2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
27 #include <asm/unaligned.h>
34 * AR5212+ can use higher rates for ack transmission
35 * based on current tx rate instead of the base rate.
36 * It does this to better utilize channel usage.
37 * This is a mapping between G rates (that cover both
38 * CCK and OFDM) and ack rates that we use when setting
39 * rate -> duration table. This mapping is hw-based so
40 * don't change anything.
42 * To enable this functionality we must set
43 * ah->ah_ack_bitrate_high to true else base rate is
44 * used (1Mb for CCK, 6Mb for OFDM).
46 static const unsigned int ack_rates_high
[] =
59 /* 54Mb -> 24Mb */ 8 };
66 * ath5k_hw_get_frame_duration - Get tx time of a frame
68 * @ah: The &struct ath5k_hw
69 * @len: Frame's length in bytes
70 * @rate: The @struct ieee80211_rate
72 * Calculate tx duration of a frame given it's rate and length
73 * It extends ieee80211_generic_frame_duration for non standard
76 int ath5k_hw_get_frame_duration(struct ath5k_hw
*ah
,
77 int len
, struct ieee80211_rate
*rate
, bool shortpre
)
79 int sifs
, preamble
, plcp_bits
, sym_time
;
80 int bitrate
, bits
, symbols
, symbol_bits
;
85 __le16 raw_dur
= ieee80211_generic_frame_duration(ah
->hw
,
88 /* subtract difference between long and short preamble */
89 dur
= le16_to_cpu(raw_dur
);
96 bitrate
= rate
->bitrate
;
97 preamble
= AR5K_INIT_OFDM_PREAMPLE_TIME
;
98 plcp_bits
= AR5K_INIT_OFDM_PLCP_BITS
;
99 sym_time
= AR5K_INIT_OFDM_SYMBOL_TIME
;
101 switch (ah
->ah_bwmode
) {
102 case AR5K_BWMODE_40MHZ
:
103 sifs
= AR5K_INIT_SIFS_TURBO
;
104 preamble
= AR5K_INIT_OFDM_PREAMBLE_TIME_MIN
;
106 case AR5K_BWMODE_10MHZ
:
107 sifs
= AR5K_INIT_SIFS_HALF_RATE
;
111 case AR5K_BWMODE_5MHZ
:
112 sifs
= AR5K_INIT_SIFS_QUARTER_RATE
;
117 sifs
= AR5K_INIT_SIFS_DEFAULT_BG
;
121 bits
= plcp_bits
+ (len
<< 3);
122 /* Bit rate is in 100Kbits */
123 symbol_bits
= bitrate
* sym_time
;
124 symbols
= DIV_ROUND_UP(bits
* 10, symbol_bits
);
126 dur
= sifs
+ preamble
+ (sym_time
* symbols
);
132 * ath5k_hw_get_default_slottime - Get the default slot time for current mode
134 * @ah: The &struct ath5k_hw
136 unsigned int ath5k_hw_get_default_slottime(struct ath5k_hw
*ah
)
138 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
139 unsigned int slot_time
;
141 switch (ah
->ah_bwmode
) {
142 case AR5K_BWMODE_40MHZ
:
143 slot_time
= AR5K_INIT_SLOT_TIME_TURBO
;
145 case AR5K_BWMODE_10MHZ
:
146 slot_time
= AR5K_INIT_SLOT_TIME_HALF_RATE
;
148 case AR5K_BWMODE_5MHZ
:
149 slot_time
= AR5K_INIT_SLOT_TIME_QUARTER_RATE
;
151 case AR5K_BWMODE_DEFAULT
:
153 slot_time
= AR5K_INIT_SLOT_TIME_DEFAULT
;
154 if ((channel
->hw_value
== AR5K_MODE_11B
) && !ah
->ah_short_slot
)
155 slot_time
= AR5K_INIT_SLOT_TIME_B
;
163 * ath5k_hw_get_default_sifs - Get the default SIFS for current mode
165 * @ah: The &struct ath5k_hw
167 unsigned int ath5k_hw_get_default_sifs(struct ath5k_hw
*ah
)
169 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
172 switch (ah
->ah_bwmode
) {
173 case AR5K_BWMODE_40MHZ
:
174 sifs
= AR5K_INIT_SIFS_TURBO
;
176 case AR5K_BWMODE_10MHZ
:
177 sifs
= AR5K_INIT_SIFS_HALF_RATE
;
179 case AR5K_BWMODE_5MHZ
:
180 sifs
= AR5K_INIT_SIFS_QUARTER_RATE
;
182 case AR5K_BWMODE_DEFAULT
:
183 sifs
= AR5K_INIT_SIFS_DEFAULT_BG
;
185 if (channel
->band
== IEEE80211_BAND_5GHZ
)
186 sifs
= AR5K_INIT_SIFS_DEFAULT_A
;
194 * ath5k_hw_update_mib_counters - Update MIB counters (mac layer statistics)
196 * @ah: The &struct ath5k_hw
198 * Reads MIB counters from PCU and updates sw statistics. Is called after a
199 * MIB interrupt, because one of these counters might have reached their maximum
200 * and triggered the MIB interrupt, to let us read and clear the counter.
