Merge branch 'akpm'
[linux-2.6/next.git] / mm / vmscan.c
blob668f7ec4b8397b922b96e66a42b6d30dba10601b
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
52 #include "internal.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
85 unsigned long hibernation_mode;
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
90 int may_writepage;
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
98 int order;
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
104 reclaim_mode_t reclaim_mode;
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108 struct memcg_scanrecord *memcg_record;
111 * Nodemask of nodes allowed by the caller. If NULL, all nodes
112 * are scanned.
114 nodemask_t *nodemask;
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field) \
121 do { \
122 if ((_page)->lru.prev != _base) { \
123 struct page *prev; \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetch(&prev->_field); \
128 } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field) \
135 do { \
136 if ((_page)->lru.prev != _base) { \
137 struct page *prev; \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetchw(&prev->_field); \
142 } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
148 * From 0 .. 100. Higher means more swappy.
150 int vm_swappiness = 60;
151 long vm_total_pages; /* The total number of pages which the VM controls */
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163 struct scan_control *sc)
165 if (!scanning_global_lru(sc))
166 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168 return &zone->reclaim_stat;
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172 struct scan_control *sc, enum lru_list lru)
174 if (!scanning_global_lru(sc))
175 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176 zone_to_nid(zone), zone_idx(zone), BIT(lru));
178 return zone_page_state(zone, NR_LRU_BASE + lru);
183 * Add a shrinker callback to be called from the vm
185 void register_shrinker(struct shrinker *shrinker)
187 atomic_long_set(&shrinker->nr_in_batch, 0);
188 down_write(&shrinker_rwsem);
189 list_add_tail(&shrinker->list, &shrinker_list);
190 up_write(&shrinker_rwsem);
192 EXPORT_SYMBOL(register_shrinker);
195 * Remove one
197 void unregister_shrinker(struct shrinker *shrinker)
199 down_write(&shrinker_rwsem);
200 list_del(&shrinker->list);
201 up_write(&shrinker_rwsem);
203 EXPORT_SYMBOL(unregister_shrinker);
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206 struct shrink_control *sc,
207 unsigned long nr_to_scan)
209 sc->nr_to_scan = nr_to_scan;
210 return (*shrinker->shrink)(shrinker, sc);
213 #define SHRINK_BATCH 128
215 * Call the shrink functions to age shrinkable caches
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object. With this in mind we age equal
219 * percentages of the lru and ageable caches. This should balance the seeks
220 * generated by these structures.
222 * If the vm encountered mapped pages on the LRU it increase the pressure on
223 * slab to avoid swapping.
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt. It is used for balancing
229 * slab reclaim versus page reclaim.
231 * Returns the number of slab objects which we shrunk.
233 unsigned long shrink_slab(struct shrink_control *shrink,
234 unsigned long nr_pages_scanned,
235 unsigned long lru_pages)
237 struct shrinker *shrinker;
238 unsigned long ret = 0;
240 if (nr_pages_scanned == 0)
241 nr_pages_scanned = SWAP_CLUSTER_MAX;
243 if (!down_read_trylock(&shrinker_rwsem)) {
244 /* Assume we'll be able to shrink next time */
245 ret = 1;
246 goto out;
249 list_for_each_entry(shrinker, &shrinker_list, list) {
250 unsigned long long delta;
251 long total_scan;
252 long max_pass;
253 int shrink_ret = 0;
254 long nr;
255 long new_nr;
256 long batch_size = shrinker->batch ? shrinker->batch
257 : SHRINK_BATCH;
259 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
260 if (max_pass <= 0)
261 continue;
264 * copy the current shrinker scan count into a local variable
265 * and zero it so that other concurrent shrinker invocations
266 * don't also do this scanning work.
268 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
270 total_scan = nr;
271 delta = (4 * nr_pages_scanned) / shrinker->seeks;
272 delta *= max_pass;
273 do_div(delta, lru_pages + 1);
274 total_scan += delta;
275 if (total_scan < 0) {
276 printk(KERN_ERR "shrink_slab: %pF negative objects to "
277 "delete nr=%ld\n",
278 shrinker->shrink, total_scan);
279 total_scan = max_pass;
283 * We need to avoid excessive windup on filesystem shrinkers
284 * due to large numbers of GFP_NOFS allocations causing the
285 * shrinkers to return -1 all the time. This results in a large
286 * nr being built up so when a shrink that can do some work
287 * comes along it empties the entire cache due to nr >>>
288 * max_pass. This is bad for sustaining a working set in
289 * memory.
291 * Hence only allow the shrinker to scan the entire cache when
292 * a large delta change is calculated directly.
294 if (delta < max_pass / 4)
295 total_scan = min(total_scan, max_pass / 2);
298 * Avoid risking looping forever due to too large nr value:
299 * never try to free more than twice the estimate number of
300 * freeable entries.
302 if (total_scan > max_pass * 2)
303 total_scan = max_pass * 2;
305 trace_mm_shrink_slab_start(shrinker, shrink, nr,
306 nr_pages_scanned, lru_pages,
307 max_pass, delta, total_scan);
309 while (total_scan >= batch_size) {
310 int nr_before;
312 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
313 shrink_ret = do_shrinker_shrink(shrinker, shrink,
314 batch_size);
315 if (shrink_ret == -1)
316 break;
317 if (shrink_ret < nr_before)
318 ret += nr_before - shrink_ret;
319 count_vm_events(SLABS_SCANNED, batch_size);
320 total_scan -= batch_size;
322 cond_resched();
326 * move the unused scan count back into the shrinker in a
327 * manner that handles concurrent updates. If we exhausted the
328 * scan, there is no need to do an update.
330 if (total_scan > 0)
331 new_nr = atomic_long_add_return(total_scan,
332 &shrinker->nr_in_batch);
333 else
334 new_nr = atomic_long_read(&shrinker->nr_in_batch);
336 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
338 up_read(&shrinker_rwsem);
339 out:
340 cond_resched();
341 return ret;
344 static void set_reclaim_mode(int priority, struct scan_control *sc,
345 bool sync)
347 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
350 * Initially assume we are entering either lumpy reclaim or
351 * reclaim/compaction.Depending on the order, we will either set the
352 * sync mode or just reclaim order-0 pages later.
354 if (COMPACTION_BUILD)
355 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356 else
357 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
360 * Avoid using lumpy reclaim or reclaim/compaction if possible by
361 * restricting when its set to either costly allocations or when
362 * under memory pressure
364 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365 sc->reclaim_mode |= syncmode;
366 else if (sc->order && priority < DEF_PRIORITY - 2)
367 sc->reclaim_mode |= syncmode;
368 else
369 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
372 static void reset_reclaim_mode(struct scan_control *sc)
374 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
377 static inline int is_page_cache_freeable(struct page *page)
380 * A freeable page cache page is referenced only by the caller
381 * that isolated the page, the page cache radix tree and
382 * optional buffer heads at page->private.
384 return page_count(page) - page_has_private(page) == 2;
387 static int may_write_to_queue(struct backing_dev_info *bdi,
388 struct scan_control *sc)
390 if (current->flags & PF_SWAPWRITE)
391 return 1;
392 if (!bdi_write_congested(bdi))
393 return 1;
394 if (bdi == current->backing_dev_info)
395 return 1;
397 /* lumpy reclaim for hugepage often need a lot of write */
398 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399 return 1;
400 return 0;
404 * We detected a synchronous write error writing a page out. Probably
405 * -ENOSPC. We need to propagate that into the address_space for a subsequent
406 * fsync(), msync() or close().
408 * The tricky part is that after writepage we cannot touch the mapping: nothing
409 * prevents it from being freed up. But we have a ref on the page and once
410 * that page is locked, the mapping is pinned.
412 * We're allowed to run sleeping lock_page() here because we know the caller has
413 * __GFP_FS.
415 static void handle_write_error(struct address_space *mapping,
416 struct page *page, int error)
418 lock_page(page);
419 if (page_mapping(page) == mapping)
420 mapping_set_error(mapping, error);
421 unlock_page(page);
424 /* possible outcome of pageout() */
425 typedef enum {
426 /* failed to write page out, page is locked */
427 PAGE_KEEP,
428 /* move page to the active list, page is locked */
429 PAGE_ACTIVATE,
430 /* page has been sent to the disk successfully, page is unlocked */
431 PAGE_SUCCESS,
432 /* page is clean and locked */
433 PAGE_CLEAN,
434 } pageout_t;
437 * pageout is called by shrink_page_list() for each dirty page.
438 * Calls ->writepage().
440 static pageout_t pageout(struct page *page, struct address_space *mapping,
441 struct scan_control *sc)
444 * If the page is dirty, only perform writeback if that write
445 * will be non-blocking. To prevent this allocation from being
446 * stalled by pagecache activity. But note that there may be
447 * stalls if we need to run get_block(). We could test
448 * PagePrivate for that.
450 * If this process is currently in __generic_file_aio_write() against
451 * this page's queue, we can perform writeback even if that
452 * will block.
454 * If the page is swapcache, write it back even if that would
455 * block, for some throttling. This happens by accident, because
456 * swap_backing_dev_info is bust: it doesn't reflect the
457 * congestion state of the swapdevs. Easy to fix, if needed.
459 if (!is_page_cache_freeable(page))
460 return PAGE_KEEP;
461 if (!mapping) {
463 * Some data journaling orphaned pages can have
464 * page->mapping == NULL while being dirty with clean buffers.
466 if (page_has_private(page)) {
467 if (try_to_free_buffers(page)) {
468 ClearPageDirty(page);
469 printk("%s: orphaned page\n", __func__);
470 return PAGE_CLEAN;
473 return PAGE_KEEP;
475 if (mapping->a_ops->writepage == NULL)
476 return PAGE_ACTIVATE;
477 if (!may_write_to_queue(mapping->backing_dev_info, sc))
478 return PAGE_KEEP;
480 if (clear_page_dirty_for_io(page)) {
481 int res;
482 struct writeback_control wbc = {
483 .sync_mode = WB_SYNC_NONE,
484 .nr_to_write = SWAP_CLUSTER_MAX,
485 .range_start = 0,
486 .range_end = LLONG_MAX,
487 .for_reclaim = 1,
490 SetPageReclaim(page);
491 res = mapping->a_ops->writepage(page, &wbc);
492 if (res < 0)
493 handle_write_error(mapping, page, res);
494 if (res == AOP_WRITEPAGE_ACTIVATE) {
495 ClearPageReclaim(page);
496 return PAGE_ACTIVATE;
499 if (!PageWriteback(page)) {
500 /* synchronous write or broken a_ops? */
501 ClearPageReclaim(page);
503 trace_mm_vmscan_writepage(page,
504 trace_reclaim_flags(page, sc->reclaim_mode));
505 inc_zone_page_state(page, NR_VMSCAN_WRITE);
506 return PAGE_SUCCESS;
509 return PAGE_CLEAN;
513 * Same as remove_mapping, but if the page is removed from the mapping, it
514 * gets returned with a refcount of 0.
516 static int __remove_mapping(struct address_space *mapping, struct page *page)
518 BUG_ON(!PageLocked(page));
519 BUG_ON(mapping != page_mapping(page));
521 spin_lock_irq(&mapping->tree_lock);
523 * The non racy check for a busy page.
525 * Must be careful with the order of the tests. When someone has
526 * a ref to the page, it may be possible that they dirty it then
527 * drop the reference. So if PageDirty is tested before page_count
528 * here, then the following race may occur:
530 * get_user_pages(&page);
531 * [user mapping goes away]
532 * write_to(page);
533 * !PageDirty(page) [good]
534 * SetPageDirty(page);
535 * put_page(page);
536 * !page_count(page) [good, discard it]
538 * [oops, our write_to data is lost]
540 * Reversing the order of the tests ensures such a situation cannot
541 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
542 * load is not satisfied before that of page->_count.
