2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 printk(KERN_DEBUG pr_fmt(format), ##args)
55 #define REG_DBG_PRINT(args...)
58 /* Receipt of information from last regulatory request */
59 static struct regulatory_request
*last_request
;
61 /* To trigger userspace events */
62 static struct platform_device
*reg_pdev
;
64 static struct device_type reg_device_type
= {
65 .uevent
= reg_device_uevent
,
69 * Central wireless core regulatory domains, we only need two,
70 * the current one and a world regulatory domain in case we have no
71 * information to give us an alpha2
73 const struct ieee80211_regdomain
*cfg80211_regdomain
;
76 * Protects static reg.c components:
77 * - cfg80211_world_regdom
81 static DEFINE_MUTEX(reg_mutex
);
83 static inline void assert_reg_lock(void)
85 lockdep_assert_held(®_mutex
);
88 /* Used to queue up regulatory hints */
89 static LIST_HEAD(reg_requests_list
);
90 static spinlock_t reg_requests_lock
;
92 /* Used to queue up beacon hints for review */
93 static LIST_HEAD(reg_pending_beacons
);
94 static spinlock_t reg_pending_beacons_lock
;
96 /* Used to keep track of processed beacon hints */
97 static LIST_HEAD(reg_beacon_list
);
100 struct list_head list
;
101 struct ieee80211_channel chan
;
104 static void reg_todo(struct work_struct
*work
);
105 static DECLARE_WORK(reg_work
, reg_todo
);
107 static void reg_timeout_work(struct work_struct
*work
);
108 static DECLARE_DELAYED_WORK(reg_timeout
, reg_timeout_work
);
110 /* We keep a static world regulatory domain in case of the absence of CRDA */
111 static const struct ieee80211_regdomain world_regdom
= {
115 /* IEEE 802.11b/g, channels 1..11 */
116 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
117 /* IEEE 802.11b/g, channels 12..13. No HT40
118 * channel fits here. */
119 REG_RULE(2467-10, 2472+10, 20, 6, 20,
120 NL80211_RRF_PASSIVE_SCAN
|
121 NL80211_RRF_NO_IBSS
),
122 /* IEEE 802.11 channel 14 - Only JP enables
123 * this and for 802.11b only */
124 REG_RULE(2484-10, 2484+10, 20, 6, 20,
125 NL80211_RRF_PASSIVE_SCAN
|
126 NL80211_RRF_NO_IBSS
|
127 NL80211_RRF_NO_OFDM
),
128 /* IEEE 802.11a, channel 36..48 */
129 REG_RULE(5180-10, 5240+10, 40, 6, 20,
130 NL80211_RRF_PASSIVE_SCAN
|
131 NL80211_RRF_NO_IBSS
),
133 /* NB: 5260 MHz - 5700 MHz requies DFS */
135 /* IEEE 802.11a, channel 149..165 */
136 REG_RULE(5745-10, 5825+10, 40, 6, 20,
137 NL80211_RRF_PASSIVE_SCAN
|
138 NL80211_RRF_NO_IBSS
),
142 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
145 static char *ieee80211_regdom
= "00";
146 static char user_alpha2
[2];
148 module_param(ieee80211_regdom
, charp
, 0444);
149 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
151 static void reset_regdomains(void)
153 /* avoid freeing static information or freeing something twice */
154 if (cfg80211_regdomain
== cfg80211_world_regdom
)
155 cfg80211_regdomain
= NULL
;
156 if (cfg80211_world_regdom
== &world_regdom
)
157 cfg80211_world_regdom
= NULL
;
158 if (cfg80211_regdomain
== &world_regdom
)
159 cfg80211_regdomain
= NULL
;
161 kfree(cfg80211_regdomain
);
162 kfree(cfg80211_world_regdom
);
164 cfg80211_world_regdom
= &world_regdom
;
165 cfg80211_regdomain
= NULL
;
169 * Dynamic world regulatory domain requested by the wireless
170 * core upon initialization
172 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
174 BUG_ON(!last_request
);
178 cfg80211_world_regdom
= rd
;
179 cfg80211_regdomain
= rd
;
182 bool is_world_regdom(const char *alpha2
)
186 if (alpha2
[0] == '0' && alpha2
[1] == '0')
191 static bool is_alpha2_set(const char *alpha2
)
195 if (alpha2
[0] != 0 && alpha2
[1] != 0)
200 static bool is_unknown_alpha2(const char *alpha2
)
205 * Special case where regulatory domain was built by driver
206 * but a specific alpha2 cannot be determined
208 if (alpha2
[0] == '9' && alpha2
[1] == '9')
213 static bool is_intersected_alpha2(const char *alpha2
)
218 * Special case where regulatory domain is the
219 * result of an intersection between two regulatory domain
222 if (alpha2
[0] == '9' && alpha2
[1] == '8')
227 static bool is_an_alpha2(const char *alpha2
)
231 if (isalpha(alpha2
[0]) && isalpha(alpha2
[1]))
236 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
238 if (!alpha2_x
|| !alpha2_y
)
240 if (alpha2_x
[0] == alpha2_y
[0] &&
241 alpha2_x
[1] == alpha2_y
[1])
246 static bool regdom_changes(const char *alpha2
)
248 assert_cfg80211_lock();
250 if (!cfg80211_regdomain
)
252 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
258 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260 * has ever been issued.