202 * Is called in interrupt context!
204 void ath5k_hw_update_mib_counters(struct ath5k_hw
*ah
)
206 struct ath5k_statistics
*stats
= &ah
->stats
;
209 stats
->ack_fail
+= ath5k_hw_reg_read(ah
, AR5K_ACK_FAIL
);
210 stats
->rts_fail
+= ath5k_hw_reg_read(ah
, AR5K_RTS_FAIL
);
211 stats
->rts_ok
+= ath5k_hw_reg_read(ah
, AR5K_RTS_OK
);
212 stats
->fcs_error
+= ath5k_hw_reg_read(ah
, AR5K_FCS_FAIL
);
213 stats
->beacons
+= ath5k_hw_reg_read(ah
, AR5K_BEACON_CNT
);
222 * ath5k_hw_write_rate_duration - fill rate code to duration table
224 * @ah: the &struct ath5k_hw
225 * @mode: one of enum ath5k_driver_mode
227 * Write the rate code to duration table upon hw reset. This is a helper for
228 * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
229 * the hardware, based on current mode, for each rate. The rates which are
230 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
231 * different rate code so we write their value twice (one for long preamble
232 * and one for short).
234 * Note: Band doesn't matter here, if we set the values for OFDM it works
235 * on both a and g modes. So all we have to do is set values for all g rates
236 * that include all OFDM and CCK rates.
239 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw
*ah
)
241 struct ieee80211_rate
*rate
;
243 /* 802.11g covers both OFDM and CCK */
244 u8 band
= IEEE80211_BAND_2GHZ
;
246 /* Write rate duration table */
247 for (i
= 0; i
< ah
->sbands
[band
].n_bitrates
; i
++) {
251 if (ah
->ah_ack_bitrate_high
)
252 rate
= &ah
->sbands
[band
].bitrates
[ack_rates_high
[i
]];
255 rate
= &ah
->sbands
[band
].bitrates
[0];
258 rate
= &ah
->sbands
[band
].bitrates
[4];
260 /* Set ACK timeout */
261 reg
= AR5K_RATE_DUR(rate
->hw_value
);
263 /* An ACK frame consists of 10 bytes. If you add the FCS,
264 * which ieee80211_generic_frame_duration() adds,
265 * its 14 bytes. Note we use the control rate and not the
266 * actual rate for this rate. See mac80211 tx.c
267 * ieee80211_duration() for a brief description of
268 * what rate we should choose to TX ACKs. */
269 tx_time
= ath5k_hw_get_frame_duration(ah
, 10, rate
, false);
271 ath5k_hw_reg_write(ah
, tx_time
, reg
);
273 if (!(rate
->flags
& IEEE80211_RATE_SHORT_PREAMBLE
))
276 tx_time
= ath5k_hw_get_frame_duration(ah
, 10, rate
, true);
277 ath5k_hw_reg_write(ah
, tx_time
,
278 reg
+ (AR5K_SET_SHORT_PREAMBLE
<< 2));
283 * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
285 * @ah: The &struct ath5k_hw
286 * @timeout: Timeout in usec
288 static int ath5k_hw_set_ack_timeout(struct ath5k_hw
*ah
, unsigned int timeout
)
290 if (ath5k_hw_clocktoh(ah
, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK
))