544 * Note that if SetPageDirty is always performed via set_page_dirty,
545 * and thus under tree_lock, then this ordering is not required.
547 if (!page_freeze_refs(page, 2))
548 goto cannot_free;
549 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
550 if (unlikely(PageDirty(page))) {
551 page_unfreeze_refs(page, 2);
552 goto cannot_free;
555 if (PageSwapCache(page)) {
556 swp_entry_t swap = { .val = page_private(page) };
557 __delete_from_swap_cache(page);
558 spin_unlock_irq(&mapping->tree_lock);
559 swapcache_free(swap, page);
560 } else {
561 void (*freepage)(struct page *);
563 freepage = mapping->a_ops->freepage;
565 __delete_from_page_cache(page);
566 spin_unlock_irq(&mapping->tree_lock);
567 mem_cgroup_uncharge_cache_page(page);
569 if (freepage != NULL)
570 freepage(page);
573 return 1;
575 cannot_free:
576 spin_unlock_irq(&mapping->tree_lock);
577 return 0;
581 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
582 * someone else has a ref on the page, abort and return 0. If it was
583 * successfully detached, return 1. Assumes the caller has a single ref on
584 * this page.
586 int remove_mapping(struct address_space *mapping, struct page *page)
588 if (__remove_mapping(mapping, page)) {
590 * Unfreezing the refcount with 1 rather than 2 effectively
591 * drops the pagecache ref for us without requiring another
592 * atomic operation.
594 page_unfreeze_refs(page, 1);
595 return 1;
597 return 0;
601 * putback_lru_page - put previously isolated page onto appropriate LRU list
602 * @page: page to be put back to appropriate lru list
604 * Add previously isolated @page to appropriate LRU list.
605 * Page may still be unevictable for other reasons.
607 * lru_lock must not be held, interrupts must be enabled.
609 void putback_lru_page(struct page *page)
611 int lru;
612 int active = !!TestClearPageActive(page);
613 int was_unevictable = PageUnevictable(page);
615 VM_BUG_ON(PageLRU(page));
617 redo:
618 ClearPageUnevictable(page);
620 if (page_evictable(page, NULL)) {
622 * For evictable pages, we can use the cache.
623 * In event of a race, worst case is we end up with an
624 * unevictable page on [in]active list.
625 * We know how to handle that.
627 lru = active + page_lru_base_type(page);
628 lru_cache_add_lru(page, lru);
629 } else {
631 * Put unevictable pages directly on zone's unevictable
632 * list.
634 lru = LRU_UNEVICTABLE;
635 add_page_to_unevictable_list(page);
637 * When racing with an mlock clearing (page is
638 * unlocked), make sure that if the other thread does
639 * not observe our setting of PG_lru and fails
640 * isolation, we see PG_mlocked cleared below and move
641 * the page back to the evictable list.
643 * The other side is TestClearPageMlocked().
645 smp_mb();
649 * page's status can change while we move it among lru. If an evictable
650 * page is on unevictable list, it never be freed. To avoid that,
651 * check after we added it to the list, again.
653 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654 if (!isolate_lru_page(page)) {
655 put_page(page);
656 goto redo;
658 /* This means someone else dropped this page from LRU
659 * So, it will be freed or putback to LRU again. There is
660 * nothing to do here.
664 if (was_unevictable && lru != LRU_UNEVICTABLE)
665 count_vm_event(UNEVICTABLE_PGRESCUED);
666 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667 count_vm_event(UNEVICTABLE_PGCULLED);
669 put_page(page); /* drop ref from isolate */
672 enum page_references {
673 PAGEREF_RECLAIM,
674 PAGEREF_RECLAIM_CLEAN,
675 PAGEREF_KEEP,
676 PAGEREF_ACTIVATE,
679 static enum page_references page_check_references(struct page *page,
680 struct scan_control *sc)
682 int referenced_ptes, referenced_page;
683 unsigned long vm_flags;
685 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686 referenced_page = TestClearPageReferenced(page);
688 /* Lumpy reclaim - ignore references */
689 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690 return PAGEREF_RECLAIM;
693 * Mlock lost the isolation race with us. Let try_to_unmap()
694 * move the page to the unevictable list.
696 if (vm_flags & VM_LOCKED)
697 return PAGEREF_RECLAIM;
699 if (referenced_ptes) {
700 if (PageAnon(page))
701 return PAGEREF_ACTIVATE;
703 * All mapped pages start out with page table
704 * references from the instantiating fault, so we need
705 * to look twice if a mapped file page is used more
706 * than once.
708 * Mark it and spare it for another trip around the
709 * inactive list. Another page table reference will
710 * lead to its activation.
712 * Note: the mark is set for activated pages as well
713 * so that recently deactivated but used pages are
714 * quickly recovered.
716 SetPageReferenced(page);
718 if (referenced_page || referenced_ptes > 1)
719 return PAGEREF_ACTIVATE;
722 * Activate file-backed executable pages after first usage.
724 if (vm_flags & VM_EXEC)
725 return PAGEREF_ACTIVATE;
727 return PAGEREF_KEEP;
730 /* Reclaim if clean, defer dirty pages to writeback */
731 if (referenced_page && !PageSwapBacked(page))
732 return PAGEREF_RECLAIM_CLEAN;
734 return PAGEREF_RECLAIM;
737 static noinline_for_stack void free_page_list(struct list_head *free_pages)
739 struct pagevec freed_pvec;
740 struct page *page, *tmp;
742 pagevec_init(&freed_pvec, 1);
744 list_for_each_entry_safe(page, tmp, free_pages, lru) {
745 list_del(&page->lru);
746 if (!pagevec_add(&freed_pvec, page)) {
747 __pagevec_free(&freed_pvec);
748 pagevec_reinit(&freed_pvec);
752 pagevec_free(&freed_pvec);
756 * shrink_page_list() returns the number of reclaimed pages
758 static unsigned long shrink_page_list(struct list_head *page_list,
759 struct zone *zone,
760 struct scan_control *sc,
761 int priority,
762 unsigned long *ret_nr_dirty,
763 unsigned long *ret_nr_writeback)
765 LIST_HEAD(ret_pages);
766 LIST_HEAD(free_pages);
767 int pgactivate = 0;
768 unsigned long nr_dirty = 0;
769 unsigned long nr_congested = 0;
770 unsigned long nr_reclaimed = 0;
771 unsigned long nr_writeback = 0;
773 cond_resched();
775 while (!list_empty(page_list)) {
776 enum page_references references;
777 struct address_space *mapping;
778 struct page *page;
779 int may_enter_fs;
781 cond_resched();
783 page = lru_to_page(page_list);
784 list_del(&page->lru);
786 if (!trylock_page(page))
787 goto keep;
789 VM_BUG_ON(PageActive(page));
790 VM_BUG_ON(page_zone(page) != zone);
792 sc->nr_scanned++;
794 if (unlikely(!page_evictable(page, NULL)))
795 goto cull_mlocked;
797 if (!sc->may_unmap && page_mapped(page))
798 goto keep_locked;
800 /* Double the slab pressure for mapped and swapcache pages */
801 if (page_mapped(page) || PageSwapCache(page))
802 sc->nr_scanned++;
804 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
805 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
807 if (PageWriteback(page)) {
808 nr_writeback++;
810 * Synchronous reclaim cannot queue pages for
811 * writeback due to the possibility of stack overflow
812 * but if it encounters a page under writeback, wait
813 * for the IO to complete.
815 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816 may_enter_fs)
817 wait_on_page_writeback(page);
818 else {
819 unlock_page(page);
820 goto keep_lumpy;
824 references = page_check_references(page, sc);
825 switch (references) {
826 case PAGEREF_ACTIVATE:
827 goto activate_locked;
828 case PAGEREF_KEEP:
829 goto keep_locked;
830 case PAGEREF_RECLAIM:
831 case PAGEREF_RECLAIM_CLEAN:
832 ; /* try to reclaim the page below */
836 * Anonymous process memory has backing store?
837 * Try to allocate it some swap space here.
839 if (PageAnon(page) && !PageSwapCache(page)) {
840 if (!(sc->gfp_mask & __GFP_IO))
841 goto keep_locked;
842 if (!add_to_swap(page))
843 goto activate_locked;
844 may_enter_fs = 1;
847 mapping = page_mapping(page);
850 * The page is mapped into the page tables of one or more
851 * processes. Try to unmap it here.
853 if (page_mapped(page) && mapping) {
854 switch (try_to_unmap(page, TTU_UNMAP)) {
855 case SWAP_FAIL:
856 goto activate_locked;
857 case SWAP_AGAIN:
858 goto keep_locked;
859 case SWAP_MLOCK:
860 goto cull_mlocked;
861 case SWAP_SUCCESS:
862 ; /* try to free the page below */
866 if (PageDirty(page)) {
867 nr_dirty++;
870 * Only kswapd can writeback filesystem pages to
871 * avoid risk of stack overflow but do not writeback
872 * unless under significant pressure.
874 if (page_is_file_cache(page) &&
875 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
877 * Immediately reclaim when written back.
878 * Similar in principal to deactivate_page()
879 * except we already have the page isolated
880 * and know it's dirty
882 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
883 SetPageReclaim(page);
885 goto keep_locked;
888 if (references == PAGEREF_RECLAIM_CLEAN)
889 goto keep_locked;
890 if (!may_enter_fs)
891 goto keep_locked;
892 if (!sc->may_writepage)
893 goto keep_locked;
895 /* Page is dirty, try to write it out here */
896 switch (pageout(page, mapping, sc)) {
897 case PAGE_KEEP:
898 nr_congested++;
899 goto keep_locked;
900 case PAGE_ACTIVATE:
901 goto activate_locked;
902 case PAGE_SUCCESS:
903 if (PageWriteback(page))
904 goto keep_lumpy;
905 if (PageDirty(page))
906 goto keep;
909 * A synchronous write - probably a ramdisk. Go
910 * ahead and try to reclaim the page.
912 if (!trylock_page(page))
913 goto keep;
914 if (PageDirty(page) || PageWriteback(page))
915 goto keep_locked;
916 mapping = page_mapping(page);
917 case PAGE_CLEAN:
918 ; /* try to free the page below */
923 * If the page has buffers, try to free the buffer mappings
924 * associated with this page. If we succeed we try to free
925 * the page as well.
927 * We do this even if the page is PageDirty().
928 * try_to_release_page() does not perform I/O, but it is
929 * possible for a page to have PageDirty set, but it is actually
930 * clean (all its buffers are clean). This happens if the
931 * buffers were written out directly, with submit_bh(). ext3
932 * will do this, as well as the blockdev mapping.
933 * try_to_release_page() will discover that cleanness and will
934 * drop the buffers and mark the page clean - it can be freed.
936 * Rarely, pages can have buffers and no ->mapping. These are
937 * the pages which were not successfully invalidated in
938 * truncate_complete_page(). We try to drop those buffers here
939 * and if that worked, and the page is no longer mapped into
940 * process address space (page_count == 1) it can be freed.
941 * Otherwise, leave the page on the LRU so it is swappable.
943 if (page_has_private(page)) {
944 if (!try_to_release_page(page, sc->gfp_mask))
945 goto activate_locked;
946 if (!mapping && page_count(page) == 1) {
947 unlock_page(page);
948 if (put_page_testzero(page))
949 goto free_it;
950 else {
952 * rare race with speculative reference.
953 * the speculative reference will free
954 * this page shortly, so we may
955 * increment nr_reclaimed here (and
956 * leave it off the LRU).
958 nr_reclaimed++;
959 continue;
964 if (!mapping || !__remove_mapping(mapping, page))
965 goto keep_locked;
968 * At this point, we have no other references and there is
969 * no way to pick any more up (removed from LRU, removed
970 * from pagecache). Can use non-atomic bitops now (and
971 * we obviously don't have to worry about waking up a process
972 * waiting on the page lock, because there are no references.
