;
3553 } else {
3554 ep = xfs_iext_get_ext(ifp, idx);
3557 *idxp = idx;
3558 return ep;
3562 * Return a pointer to the indirection array entry containing the
3563 * extent record for filesystem block bno. Store the index of the
3564 * target irec in *erp_idxp.
3566 xfs_ext_irec_t * /* pointer to found extent record */
3567 xfs_iext_bno_to_irec(
3568 xfs_ifork_t *ifp, /* inode fork pointer */
3569 xfs_fileoff_t bno, /* block number to search for */
3570 int *erp_idxp) /* irec index of target ext list */
3572 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3573 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3574 int erp_idx; /* indirection array index */
3575 int nlists; /* number of extent irec's (lists) */
3576 int high; /* binary search upper limit */
3577 int low; /* binary search lower limit */
3579 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3580 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3581 erp_idx = 0;
3582 low = 0;
3583 high = nlists - 1;
3584 while (low <= high) {
3585 erp_idx = (low + high) >> 1;
3586 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3587 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3588 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3589 high = erp_idx - 1;
3590 } else if (erp_next && bno >=
3591 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3592 low = erp_idx + 1;
3593 } else {
3594 break;
3597 *erp_idxp = erp_idx;
3598 return erp;
3602 * Return a pointer to the indirection array entry containing the
3603 * extent record at file extent index *idxp. Store the index of the
3604 * target irec in *erp_idxp and store the page index of the target
3605 * extent record in *idxp.
3607 xfs_ext_irec_t *
3608 xfs_iext_idx_to_irec(
3609 xfs_ifork_t *ifp, /* inode fork pointer */
3610 xfs_extnum_t *idxp, /* extent index (file -> page) */
3611 int *erp_idxp, /* pointer to target irec */
3612 int realloc) /* new bytes were just added */
3614 xfs_ext_irec_t *prev; /* pointer to previous irec */
3615 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3616 int erp_idx; /* indirection array index */
3617 int nlists; /* number of irec's (ex lists) */
3618 int high; /* binary search upper limit */
3619 int low; /* binary search lower limit */
3620 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3622 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3623 ASSERT(page_idx >= 0);
3624 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3625 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3627 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3628 erp_idx = 0;
3629 low = 0;
3630 high = nlists - 1;
3632 /* Binary search extent irec's */
3633 while (low <= high) {
3634 erp_idx = (low + high) >> 1;
3635 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3636 prev = erp_idx > 0 ? erp - 1 : NULL;
3637 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3638 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3639 high = erp_idx - 1;
3640 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3641 (page_idx == erp->er_extoff + erp->er_extcount &&
3642 !realloc)) {
3643 low = erp_idx + 1;
3644 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3645 erp->er_extcount == XFS_LINEAR_EXTS) {
3646 ASSERT(realloc);
3647 page_idx = 0;
3648 erp_idx++;
3649 erp = erp_idx < nlists ? erp + 1 : NULL;
3650 break;
3651 } else {
3652 page_idx -= erp->er_extoff;
3653 break;
3656 *idxp = page_idx;
3657 *erp_idxp = erp_idx;
3658 return(erp);
3662 * Allocate and initialize an indirection array once the space needed
3663 * for incore extents increases above XFS_IEXT_BUFSZ.
3665 void
3666 xfs_iext_irec_init(
3667 xfs_ifork_t *ifp) /* inode fork pointer */
3669 xfs_ext_irec_t *erp; /* indirection array pointer */
3670 xfs_extnum_t nextents; /* number of extents in file */
3672 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3673 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3674 ASSERT(nextents <= XFS_LINEAR_EXTS);
3676 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3678 if (nextents == 0) {
3679 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3680 } else if (!ifp->if_real_bytes) {
3681 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3682 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3683 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3685 erp->er_extbuf = ifp->if_u1.if_extents;
3686 erp->er_extcount = nextents;
3687 erp->er_extoff = 0;
3689 ifp->if_flags |= XFS_IFEXTIREC;
3690 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3691 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3692 ifp->if_u1.if_ext_irec = erp;
3694 return;
3698 * Allocate and initialize a new entry in the indirection array.
3700 xfs_ext_irec_t *
3701 xfs_iext_irec_new(
3702 xfs_ifork_t *ifp, /* inode fork pointer */
3703 int erp_idx) /* index for new irec */
3705 xfs_ext_irec_t *erp; /* indirection array pointer */
3706 int i; /* loop counter */
3707 int nlists; /* number of irec's (ex lists) */
3709 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3710 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3712 /* Resize indirection array */
3713 xfs_iext_realloc_indirect(ifp, ++nlists *
3714 sizeof(xfs_ext_irec_t));
3716 * Move records down in the array so the
3717 * new page can use erp_idx.