294 AR5K_REG_WRITE_BITS(ah
, AR5K_TIME_OUT
, AR5K_TIME_OUT_ACK
,
295 ath5k_hw_htoclock(ah
, timeout
));
301 * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
303 * @ah: The &struct ath5k_hw
304 * @timeout: Timeout in usec
306 static int ath5k_hw_set_cts_timeout(struct ath5k_hw
*ah
, unsigned int timeout
)
308 if (ath5k_hw_clocktoh(ah
, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS
))
312 AR5K_REG_WRITE_BITS(ah
, AR5K_TIME_OUT
, AR5K_TIME_OUT_CTS
,
313 ath5k_hw_htoclock(ah
, timeout
));
319 /*******************\
320 * RX filter Control *
321 \*******************/
324 * ath5k_hw_set_lladdr - Set station id
326 * @ah: The &struct ath5k_hw
327 * @mac: The card's mac address
329 * Set station id on hw using the provided mac address
331 int ath5k_hw_set_lladdr(struct ath5k_hw
*ah
, const u8
*mac
)
333 struct ath_common
*common
= ath5k_hw_common(ah
);
337 /* Set new station ID */
338 memcpy(common
->macaddr
, mac
, ETH_ALEN
);
340 pcu_reg
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
) & 0xffff0000;
342 low_id
= get_unaligned_le32(mac
);
343 high_id
= get_unaligned_le16(mac
+ 4);
345 ath5k_hw_reg_write(ah
, low_id
, AR5K_STA_ID0
);
346 ath5k_hw_reg_write(ah
, pcu_reg
| high_id
, AR5K_STA_ID1
);
352 * ath5k_hw_set_bssid - Set current BSSID on hw
354 * @ah: The &struct ath5k_hw
356 * Sets the current BSSID and BSSID mask we have from the
357 * common struct into the hardware
359 void ath5k_hw_set_bssid(struct ath5k_hw
*ah
)
361 struct ath_common
*common
= ath5k_hw_common(ah
);
365 * Set BSSID mask on 5212
367 if (ah
->ah_version
== AR5K_AR5212
)
368 ath_hw_setbssidmask(common
);
373 ath5k_hw_reg_write(ah
,
374 get_unaligned_le32(common
->curbssid
),
376 ath5k_hw_reg_write(ah
,
377 get_unaligned_le16(common
->curbssid
+ 4) |
378 ((common
->curaid
& 0x3fff) << AR5K_BSS_ID1_AID_S
),
381 if (common
->curaid
== 0) {
382 ath5k_hw_disable_pspoll(ah
);
386 AR5K_REG_WRITE_BITS(ah
, AR5K_BEACON
, AR5K_BEACON_TIM
,
387 tim_offset
? tim_offset
+ 4 : 0);
389 ath5k_hw_enable_pspoll(ah
, NULL
, 0);
392 void ath5k_hw_set_bssid_mask(struct ath5k_hw
*ah
, const u8
*mask
)
394 struct ath_common
*common
= ath5k_hw_common(ah
);
396 /* Cache bssid mask so that we can restore it
398 memcpy(common
->bssidmask
, mask
, ETH_ALEN
);
399 if (ah
->ah_version
== AR5K_AR5212
)
400 ath_hw_setbssidmask(common
);
404 * Set multicast filter
406 void ath5k_hw_set_mcast_filter(struct ath5k_hw
*ah
, u32 filter0
, u32 filter1
)
408 ath5k_hw_reg_write(ah
, filter0
, AR5K_MCAST_FILTER0
);
409 ath5k_hw_reg_write(ah
, filter1
, AR5K_MCAST_FILTER1
);
413 * ath5k_hw_get_rx_filter - Get current rx filter
415 * @ah: The &struct ath5k_hw
417 * Returns the RX filter by reading rx filter and