974 __clear_page_locked(page);
975 free_it:
976 nr_reclaimed++;
979 * Is there need to periodically free_page_list? It would
980 * appear not as the counts should be low
982 list_add(&page->lru, &free_pages);
983 continue;
985 cull_mlocked:
986 if (PageSwapCache(page))
987 try_to_free_swap(page);
988 unlock_page(page);
989 putback_lru_page(page);
990 reset_reclaim_mode(sc);
991 continue;
993 activate_locked:
994 /* Not a candidate for swapping, so reclaim swap space. */
995 if (PageSwapCache(page) && vm_swap_full())
996 try_to_free_swap(page);
997 VM_BUG_ON(PageActive(page));
998 SetPageActive(page);
999 pgactivate++;
1000 keep_locked:
1001 unlock_page(page);
1002 keep:
1003 reset_reclaim_mode(sc);
1004 keep_lumpy:
1005 list_add(&page->lru, &ret_pages);
1006 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1010 * Tag a zone as congested if all the dirty pages encountered were
1011 * backed by a congested BDI. In this case, reclaimers should just
1012 * back off and wait for congestion to clear because further reclaim
1013 * will encounter the same problem
1015 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1016 zone_set_flag(zone, ZONE_CONGESTED);
1018 free_page_list(&free_pages);
1020 list_splice(&ret_pages, page_list);
1021 count_vm_events(PGACTIVATE, pgactivate);
1022 *ret_nr_dirty += nr_dirty;
1023 *ret_nr_writeback += nr_writeback;
1024 return nr_reclaimed;
1028 * Attempt to remove the specified page from its LRU. Only take this page
1029 * if it is of the appropriate PageActive status. Pages which are being
1030 * freed elsewhere are also ignored.
1032 * page: page to consider
1033 * mode: one of the LRU isolation modes defined above
1035 * returns 0 on success, -ve errno on failure.
1037 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1039 bool all_lru_mode;
1040 int ret = -EINVAL;
1042 /* Only take pages on the LRU. */
1043 if (!PageLRU(page))
1044 return ret;
1046 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1047 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1050 * When checking the active state, we need to be sure we are
1051 * dealing with comparible boolean values. Take the logical not
1052 * of each.
1054 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1055 return ret;
1057 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1058 return ret;
1061 * When this function is being called for lumpy reclaim, we
1062 * initially look into all LRU pages, active, inactive and
1063 * unevictable; only give shrink_page_list evictable pages.
1065 if (PageUnevictable(page))
1066 return ret;
1068 ret = -EBUSY;
1070 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1071 return ret;
1073 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1074 return ret;
1076 if (likely(get_page_unless_zero(page))) {
1078 * Be careful not to clear PageLRU until after we're
1079 * sure the page is not being freed elsewhere -- the
1080 * page release code relies on it.
1082 ClearPageLRU(page);
1083 ret = 0;
1086 return ret;
1090 * zone->lru_lock is heavily contended. Some of the functions that
1091 * shrink the lists perform better by taking out a batch of pages
1092 * and working on them outside the LRU lock.
1094 * For pagecache intensive workloads, this function is the hottest
1095 * spot in the kernel (apart from copy_*_user functions).
1097 * Appropriate locks must be held before calling this function.
1099 * @nr_to_scan: The number of pages to look through on the list.
1100 * @src: The LRU list to pull pages off.
1101 * @dst: The temp list to put pages on to.
1102 * @scanned: The number of pages that were scanned.
1103 * @order: The caller's attempted allocation order
1104 * @mode: One of the LRU isolation modes
1105 * @file: True [1] if isolating file [!anon] pages
1107 * returns how many pages were moved onto *@dst.
1109 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1110 struct list_head *src, struct list_head *dst,
1111 unsigned long *scanned, int order, isolate_mode_t mode,
1112 int file)
1114 unsigned long nr_taken = 0;
1115 unsigned long nr_lumpy_taken = 0;
1116 unsigned long nr_lumpy_dirty = 0;
1117 unsigned long nr_lumpy_failed = 0;
1118 unsigned long scan;
1120 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1121 struct page *page;
1122 unsigned long pfn;
1123 unsigned long end_pfn;
1124 unsigned long page_pfn;
1125 int zone_id;
1127 page = lru_to_page(src);
1128 prefetchw_prev_lru_page(page, src, flags);
1130 VM_BUG_ON(!PageLRU(page));
1132 switch (__isolate_lru_page(page, mode, file)) {
1133 case 0:
1134 list_move(&page->lru, dst);
1135 mem_cgroup_del_lru(page);
1136 nr_taken += hpage_nr_pages(page);
1137 break;
1139 case -EBUSY:
1140 /* else it is being freed elsewhere */
1141 list_move(&page->lru, src);
1142 mem_cgroup_rotate_lru_list(page, page_lru(page));
1143 continue;
1145 default:
1146 BUG();
1149 if (!order)
1150 continue;
1153 * Attempt to take all pages in the order aligned region
1154 * surrounding the tag page. Only take those pages of
1155 * the same active state as that tag page. We may safely
1156 * round the target page pfn down to the requested order
1157 * as the mem_map is guaranteed valid out to MAX_ORDER,
1158 * where that page is in a different zone we will detect
1159 * it from its zone id and abort this block scan.
1161 zone_id = page_zone_id(page);
1162 page_pfn = page_to_pfn(page);
1163 pfn = page_pfn & ~((1 << order) - 1);
1164 end_pfn = pfn + (1 << order);
1165 for (; pfn < end_pfn; pfn++) {
1166 struct page *cursor_page;
1168 /* The target page is in the block, ignore it. */
1169 if (unlikely(pfn == page_pfn))
1170 continue;
1172 /* Avoid holes within the zone. */
1173 if (unlikely(!pfn_valid_within(pfn)))
1174 break;
1176 cursor_page = pfn_to_page(pfn);
1178 /* Check that we have not crossed a zone boundary. */
1179 if (unlikely(page_zone_id(cursor_page) != zone_id))
1180 break;
1183 * If we don't have enough swap space, reclaiming of
1184 * anon page which don't already have a swap slot is
1185 * pointless.
1187 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1188 !PageSwapCache(cursor_page))
1189 break;
1191 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1192 list_move(&cursor_page->lru, dst);
1193 mem_cgroup_del_lru(cursor_page);
1194 nr_taken += hpage_nr_pages(page);
1195 nr_lumpy_taken++;
1196 if (PageDirty(cursor_page))
1197 nr_lumpy_dirty++;
1198 scan++;
1199 } else {
1201 * Check if the page is freed already.
1203 * We can't use page_count() as that
1204 * requires compound_head and we don't
1205 * have a pin on the page here. If a
1206 * page is tail, we may or may not
1207 * have isolated the head, so assume
1208 * it's not free, it'd be tricky to
1209 * track the head status without a
1210 * page pin.
1212 if (!PageTail(cursor_page) &&
1213 !atomic_read(&cursor_page->_count))
1214 continue;
1215 break;
1219 /* If we break out of the loop above, lumpy reclaim failed */
1220 if (pfn < end_pfn)
1221 nr_lumpy_failed++;
1224 *scanned = scan;
1226 trace_mm_vmscan_lru_isolate(order,
1227 nr_to_scan, scan,
1228 nr_taken,
1229 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1230 mode);
1231 return nr_taken;
1234 static unsigned long isolate_pages_global(unsigned long nr,
1235 struct list_head *dst,
1236 unsigned long *scanned, int order,
1237 isolate_mode_t mode,
1238 struct zone *z, int active, int file)
1240 int lru = LRU_BASE;
1241 if (active)
1242 lru += LRU_ACTIVE;
1243 if (file)
1244 lru += LRU_FILE;
1245 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1246 mode, file);
1250 * clear_active_flags() is a helper for shrink_active_list(), clearing
1251 * any active bits from the pages in the list.
1253 static unsigned long clear_active_flags(struct list_head *page_list,
1254 unsigned int *count)
1256 int nr_active = 0;
1257 int lru;
1258 struct page *page;
1260 list_for_each_entry(page, page_list, lru) {
1261 int numpages = hpage_nr_pages(page);
1262 lru = page_lru_base_type(page);
1263 if (PageActive(page)) {
1264 lru += LRU_ACTIVE;
1265 ClearPageActive(page);
1266 nr_active += numpages;
1268 if (count)
1269 count[lru] += numpages;
1272 return nr_active;
1276 * isolate_lru_page - tries to isolate a page from its LRU list
1277 * @page: page to isolate from its LRU list
1279 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1280 * vmstat statistic corresponding to whatever LRU list the page was on.
1282 * Returns 0 if the page was removed from an LRU list.
1283 * Returns -EBUSY if the page was not on an LRU list.
1285 * The returned page will have PageLRU() cleared. If it was found on
1286 * the active list, it will have PageActive set. If it was found on
1287 * the unevictable list, it will have the PageUnevictable bit set. That flag
1288 * may need to be cleared by the caller before letting the page go.
1290 * The vmstat statistic corresponding to the list on which the page was
1291 * found will be decremented.
1293 * Restrictions:
1294 * (1) Must be called with an elevated refcount on the page. This is a
1295 * fundamentnal difference from isolate_lru_pages (which is called
1296 * without a stable reference).
1297 * (2) the lru_lock must not be held.
1298 * (3) interrupts must be enabled.
1300 int isolate_lru_page(struct page *page)
1302 int ret = -EBUSY;
1304 VM_BUG_ON(!page_count(page));
1306 if (PageLRU(page)) {
1307 struct zone *zone = page_zone(page);
1309 spin_lock_irq(&zone->lru_lock);
1310 if (PageLRU(page)) {
1311 int lru = page_lru(page);
1312 ret = 0;
1313 get_page(page);
1314 ClearPageLRU(page);
1316 del_page_from_lru_list(zone, page, lru);
1318 spin_unlock_irq(&zone->lru_lock);
1320 return ret;
1324 * Are there way too many processes in the direct reclaim path already?
1326 static int too_many_isolated(struct zone *zone, int file,
1327 struct scan_control *sc)
1329 unsigned long inactive, isolated;
1331 if (current_is_kswapd())
1332 return 0;
1334 if (!scanning_global_lru(sc))
1335 return 0;
1337 if (file) {
1338 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1339 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1340 } else {
1341 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1342 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1345 return isolated > inactive;
1349 * TODO: Try merging with migrations version of putback_lru_pages
1351 static noinline_for_stack void
1352 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1353 unsigned long nr_anon, unsigned long nr_file,
1354 struct list_head *page_list)
1356 struct page *page;
1357 struct pagevec pvec;
1358 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1360 pagevec_init(&pvec, 1);
1363 * Put back any unfreeable pages.