262 static bool is_user_regdom_saved(void)
264 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
267 /* This would indicate a mistake on the design */
268 if (WARN((!is_world_regdom(user_alpha2
) &&
269 !is_an_alpha2(user_alpha2
)),
270 "Unexpected user alpha2: %c%c\n",
278 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
279 const struct ieee80211_regdomain
*src_regd
)
281 struct ieee80211_regdomain
*regd
;
282 int size_of_regd
= 0;
285 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
286 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
288 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
292 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
294 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
295 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
296 sizeof(struct ieee80211_reg_rule
));
302 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
303 struct reg_regdb_search_request
{
305 struct list_head list
;
308 static LIST_HEAD(reg_regdb_search_list
);
309 static DEFINE_MUTEX(reg_regdb_search_mutex
);
311 static void reg_regdb_search(struct work_struct
*work
)
313 struct reg_regdb_search_request
*request
;
314 const struct ieee80211_regdomain
*curdom
, *regdom
;
317 mutex_lock(®_regdb_search_mutex
);
318 while (!list_empty(®_regdb_search_list
)) {
319 request
= list_first_entry(®_regdb_search_list
,
320 struct reg_regdb_search_request
,
322 list_del(&request
->list
);
324 for (i
=0; i
<reg_regdb_size
; i
++) {
325 curdom
= reg_regdb
[i
];
327 if (!memcmp(request
->alpha2
, curdom
->alpha2
, 2)) {
328 r
= reg_copy_regd(®dom
, curdom
);
331 mutex_lock(&cfg80211_mutex
);
333 mutex_unlock(&cfg80211_mutex
);
340 mutex_unlock(®_regdb_search_mutex
);
343 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
345 static void reg_regdb_query(const char *alpha2
)
347 struct reg_regdb_search_request
*request
;
352 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
356 memcpy(request
->alpha2
, alpha2
, 2);
358 mutex_lock(®_regdb_search_mutex
);
359 list_add_tail(&request
->list
, ®_regdb_search_list
);
360 mutex_unlock(®_regdb_search_mutex
);
362 schedule_work(®_regdb_work
);
365 static inline void reg_regdb_query(const char *alpha2
) {}
366 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
369 * This lets us keep regulatory code which is updated on a regulatory
370 * basis in userspace. Country information is filled in by
373 static int call_crda(const char *alpha2
)
375 if (!is_world_regdom((char *) alpha2
))
376 pr_info("Calling CRDA for country: %c%c\n",
377 alpha2
[0], alpha2
[1]);
379 pr_info("Calling CRDA to update world regulatory domain\n");
381 /* query internal regulatory database (if it exists) */
382 reg_regdb_query(alpha2
);
384 return kobject_uevent(®_pdev
->dev
.kobj
, KOBJ_CHANGE
);
387 /* Used by nl80211 before kmalloc'ing our regulatory domain */
388 bool reg_is_valid_request(const char *alpha2
)
390 assert_cfg80211_lock();
395 return alpha2_equal(last_request
->alpha2
, alpha2
);
398 /* Sanity check on a regulatory rule */
399 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
401 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
404 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
407 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
410 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
412 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
413 freq_range
->max_bandwidth_khz
> freq_diff
)
419 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
421 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
424 if (!rd
->n_reg_rules
)
427 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
430 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
431 reg_rule
= &rd
->reg_rules
[i
];
432 if (!is_valid_reg_rule(reg_rule
))
439 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
443 u32 start_freq_khz
, end_freq_khz
;
445 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
446 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
448 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
449 end_freq_khz
<= freq_range
->end_freq_khz
)
456 * freq_in_rule_band - tells us if a frequency is in a frequency band
457 * @freq_range: frequency rule we want to query
458 * @freq_khz: frequency we are inquiring about
460 * This lets us know if a specific frequency rule is or is not relevant to
461 * a specific frequency's band. Bands are device specific and artificial
462 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
463 * safe for now to assume that a frequency rule should not be part of a
464 * frequency's band if the start freq or end freq are off by more than 2 GHz.
465 * This resolution can be lowered and should be considered as we add
466 * regulatory rule support for other "bands".
468 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
471 #define ONE_GHZ_IN_KHZ 1000000
472 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
474 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
477 #undef ONE_GHZ_IN_KHZ
481 * Helper for regdom_intersect(), this does the real
482 * mathematical intersection fun
484 static int reg_rules_intersect(
485 const struct ieee80211_reg_rule
*rule1
,
486 const struct ieee80211_reg_rule
*rule2
,
487 struct ieee80211_reg_rule
*intersected_rule
)
489 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
490 struct ieee80211_freq_range
*freq_range
;
491 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
492 struct ieee80211_power_rule
*power_rule
;
495 freq_range1
= &rule1
->freq_range
;
496 freq_range2
= &rule2
->freq_range
;
497 freq_range
= &intersected_rule
->freq_range
;
499 power_rule1
= &rule1
->power_rule
;
500 power_rule2
= &rule2
->power_rule
;
501 power_rule
= &intersected_rule
->power_rule
;
503 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
504 freq_range2
->start_freq_khz
);
505 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
506 freq_range2
->end_freq_khz
);
507 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
508 freq_range2
->max_bandwidth_khz
);
510 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
511 if (freq_range
->max_bandwidth_khz
> freq_diff
)
512 freq_range
->max_bandwidth_khz
= freq_diff
;
514 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
515 power_rule2
->max_eirp
);
516 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
517 power_rule2
->max_antenna_gain
);
519 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
521 if (!is_valid_reg_rule(intersected_rule
))
528 * regdom_intersect - do the intersection between two regulatory domains
529 * @rd1: first regulatory domain
530 * @rd2: second regulatory domain
532 * Use this function to get the intersection between two regulatory domains.
533 * Once completed we will mark the alpha2 for the rd as intersected, "98",
534 * as no one single alpha2 can represent this regulatory domain.
536 * Returns a pointer to the regulatory domain structure which will hold the
537 * resulting intersection of rules between rd1 and rd2. We will
538 * kzalloc() this structure for you.
540 static struct ieee80211_regdomain
*regdom_intersect(
541 const struct ieee80211_regdomain
*rd1
,
542 const struct ieee80211_regdomain
*rd2
)
546 unsigned int num_rules
= 0, rule_idx
= 0;
547 const struct ieee80211_reg_rule
*rule1
, *rule2
;
548 struct ieee80211_reg_rule
*intersected_rule
;
549 struct ieee80211_regdomain
*rd
;
550 /* This is just a dummy holder to help us count */
551 struct ieee80211_reg_rule irule
;
553 /* Uses the stack temporarily for counter arithmetic */
554 intersected_rule
= &irule
;
556 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
562 * First we get a count of the rules we'll need, then we actually
563 * build them. This is to so we can malloc() and free() a
564 * regdomain once. The reason we use reg_rules_intersect() here
565 * is it will return -EINVAL if the rule computed makes no sense.
566 * All rules that do check out OK are valid.