418 * phy error filter registers. RX filter is used
419 * to set the allowed frame types that PCU will accept
420 * and pass to the driver. For a list of frame types
423 u32
ath5k_hw_get_rx_filter(struct ath5k_hw
*ah
)
425 u32 data
, filter
= 0;
427 filter
= ath5k_hw_reg_read(ah
, AR5K_RX_FILTER
);
429 /*Radar detection for 5212*/
430 if (ah
->ah_version
== AR5K_AR5212
) {
431 data
= ath5k_hw_reg_read(ah
, AR5K_PHY_ERR_FIL
);
433 if (data
& AR5K_PHY_ERR_FIL_RADAR
)
434 filter
|= AR5K_RX_FILTER_RADARERR
;
435 if (data
& (AR5K_PHY_ERR_FIL_OFDM
| AR5K_PHY_ERR_FIL_CCK
))
436 filter
|= AR5K_RX_FILTER_PHYERR
;
443 * ath5k_hw_set_rx_filter - Set rx filter
445 * @ah: The &struct ath5k_hw
446 * @filter: RX filter mask (see reg.h)
448 * Sets RX filter register and also handles PHY error filter
449 * register on 5212 and newer chips so that we have proper PHY
452 void ath5k_hw_set_rx_filter(struct ath5k_hw
*ah
, u32 filter
)
456 /* Set PHY error filter register on 5212*/
457 if (ah
->ah_version
== AR5K_AR5212
) {
458 if (filter
& AR5K_RX_FILTER_RADARERR
)
459 data
|= AR5K_PHY_ERR_FIL_RADAR
;
460 if (filter
& AR5K_RX_FILTER_PHYERR
)
461 data
|= AR5K_PHY_ERR_FIL_OFDM
| AR5K_PHY_ERR_FIL_CCK
;
465 * The AR5210 uses promiscuous mode to detect radar activity
467 if (ah
->ah_version
== AR5K_AR5210
&&
468 (filter
& AR5K_RX_FILTER_RADARERR
)) {
469 filter
&= ~AR5K_RX_FILTER_RADARERR
;
470 filter
|= AR5K_RX_FILTER_PROM
;
473 /*Zero length DMA (phy error reporting) */
475 AR5K_REG_ENABLE_BITS(ah
, AR5K_RXCFG
, AR5K_RXCFG_ZLFDMA
);
477 AR5K_REG_DISABLE_BITS(ah
, AR5K_RXCFG
, AR5K_RXCFG_ZLFDMA
);
479 /*Write RX Filter register*/
480 ath5k_hw_reg_write(ah
, filter
& 0xff, AR5K_RX_FILTER
);
482 /*Write PHY error filter register on 5212*/
483 if (ah
->ah_version
== AR5K_AR5212
)
484 ath5k_hw_reg_write(ah
, data
, AR5K_PHY_ERR_FIL
);
493 #define ATH5K_MAX_TSF_READ 10
496 * ath5k_hw_get_tsf64 - Get the full 64bit TSF
498 * @ah: The &struct ath5k_hw
500 * Returns the current TSF
502 u64
ath5k_hw_get_tsf64(struct ath5k_hw
*ah
)
504 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
508 /* This code is time critical - we don't want to be interrupted here */
509 local_irq_save(flags
);
512 * While reading TSF upper and then lower part, the clock is still
513 * counting (or jumping in case of IBSS merge) so we might get
514 * inconsistent values. To avoid this, we read the upper part again
515 * and check it has not been changed. We make the hypothesis that a
516 * maximum of 3 changes can happens in a row (we use 10 as a safe
519 * Impact on performance is pretty small, since in most cases, only
520 * 3 register reads are needed.