1365 spin_lock(&zone->lru_lock);
1366 while (!list_empty(page_list)) {
1367 int lru;
1368 page = lru_to_page(page_list);
1369 VM_BUG_ON(PageLRU(page));
1370 list_del(&page->lru);
1371 if (unlikely(!page_evictable(page, NULL))) {
1372 spin_unlock_irq(&zone->lru_lock);
1373 putback_lru_page(page);
1374 spin_lock_irq(&zone->lru_lock);
1375 continue;
1377 SetPageLRU(page);
1378 lru = page_lru(page);
1379 add_page_to_lru_list(zone, page, lru);
1380 if (is_active_lru(lru)) {
1381 int file = is_file_lru(lru);
1382 int numpages = hpage_nr_pages(page);
1383 reclaim_stat->recent_rotated[file] += numpages;
1384 if (!scanning_global_lru(sc))
1385 sc->memcg_record->nr_rotated[file] += numpages;
1387 if (!pagevec_add(&pvec, page)) {
1388 spin_unlock_irq(&zone->lru_lock);
1389 __pagevec_release(&pvec);
1390 spin_lock_irq(&zone->lru_lock);
1393 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1394 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1396 spin_unlock_irq(&zone->lru_lock);
1397 pagevec_release(&pvec);
1400 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1401 struct scan_control *sc,
1402 unsigned long *nr_anon,
1403 unsigned long *nr_file,
1404 struct list_head *isolated_list)
1406 unsigned long nr_active;
1407 unsigned int count[NR_LRU_LISTS] = { 0, };
1408 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1410 nr_active = clear_active_flags(isolated_list, count);
1411 __count_vm_events(PGDEACTIVATE, nr_active);
1413 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1414 -count[LRU_ACTIVE_FILE]);
1415 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1416 -count[LRU_INACTIVE_FILE]);
1417 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1418 -count[LRU_ACTIVE_ANON]);
1419 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1420 -count[LRU_INACTIVE_ANON]);
1422 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1423 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1424 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1425 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1427 reclaim_stat->recent_scanned[0] += *nr_anon;
1428 reclaim_stat->recent_scanned[1] += *nr_file;
1429 if (!scanning_global_lru(sc)) {
1430 sc->memcg_record->nr_scanned[0] += *nr_anon;
1431 sc->memcg_record->nr_scanned[1] += *nr_file;
1436 * Returns true if a direct reclaim should wait on pages under writeback.
1438 * If we are direct reclaiming for contiguous pages and we do not reclaim
1439 * everything in the list, try again and wait for writeback IO to complete.
1440 * This will stall high-order allocations noticeably. Only do that when really
1441 * need to free the pages under high memory pressure.
1443 static inline bool should_reclaim_stall(unsigned long nr_taken,
1444 unsigned long nr_freed,
1445 int priority,
1446 struct scan_control *sc)
1448 int lumpy_stall_priority;
1450 /* kswapd should not stall on sync IO */
1451 if (current_is_kswapd())
1452 return false;
1454 /* Only stall on lumpy reclaim */
1455 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1456 return false;
1458 /* If we have reclaimed everything on the isolated list, no stall */
1459 if (nr_freed == nr_taken)
1460 return false;
1463 * For high-order allocations, there are two stall thresholds.
1464 * High-cost allocations stall immediately where as lower
1465 * order allocations such as stacks require the scanning
1466 * priority to be much higher before stalling.
1468 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1469 lumpy_stall_priority = DEF_PRIORITY;
1470 else
1471 lumpy_stall_priority = DEF_PRIORITY / 3;
1473 return priority <= lumpy_stall_priority;
1477 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1478 * of reclaimed pages
1480 static noinline_for_stack unsigned long
1481 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1482 struct scan_control *sc, int priority, int file)
1484 LIST_HEAD(page_list);
1485 unsigned long nr_scanned;
1486 unsigned long nr_reclaimed = 0;
1487 unsigned long nr_taken;
1488 unsigned long nr_anon;
1489 unsigned long nr_file;
1490 unsigned long nr_dirty = 0;
1491 unsigned long nr_writeback = 0;
1492 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1494 while (unlikely(too_many_isolated(zone, file, sc))) {
1495 congestion_wait(BLK_RW_ASYNC, HZ/10);
1497 /* We are about to die and free our memory. Return now. */
1498 if (fatal_signal_pending(current))
1499 return SWAP_CLUSTER_MAX;
1502 set_reclaim_mode(priority, sc, false);
1503 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1504 reclaim_mode |= ISOLATE_ACTIVE;
1506 lru_add_drain();
1508 if (!sc->may_unmap)
1509 reclaim_mode |= ISOLATE_UNMAPPED;
1510 if (!sc->may_writepage)
1511 reclaim_mode |= ISOLATE_CLEAN;
1513 spin_lock_irq(&zone->lru_lock);
1515 if (scanning_global_lru(sc)) {
1516 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1517 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1518 zone->pages_scanned += nr_scanned;
1519 if (current_is_kswapd())
1520 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1521 nr_scanned);
1522 else
1523 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1524 nr_scanned);
1525 } else {
1526 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1527 &nr_scanned, sc->order, reclaim_mode, zone,
1528 sc->mem_cgroup, 0, file);
1530 * mem_cgroup_isolate_pages() keeps track of
1531 * scanned pages on its own.
1535 if (nr_taken == 0) {
1536 spin_unlock_irq(&zone->lru_lock);
1537 return 0;
1540 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1542 spin_unlock_irq(&zone->lru_lock);
1544 nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1545 &nr_dirty, &nr_writeback);
1547 /* Check if we should syncronously wait for writeback */
1548 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1549 set_reclaim_mode(priority, sc, true);
1550 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1551 priority, &nr_dirty, &nr_writeback);
1554 if (!scanning_global_lru(sc))
1555 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1557 local_irq_disable();
1558 if (current_is_kswapd())
1559 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1560 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1562 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1565 * If we have encountered a high number of dirty pages under writeback
1566 * then we are reaching the end of the LRU too quickly and global
1567 * limits are not enough to throttle processes due to the page
1568 * distribution throughout zones. Scale the number of dirty pages that
1569 * must be under writeback before being throttled to priority.
1571 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1572 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1574 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1575 zone_idx(zone),
1576 nr_scanned, nr_reclaimed,
1577 priority,
1578 trace_shrink_flags(file, sc->reclaim_mode));
1579 return nr_reclaimed;
1583 * This moves pages from the active list to the inactive list.
1585 * We move them the other way if the page is referenced by one or more
1586 * processes, from rmap.
1588 * If the pages are mostly unmapped, the processing is fast and it is
1589 * appropriate to hold zone->lru_lock across the whole operation. But if
1590 * the pages are mapped, the processing is slow (page_referenced()) so we
1591 * should drop zone->lru_lock around each page. It's impossible to balance
1592 * this, so instead we remove the pages from the LRU while processing them.
1593 * It is safe to rely on PG_active against the non-LRU pages in here because
1594 * nobody will play with that bit on a non-LRU page.
1596 * The downside is that we have to touch page->_count against each page.
1597 * But we had to alter page->flags anyway.
1600 static void move_active_pages_to_lru(struct zone *zone,
1601 struct list_head *list,
1602 enum lru_list lru)
1604 unsigned long pgmoved = 0;
1605 struct pagevec pvec;
1606 struct page *page;
1608 pagevec_init(&pvec, 1);
1610 while (!list_empty(list)) {
1611 page = lru_to_page(list);
1613 VM_BUG_ON(PageLRU(page));
1614 SetPageLRU(page);
1616 list_move(&page->lru, &zone->lru[lru].list);
1617 mem_cgroup_add_lru_list(page, lru);
1618 pgmoved += hpage_nr_pages(page);
1620 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1621 spin_unlock_irq(&zone->lru_lock);
1622 if (buffer_heads_over_limit)
1623 pagevec_strip(&pvec);
1624 __pagevec_release(&pvec);
1625 spin_lock_irq(&zone->lru_lock);
1628 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1629 if (!is_active_lru(lru))
1630 __count_vm_events(PGDEACTIVATE, pgmoved);
1633 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1634 struct scan_control *sc, int priority, int file)
1636 unsigned long nr_taken;
1637 unsigned long pgscanned;
1638 unsigned long vm_flags;
1639 LIST_HEAD(l_hold); /* The pages which were snipped off */
1640 LIST_HEAD(l_active);
1641 LIST_HEAD(l_inactive);
1642 struct page *page;
1643 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1644 unsigned long nr_rotated = 0;
1645 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1647 lru_add_drain();
1649 if (!sc->may_unmap)
1650 reclaim_mode |= ISOLATE_UNMAPPED;
1651 if (!sc->may_writepage)
1652 reclaim_mode |= ISOLATE_CLEAN;
1654 spin_lock_irq(&zone->lru_lock);
1655 if (scanning_global_lru(sc)) {
1656 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1657 &pgscanned, sc->order,
1658 reclaim_mode, zone,
1659 1, file);
1660 zone->pages_scanned += pgscanned;
1661 } else {
1662 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1663 &pgscanned, sc->order,
1664 reclaim_mode, zone,
1665 sc->mem_cgroup, 1, file);
1667 * mem_cgroup_isolate_pages() keeps track of
1668 * scanned pages on its own.
1672 reclaim_stat->recent_scanned[file] += nr_taken;
1673 if (!scanning_global_lru(sc))
1674 sc->memcg_record->nr_scanned[file] += nr_taken;
1676 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1677 if (file)
1678 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1679 else
1680 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1681 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1682 spin_unlock_irq(&zone->lru_lock);
1684 while (!list_empty(&l_hold)) {
1685 cond_resched();
1686 page = lru_to_page(&l_hold);
1687 list_del(&page->lru);
1689 if (unlikely(!page_evictable(page, NULL))) {
1690 putback_lru_page(page);
1691 continue;
1694 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1695 nr_rotated += hpage_nr_pages(page);
1697 * Identify referenced, file-backed active pages and
1698 * give them one more trip around the active list. So
1699 * that executable code get better chances to stay in
1700 * memory under moderate memory pressure. Anon pages
1701 * are not likely to be evicted by use-once streaming
1702 * IO, plus JVM can create lots of anon VM_EXEC pages,
1703 * so we ignore them here.
1705 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1706 list_add(&page->lru, &l_active);
1707 continue;
1711 ClearPageActive(page); /* we are de-activating */
1712 list_add(&page->lru, &l_inactive);
1716 * Move pages back to the lru list.
1718 spin_lock_irq(&zone->lru_lock);
1720 * Count referenced pages from currently used mappings as rotated,
1721 * even though only some of them are actually re-activated. This
1722 * helps balance scan pressure between file and anonymous pages in
1723 * get_scan_ratio.
1725 reclaim_stat->recent_rotated[file] += nr_rotated;
1726 if (!scanning_global_lru(sc))
1727 sc->memcg_record->nr_rotated[file] += nr_rotated;
1729 move_active_pages_to_lru(zone, &l_active,
1730 LRU_ACTIVE + file * LRU_FILE);
1731 move_active_pages_to_lru(zone, &l_inactive,
1732 LRU_BASE + file * LRU_FILE);
1733 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1734 spin_unlock_irq(&zone->lru_lock);
1737 #ifdef CONFIG_SWAP
1738 static int inactive_anon_is_low_global(struct zone *zone)
1740 unsigned long active, inactive;
1742 active = zone_page_state(zone, NR_ACTIVE_ANON);
1743 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1745 if (inactive * zone->inactive_ratio < active)
1746 return 1;
1748 return 0;
1752 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1753 * @zone: zone to check
1754 * @sc: scan control of this context
1756 * Returns true if the zone does not have enough inactive anon pages,
1757 * meaning some active anon pages need to be deactivated.
1759 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1761 int low;
1764 * If we don't have swap space, anonymous page deactivation
1765 * is pointless.
1767 if (!total_swap_pages)
1768 return 0;
1770 if (scanning_global_lru(sc))
1771 low = inactive_anon_is_low_global(zone);
1772 else
1773 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1774 return low;
1776 #else
1777 static inline int inactive_anon_is_low(struct zone *zone,
1778 struct scan_control *sc)
1780 return 0;
1782 #endif
1784 static int inactive_file_is_low_global(struct zone *zone)
1786 unsigned long active, inactive;
1788 active = zone_page_state(zone, NR_ACTIVE_FILE);
1789 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1791 return (active > inactive);
1795 * inactive_file_is_low - check if file pages need to be deactivated
1796 * @zone: zone to check
1797 * @sc: scan control of this context
1799 * When the system is doing streaming IO, memory pressure here
1800 * ensures that active file pages get deactivated, until more
1801 * than half of the file pages are on the inactive list.
1803 * Once we get to that situation, protect the system's working
1804 * set from being evicted by disabling active file page aging.
1806 * This uses a different ratio than the anonymous pages, because
1807 * the page cache uses a use-once replacement algorithm.