569 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
570 rule1
= &rd1
->reg_rules
[x
];
571 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
572 rule2
= &rd2
->reg_rules
[y
];
573 if (!reg_rules_intersect(rule1
, rule2
,
576 memset(intersected_rule
, 0,
577 sizeof(struct ieee80211_reg_rule
));
584 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
585 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
587 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
591 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
592 rule1
= &rd1
->reg_rules
[x
];
593 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
594 rule2
= &rd2
->reg_rules
[y
];
596 * This time around instead of using the stack lets
597 * write to the target rule directly saving ourselves
600 intersected_rule
= &rd
->reg_rules
[rule_idx
];
601 r
= reg_rules_intersect(rule1
, rule2
,
604 * No need to memset here the intersected rule here as
605 * we're not using the stack anymore
613 if (rule_idx
!= num_rules
) {
618 rd
->n_reg_rules
= num_rules
;
626 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
627 * want to just have the channel structure use these
629 static u32
map_regdom_flags(u32 rd_flags
)
631 u32 channel_flags
= 0;
632 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
633 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
634 if (rd_flags
& NL80211_RRF_NO_IBSS
)
635 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
636 if (rd_flags
& NL80211_RRF_DFS
)
637 channel_flags
|= IEEE80211_CHAN_RADAR
;
638 return channel_flags
;
641 static int freq_reg_info_regd(struct wiphy
*wiphy
,
644 const struct ieee80211_reg_rule
**reg_rule
,
645 const struct ieee80211_regdomain
*custom_regd
)
648 bool band_rule_found
= false;
649 const struct ieee80211_regdomain
*regd
;
650 bool bw_fits
= false;
653 desired_bw_khz
= MHZ_TO_KHZ(20);
655 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
658 * Follow the driver's regulatory domain, if present, unless a country
659 * IE has been processed or a user wants to help complaince further
662 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
663 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
670 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
671 const struct ieee80211_reg_rule
*rr
;
672 const struct ieee80211_freq_range
*fr
= NULL
;
674 rr
= ®d
->reg_rules
[i
];
675 fr
= &rr
->freq_range
;
678 * We only need to know if one frequency rule was
679 * was in center_freq's band, that's enough, so lets
680 * not overwrite it once found
682 if (!band_rule_found
)
683 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
685 bw_fits
= reg_does_bw_fit(fr
,
689 if (band_rule_found
&& bw_fits
) {
695 if (!band_rule_found
)
701 int freq_reg_info(struct wiphy
*wiphy
,
704 const struct ieee80211_reg_rule
**reg_rule
)
706 assert_cfg80211_lock();
707 return freq_reg_info_regd(wiphy
,
713 EXPORT_SYMBOL(freq_reg_info
);
715 #ifdef CONFIG_CFG80211_REG_DEBUG
716 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
719 case NL80211_REGDOM_SET_BY_CORE
:
720 return "Set by core";
721 case NL80211_REGDOM_SET_BY_USER
:
722 return "Set by user";
723 case NL80211_REGDOM_SET_BY_DRIVER
:
724 return "Set by driver";
725 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
726 return "Set by country IE";
733 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
735 const struct ieee80211_reg_rule
*reg_rule
)
737 const struct ieee80211_power_rule
*power_rule
;
738 const struct ieee80211_freq_range
*freq_range
;
739 char max_antenna_gain
[32];
741 power_rule
= ®_rule
->power_rule
;
742 freq_range
= ®_rule
->freq_range
;
744 if (!power_rule
->max_antenna_gain
)
745 snprintf(max_antenna_gain
, 32, "N/A");
747 snprintf(max_antenna_gain
, 32, "%d", power_rule
->max_antenna_gain
);
749 REG_DBG_PRINT("Updating information on frequency %d MHz "
750 "for a %d MHz width channel with regulatory rule:\n",
752 KHZ_TO_MHZ(desired_bw_khz
));
754 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n",
755 freq_range
->start_freq_khz
,
756 freq_range
->end_freq_khz
,
758 power_rule
->max_eirp
);
761 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
763 const struct ieee80211_reg_rule
*reg_rule
)
770 * Note that right now we assume the desired channel bandwidth
771 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
772 * per channel, the primary and the extension channel). To support
773 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
774 * new ieee80211_channel.target_bw and re run the regulatory check
775 * on the wiphy with the target_bw specified. Then we can simply use
776 * that below for the desired_bw_khz below.
778 static void handle_channel(struct wiphy
*wiphy
,
779 enum nl80211_reg_initiator initiator
,
780 enum ieee80211_band band
,
781 unsigned int chan_idx
)
784 u32 flags
, bw_flags
= 0;
785 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
786 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
787 const struct ieee80211_power_rule
*power_rule
= NULL
;
788 const struct ieee80211_freq_range
*freq_range
= NULL
;
789 struct ieee80211_supported_band
*sband
;
790 struct ieee80211_channel
*chan
;
791 struct wiphy
*request_wiphy
= NULL
;
793 assert_cfg80211_lock();
795 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
797 sband
= wiphy
->bands
[band
];
798 BUG_ON(chan_idx
>= sband
->n_channels
);
799 chan
= &sband
->channels
[chan_idx
];
801 flags
= chan
->orig_flags
;
803 r
= freq_reg_info(wiphy
,
804 MHZ_TO_KHZ(chan
->center_freq
),
810 * We will disable all channels that do not match our
811 * received regulatory rule unless the hint is coming
812 * from a Country IE and the Country IE had no information
813 * about a band. The IEEE 802.11 spec allows for an AP
814 * to send only a subset of the regulatory rules allowed,
815 * so an AP in the US that only supports 2.4 GHz may only send
816 * a country IE with information for the 2.4 GHz band
817 * while 5 GHz is still supported.