523 tsf_upper1
= ath5k_hw_reg_read(ah
, AR5K_TSF_U32
);
524 for (i
= 0; i
< ATH5K_MAX_TSF_READ
; i
++) {
525 tsf_lower
= ath5k_hw_reg_read(ah
, AR5K_TSF_L32
);
526 tsf_upper2
= ath5k_hw_reg_read(ah
, AR5K_TSF_U32
);
527 if (tsf_upper2
== tsf_upper1
)
529 tsf_upper1
= tsf_upper2
;
532 local_irq_restore(flags
);
534 WARN_ON(i
== ATH5K_MAX_TSF_READ
);
536 return ((u64
)tsf_upper1
<< 32) | tsf_lower
;
540 * ath5k_hw_set_tsf64 - Set a new 64bit TSF
542 * @ah: The &struct ath5k_hw
543 * @tsf64: The new 64bit TSF
547 void ath5k_hw_set_tsf64(struct ath5k_hw
*ah
, u64 tsf64
)
549 ath5k_hw_reg_write(ah
, tsf64
& 0xffffffff, AR5K_TSF_L32
);
550 ath5k_hw_reg_write(ah
, (tsf64
>> 32) & 0xffffffff, AR5K_TSF_U32
);
554 * ath5k_hw_reset_tsf - Force a TSF reset
556 * @ah: The &struct ath5k_hw
558 * Forces a TSF reset on PCU
560 void ath5k_hw_reset_tsf(struct ath5k_hw
*ah
)
564 val
= ath5k_hw_reg_read(ah
, AR5K_BEACON
) | AR5K_BEACON_RESET_TSF
;
567 * Each write to the RESET_TSF bit toggles a hardware internal
568 * signal to reset TSF, but if left high it will cause a TSF reset
569 * on the next chip reset as well. Thus we always write the value
570 * twice to clear the signal.
572 ath5k_hw_reg_write(ah
, val
, AR5K_BEACON
);
573 ath5k_hw_reg_write(ah
, val
, AR5K_BEACON
);
577 * Initialize beacon timers
579 void ath5k_hw_init_beacon(struct ath5k_hw
*ah
, u32 next_beacon
, u32 interval
)
581 u32 timer1
, timer2
, timer3
;
584 * Set the additional timers by mode
586 switch (ah
->opmode
) {
587 case NL80211_IFTYPE_MONITOR
:
588 case NL80211_IFTYPE_STATION
:
589 /* In STA mode timer1 is used as next wakeup
590 * timer and timer2 as next CFP duration start
591 * timer. Both in 1/8TUs. */
592 /* TODO: PCF handling */
593 if (ah
->ah_version
== AR5K_AR5210
) {
600 /* Mark associated AP as PCF incapable for now */
601 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_PCF
);
603 case NL80211_IFTYPE_ADHOC
:
604 AR5K_REG_ENABLE_BITS(ah
, AR5K_TXCFG
, AR5K_TXCFG_ADHOC_BCN_ATIM
);
606 /* On non-STA modes timer1 is used as next DMA
607 * beacon alert (DBA) timer and timer2 as next
608 * software beacon alert. Both in 1/8TUs. */
609 timer1
= (next_beacon
- AR5K_TUNE_DMA_BEACON_RESP
) << 3;
610 timer2
= (next_beacon
- AR5K_TUNE_SW_BEACON_RESP
) << 3;
614 /* Timer3 marks the end of our ATIM window
615 * a zero length window is not allowed because
616 * we 'll get no beacons */
617 timer3
= next_beacon
+ 1;
620 * Set the beacon register and enable all timers.