1809 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1811 int low;
1813 if (scanning_global_lru(sc))
1814 low = inactive_file_is_low_global(zone);
1815 else
1816 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1817 return low;
1820 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1821 int file)
1823 if (file)
1824 return inactive_file_is_low(zone, sc);
1825 else
1826 return inactive_anon_is_low(zone, sc);
1829 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1830 struct zone *zone, struct scan_control *sc, int priority)
1832 int file = is_file_lru(lru);
1834 if (is_active_lru(lru)) {
1835 if (inactive_list_is_low(zone, sc, file))
1836 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1837 return 0;
1840 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1843 static int vmscan_swappiness(struct scan_control *sc)
1845 if (scanning_global_lru(sc))
1846 return vm_swappiness;
1847 return mem_cgroup_swappiness(sc->mem_cgroup);
1851 * Determine how aggressively the anon and file LRU lists should be
1852 * scanned. The relative value of each set of LRU lists is determined
1853 * by looking at the fraction of the pages scanned we did rotate back
1854 * onto the active list instead of evict.
1856 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1858 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1859 unsigned long *nr, int priority)
1861 unsigned long anon, file, free;
1862 unsigned long anon_prio, file_prio;
1863 unsigned long ap, fp;
1864 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1865 u64 fraction[2], denominator;
1866 enum lru_list l;
1867 int noswap = 0;
1868 bool force_scan = false;
1871 * If the zone or memcg is small, nr[l] can be 0. This
1872 * results in no scanning on this priority and a potential
1873 * priority drop. Global direct reclaim can go to the next
1874 * zone and tends to have no problems. Global kswapd is for
1875 * zone balancing and it needs to scan a minimum amount. When
1876 * reclaiming for a memcg, a priority drop can cause high
1877 * latencies, so it's better to scan a minimum amount there as
1878 * well.
1880 if (scanning_global_lru(sc) && current_is_kswapd())
1881 force_scan = true;
1882 if (!scanning_global_lru(sc))
1883 force_scan = true;
1885 /* If we have no swap space, do not bother scanning anon pages. */
1886 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1887 noswap = 1;
1888 fraction[0] = 0;
1889 fraction[1] = 1;
1890 denominator = 1;
1891 goto out;
1894 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1895 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1896 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1897 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1899 if (scanning_global_lru(sc)) {
1900 free = zone_page_state(zone, NR_FREE_PAGES);
1901 /* If we have very few page cache pages,
1902 force-scan anon pages. */
1903 if (unlikely(file + free <= high_wmark_pages(zone))) {
1904 fraction[0] = 1;
1905 fraction[1] = 0;
1906 denominator = 1;
1907 goto out;
1912 * With swappiness at 100, anonymous and file have the same priority.
1913 * This scanning priority is essentially the inverse of IO cost.
1915 anon_prio = vmscan_swappiness(sc);
1916 file_prio = 200 - vmscan_swappiness(sc);
1919 * OK, so we have swap space and a fair amount of page cache
1920 * pages. We use the recently rotated / recently scanned
1921 * ratios to determine how valuable each cache is.
1923 * Because workloads change over time (and to avoid overflow)
1924 * we keep these statistics as a floating average, which ends
1925 * up weighing recent references more than old ones.
1927 * anon in [0], file in [1]
1929 spin_lock_irq(&zone->lru_lock);
1930 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1931 reclaim_stat->recent_scanned[0] /= 2;
1932 reclaim_stat->recent_rotated[0] /= 2;
1935 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1936 reclaim_stat->recent_scanned[1] /= 2;
1937 reclaim_stat->recent_rotated[1] /= 2;
1941 * The amount of pressure on anon vs file pages is inversely
1942 * proportional to the fraction of recently scanned pages on
1943 * each list that were recently referenced and in active use.
1945 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1946 ap /= reclaim_stat->recent_rotated[0] + 1;
1948 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1949 fp /= reclaim_stat->recent_rotated[1] + 1;
1950 spin_unlock_irq(&zone->lru_lock);
1952 fraction[0] = ap;
1953 fraction[1] = fp;
1954 denominator = ap + fp + 1;
1955 out:
1956 for_each_evictable_lru(l) {
1957 int file = is_file_lru(l);
1958 unsigned long scan;
1960 scan = zone_nr_lru_pages(zone, sc, l);
1961 if (priority || noswap) {
1962 scan >>= priority;
1963 if (!scan && force_scan)
1964 scan = SWAP_CLUSTER_MAX;
1965 scan = div64_u64(scan * fraction[file], denominator);
1967 nr[l] = scan;
1972 * Reclaim/compaction depends on a number of pages being freed. To avoid
1973 * disruption to the system, a small number of order-0 pages continue to be
1974 * rotated and reclaimed in the normal fashion. However, by the time we get
1975 * back to the allocator and call try_to_compact_zone(), we ensure that
1976 * there are enough free pages for it to be likely successful
1978 static inline bool should_continue_reclaim(struct zone *zone,
1979 unsigned long nr_reclaimed,
1980 unsigned long nr_scanned,
1981 struct scan_control *sc)
1983 unsigned long pages_for_compaction;
1984 unsigned long inactive_lru_pages;
1986 /* If not in reclaim/compaction mode, stop */
1987 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1988 return false;
1990 /* Consider stopping depending on scan and reclaim activity */
1991 if (sc->gfp_mask & __GFP_REPEAT) {
1993 * For __GFP_REPEAT allocations, stop reclaiming if the
1994 * full LRU list has been scanned and we are still failing
1995 * to reclaim pages. This full LRU scan is potentially
1996 * expensive but a __GFP_REPEAT caller really wants to succeed
1998 if (!nr_reclaimed && !nr_scanned)
1999 return false;
2000 } else {
2002 * For non-__GFP_REPEAT allocations which can presumably
2003 * fail without consequence, stop if we failed to reclaim
2004 * any pages from the last SWAP_CLUSTER_MAX number of
2005 * pages that were scanned. This will return to the
2006 * caller faster at the risk reclaim/compaction and
2007 * the resulting allocation attempt fails
2009 if (!nr_reclaimed)
2010 return false;
2014 * If we have not reclaimed enough pages for compaction and the
2015 * inactive lists are large enough, continue reclaiming
2017 pages_for_compaction = (2UL << sc->order);
2018 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2019 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2020 if (sc->nr_reclaimed < pages_for_compaction &&
2021 inactive_lru_pages > pages_for_compaction)
2022 return true;
2024 /* If compaction would go ahead or the allocation would succeed, stop */
2025 switch (compaction_suitable(zone, sc->order)) {
2026 case COMPACT_PARTIAL:
2027 case COMPACT_CONTINUE:
2028 return false;
2029 default:
2030 return true;
2035 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2037 static void shrink_zone(int priority, struct zone *zone,
2038 struct scan_control *sc)
2040 unsigned long nr[NR_LRU_LISTS];
2041 unsigned long nr_to_scan;
2042 enum lru_list l;
2043 unsigned long nr_reclaimed, nr_scanned;
2044 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2045 struct blk_plug plug;
2047 restart:
2048 nr_reclaimed = 0;
2049 nr_scanned = sc->nr_scanned;
2050 get_scan_count(zone, sc, nr, priority);
2052 blk_start_plug(&plug);
2053 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2054 nr[LRU_INACTIVE_FILE]) {
2055 for_each_evictable_lru(l) {
2056 if (nr[l]) {
2057 nr_to_scan = min_t(unsigned long,
2058 nr[l], SWAP_CLUSTER_MAX);
2059 nr[l] -= nr_to_scan;
2061 nr_reclaimed += shrink_list(l, nr_to_scan,
2062 zone, sc, priority);
2066 * On large memory systems, scan >> priority can become
2067 * really large. This is fine for the starting priority;
2068 * we want to put equal scanning pressure on each zone.
2069 * However, if the VM has a harder time of freeing pages,
2070 * with multiple processes reclaiming pages, the total
2071 * freeing target can get unreasonably large.
2073 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2074 break;
2076 blk_finish_plug(&plug);
2077 sc->nr_reclaimed += nr_reclaimed;
2080 * Even if we did not try to evict anon pages at all, we want to
2081 * rebalance the anon lru active/inactive ratio.
2083 if (inactive_anon_is_low(zone, sc))
2084 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2086 /* reclaim/compaction might need reclaim to continue */
2087 if (should_continue_reclaim(zone, nr_reclaimed,
2088 sc->nr_scanned - nr_scanned, sc))
2089 goto restart;
2091 throttle_vm_writeout(sc->gfp_mask);
2095 * This is the direct reclaim path, for page-allocating processes. We only
2096 * try to reclaim pages from zones which will satisfy the caller's allocation
2097 * request.
2099 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2100 * Because:
2101 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2102 * allocation or
2103 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2104 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2105 * zone defense algorithm.
2107 * If a zone is deemed to be full of pinned pages then just give it a light
2108 * scan then give up on it.
2110 static void shrink_zones(int priority, struct zonelist *zonelist,
2111 struct scan_control *sc)
2113 struct zoneref *z;
2114 struct zone *zone;
2115 unsigned long nr_soft_reclaimed;
2116 unsigned long nr_soft_scanned;
2118 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2119 gfp_zone(sc->gfp_mask), sc->nodemask) {
2120 if (!populated_zone(zone))
2121 continue;
2123 * Take care memory controller reclaiming has small influence
2124 * to global LRU.
2126 if (scanning_global_lru(sc)) {
2127 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2128 continue;
2129 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2130 continue; /* Let kswapd poll it */
2132 * This steals pages from memory cgroups over softlimit
2133 * and returns the number of reclaimed pages and
2134 * scanned pages. This works for global memory pressure
2135 * and balancing, not for a memcg's limit.
2137 nr_soft_scanned = 0;
2138 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2139 sc->order, sc->gfp_mask,
2140 &nr_soft_scanned);
2141 sc->nr_reclaimed += nr_soft_reclaimed;
2142 sc->nr_scanned += nr_soft_scanned;
2143 /* need some check for avoid more shrink_zone() */
2146 shrink_zone(priority, zone, sc);
2150 static bool zone_reclaimable(struct zone *zone)
2152 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2155 /* All zones in zonelist are unreclaimable? */
2156 static bool all_unreclaimable(struct zonelist *zonelist,
2157 struct scan_control *sc)
2159 struct zoneref *z;
2160 struct zone *zone;
2162 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2163 gfp_zone(sc->gfp_mask), sc->nodemask) {
2164 if (!populated_zone(zone))
2165 continue;
2166 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2167 continue;
2168 if (!zone->all_unreclaimable)
2169 return false;
2172 return true;
2176 * This is the main entry point to direct page reclaim.
2178 * If a full scan of the inactive list fails to free enough memory then we
2179 * are "out of memory" and something needs to be killed.
2181 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2182 * high - the zone may be full of dirty or under-writeback pages, which this
2183 * caller can't do much about. We kick the writeback threads and take explicit
2184 * naps in the hope that some of these pages can be written. But if the
2185 * allocating task holds filesystem locks which prevent writeout this might not
2186 * work, and the allocation attempt will fail.
2188 * returns: 0, if no pages reclaimed
2189 * else, the number of pages reclaimed
2191 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2192 struct scan_control *sc,
2193 struct shrink_control *shrink)
2195 int priority;
2196 unsigned long total_scanned = 0;
2197 struct reclaim_state *reclaim_state = current->reclaim_state;
2198 struct zoneref *z;
2199 struct zone *zone;
2200 unsigned long writeback_threshold;
2202 get_mems_allowed();
2203 delayacct_freepages_start();
2205 if (scanning_global_lru(sc))
2206 count_vm_event(ALLOCSTALL);
2208 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2209 sc->nr_scanned = 0;
2210 if (!priority)
2211 disable_swap_token(sc->mem_cgroup);
2212 shrink_zones(priority, zonelist, sc);
2214 * Don't shrink slabs when reclaiming memory from
2215 * over limit cgroups
2217 if (scanning_global_lru(sc)) {
2218 unsigned long lru_pages = 0;
2219 for_each_zone_zonelist(zone, z, zonelist,
2220 gfp_zone(sc->gfp_mask)) {
2221 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2222 continue;
2224 lru_pages += zone_reclaimable_pages(zone);
2227 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2228 if (reclaim_state) {
2229 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2230 reclaim_state->reclaimed_slab = 0;
2233 total_scanned += sc->nr_scanned;
2234 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2235 goto out;
2238 * Try to write back as many pages as we just scanned. This
2239 * tends to cause slow streaming writers to write data to the
2240 * disk smoothly, at the dirtying rate, which is nice. But
2241 * that's undesirable in laptop mode, where we *want* lumpy
2242 * writeout. So in laptop mode, write out the whole world.