3719 erp = ifp->if_u1.if_ext_irec;
3720 for (i = nlists - 1; i > erp_idx; i--) {
3721 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3723 ASSERT(i == erp_idx);
3725 /* Initialize new extent record */
3726 erp = ifp->if_u1.if_ext_irec;
3727 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3728 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3729 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3730 erp[erp_idx].er_extcount = 0;
3731 erp[erp_idx].er_extoff = erp_idx > 0 ?
3732 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3733 return (&erp[erp_idx]);
3737 * Remove a record from the indirection array.
3739 void
3740 xfs_iext_irec_remove(
3741 xfs_ifork_t *ifp, /* inode fork pointer */
3742 int erp_idx) /* irec index to remove */
3744 xfs_ext_irec_t *erp; /* indirection array pointer */
3745 int i; /* loop counter */
3746 int nlists; /* number of irec's (ex lists) */
3748 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3749 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3750 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3751 if (erp->er_extbuf) {
3752 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3753 -erp->er_extcount);
3754 kmem_free(erp->er_extbuf);
3756 /* Compact extent records */
3757 erp = ifp->if_u1.if_ext_irec;
3758 for (i = erp_idx; i < nlists - 1; i++) {
3759 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3762 * Manually free the last extent record from the indirection
3763 * array. A call to xfs_iext_realloc_indirect() with a size
3764 * of zero would result in a call to xfs_iext_destroy() which
3765 * would in turn call this function again, creating a nasty
3766 * infinite loop.
3768 if (--nlists) {
3769 xfs_iext_realloc_indirect(ifp,
3770 nlists * sizeof(xfs_ext_irec_t));
3771 } else {
3772 kmem_free(ifp->if_u1.if_ext_irec);
3774 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3778 * This is called to clean up large amounts of unused memory allocated
3779 * by the indirection array. Before compacting anything though, verify
3780 * that the indirection array is still needed and switch back to the
3781 * linear extent list (or even the inline buffer) if possible. The
3782 * compaction policy is as follows:
3784 * Full Compaction: Extents fit into a single page (or inline buffer)
3785 * Partial Compaction: Extents occupy less than 50% of allocated space
3786 * No Compaction: Extents occupy at least 50% of allocated space
3788 void
3789 xfs_iext_irec_compact(
3790 xfs_ifork_t *ifp) /* inode fork pointer */
3792 xfs_extnum_t nextents; /* number of extents in file */
3793 int nlists; /* number of irec's (ex lists) */
3795 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3796 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3797 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3799 if (nextents == 0) {
3800 xfs_iext_destroy(ifp);
3801 } else if (nextents <= XFS_INLINE_EXTS) {
3802 xfs_iext_indirect_to_direct(ifp);
3803 xfs_iext_direct_to_inline(ifp, nextents);
3804 } else if (nextents <= XFS_LINEAR_EXTS) {
3805 xfs_iext_indirect_to_direct(ifp);
3806 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3807 xfs_iext_irec_compact_pages(ifp);
3812 * Combine extents from neighboring extent pages.
3814 void
3815 xfs_iext_irec_compact_pages(
3816 xfs_ifork_t *ifp) /* inode fork pointer */
3818 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3819 int erp_idx = 0; /* indirection array index */
3820 int nlists; /* number of irec's (ex lists) */
3822 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3823 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3824 while (erp_idx < nlists - 1) {
3825 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3826 erp_next = erp + 1;
3827 if (erp_next->er_extcount <=
3828 (XFS_LINEAR_EXTS - erp->er_extcount)) {
3829 memcpy(&erp->er_extbuf[erp->er_extcount],
3830 erp_next->er_extbuf, erp_next->er_extcount *
3831 sizeof(xfs_bmbt_rec_t));
3832 erp->er_extcount += erp_next->er_extcount;
3834 * Free page before removing extent record
3835 * so er_extoffs don't get modified in
3836 * xfs_iext_irec_remove.
3838 kmem_free(erp_next->er_extbuf);
3839 erp_next->er_extbuf = NULL;
3840 xfs_iext_irec_remove(ifp, erp_idx + 1);
3841 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3842 } else {
3843 erp_idx++;
3849 * This is called to update the er_extoff field in the indirection
3850 * array when extents have been added or removed from one of the
3851 * extent lists. erp_idx contains the irec index to begin updating
3852 * at and ext_diff contains the number of extents that were added
3853 * or removed.
3855 void
3856 xfs_iext_irec_update_extoffs(
3857 xfs_ifork_t *ifp, /* inode fork pointer */
3858 int erp_idx, /* irec index to update */
3859 int ext_diff) /* number of new extents */
3861 int i; /* loop counter */
3862 int nlists; /* number of irec's (ex lists */
3864 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3865 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3866 for (i = erp_idx; i < nlists; i++) {
3867 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;