622 /* When in AP or Mesh Point mode zero timer0 to start TSF */
623 if (ah
->opmode
== NL80211_IFTYPE_AP
||
624 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
)
625 ath5k_hw_reg_write(ah
, 0, AR5K_TIMER0
);
627 ath5k_hw_reg_write(ah
, next_beacon
, AR5K_TIMER0
);
628 ath5k_hw_reg_write(ah
, timer1
, AR5K_TIMER1
);
629 ath5k_hw_reg_write(ah
, timer2
, AR5K_TIMER2
);
630 ath5k_hw_reg_write(ah
, timer3
, AR5K_TIMER3
);
632 /* Force a TSF reset if requested and enable beacons */
633 if (interval
& AR5K_BEACON_RESET_TSF
)
634 ath5k_hw_reset_tsf(ah
);
636 ath5k_hw_reg_write(ah
, interval
& (AR5K_BEACON_PERIOD
|
640 /* Flush any pending BMISS interrupts on ISR by
641 * performing a clear-on-write operation on PISR
642 * register for the BMISS bit (writing a bit on
643 * ISR toggles a reset for that bit and leaves
644 * the remaining bits intact) */
645 if (ah
->ah_version
== AR5K_AR5210
)
646 ath5k_hw_reg_write(ah
, AR5K_ISR_BMISS
, AR5K_ISR
);
648 ath5k_hw_reg_write(ah
, AR5K_ISR_BMISS
, AR5K_PISR
);
650 /* TODO: Set enhanced sleep registers on AR5212
651 * based on vif->bss_conf params, until then
652 * disable power save reporting.*/
653 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_PWR_SV
);
658 * ath5k_check_timer_win - Check if timer B is timer A + window
660 * @a: timer a (before b)
661 * @b: timer b (after a)
662 * @window: difference between a and b
663 * @intval: timers are increased by this interval
665 * This helper function checks if timer B is timer A + window and covers
666 * cases where timer A or B might have already been updated or wrapped
667 * around (Timers are 16 bit).
669 * Returns true if O.K.
672 ath5k_check_timer_win(int a
, int b
, int window
, int intval
)
675 * 1.) usually B should be A + window
676 * 2.) A already updated, B not updated yet
677 * 3.) A already updated and has wrapped around
678 * 4.) B has wrapped around
680 if ((b
- a
== window
) || /* 1.) */
681 (a
- b
== intval
- window
) || /* 2.) */
682 ((a
| 0x10000) - b
== intval
- window
) || /* 3.) */
683 ((b
| 0x10000) - a
== window
)) /* 4.) */
684 return true; /* O.K. */
689 * ath5k_hw_check_beacon_timers - Check if the beacon timers are correct
691 * @ah: The &struct ath5k_hw
692 * @intval: beacon interval
694 * This is a workaround for IBSS mode:
696 * The need for this function arises from the fact that we have 4 separate
697 * HW timer registers (TIMER0 - TIMER3), which are closely related to the
698 * next beacon target time (NBTT), and that the HW updates these timers
699 * separately based on the current TSF value. The hardware increments each
700 * timer by the beacon interval, when the local TSF converted to TU is equal
701 * to the value stored in the timer.
703 * The reception of a beacon with the same BSSID can update the local HW TSF
704 * at any time - this is something we can't avoid. If the TSF jumps to a
705 * time which is later than the time stored in a timer, this timer will not
706 * be updated until the TSF in TU wraps around at 16 bit (the size of the
707 * timers) and reaches the time which is stored in the timer.
709 * The problem is that these timers are closely related to TIMER0 (NBTT) and
710 * that they define a time "window". When the TSF jumps between two timers
711 * (e.g. ATIM and NBTT), the one in the past will be left behind (not
712 * updated), while the one in the future will be updated every beacon
713 * interval. This causes the window to get larger, until the TSF wraps
714 * around as described above and the timer which was left behind gets
715 * updated again. But - because the beacon interval is usually not an exact
716 * divisor of the size of the timers (16 bit), an unwanted "window" between
717 * these timers has developed!
719 * This is especially important with the ATIM window, because during
720 * the ATIM window only ATIM frames and no data frames are allowed to be
721 * sent, which creates transmission pauses after each beacon. This symptom
722 * has been described as "ramping ping" because ping times increase linearly
723 * for some time and then drop down again. A wrong window on the DMA beacon
724 * timer has the same effect, so we check for these two conditions.
726 * Returns true if O.K.