2244 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2245 if (total_scanned > writeback_threshold) {
2246 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2247 sc->may_writepage = 1;
2250 /* Take a nap, wait for some writeback to complete */
2251 if (!sc->hibernation_mode && sc->nr_scanned &&
2252 priority < DEF_PRIORITY - 2) {
2253 struct zone *preferred_zone;
2255 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2256 &cpuset_current_mems_allowed,
2257 &preferred_zone);
2258 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2262 out:
2263 delayacct_freepages_end();
2264 put_mems_allowed();
2266 if (sc->nr_reclaimed)
2267 return sc->nr_reclaimed;
2270 * As hibernation is going on, kswapd is freezed so that it can't mark
2271 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2272 * check.
2274 if (oom_killer_disabled)
2275 return 0;
2277 /* top priority shrink_zones still had more to do? don't OOM, then */
2278 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2279 return 1;
2281 return 0;
2284 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2285 gfp_t gfp_mask, nodemask_t *nodemask)
2287 unsigned long nr_reclaimed;
2288 struct scan_control sc = {
2289 .gfp_mask = gfp_mask,
2290 .may_writepage = !laptop_mode,
2291 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2292 .may_unmap = 1,
2293 .may_swap = 1,
2294 .order = order,
2295 .mem_cgroup = NULL,
2296 .nodemask = nodemask,
2298 struct shrink_control shrink = {
2299 .gfp_mask = sc.gfp_mask,
2302 trace_mm_vmscan_direct_reclaim_begin(order,
2303 sc.may_writepage,
2304 gfp_mask);
2306 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2308 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2310 return nr_reclaimed;
2313 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2315 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2316 gfp_t gfp_mask, bool noswap,
2317 struct zone *zone,
2318 struct memcg_scanrecord *rec,
2319 unsigned long *scanned)
2321 struct scan_control sc = {
2322 .nr_scanned = 0,
2323 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2324 .may_writepage = !laptop_mode,
2325 .may_unmap = 1,
2326 .may_swap = !noswap,
2327 .order = 0,
2328 .mem_cgroup = mem,
2329 .memcg_record = rec,
2331 ktime_t start, end;
2333 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2334 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2336 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2337 sc.may_writepage,
2338 sc.gfp_mask);
2340 start = ktime_get();
2342 * NOTE: Although we can get the priority field, using it
2343 * here is not a good idea, since it limits the pages we can scan.
2344 * if we don't reclaim here, the shrink_zone from balance_pgdat
2345 * will pick up pages from other mem cgroup's as well. We hack
2346 * the priority and make it zero.
2348 shrink_zone(0, zone, &sc);
2349 end = ktime_get();
2351 if (rec)
2352 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2353 *scanned = sc.nr_scanned;
2355 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2357 return sc.nr_reclaimed;
2360 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2361 gfp_t gfp_mask,
2362 bool noswap,
2363 struct memcg_scanrecord *rec)
2365 struct zonelist *zonelist;
2366 unsigned long nr_reclaimed;
2367 ktime_t start, end;
2368 int nid;
2369 struct scan_control sc = {
2370 .may_writepage = !laptop_mode,
2371 .may_unmap = 1,
2372 .may_swap = !noswap,
2373 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2374 .order = 0,
2375 .mem_cgroup = mem_cont,
2376 .memcg_record = rec,
2377 .nodemask = NULL, /* we don't care the placement */
2378 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2379 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2381 struct shrink_control shrink = {
2382 .gfp_mask = sc.gfp_mask,
2385 start = ktime_get();
2387 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2388 * take care of from where we get pages. So the node where we start the
2389 * scan does not need to be the current node.
2391 nid = mem_cgroup_select_victim_node(mem_cont);
2393 zonelist = NODE_DATA(nid)->node_zonelists;
2395 trace_mm_vmscan_memcg_reclaim_begin(0,
2396 sc.may_writepage,
2397 sc.gfp_mask);
2399 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2400 end = ktime_get();
2401 if (rec)
2402 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2404 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2406 return nr_reclaimed;
2408 #endif
2411 * pgdat_balanced is used when checking if a node is balanced for high-order
2412 * allocations. Only zones that meet watermarks and are in a zone allowed
2413 * by the callers classzone_idx are added to balanced_pages. The total of
2414 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2415 * for the node to be considered balanced. Forcing all zones to be balanced
2416 * for high orders can cause excessive reclaim when there are imbalanced zones.
2417 * The choice of 25% is due to
2418 * o a 16M DMA zone that is balanced will not balance a zone on any
2419 * reasonable sized machine
2420 * o On all other machines, the top zone must be at least a reasonable
2421 * percentage of the middle zones. For example, on 32-bit x86, highmem
2422 * would need to be at least 256M for it to be balance a whole node.
2423 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2424 * to balance a node on its own. These seemed like reasonable ratios.
2426 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2427 int classzone_idx)
2429 unsigned long present_pages = 0;
2430 int i;
2432 for (i = 0; i <= classzone_idx; i++)
2433 present_pages += pgdat->node_zones[i].present_pages;
2435 /* A special case here: if zone has no page, we think it's balanced */
2436 return balanced_pages >= (present_pages >> 2);
2439 /* is kswapd sleeping prematurely? */
2440 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2441 int classzone_idx)
2443 int i;
2444 unsigned long balanced = 0;
2445 bool all_zones_ok = true;
2447 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2448 if (remaining)
2449 return true;
2451 /* Check the watermark levels */
2452 for (i = 0; i <= classzone_idx; i++) {
2453 struct zone *zone = pgdat->node_zones + i;
2455 if (!populated_zone(zone))
2456 continue;
2459 * balance_pgdat() skips over all_unreclaimable after
2460 * DEF_PRIORITY. Effectively, it considers them balanced so
2461 * they must be considered balanced here as well if kswapd
2462 * is to sleep
2464 if (zone->all_unreclaimable) {
2465 balanced += zone->present_pages;
2466 continue;
2469 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2470 i, 0))
2471 all_zones_ok = false;
2472 else
2473 balanced += zone->present_pages;
2477 * For high-order requests, the balanced zones must contain at least
2478 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2479 * must be balanced
2481 if (order)
2482 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2483 else
2484 return !all_zones_ok;
2488 * For kswapd, balance_pgdat() will work across all this node's zones until
2489 * they are all at high_wmark_pages(zone).
2491 * Returns the final order kswapd was reclaiming at
2493 * There is special handling here for zones which are full of pinned pages.
2494 * This can happen if the pages are all mlocked, or if they are all used by
2495 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2496 * What we do is to detect the case where all pages in the zone have been
2497 * scanned twice and there has been zero successful reclaim. Mark the zone as
2498 * dead and from now on, only perform a short scan. Basically we're polling
2499 * the zone for when the problem goes away.
2501 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2502 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2503 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2504 * lower zones regardless of the number of free pages in the lower zones. This
2505 * interoperates with the page allocator fallback scheme to ensure that aging
2506 * of pages is balanced across the zones.
2508 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2509 int *classzone_idx)
2511 int all_zones_ok;
2512 unsigned long balanced;
2513 int priority;
2514 int i;
2515 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2516 unsigned long total_scanned;
2517 struct reclaim_state *reclaim_state = current->reclaim_state;
2518 unsigned long nr_soft_reclaimed;
2519 unsigned long nr_soft_scanned;
2520 struct scan_control sc = {
2521 .gfp_mask = GFP_KERNEL,
2522 .may_unmap = 1,
2523 .may_swap = 1,
2525 * kswapd doesn't want to be bailed out while reclaim. because
2526 * we want to put equal scanning pressure on each zone.
2528 .nr_to_reclaim = ULONG_MAX,
2529 .order = order,
2530 .mem_cgroup = NULL,
2532 struct shrink_control shrink = {
2533 .gfp_mask = sc.gfp_mask,
2535 loop_again:
2536 total_scanned = 0;
2537 sc.nr_reclaimed = 0;
2538 sc.may_writepage = !laptop_mode;
2539 count_vm_event(PAGEOUTRUN);
2541 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2542 unsigned long lru_pages = 0;
2543 int has_under_min_watermark_zone = 0;
2545 /* The swap token gets in the way of swapout... */
2546 if (!priority)
2547 disable_swap_token(NULL);
2549 all_zones_ok = 1;
2550 balanced = 0;
2553 * Scan in the highmem->dma direction for the highest
2554 * zone which needs scanning
2556 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2557 struct zone *zone = pgdat->node_zones + i;
2559 if (!populated_zone(zone))
2560 continue;
2562 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2563 continue;
2566 * Do some background aging of the anon list, to give
2567 * pages a chance to be referenced before reclaiming.
2569 if (inactive_anon_is_low(zone, &sc))
2570 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2571 &sc, priority, 0);
2573 if (!zone_watermark_ok_safe(zone, order,
2574 high_wmark_pages(zone), 0, 0)) {
2575 end_zone = i;
2576 break;
2577 } else {
2578 /* If balanced, clear the congested flag */
2579 zone_clear_flag(zone, ZONE_CONGESTED);
2582 if (i < 0)
2583 goto out;
2585 for (i = 0; i <= end_zone; i++) {
2586 struct zone *zone = pgdat->node_zones + i;
2588 lru_pages += zone_reclaimable_pages(zone);
2592 * Now scan the zone in the dma->highmem direction, stopping
2593 * at the last zone which needs scanning.
2595 * We do this because the page allocator works in the opposite
2596 * direction. This prevents the page allocator from allocating
2597 * pages behind kswapd's direction of progress, which would
2598 * cause too much scanning of the lower zones.
2600 for (i = 0; i <= end_zone; i++) {
2601 struct zone *zone = pgdat->node_zones + i;
2602 int nr_slab;
2603 unsigned long balance_gap;
2605 if (!populated_zone(zone))
2606 continue;
2608 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2609 continue;
2611 sc.nr_scanned = 0;
2613 nr_soft_scanned = 0;
2615 * Call soft limit reclaim before calling shrink_zone.
2617 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2618 order, sc.gfp_mask,
2619 &nr_soft_scanned);
2620 sc.nr_reclaimed += nr_soft_reclaimed;
2621 total_scanned += nr_soft_scanned;
2624 * We put equal pressure on every zone, unless
2625 * one zone has way too many pages free
2626 * already. The "too many pages" is defined
2627 * as the high wmark plus a "gap" where the
2628 * gap is either the low watermark or 1%
2629 * of the zone, whichever is smaller.
2631 balance_gap = min(low_wmark_pages(zone),
2632 (zone->present_pages +
2633 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2634 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2635 if (!zone_watermark_ok_safe(zone, order,
2636 high_wmark_pages(zone) + balance_gap,
2637 end_zone, 0)) {
2638 shrink_zone(priority, zone, &sc);
2640 reclaim_state->reclaimed_slab = 0;
2641 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2642 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2643 total_scanned += sc.nr_scanned;
2645 if (nr_slab == 0 && !zone_reclaimable(zone))
2646 zone->all_unreclaimable = 1;
2650 * If we've done a decent amount of scanning and
2651 * the reclaim ratio is low, start doing writepage
2652 * even in laptop mode
2654 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2655 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2656 sc.may_writepage = 1;
2658 if (zone->all_unreclaimable) {
2659 if (end_zone && end_zone == i)
2660 end_zone--;
2661 continue;
2664 if (!zone_watermark_ok_safe(zone, order,
2665 high_wmark_pages(zone), end_zone, 0)) {
2666 all_zones_ok = 0;
2668 * We are still under min water mark. This
2669 * means that we have a GFP_ATOMIC allocation
2670 * failure risk. Hurry up!