819 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
823 REG_DBG_PRINT("Disabling freq %d MHz\n", chan
->center_freq
);
824 chan
->flags
= IEEE80211_CHAN_DISABLED
;
828 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
830 power_rule
= ®_rule
->power_rule
;
831 freq_range
= ®_rule
->freq_range
;
833 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
834 bw_flags
= IEEE80211_CHAN_NO_HT40
;
836 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
837 request_wiphy
&& request_wiphy
== wiphy
&&
838 request_wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
840 * This guarantees the driver's requested regulatory domain
841 * will always be used as a base for further regulatory
844 chan
->flags
= chan
->orig_flags
=
845 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
846 chan
->max_antenna_gain
= chan
->orig_mag
=
847 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
848 chan
->max_power
= chan
->orig_mpwr
=
849 (int) MBM_TO_DBM(power_rule
->max_eirp
);
853 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
854 chan
->max_antenna_gain
= min(chan
->orig_mag
,
855 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
857 chan
->max_power
= min(chan
->orig_mpwr
,
858 (int) MBM_TO_DBM(power_rule
->max_eirp
));
860 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
863 static void handle_band(struct wiphy
*wiphy
,
864 enum ieee80211_band band
,
865 enum nl80211_reg_initiator initiator
)
868 struct ieee80211_supported_band
*sband
;
870 BUG_ON(!wiphy
->bands
[band
]);
871 sband
= wiphy
->bands
[band
];
873 for (i
= 0; i
< sband
->n_channels
; i
++)
874 handle_channel(wiphy
, initiator
, band
, i
);
877 static bool ignore_reg_update(struct wiphy
*wiphy
,
878 enum nl80211_reg_initiator initiator
)
881 REG_DBG_PRINT("Ignoring regulatory request %s since "
882 "last_request is not set\n",
883 reg_initiator_name(initiator
));
887 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
888 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
) {
889 REG_DBG_PRINT("Ignoring regulatory request %s "
890 "since the driver uses its own custom "
891 "regulatory domain\n",
892 reg_initiator_name(initiator
));
897 * wiphy->regd will be set once the device has its own
898 * desired regulatory domain set
900 if (wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
&& !wiphy
->regd
&&
901 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
902 !is_world_regdom(last_request
->alpha2
)) {
903 REG_DBG_PRINT("Ignoring regulatory request %s "
904 "since the driver requires its own regulatory "
905 "domain to be set first\n",
906 reg_initiator_name(initiator
));
913 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
915 struct cfg80211_registered_device
*rdev
;
917 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
918 wiphy_update_regulatory(&rdev
->wiphy
, initiator
);
921 static void handle_reg_beacon(struct wiphy
*wiphy
,
922 unsigned int chan_idx
,
923 struct reg_beacon
*reg_beacon
)
925 struct ieee80211_supported_band
*sband
;
926 struct ieee80211_channel
*chan
;
927 bool channel_changed
= false;
928 struct ieee80211_channel chan_before
;
930 assert_cfg80211_lock();
932 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
933 chan
= &sband
->channels
[chan_idx
];
935 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
938 if (chan
->beacon_found
)
941 chan
->beacon_found
= true;
943 if (wiphy
->flags
& WIPHY_FLAG_DISABLE_BEACON_HINTS
)
946 chan_before
.center_freq
= chan
->center_freq
;
947 chan_before
.flags
= chan
->flags
;
949 if (chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) {
950 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
951 channel_changed
= true;
954 if (chan
->flags
& IEEE80211_CHAN_NO_IBSS
) {
955 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
956 channel_changed
= true;
960 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
964 * Called when a scan on a wiphy finds a beacon on
967 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
968 struct reg_beacon
*reg_beacon
)
971 struct ieee80211_supported_band
*sband
;
973 assert_cfg80211_lock();
975 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
978 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
980 for (i
= 0; i
< sband
->n_channels
; i
++)
981 handle_reg_beacon(wiphy
, i
, reg_beacon
);
985 * Called upon reg changes or a new wiphy is added
987 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
990 struct ieee80211_supported_band
*sband
;
991 struct reg_beacon
*reg_beacon
;
993 assert_cfg80211_lock();
995 if (list_empty(®_beacon_list
))
998 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
999 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1001 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1002 for (i
= 0; i
< sband
->n_channels
; i
++)
1003 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1007 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1009 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
1010 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
1013 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1014 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
1019 /* Reap the advantages of previously found beacons */
1020 static void reg_process_beacons(struct wiphy
*wiphy
)
1023 * Means we are just firing up cfg80211, so no beacons would
1024 * have been processed yet.
1028 if (!reg_is_world_roaming(wiphy
))
1030 wiphy_update_beacon_reg(wiphy
);
1033 static bool is_ht40_not_allowed(struct ieee80211_channel
*chan
)
1037 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1039 /* This would happen when regulatory rules disallow HT40 completely */
1040 if (IEEE80211_CHAN_NO_HT40
== (chan
->flags
& (IEEE80211_CHAN_NO_HT40
)))
1045 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1046 enum ieee80211_band band
,
1047 unsigned int chan_idx
)
1049 struct ieee80211_supported_band
*sband
;
1050 struct ieee80211_channel
*channel
;
1051 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1054 assert_cfg80211_lock();
1056 sband
= wiphy
->bands
[band
];
1057 BUG_ON(chan_idx
>= sband
->n_channels
);
1058 channel
= &sband
->channels
[chan_idx
];
1060 if (is_ht40_not_allowed(channel
)) {
1061 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1066 * We need to ensure the extension channels exist to
1067 * be able to use HT40- or HT40+, this finds them (or not)
1069 for (i
= 0; i
< sband
->n_channels
; i
++) {
1070 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1071 if (c
->center_freq
== (channel
->center_freq
- 20))
1073 if (c
->center_freq
== (channel
->center_freq
+ 20))
1078 * Please note that this assumes target bandwidth is 20 MHz,
1079 * if that ever changes we also need to change the below logic
1080 * to include that as well.
1082 if (is_ht40_not_allowed(channel_before
))
1083 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1085 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1087 if (is_ht40_not_allowed(channel_after
))
1088 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1090 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1093 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1094 enum ieee80211_band band
)
1097 struct ieee80211_supported_band
*sband
;
1099 BUG_ON(!wiphy
->bands
[band
]);
1100 sband
= wiphy
->bands
[band
];
1102 for (i
= 0; i
< sband
->n_channels
; i
++)
1103 reg_process_ht_flags_channel(wiphy
, band
, i
);
1106 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1108 enum ieee80211_band band
;
1113 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1114 if (wiphy
->bands
[band
])
1115 reg_process_ht_flags_band(wiphy
, band
);
1120 void wiphy_update_regulatory(struct wiphy
*wiphy
,
1121 enum nl80211_reg_initiator initiator
)
1123 enum ieee80211_band band
;
1125 if (ignore_reg_update(wiphy
, initiator
))
1128 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1129 if (wiphy
->bands
[band
])
1130 handle_band(wiphy
, band
, initiator
);
1133 reg_process_beacons(wiphy
);
1134 reg_process_ht_flags(wiphy
);
1135 if (wiphy
->reg_notifier
)
1136 wiphy
->reg_notifier(wiphy
, last_request
);
1139 static void handle_channel_custom(struct wiphy
*wiphy
,
1140 enum ieee80211_band band
,
1141 unsigned int chan_idx
,
1142 const struct ieee80211_regdomain
*regd
)
1145 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1147 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1148 const struct ieee80211_power_rule
*power_rule
= NULL
;
1149 const struct ieee80211_freq_range
*freq_range
= NULL
;
1150 struct ieee80211_supported_band
*sband
;
1151 struct ieee80211_channel
*chan
;
1155 sband
= wiphy
->bands
[band
];
1156 BUG_ON(chan_idx
>= sband
->n_channels
);
1157 chan
= &sband
->channels
[chan_idx
];
1159 r
= freq_reg_info_regd(wiphy
,
1160 MHZ_TO_KHZ(chan
->center_freq
),
1166 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1167 "regd has no rule that fits a %d MHz "
1170 KHZ_TO_MHZ(desired_bw_khz
));
1171 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1175 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
1177 power_rule
= ®_rule
->power_rule
;
1178 freq_range
= ®_rule
->freq_range
;
1180 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1181 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1183 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1184 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1185 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1188 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1189 const struct ieee80211_regdomain
*regd
)
1192 struct ieee80211_supported_band
*sband
;
1194 BUG_ON(!wiphy
->bands
[band
]);
1195 sband
= wiphy
->bands
[band
];
1197 for (i
= 0; i
< sband
->n_channels
; i
++)
1198 handle_channel_custom(wiphy
, band
, i
, regd
);
1201 /* Used by drivers prior to wiphy registration */
1202 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1203 const struct ieee80211_regdomain
*regd
)
1205 enum ieee80211_band band
;
1206 unsigned int bands_set
= 0;
1208 mutex_lock(®_mutex
);
1209 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1210 if (!wiphy
->bands
[band
])
1212 handle_band_custom(wiphy
, band
, regd
);
1215 mutex_unlock(®_mutex
);
1218 * no point in calling this if it won't have any effect
1219 * on your device's supportd bands.