729 ath5k_hw_check_beacon_timers(struct ath5k_hw
*ah
, int intval
)
731 unsigned int nbtt
, atim
, dma
;
733 nbtt
= ath5k_hw_reg_read(ah
, AR5K_TIMER0
);
734 atim
= ath5k_hw_reg_read(ah
, AR5K_TIMER3
);
735 dma
= ath5k_hw_reg_read(ah
, AR5K_TIMER1
) >> 3;
737 /* NOTE: SWBA is different. Having a wrong window there does not
738 * stop us from sending data and this condition is caught by
739 * other means (SWBA interrupt) */
741 if (ath5k_check_timer_win(nbtt
, atim
, 1, intval
) &&
742 ath5k_check_timer_win(dma
, nbtt
, AR5K_TUNE_DMA_BEACON_RESP
,
744 return true; /* O.K. */
749 * ath5k_hw_set_coverage_class - Set IEEE 802.11 coverage class
751 * @ah: The &struct ath5k_hw
752 * @coverage_class: IEEE 802.11 coverage class number
754 * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
756 void ath5k_hw_set_coverage_class(struct ath5k_hw
*ah
, u8 coverage_class
)
758 /* As defined by IEEE 802.11-2007 17.3.8.6 */
759 int slot_time
= ath5k_hw_get_default_slottime(ah
) + 3 * coverage_class
;
760 int ack_timeout
= ath5k_hw_get_default_sifs(ah
) + slot_time
;
761 int cts_timeout
= ack_timeout
;
763 ath5k_hw_set_ifs_intervals(ah
, slot_time
);
764 ath5k_hw_set_ack_timeout(ah
, ack_timeout
);
765 ath5k_hw_set_cts_timeout(ah
, cts_timeout
);
767 ah
->ah_coverage_class
= coverage_class
;
770 /***************************\
771 * Init/Start/Stop functions *
772 \***************************/
775 * ath5k_hw_start_rx_pcu - Start RX engine
777 * @ah: The &struct ath5k_hw
779 * Starts RX engine on PCU so that hw can process RXed frames
782 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
784 void ath5k_hw_start_rx_pcu(struct ath5k_hw
*ah
)
786 AR5K_REG_DISABLE_BITS(ah
, AR5K_DIAG_SW
, AR5K_DIAG_SW_DIS_RX
);
790 * at5k_hw_stop_rx_pcu - Stop RX engine
792 * @ah: The &struct ath5k_hw
794 * Stops RX engine on PCU
796 void ath5k_hw_stop_rx_pcu(struct ath5k_hw
*ah
)
798 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW
, AR5K_DIAG_SW_DIS_RX
);
802 * ath5k_hw_set_opmode - Set PCU operating mode
804 * @ah: The &struct ath5k_hw
805 * @op_mode: &enum nl80211_iftype operating mode
807 * Configure PCU for the various operating modes (AP/STA etc)
809 int ath5k_hw_set_opmode(struct ath5k_hw
*ah
, enum nl80211_iftype op_mode
)
811 struct ath_common
*common
= ath5k_hw_common(ah
);
812 u32 pcu_reg
, beacon_reg
, low_id
, high_id
;
814 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "mode %d\n", op_mode
);
816 /* Preserve rest settings */
817 pcu_reg
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
) & 0xffff0000;
818 pcu_reg
&= ~(AR5K_STA_ID1_ADHOC
| AR5K_STA_ID1_AP
819 | AR5K_STA_ID1_KEYSRCH_MODE
820 | (ah
->ah_version
== AR5K_AR5210
?
821 (AR5K_STA_ID1_PWR_SV
| AR5K_STA_ID1_NO_PSPOLL
) : 0));
826 case NL80211_IFTYPE_ADHOC
:
827 pcu_reg
|= AR5K_STA_ID1_ADHOC
| AR5K_STA_ID1_KEYSRCH_MODE
;
828 beacon_reg
|= AR5K_BCR_ADHOC
;
829 if (ah
->ah_version
== AR5K_AR5210
)
830 pcu_reg
|= AR5K_STA_ID1_NO_PSPOLL
;
832 AR5K_REG_ENABLE_BITS(ah
, AR5K_CFG
, AR5K_CFG_IBSS
);
835 case NL80211_IFTYPE_AP
:
836 case NL80211_IFTYPE_MESH_POINT
:
837 pcu_reg
|= AR5K_STA_ID1_AP
| AR5K_STA_ID1_KEYSRCH_MODE
;
838 beacon_reg
|= AR5K_BCR_AP
;
839 if (ah
->ah_version
== AR5K_AR5210
)
840 pcu_reg
|= AR5K_STA_ID1_NO_PSPOLL
;
842 AR5K_REG_DISABLE_BITS(ah
, AR5K_CFG
, AR5K_CFG_IBSS
);
845 case NL80211_IFTYPE_STATION
:
846 pcu_reg
|= AR5K_STA_ID1_KEYSRCH_MODE
847 | (ah
->ah_version
== AR5K_AR5210
?