2672 if (!zone_watermark_ok_safe(zone, order,
2673 min_wmark_pages(zone), end_zone, 0))
2674 has_under_min_watermark_zone = 1;
2675 } else {
2677 * If a zone reaches its high watermark,
2678 * consider it to be no longer congested. It's
2679 * possible there are dirty pages backed by
2680 * congested BDIs but as pressure is relieved,
2681 * spectulatively avoid congestion waits
2683 zone_clear_flag(zone, ZONE_CONGESTED);
2684 if (i <= *classzone_idx)
2685 balanced += zone->present_pages;
2689 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2690 break; /* kswapd: all done */
2692 * OK, kswapd is getting into trouble. Take a nap, then take
2693 * another pass across the zones.
2695 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2696 if (has_under_min_watermark_zone)
2697 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2698 else
2699 congestion_wait(BLK_RW_ASYNC, HZ/10);
2703 * We do this so kswapd doesn't build up large priorities for
2704 * example when it is freeing in parallel with allocators. It
2705 * matches the direct reclaim path behaviour in terms of impact
2706 * on zone->*_priority.
2708 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2709 break;
2711 out:
2714 * order-0: All zones must meet high watermark for a balanced node
2715 * high-order: Balanced zones must make up at least 25% of the node
2716 * for the node to be balanced
2718 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2719 cond_resched();
2721 try_to_freeze();
2724 * Fragmentation may mean that the system cannot be
2725 * rebalanced for high-order allocations in all zones.
2726 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2727 * it means the zones have been fully scanned and are still
2728 * not balanced. For high-order allocations, there is
2729 * little point trying all over again as kswapd may
2730 * infinite loop.
2732 * Instead, recheck all watermarks at order-0 as they
2733 * are the most important. If watermarks are ok, kswapd will go
2734 * back to sleep. High-order users can still perform direct
2735 * reclaim if they wish.
2737 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2738 order = sc.order = 0;
2740 goto loop_again;
2744 * If kswapd was reclaiming at a higher order, it has the option of
2745 * sleeping without all zones being balanced. Before it does, it must
2746 * ensure that the watermarks for order-0 on *all* zones are met and
2747 * that the congestion flags are cleared. The congestion flag must
2748 * be cleared as kswapd is the only mechanism that clears the flag
2749 * and it is potentially going to sleep here.
2751 if (order) {
2752 for (i = 0; i <= end_zone; i++) {
2753 struct zone *zone = pgdat->node_zones + i;
2755 if (!populated_zone(zone))
2756 continue;
2758 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2759 continue;
2761 /* Confirm the zone is balanced for order-0 */
2762 if (!zone_watermark_ok(zone, 0,
2763 high_wmark_pages(zone), 0, 0)) {
2764 order = sc.order = 0;
2765 goto loop_again;
2768 /* If balanced, clear the congested flag */
2769 zone_clear_flag(zone, ZONE_CONGESTED);
2770 if (i <= *classzone_idx)
2771 balanced += zone->present_pages;
2776 * Return the order we were reclaiming at so sleeping_prematurely()
2777 * makes a decision on the order we were last reclaiming at. However,
2778 * if another caller entered the allocator slow path while kswapd
2779 * was awake, order will remain at the higher level
2781 *classzone_idx = end_zone;
2782 return order;
2785 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2787 long remaining = 0;
2788 DEFINE_WAIT(wait);
2790 if (freezing(current) || kthread_should_stop())
2791 return;
2793 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2795 /* Try to sleep for a short interval */
2796 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2797 remaining = schedule_timeout(HZ/10);
2798 finish_wait(&pgdat->kswapd_wait, &wait);
2799 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2803 * After a short sleep, check if it was a premature sleep. If not, then
2804 * go fully to sleep until explicitly woken up.
2806 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2807 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2810 * vmstat counters are not perfectly accurate and the estimated
2811 * value for counters such as NR_FREE_PAGES can deviate from the
2812 * true value by nr_online_cpus * threshold. To avoid the zone
2813 * watermarks being breached while under pressure, we reduce the
2814 * per-cpu vmstat threshold while kswapd is awake and restore
2815 * them before going back to sleep.
2817 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2818 schedule();
2819 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2820 } else {
2821 if (remaining)
2822 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2823 else
2824 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2826 finish_wait(&pgdat->kswapd_wait, &wait);
2830 * The background pageout daemon, started as a kernel thread
2831 * from the init process.
2833 * This basically trickles out pages so that we have _some_
2834 * free memory available even if there is no other activity
2835 * that frees anything up. This is needed for things like routing
2836 * etc, where we otherwise might have all activity going on in
2837 * asynchronous contexts that cannot page things out.
2839 * If there are applications that are active memory-allocators
2840 * (most normal use), this basically shouldn't matter.
2842 static int kswapd(void *p)
2844 unsigned long order, new_order;
2845 int classzone_idx, new_classzone_idx;
2846 pg_data_t *pgdat = (pg_data_t*)p;
2847 struct task_struct *tsk = current;
2849 struct reclaim_state reclaim_state = {
2850 .reclaimed_slab = 0,
2852 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2854 lockdep_set_current_reclaim_state(GFP_KERNEL);
2856 if (!cpumask_empty(cpumask))
2857 set_cpus_allowed_ptr(tsk, cpumask);
2858 current->reclaim_state = &reclaim_state;
2861 * Tell the memory management that we're a "memory allocator",
2862 * and that if we need more memory we should get access to it
2863 * regardless (see "__alloc_pages()"). "kswapd" should
2864 * never get caught in the normal page freeing logic.
2866 * (Kswapd normally doesn't need memory anyway, but sometimes
2867 * you need a small amount of memory in order to be able to
2868 * page out something else, and this flag essentially protects
2869 * us from recursively trying to free more memory as we're
2870 * trying to free the first piece of memory in the first place).
2872 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2873 set_freezable();
2875 order = new_order = 0;
2876 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2877 for ( ; ; ) {
2878 int ret;
2881 * If the last balance_pgdat was unsuccessful it's unlikely a
2882 * new request of a similar or harder type will succeed soon
2883 * so consider going to sleep on the basis we reclaimed at
2885 if (classzone_idx >= new_classzone_idx && order == new_order) {
2886 new_order = pgdat->kswapd_max_order;
2887 new_classzone_idx = pgdat->classzone_idx;
2888 pgdat->kswapd_max_order = 0;
2889 pgdat->classzone_idx = pgdat->nr_zones - 1;
2892 if (order < new_order || classzone_idx > new_classzone_idx) {
2894 * Don't sleep if someone wants a larger 'order'
2895 * allocation or has tigher zone constraints
2897 order = new_order;
2898 classzone_idx = new_classzone_idx;
2899 } else {
2900 kswapd_try_to_sleep(pgdat, order, classzone_idx);
2901 order = pgdat->kswapd_max_order;
2902 classzone_idx = pgdat->classzone_idx;
2903 pgdat->kswapd_max_order = 0;
2904 pgdat->classzone_idx = pgdat->nr_zones - 1;
2907 ret = try_to_freeze();
2908 if (kthread_should_stop())
2909 break;
2912 * We can speed up thawing tasks if we don't call balance_pgdat
2913 * after returning from the refrigerator
2915 if (!ret) {
2916 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2917 order = balance_pgdat(pgdat, order, &classzone_idx);
2920 return 0;
2924 * A zone is low on free memory, so wake its kswapd task to service it.
2926 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2928 pg_data_t *pgdat;
2930 if (!populated_zone(zone))
2931 return;
2933 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2934 return;
2935 pgdat = zone->zone_pgdat;
2936 if (pgdat->kswapd_max_order < order) {
2937 pgdat->kswapd_max_order = order;
2938 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2940 if (!waitqueue_active(&pgdat->kswapd_wait))
2941 return;
2942 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2943 return;
2945 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2946 wake_up_interruptible(&pgdat->kswapd_wait);
2950 * The reclaimable count would be mostly accurate.
2951 * The less reclaimable pages may be
2952 * - mlocked pages, which will be moved to unevictable list when encountered
2953 * - mapped pages, which may require several travels to be reclaimed
2954 * - dirty pages, which is not "instantly" reclaimable
2956 unsigned long global_reclaimable_pages(void)
2958 int nr;
2960 nr = global_page_state(NR_ACTIVE_FILE) +
2961 global_page_state(NR_INACTIVE_FILE);
2963 if (nr_swap_pages > 0)
2964 nr += global_page_state(NR_ACTIVE_ANON) +
2965 global_page_state(NR_INACTIVE_ANON);
2967 return nr;
2970 unsigned long zone_reclaimable_pages(struct zone *zone)
2972 int nr;
2974 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2975 zone_page_state(zone, NR_INACTIVE_FILE);
2977 if (nr_swap_pages > 0)
2978 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2979 zone_page_state(zone, NR_INACTIVE_ANON);
2981 return nr;
2984 #ifdef CONFIG_HIBERNATION
2986 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2987 * freed pages.
2989 * Rather than trying to age LRUs the aim is to preserve the overall
2990 * LRU order by reclaiming preferentially
2991 * inactive > active > active referenced > active mapped
2993 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2995 struct reclaim_state reclaim_state;
2996 struct scan_control sc = {
2997 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2998 .may_swap = 1,
2999 .may_unmap = 1,
3000 .may_writepage = 1,
3001 .nr_to_reclaim = nr_to_reclaim,
3002 .hibernation_mode = 1,
3003 .order = 0,
3005 struct shrink_control shrink = {
3006 .gfp_mask = sc.gfp_mask,
3008 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3009 struct task_struct *p = current;
3010 unsigned long nr_reclaimed;
3012 p->flags |= PF_MEMALLOC;
3013 lockdep_set_current_reclaim_state(sc.gfp_mask);
3014 reclaim_state.reclaimed_slab = 0;
3015 p->reclaim_state = &reclaim_state;
3017 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3019 p->reclaim_state = NULL;
3020 lockdep_clear_current_reclaim_state();
3021 p->flags &= ~PF_MEMALLOC;
3023 return nr_reclaimed;
3025 #endif /* CONFIG_HIBERNATION */
3027 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3028 not required for correctness. So if the last cpu in a node goes
3029 away, we get changed to run anywhere: as the first one comes back,
3030 restore their cpu bindings. */
3031 static int __devinit cpu_callback(struct notifier_block *nfb,
3032 unsigned long action, void *hcpu)
3034 int nid;
3036 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3037 for_each_node_state(nid, N_HIGH_MEMORY) {
3038 pg_data_t *pgdat = NODE_DATA(nid);
3039 const struct cpumask *mask;
3041 mask = cpumask_of_node(pgdat->node_id);
3043 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3044 /* One of our CPUs online: restore mask */
3045 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3048 return NOTIFY_OK;
3052 * This kswapd start function will be called by init and node-hot-add.
3053 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3055 int kswapd_run(int nid)
3057 pg_data_t *pgdat = NODE_DATA(nid);
3058 int ret = 0;
3060 if (pgdat->kswapd)
3061 return 0;
3063 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3064 if (IS_ERR(pgdat->kswapd)) {
3065 /* failure at boot is fatal */
3066 BUG_ON(system_state == SYSTEM_BOOTING);
3067 printk("Failed to start kswapd on node %d\n",nid);
3068 ret = -1;
3070 return ret;
3074 * Called by memory hotplug when all memory in a node is offlined.