1221 WARN_ON(!bands_set
);
1223 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1226 * Return value which can be used by ignore_request() to indicate
1227 * it has been determined we should intersect two regulatory domains
1229 #define REG_INTERSECT 1
1231 /* This has the logic which determines when a new request
1232 * should be ignored. */
1233 static int ignore_request(struct wiphy
*wiphy
,
1234 struct regulatory_request
*pending_request
)
1236 struct wiphy
*last_wiphy
= NULL
;
1238 assert_cfg80211_lock();
1240 /* All initial requests are respected */
1244 switch (pending_request
->initiator
) {
1245 case NL80211_REGDOM_SET_BY_CORE
:
1247 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1249 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1251 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1253 if (last_request
->initiator
==
1254 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1255 if (last_wiphy
!= wiphy
) {
1257 * Two cards with two APs claiming different
1258 * Country IE alpha2s. We could
1259 * intersect them, but that seems unlikely
1260 * to be correct. Reject second one for now.
1262 if (regdom_changes(pending_request
->alpha2
))
1267 * Two consecutive Country IE hints on the same wiphy.
1268 * This should be picked up early by the driver/stack
1270 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1275 case NL80211_REGDOM_SET_BY_DRIVER
:
1276 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1277 if (regdom_changes(pending_request
->alpha2
))
1283 * This would happen if you unplug and plug your card
1284 * back in or if you add a new device for which the previously
1285 * loaded card also agrees on the regulatory domain.
1287 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1288 !regdom_changes(pending_request
->alpha2
))
1291 return REG_INTERSECT
;
1292 case NL80211_REGDOM_SET_BY_USER
:
1293 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1294 return REG_INTERSECT
;
1296 * If the user knows better the user should set the regdom
1297 * to their country before the IE is picked up
1299 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1300 last_request
->intersect
)
1303 * Process user requests only after previous user/driver/core
1304 * requests have been processed
1306 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1307 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1308 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1309 if (regdom_changes(last_request
->alpha2
))
1313 if (!regdom_changes(pending_request
->alpha2
))
1322 static void reg_set_request_processed(void)
1324 bool need_more_processing
= false;
1326 last_request
->processed
= true;
1328 spin_lock(®_requests_lock
);
1329 if (!list_empty(®_requests_list
))
1330 need_more_processing
= true;
1331 spin_unlock(®_requests_lock
);
1333 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
1334 cancel_delayed_work_sync(®_timeout
);
1336 if (need_more_processing
)
1337 schedule_work(®_work
);
1341 * __regulatory_hint - hint to the wireless core a regulatory domain
1342 * @wiphy: if the hint comes from country information from an AP, this
1343 * is required to be set to the wiphy that received the information
1344 * @pending_request: the regulatory request currently being processed
1346 * The Wireless subsystem can use this function to hint to the wireless core
1347 * what it believes should be the current regulatory domain.
1349 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1350 * already been set or other standard error codes.
1352 * Caller must hold &cfg80211_mutex and ®_mutex
1354 static int __regulatory_hint(struct wiphy
*wiphy
,
1355 struct regulatory_request
*pending_request
)
1357 bool intersect
= false;
1360 assert_cfg80211_lock();
1362 r
= ignore_request(wiphy
, pending_request
);
1364 if (r
== REG_INTERSECT
) {
1365 if (pending_request
->initiator
==
1366 NL80211_REGDOM_SET_BY_DRIVER
) {
1367 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1369 kfree(pending_request
);
1376 * If the regulatory domain being requested by the
1377 * driver has already been set just copy it to the
1380 if (r
== -EALREADY
&&
1381 pending_request
->initiator
==
1382 NL80211_REGDOM_SET_BY_DRIVER
) {
1383 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1385 kfree(pending_request
);
1391 kfree(pending_request
);
1396 kfree(last_request
);
1398 last_request
= pending_request
;
1399 last_request
->intersect
= intersect
;
1401 pending_request
= NULL
;
1403 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1404 user_alpha2
[0] = last_request
->alpha2
[0];
1405 user_alpha2
[1] = last_request
->alpha2
[1];
1408 /* When r == REG_INTERSECT we do need to call CRDA */
1411 * Since CRDA will not be called in this case as we already
1412 * have applied the requested regulatory domain before we just
1413 * inform userspace we have processed the request
1415 if (r
== -EALREADY
) {
1416 nl80211_send_reg_change_event(last_request
);
1417 reg_set_request_processed();
1422 return call_crda(last_request
->alpha2
);
1425 /* This processes *all* regulatory hints */
1426 static void reg_process_hint(struct regulatory_request
*reg_request
)
1429 struct wiphy
*wiphy
= NULL
;
1430 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
1432 BUG_ON(!reg_request
->alpha2
);
1434 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1435 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1437 if (reg_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1443 r
= __regulatory_hint(wiphy
, reg_request
);
1444 /* This is required so that the orig_* parameters are saved */
1445 if (r
== -EALREADY
&& wiphy
&&
1446 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
1447 wiphy_update_regulatory(wiphy
, initiator
);
1452 * We only time out user hints, given that they should be the only
1453 * source of bogus requests.
1455 if (r
!= -EALREADY
&&
1456 reg_request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
1457 schedule_delayed_work(®_timeout
, msecs_to_jiffies(3142));
1461 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1462 * Regulatory hints come on a first come first serve basis and we
1463 * must process each one atomically.
1465 static void reg_process_pending_hints(void)
1467 struct regulatory_request
*reg_request
;
1469 mutex_lock(&cfg80211_mutex
);
1470 mutex_lock(®_mutex
);
1472 /* When last_request->processed becomes true this will be rescheduled */
1473 if (last_request
&& !last_request
->processed
) {
1474 REG_DBG_PRINT("Pending regulatory request, waiting "
1475 "for it to be processed...\n");
1479 spin_lock(®_requests_lock
);
1481 if (list_empty(®_requests_list
)) {
1482 spin_unlock(®_requests_lock
);
1486 reg_request
= list_first_entry(®_requests_list
,
1487 struct regulatory_request
,
1489 list_del_init(®_request
->list
);
1491 spin_unlock(®_requests_lock
);
1493 reg_process_hint(reg_request
);
1496 mutex_unlock(®_mutex
);
1497 mutex_unlock(&cfg80211_mutex
);
1500 /* Processes beacon hints -- this has nothing to do with country IEs */
1501 static void reg_process_pending_beacon_hints(void)
1503 struct cfg80211_registered_device
*rdev
;
1504 struct reg_beacon
*pending_beacon
, *tmp
;
1507 * No need to hold the reg_mutex here as we just touch wiphys
1508 * and do not read or access regulatory variables.