848 AR5K_STA_ID1_PWR_SV
: 0);
849 case NL80211_IFTYPE_MONITOR
:
850 pcu_reg
|= AR5K_STA_ID1_KEYSRCH_MODE
851 | (ah
->ah_version
== AR5K_AR5210
?
852 AR5K_STA_ID1_NO_PSPOLL
: 0);
862 low_id
= get_unaligned_le32(common
->macaddr
);
863 high_id
= get_unaligned_le16(common
->macaddr
+ 4);
864 ath5k_hw_reg_write(ah
, low_id
, AR5K_STA_ID0
);
865 ath5k_hw_reg_write(ah
, pcu_reg
| high_id
, AR5K_STA_ID1
);
868 * Set Beacon Control Register on 5210
870 if (ah
->ah_version
== AR5K_AR5210
)
871 ath5k_hw_reg_write(ah
, beacon_reg
, AR5K_BCR
);
876 void ath5k_hw_pcu_init(struct ath5k_hw
*ah
, enum nl80211_iftype op_mode
,
879 /* Set bssid and bssid mask */
880 ath5k_hw_set_bssid(ah
);
883 ath5k_hw_set_opmode(ah
, op_mode
);
885 /* Write rate duration table only on AR5212 and if
886 * virtual interface has already been brought up
887 * XXX: rethink this after new mode changes to
888 * mac80211 are integrated */
889 if (ah
->ah_version
== AR5K_AR5212
&&
891 ath5k_hw_write_rate_duration(ah
);
893 /* Set RSSI/BRSSI thresholds
895 * Note: If we decide to set this value
896 * dynamically, have in mind that when AR5K_RSSI_THR
897 * register is read it might return 0x40 if we haven't
898 * wrote anything to it plus BMISS RSSI threshold is zeroed.
899 * So doing a save/restore procedure here isn't the right
900 * choice. Instead store it on ath5k_hw */
901 ath5k_hw_reg_write(ah
, (AR5K_TUNE_RSSI_THRES
|
902 AR5K_TUNE_BMISS_THRES
<<
903 AR5K_RSSI_THR_BMISS_S
),
906 /* MIC QoS support */
907 if (ah
->ah_mac_srev
>= AR5K_SREV_AR2413
) {
908 ath5k_hw_reg_write(ah
, 0x000100aa, AR5K_MIC_QOS_CTL
);
909 ath5k_hw_reg_write(ah
, 0x00003210, AR5K_MIC_QOS_SEL
);
912 /* QoS NOACK Policy */
913 if (ah
->ah_version
== AR5K_AR5212
) {
914 ath5k_hw_reg_write(ah
,
915 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES
) |
916 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET
) |
917 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET
),
921 /* Restore slot time and ACK timeouts */
922 if (ah
->ah_coverage_class
> 0)
923 ath5k_hw_set_coverage_class(ah
, ah
->ah_coverage_class
);
925 /* Set ACK bitrate mode (see ack_rates_high) */
926 if (ah
->ah_version
== AR5K_AR5212
) {
927 u32 val
= AR5K_STA_ID1_BASE_RATE_11B
| AR5K_STA_ID1_ACKCTS_6MB
;
928 if (ah
->ah_ack_bitrate_high
)
929 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, val
);
931 AR5K_REG_ENABLE_BITS(ah
, AR5K_STA_ID1
, val
);