3076 void kswapd_stop(int nid)
3078 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3080 if (kswapd)
3081 kthread_stop(kswapd);
3084 static int __init kswapd_init(void)
3086 int nid;
3088 swap_setup();
3089 for_each_node_state(nid, N_HIGH_MEMORY)
3090 kswapd_run(nid);
3091 hotcpu_notifier(cpu_callback, 0);
3092 return 0;
3095 module_init(kswapd_init)
3097 #ifdef CONFIG_NUMA
3099 * Zone reclaim mode
3101 * If non-zero call zone_reclaim when the number of free pages falls below
3102 * the watermarks.
3104 int zone_reclaim_mode __read_mostly;
3106 #define RECLAIM_OFF 0
3107 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3108 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3109 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3112 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3113 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3114 * a zone.
3116 #define ZONE_RECLAIM_PRIORITY 4
3119 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3120 * occur.
3122 int sysctl_min_unmapped_ratio = 1;
3125 * If the number of slab pages in a zone grows beyond this percentage then
3126 * slab reclaim needs to occur.
3128 int sysctl_min_slab_ratio = 5;
3130 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3132 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3133 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3134 zone_page_state(zone, NR_ACTIVE_FILE);
3137 * It's possible for there to be more file mapped pages than
3138 * accounted for by the pages on the file LRU lists because
3139 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3141 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3144 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3145 static long zone_pagecache_reclaimable(struct zone *zone)
3147 long nr_pagecache_reclaimable;
3148 long delta = 0;
3151 * If RECLAIM_SWAP is set, then all file pages are considered
3152 * potentially reclaimable. Otherwise, we have to worry about
3153 * pages like swapcache and zone_unmapped_file_pages() provides
3154 * a better estimate
3156 if (zone_reclaim_mode & RECLAIM_SWAP)
3157 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3158 else
3159 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3161 /* If we can't clean pages, remove dirty pages from consideration */
3162 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3163 delta += zone_page_state(zone, NR_FILE_DIRTY);
3165 /* Watch for any possible underflows due to delta */
3166 if (unlikely(delta > nr_pagecache_reclaimable))
3167 delta = nr_pagecache_reclaimable;
3169 return nr_pagecache_reclaimable - delta;
3173 * Try to free up some pages from this zone through reclaim.
3175 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3177 /* Minimum pages needed in order to stay on node */
3178 const unsigned long nr_pages = 1 << order;
3179 struct task_struct *p = current;
3180 struct reclaim_state reclaim_state;
3181 int priority;
3182 struct scan_control sc = {
3183 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3184 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3185 .may_swap = 1,
3186 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3187 SWAP_CLUSTER_MAX),
3188 .gfp_mask = gfp_mask,
3189 .order = order,
3191 struct shrink_control shrink = {
3192 .gfp_mask = sc.gfp_mask,
3194 unsigned long nr_slab_pages0, nr_slab_pages1;
3196 cond_resched();
3198 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3199 * and we also need to be able to write out pages for RECLAIM_WRITE
3200 * and RECLAIM_SWAP.
3202 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3203 lockdep_set_current_reclaim_state(gfp_mask);
3204 reclaim_state.reclaimed_slab = 0;
3205 p->reclaim_state = &reclaim_state;
3207 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3209 * Free memory by calling shrink zone with increasing
3210 * priorities until we have enough memory freed.
3212 priority = ZONE_RECLAIM_PRIORITY;
3213 do {
3214 shrink_zone(priority, zone, &sc);
3215 priority--;
3216 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3219 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3220 if (nr_slab_pages0 > zone->min_slab_pages) {
3222 * shrink_slab() does not currently allow us to determine how
3223 * many pages were freed in this zone. So we take the current
3224 * number of slab pages and shake the slab until it is reduced
3225 * by the same nr_pages that we used for reclaiming unmapped
3226 * pages.
3228 * Note that shrink_slab will free memory on all zones and may
3229 * take a long time.
3231 for (;;) {
3232 unsigned long lru_pages = zone_reclaimable_pages(zone);
3234 /* No reclaimable slab or very low memory pressure */
3235 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3236 break;
3238 /* Freed enough memory */
3239 nr_slab_pages1 = zone_page_state(zone,
3240 NR_SLAB_RECLAIMABLE);
3241 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3242 break;
3246 * Update nr_reclaimed by the number of slab pages we
3247 * reclaimed from this zone.
3249 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3250 if (nr_slab_pages1 < nr_slab_pages0)
3251 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3254 p->reclaim_state = NULL;
3255 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3256 lockdep_clear_current_reclaim_state();
3257 return sc.nr_reclaimed >= nr_pages;
3260 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3262 int node_id;
3263 int ret;
3266 * Zone reclaim reclaims unmapped file backed pages and
3267 * slab pages if we are over the defined limits.
3269 * A small portion of unmapped file backed pages is needed for
3270 * file I/O otherwise pages read by file I/O will be immediately
3271 * thrown out if the zone is overallocated. So we do not reclaim
3272 * if less than a specified percentage of the zone is used by
3273 * unmapped file backed pages.
3275 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3276 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3277 return ZONE_RECLAIM_FULL;
3279 if (zone->all_unreclaimable)
3280 return ZONE_RECLAIM_FULL;
3283 * Do not scan if the allocation should not be delayed.
3285 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3286 return ZONE_RECLAIM_NOSCAN;
3289 * Only run zone reclaim on the local zone or on zones that do not
3290 * have associated processors. This will favor the local processor
3291 * over remote processors and spread off node memory allocations
3292 * as wide as possible.
3294 node_id = zone_to_nid(zone);
3295 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3296 return ZONE_RECLAIM_NOSCAN;
3298 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3299 return ZONE_RECLAIM_NOSCAN;
3301 ret = __zone_reclaim(zone, gfp_mask, order);
3302 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3304 if (!ret)
3305 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3307 return ret;
3309 #endif
3312 * page_evictable - test whether a page is evictable
3313 * @page: the page to test
3314 * @vma: the VMA in which the page is or will be mapped, may be NULL
3316 * Test whether page is evictable--i.e., should be placed on active/inactive
3317 * lists vs unevictable list. The vma argument is !NULL when called from the
3318 * fault path to determine how to instantate a new page.
3320 * Reasons page might not be evictable:
3321 * (1) page's mapping marked unevictable
3322 * (2) page is part of an mlocked VMA
3325 int page_evictable(struct page *page, struct vm_area_struct *vma)
3328 if (mapping_unevictable(page_mapping(page)))
3329 return 0;
3331 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3332 return 0;
3334 return 1;
3338 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3339 * @page: page to check evictability and move to appropriate lru list
3340 * @zone: zone page is in
3342 * Checks a page for evictability and moves the page to the appropriate
3343 * zone lru list.
3345 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3346 * have PageUnevictable set.
3348 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3350 VM_BUG_ON(PageActive(page));
3352 retry:
3353 ClearPageUnevictable(page);
3354 if (page_evictable(page, NULL)) {
3355 enum lru_list l = page_lru_base_type(page);
3357 __dec_zone_state(zone, NR_UNEVICTABLE);
3358 list_move(&page->lru, &zone->lru[l].list);
3359 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3360 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3361 __count_vm_event(UNEVICTABLE_PGRESCUED);
3362 } else {
3364 * rotate unevictable list
3366 SetPageUnevictable(page);
3367 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3368 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3369 if (page_evictable(page, NULL))
3370 goto retry;
3375 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3376 * @mapping: struct address_space to scan for evictable pages
3378 * Scan all pages in mapping. Check unevictable pages for
3379 * evictability and move them to the appropriate zone lru list.
3381 void scan_mapping_unevictable_pages(struct address_space *mapping)
3383 pgoff_t next = 0;
3384 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3385 PAGE_CACHE_SHIFT;
3386 struct zone *zone;
3387 struct pagevec pvec;
3389 if (mapping->nrpages == 0)
3390 return;
3392 pagevec_init(&pvec, 0);
3393 while (next < end &&
3394 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3395 int i;
3396 int pg_scanned = 0;
3398 zone = NULL;
3400 for (i = 0; i < pagevec_count(&pvec); i++) {
3401 struct page *page = pvec.pages[i];
3402 pgoff_t page_index = page->index;
3403 struct zone *pagezone = page_zone(page);
3405 pg_scanned++;
3406 if (page_index > next)
3407 next = page_index;
3408 next++;
3410 if (pagezone != zone) {
3411 if (zone)
3412 spin_unlock_irq(&zone->lru_lock);
3413 zone = pagezone;
3414 spin_lock_irq(&zone->lru_lock);
3417 if (PageLRU(page) && PageUnevictable(page))
3418 check_move_unevictable_page(page, zone);
3420 if (zone)
3421 spin_unlock_irq(&zone->lru_lock);
3422 pagevec_release(&pvec);
3424 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3430 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3431 * @zone - zone of which to scan the unevictable list
3433 * Scan @zone's unevictable LRU lists to check for pages that have become
3434 * evictable. Move those that have to @zone's inactive list where they
3435 * become candidates for reclaim, unless shrink_inactive_zone() decides
3436 * to reactivate them. Pages that are still unevictable are rotated
3437 * back onto @zone's unevictable list.
3439 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3440 static void scan_zone_unevictable_pages(struct zone *zone)
3442 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3443 unsigned long scan;
3444 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3446 while (nr_to_scan > 0) {
3447 unsigned long batch_size = min(nr_to_scan,
3448 SCAN_UNEVICTABLE_BATCH_SIZE);
3450 spin_lock_irq(&zone->lru_lock);
3451 for (scan = 0; scan < batch_size; scan++) {
3452 struct page *page = lru_to_page(l_unevictable);
3454 if (!trylock_page(page))
3455 continue;
3457 prefetchw_prev_lru_page(page, l_unevictable, flags);
3459 if (likely(PageLRU(page) && PageUnevictable(page)))
3460 check_move_unevictable_page(page, zone);
3462 unlock_page(page);
3464 spin_unlock_irq(&zone->lru_lock);
3466 nr_to_scan -= batch_size;
3472 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3474 * A really big hammer: scan all zones' unevictable LRU lists to check for
3475 * pages that have become evictable. Move those back to the zones'
3476 * inactive list where they become candidates for reclaim.
3477 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3478 * and we add swap to the system. As such, it runs in the context of a task
3479 * that has possibly/probably made some previously unevictable pages
3480 * evictable.
3482 static void scan_all_zones_unevictable_pages(void)
3484 struct zone *zone;
3486 for_each_zone(zone) {
3487 scan_zone_unevictable_pages(zone);
3492 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3493 * all nodes' unevictable lists for evictable pages
3495 unsigned long scan_unevictable_pages;
3497 int scan_unevictable_handler(struct ctl_table *table, int write,
3498 void __user *buffer,
3499 size_t *length, loff_t *ppos)
3501 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3503 if (write && *(unsigned long *)table->data)
3504 scan_all_zones_unevictable_pages();
3506 scan_unevictable_pages = 0;
3507 return 0;
3510 #ifdef CONFIG_NUMA
3512 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3513 * a specified node's per zone unevictable lists for evictable pages.
3516 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3517 struct sysdev_attribute *attr,
3518 char *buf)
3520 return sprintf(buf, "0\n"); /* always zero; should fit... */
3523 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3524 struct sysdev_attribute *attr,
3525 const char *buf, size_t count)
3527 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3528 struct zone *zone;
3529 unsigned long res;
3530 unsigned long req = strict_strtoul(buf, 10, &res);
3532 if (!req)
3533 return 1; /* zero is no-op */
3535 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3536 if (!populated_zone(zone))
3537 continue;
3538 scan_zone_unevictable_pages(zone);
3540 return 1;
3544 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3545 read_scan_unevictable_node,
3546 write_scan_unevictable_node);
3548 int scan_unevictable_register_node(struct node *node)
3550 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3553 void scan_unevictable_unregister_node(struct node *node)
3555 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3557 #endif