1510 mutex_lock(&cfg80211_mutex
);
1512 /* This goes through the _pending_ beacon list */
1513 spin_lock_bh(®_pending_beacons_lock
);
1515 if (list_empty(®_pending_beacons
)) {
1516 spin_unlock_bh(®_pending_beacons_lock
);
1520 list_for_each_entry_safe(pending_beacon
, tmp
,
1521 ®_pending_beacons
, list
) {
1523 list_del_init(&pending_beacon
->list
);
1525 /* Applies the beacon hint to current wiphys */
1526 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1527 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
1529 /* Remembers the beacon hint for new wiphys or reg changes */
1530 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1533 spin_unlock_bh(®_pending_beacons_lock
);
1535 mutex_unlock(&cfg80211_mutex
);
1538 static void reg_todo(struct work_struct
*work
)
1540 reg_process_pending_hints();
1541 reg_process_pending_beacon_hints();
1544 static void queue_regulatory_request(struct regulatory_request
*request
)
1546 if (isalpha(request
->alpha2
[0]))
1547 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
1548 if (isalpha(request
->alpha2
[1]))
1549 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
1551 spin_lock(®_requests_lock
);
1552 list_add_tail(&request
->list
, ®_requests_list
);
1553 spin_unlock(®_requests_lock
);
1555 schedule_work(®_work
);
1559 * Core regulatory hint -- happens during cfg80211_init()
1560 * and when we restore regulatory settings.
1562 static int regulatory_hint_core(const char *alpha2
)
1564 struct regulatory_request
*request
;
1566 kfree(last_request
);
1567 last_request
= NULL
;
1569 request
= kzalloc(sizeof(struct regulatory_request
),
1574 request
->alpha2
[0] = alpha2
[0];
1575 request
->alpha2
[1] = alpha2
[1];
1576 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1578 queue_regulatory_request(request
);
1584 int regulatory_hint_user(const char *alpha2
)
1586 struct regulatory_request
*request
;
1590 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1594 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1595 request
->alpha2
[0] = alpha2
[0];
1596 request
->alpha2
[1] = alpha2
[1];
1597 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
1599 queue_regulatory_request(request
);
1605 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1607 struct regulatory_request
*request
;
1612 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1616 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1618 /* Must have registered wiphy first */
1619 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
1621 request
->alpha2
[0] = alpha2
[0];
1622 request
->alpha2
[1] = alpha2
[1];
1623 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
1625 queue_regulatory_request(request
);
1629 EXPORT_SYMBOL(regulatory_hint
);
1632 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1633 * therefore cannot iterate over the rdev list here.
1635 void regulatory_hint_11d(struct wiphy
*wiphy
,
1636 enum ieee80211_band band
,
1641 enum environment_cap env
= ENVIRON_ANY
;
1642 struct regulatory_request
*request
;
1644 mutex_lock(®_mutex
);
1646 if (unlikely(!last_request
))
1649 /* IE len must be evenly divisible by 2 */
1650 if (country_ie_len
& 0x01)
1653 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1656 alpha2
[0] = country_ie
[0];
1657 alpha2
[1] = country_ie
[1];
1659 if (country_ie
[2] == 'I')
1660 env
= ENVIRON_INDOOR
;
1661 else if (country_ie
[2] == 'O')
1662 env
= ENVIRON_OUTDOOR
;
1665 * We will run this only upon a successful connection on cfg80211.
1666 * We leave conflict resolution to the workqueue, where can hold
1669 if (likely(last_request
->initiator
==
1670 NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1671 wiphy_idx_valid(last_request
->wiphy_idx
)))
1674 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1678 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1679 request
->alpha2
[0] = alpha2
[0];
1680 request
->alpha2
[1] = alpha2
[1];
1681 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
1682 request
->country_ie_env
= env
;
1684 mutex_unlock(®_mutex
);
1686 queue_regulatory_request(request
);
1691 mutex_unlock(®_mutex
);
1694 static void restore_alpha2(char *alpha2
, bool reset_user
)
1696 /* indicates there is no alpha2 to consider for restoration */
1700 /* The user setting has precedence over the module parameter */
1701 if (is_user_regdom_saved()) {
1702 /* Unless we're asked to ignore it and reset it */
1704 REG_DBG_PRINT("Restoring regulatory settings "
1705 "including user preference\n");
1706 user_alpha2
[0] = '9';
1707 user_alpha2
[1] = '7';
1710 * If we're ignoring user settings, we still need to
1711 * check the module parameter to ensure we put things
1712 * back as they were for a full restore.
1714 if (!is_world_regdom(ieee80211_regdom
)) {
1715 REG_DBG_PRINT("Keeping preference on "
1716 "module parameter ieee80211_regdom: %c%c\n",
1717 ieee80211_regdom
[0],
1718 ieee80211_regdom
[1]);
1719 alpha2
[0] = ieee80211_regdom
[0];
1720 alpha2
[1] = ieee80211_regdom
[1];
1723 REG_DBG_PRINT("Restoring regulatory settings "
1724 "while preserving user preference for: %c%c\n",
1727 alpha2
[0] = user_alpha2
[0];
1728 alpha2
[1] = user_alpha2
[1];
1730 } else if (!is_world_regdom(ieee80211_regdom
)) {
1731 REG_DBG_PRINT("Keeping preference on "
1732 "module parameter ieee80211_regdom: %c%c\n",
1733 ieee80211_regdom
[0],
1734 ieee80211_regdom
[1]);
1735 alpha2
[0] = ieee80211_regdom
[0];
1736 alpha2
[1] = ieee80211_regdom
[1];
1738 REG_DBG_PRINT("Restoring regulatory settings\n");
1742 * Restoring regulatory settings involves ingoring any
1743 * possibly stale country IE information and user regulatory
1744 * settings if so desired, this includes any beacon hints
1745 * learned as we could have traveled outside to another country
1746 * after disconnection. To restore regulatory settings we do
1747 * exactly what we did at bootup:
1749 * - send a core regulatory hint
1750 * - send a user regulatory hint if applicable
1752 * Device drivers that send a regulatory hint for a specific country
1753 * keep their own regulatory domain on wiphy->regd so that does does
1754 * not need to be remembered.
1756 static void restore_regulatory_settings(bool reset_user
)
1759 struct reg_beacon
*reg_beacon
, *btmp
;
1760 struct regulatory_request
*reg_request
, *tmp
;
1761 LIST_HEAD(tmp_reg_req_list
);
1763 mutex_lock(&cfg80211_mutex
);
1764 mutex_lock(®_mutex
);
1767 restore_alpha2(alpha2
, reset_user
);
1770 * If there's any pending requests we simply
1771 * stash them to a temporary pending queue and
1772 * add then after we've restored regulatory
1775 spin_lock(®_requests_lock
);
1776 if (!list_empty(®_requests_list
)) {
1777 list_for_each_entry_safe(reg_request
, tmp
,
1778 ®_requests_list
, list
) {
1779 if (reg_request
->initiator
!=
1780 NL80211_REGDOM_SET_BY_USER
)
1782 list_del(®_request
->list
);
1783 list_add_tail(®_request
->list
, &tmp_reg_req_list
);
1786 spin_unlock(®_requests_lock
);
1788 /* Clear beacon hints */
1789 spin_lock_bh(®_pending_beacons_lock
);
1790 if (!list_empty(®_pending_beacons
)) {
1791 list_for_each_entry_safe(reg_beacon
, btmp
,
1792 ®_pending_beacons
, list
) {
1793 list_del(®_beacon
->list
);
1797 spin_unlock_bh(®_pending_beacons_lock
);
1799 if (!list_empty(®_beacon_list
)) {
1800 list_for_each_entry_safe(reg_beacon
, btmp
,
1801 ®_beacon_list
, list
) {
1802 list_del(®_beacon
->list
);
1807 /* First restore to the basic regulatory settings */
1808 cfg80211_regdomain
= cfg80211_world_regdom
;
1810 mutex_unlock(®_mutex
);
1811 mutex_unlock(&cfg80211_mutex
);
1813 regulatory_hint_core(cfg80211_regdomain
->alpha2
);
1816 * This restores the ieee80211_regdom module parameter
1817 * preference or the last user requested regulatory
1818 * settings, user regulatory settings takes precedence.
1820 if (is_an_alpha2(alpha2
))
1821 regulatory_hint_user(user_alpha2
);
1823 if (list_empty(&tmp_reg_req_list
))
1826 mutex_lock(&cfg80211_mutex
);
1827 mutex_lock(®_mutex
);
1829 spin_lock(®_requests_lock
);
1830 list_for_each_entry_safe(reg_request
, tmp
, &tmp_reg_req_list
, list
) {
1831 REG_DBG_PRINT("Adding request for country %c%c back "
1833 reg_request
->alpha2
[0],
1834 reg_request
->alpha2
[1]);
1835 list_del(®_request
->list
);
1836 list_add_tail(®_request
->list
, ®_requests_list
);
1838 spin_unlock(®_requests_lock
);
1840 mutex_unlock(®_mutex
);
1841 mutex_unlock(&cfg80211_mutex
);
1843 REG_DBG_PRINT("Kicking the queue\n");
1845 schedule_work(®_work
);
1848 void regulatory_hint_disconnect(void)
1850 REG_DBG_PRINT("All devices are disconnected, going to "
1851 "restore regulatory settings\n");
1852 restore_regulatory_settings(false);
1855 static bool freq_is_chan_12_13_14(u16 freq
)
1857 if (freq
== ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ
) ||
1858 freq
== ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ
) ||
1859 freq
== ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ
))
1864 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
1865 struct ieee80211_channel
*beacon_chan
,
1868 struct reg_beacon
*reg_beacon
;
1870 if (likely((beacon_chan
->beacon_found
||
1871 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
1872 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
1873 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
1876 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
1880 REG_DBG_PRINT("Found new beacon on "
1881 "frequency: %d MHz (Ch %d) on %s\n",
1882 beacon_chan
->center_freq
,
1883 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
1886 memcpy(®_beacon
->chan
, beacon_chan
,
1887 sizeof(struct ieee80211_channel
));
1891 * Since we can be called from BH or and non-BH context
1892 * we must use spin_lock_bh()
1894 spin_lock_bh(®_pending_beacons_lock
);
1895 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
1896 spin_unlock_bh(®_pending_beacons_lock
);
1898 schedule_work(®_work
);
1903 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
1906 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1907 const struct ieee80211_freq_range
*freq_range
= NULL
;
1908 const struct ieee80211_power_rule
*power_rule
= NULL
;
1910 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1912 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1913 reg_rule
= &rd
->reg_rules
[i
];
1914 freq_range
= ®_rule
->freq_range
;
1915 power_rule
= ®_rule
->power_rule
;
1918 * There may not be documentation for max antenna gain
1919 * in certain regions
1921 if (power_rule
->max_antenna_gain
)
1922 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1923 freq_range
->start_freq_khz
,
1924 freq_range
->end_freq_khz
,
1925 freq_range
->max_bandwidth_khz
,
1926 power_rule
->max_antenna_gain
,
1927 power_rule
->max_eirp
);
1929 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1930 freq_range
->start_freq_khz
,
1931 freq_range
->end_freq_khz
,
1932 freq_range
->max_bandwidth_khz
,
1933 power_rule
->max_eirp
);
1937 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
1940 if (is_intersected_alpha2(rd
->alpha2
)) {
1942 if (last_request
->initiator
==
1943 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1944 struct cfg80211_registered_device
*rdev
;
1945 rdev
= cfg80211_rdev_by_wiphy_idx(
1946 last_request
->wiphy_idx
);
1948 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1949 rdev
->country_ie_alpha2
[0],
1950 rdev
->country_ie_alpha2
[1]);
1952 pr_info("Current regulatory domain intersected:\n");
1954 pr_info("Current regulatory domain intersected:\n");
1955 } else if (is_world_regdom(rd
->alpha2
))
1956 pr_info("World regulatory domain updated:\n");
1958 if (is_unknown_alpha2(rd
->alpha2
))
1959 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1961 pr_info("Regulatory domain changed to country: %c%c\n",
1962 rd
->alpha2
[0], rd
->alpha2
[1]);
1967 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
1969 pr_info("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
1973 /* Takes ownership of rd only if it doesn't fail */
1974 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
1976 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
1977 struct cfg80211_registered_device
*rdev
= NULL
;
1978 struct wiphy
*request_wiphy
;
1979 /* Some basic sanity checks first */
1981 if (is_world_regdom(rd
->alpha2
)) {
1982 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1984 update_world_regdomain(rd
);
1988 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
1989 !is_unknown_alpha2(rd
->alpha2
))
1996 * Lets only bother proceeding on the same alpha2 if the current
1997 * rd is non static (it means CRDA was present and was used last)
1998 * and the pending request came in from a country IE
2000 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2002 * If someone else asked us to change the rd lets only bother
2003 * checking if the alpha2 changes if CRDA was already called
2005 if (!regdom_changes(rd
->alpha2
))
2010 * Now lets set the regulatory domain, update all driver channels
2011 * and finally inform them of what we have done, in case they want
2012 * to review or adjust their own settings based on their own
2013 * internal EEPROM data
2016 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2019 if (!is_valid_rd(rd
)) {
2020 pr_err("Invalid regulatory domain detected:\n");
2021 print_regdomain_info(rd
);
2025 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2027 if (!last_request
->intersect
) {
2030 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
2032 cfg80211_regdomain
= rd
;
2037 * For a driver hint, lets copy the regulatory domain the
2038 * driver wanted to the wiphy to deal with conflicts
2042 * Userspace could have sent two replies with only
2043 * one kernel request.
2045 if (request_wiphy
->regd
)
2048 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
2053 cfg80211_regdomain
= rd
;
2057 /* Intersection requires a bit more work */
2059 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2061 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
2062 if (!intersected_rd
)
2066 * We can trash what CRDA provided now.
2067 * However if a driver requested this specific regulatory
2068 * domain we keep it for its private use
2070 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
2071 request_wiphy
->regd
= rd
;
2078 cfg80211_regdomain
= intersected_rd
;
2083 if (!intersected_rd
)
2086 rdev
= wiphy_to_dev(request_wiphy
);
2088 rdev
->country_ie_alpha2
[0] = rd
->alpha2
[0];
2089 rdev
->country_ie_alpha2
[1] = rd
->alpha2
[1];
2090 rdev
->env
= last_request
->country_ie_env
;
2092 BUG_ON(intersected_rd
== rd
);
2098 cfg80211_regdomain
= intersected_rd
;
2105 * Use this call to set the current regulatory domain. Conflicts with
2106 * multiple drivers can be ironed out later. Caller must've already
2107 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2109 int set_regdom(const struct ieee80211_regdomain
*rd
)
2113 assert_cfg80211_lock();
2115 mutex_lock(®_mutex
);
2117 /* Note that this doesn't update the wiphys, this is done below */
2118 r
= __set_regdom(rd
);
2121 mutex_unlock(®_mutex
);
2125 /* This would make this whole thing pointless */
2126 if (!last_request
->intersect
)
2127 BUG_ON(rd
!= cfg80211_regdomain
);
2129 /* update all wiphys now with the new established regulatory domain */
2130 update_all_wiphy_regulatory(last_request
->initiator
);
2132 print_regdomain(cfg80211_regdomain
);
2134 nl80211_send_reg_change_event(last_request
);
2136 reg_set_request_processed();
2138 mutex_unlock(®_mutex
);
2143 #ifdef CONFIG_HOTPLUG
2144 int reg_device_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2146 if (last_request
&& !last_request
->processed
) {
2147 if (add_uevent_var(env
, "COUNTRY=%c%c",
2148 last_request
->alpha2
[0],
2149 last_request
->alpha2
[1]))
2156 int reg_device_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2160 #endif /* CONFIG_HOTPLUG */
2162 /* Caller must hold cfg80211_mutex */
2163 void reg_device_remove(struct wiphy
*wiphy
)
2165 struct wiphy
*request_wiphy
= NULL
;
2167 assert_cfg80211_lock();
2169 mutex_lock(®_mutex
);
2174 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2176 if (!request_wiphy
|| request_wiphy
!= wiphy
)
2179 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
2180 last_request
->country_ie_env
= ENVIRON_ANY
;
2182 mutex_unlock(®_mutex
);
2185 static void reg_timeout_work(struct work_struct
*work
)
2187 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2188 "restoring regulatory settings\n");
2189 restore_regulatory_settings(true);
2192 int __init
regulatory_init(void)
2196 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
2197 if (IS_ERR(reg_pdev
))
2198 return PTR_ERR(reg_pdev
);
2200 reg_pdev
->dev
.type
= ®_device_type
;
2202 spin_lock_init(®_requests_lock
);
2203 spin_lock_init(®_pending_beacons_lock
);
2205 cfg80211_regdomain
= cfg80211_world_regdom
;
2207 user_alpha2
[0] = '9';
2208 user_alpha2
[1] = '7';
2210 /* We always try to get an update for the static regdomain */
2211 err
= regulatory_hint_core(cfg80211_regdomain
->alpha2
);
2216 * N.B. kobject_uevent_env() can fail mainly for when we're out
2217 * memory which is handled and propagated appropriately above
2218 * but it can also fail during a netlink_broadcast() or during
2219 * early boot for call_usermodehelper(). For now treat these
2220 * errors as non-fatal.
2222 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2223 #ifdef CONFIG_CFG80211_REG_DEBUG
2224 /* We want to find out exactly why when debugging */
2230 * Finally, if the user set the module parameter treat it
2233 if (!is_world_regdom(ieee80211_regdom
))
2234 regulatory_hint_user(ieee80211_regdom
);
2239 void /* __init_or_exit */ regulatory_exit(void)
2241 struct regulatory_request
*reg_request
, *tmp
;
2242 struct reg_beacon
*reg_beacon
, *btmp
;
2244 cancel_work_sync(®_work
);
2245 cancel_delayed_work_sync(®_timeout
);
2247 mutex_lock(&cfg80211_mutex
);
2248 mutex_lock(®_mutex
);
2252 kfree(last_request
);
2254 platform_device_unregister(reg_pdev
);
2256 spin_lock_bh(®_pending_beacons_lock
);
2257 if (!list_empty(®_pending_beacons
)) {
2258 list_for_each_entry_safe(reg_beacon
, btmp
,
2259 ®_pending_beacons
, list
) {
2260 list_del(®_beacon
->list
);
2264 spin_unlock_bh(®_pending_beacons_lock
);
2266 if (!list_empty(®_beacon_list
)) {
2267 list_for_each_entry_safe(reg_beacon
, btmp
,
2268 ®_beacon_list
, list
) {
2269 list_del(®_beacon
->list
);
2274 spin_lock(®_requests_lock
);
2275 if (!list_empty(®_requests_list
)) {
2276 list_for_each_entry_safe(reg_request
, tmp
,
2277 ®_requests_list
, list
) {
2278 list_del(®_request
->list
);
2282 spin_unlock(®_requests_lock
);
2284 mutex_unlock(®_mutex
);
2285 mutex_unlock(&cfg80211_mutex
);